JP2006286516A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2006286516A
JP2006286516A JP2005107505A JP2005107505A JP2006286516A JP 2006286516 A JP2006286516 A JP 2006286516A JP 2005107505 A JP2005107505 A JP 2005107505A JP 2005107505 A JP2005107505 A JP 2005107505A JP 2006286516 A JP2006286516 A JP 2006286516A
Authority
JP
Japan
Prior art keywords
coolant
temperature
fuel cell
cell stack
circulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005107505A
Other languages
English (en)
Inventor
Masaru Okano
賢 岡野
Hiroshi Tanaka
広志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005107505A priority Critical patent/JP2006286516A/ja
Publication of JP2006286516A publication Critical patent/JP2006286516A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 低温環境下において発電効率の向上を図ることが可能な燃料電池システムを提供する。
【解決手段】 燃料電池システム1は、燃料電池スタック10の温度が、通常起動可能最低温度と貯留された冷却液の温度とから設定される第1設定温度以上となった場合に、貯留された冷却液を冷却液循環系20に戻すこととしている。すなわち、燃料電池スタック10の温度が通常起動可能最低温度よりも高い第1設定温度以上となったときに冷却液を冷却液循環系20に戻すため、冷却液を戻したことにより冷却液によって燃料電池スタック10が冷やされても燃料電池スタック10の温度が通常起動可能最低温度を下回らないようになっている。
【選択図】 図1

Description

本発明は、燃料電池システムに関する。
従来、氷点下などの低温環境下において、燃料電池システムを起動するときに、燃料電池スタックを冷却する冷却液を抜き取り、燃料電池スタックが発電を効率的に行い得る温度として予め設定された温度(以下、通常起動可能最低温度と称する)になったときに、抜き取った冷却液を戻す燃料電池システムが知られている(例えば特許文献1参照)。
特開2003−257460号公報
しかし、従来の燃料電池システムでは、抜き取った冷却液の温度が低い場合、冷却液を戻したときに燃料電池スタックの温度が通常起動可能最低温度を下回り、発電効率が悪くなってしまう可能性がある。
本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、低温環境下において発電効率の向上を図ることが可能な燃料電池システムを提供することにある。
本発明の燃料電池システムは、発電を行う燃料電池スタックと、燃料電池スタックの発電により生じた熱を放熱すべく該燃料電池スタックに冷却液を導入させ、該燃料電池スタックを冷却したことにより暖められた冷却液を冷却して再度燃料電池スタックに導入させる冷却液循環系とを備えている。また、燃料電池システムは、冷却液循環系に存在する冷却液を抜き取って貯留しておく冷却液貯留手段と、冷却液貯留手段により貯留された冷却液の温度を検出する貯留冷却液温度検出手段と、燃料電池スタックの温度を検出するスタック温度検出手段と、冷却液循環系に存在する冷却液を抜き取って冷却液貯留手段に貯留させる制御、及び冷却液貯留手段により冷却液が貯留されている場合に冷却液を冷却液循環系に戻す制御を行う制御手段とを備えている。制御手段は、スタック温度検出手段により検出された燃料電池スタックの温度が所定温度以下の場合に、冷却液循環系から冷却液を抜き取って冷却液貯留手段に貯留させる。さらに制御手段は、スタック温度検出手段により検出された燃料電池スタックの温度が、燃料電池スタックが発電を効率的に行い得る温度として予め設定された通常起動可能最低温度と貯留冷却液温度検出手段により検出された冷却液の温度とから設定される第1設定温度以上となった場合に、冷却液貯留手段に貯留された冷却液を冷却液循環系に戻す。
本発明によれば、スタック温度検出手段により検出された燃料電池スタックの温度が所定温度以下の場合に、冷却液循環系から冷却液を抜き取って冷却液貯留手段に貯留させることとしている。このため、燃料電池スタックが所定温度以下という低温環境下において燃料電池スタックに冷却液を流入せないこととなり、速やかに燃料電池スタックを通常起動可能最低温度まで昇温させることができる。
また、燃料電池スタックの温度が、通常起動可能最低温度と貯留された冷却液の温度とから設定される第1設定温度以上となった場合に、貯留された冷却液を冷却液循環系に戻すこととしている。ここで、冷却液の温度が低い場合、冷却液を冷却液循環系に戻すと燃料電池スタックの温度を低下させることとなってしまう。このため、燃料電池スタックの温度が通常起動可能最低温度以上となったからといって直ちに冷却液を冷却液循環系に戻すと、燃料電池スタックは通常起動可能最低温度を下回り発電効率が悪くなる可能性があるが、本発明では、第1設定温度以上となったときに冷却液を冷却液循環系に戻すため、冷却液を戻したことにより燃料電池スタックの温度が通常起動可能最低温度を下回らないようになっている。
従って、低温環境下において発電効率の向上を図ることができる。
以下、本発明の好適な実施形態を図面に基づいて説明する。なお、各図において、同一又は同様の要素には同一の符号を付して説明を省略するものとする。
図1は、本発明の第1実施形態に係る燃料電池システムの構成図である。なお、図1に示す構成については、便宜上、一部接続関係を省略して図示するものとする。同図に示すように、燃料電池システム1は、燃料電池スタック10、冷却液循環系20、冷却液回収系30を備えている。
燃料電池スタック10は、発電を行うものであり、発電により生じた熱を放熱すべく内部に冷却液を取り込む冷却液流路を有している。この冷却液流路は、上記冷却液循環系20に接続されている。
冷却液循環系20は、燃料電池スタック10を冷却すべく該燃料電池スタック10に冷却液を導入させ、該燃料電池スタック10を冷却したことにより暖められた冷却液を冷却して再度燃料電池スタック10に導入させるものである。この冷却液循環系20は、冷却液循環配管21とラジエータ22と冷却液ポンプ23とを含んで構成されている。ここで、冷却液としては、例えば純水が用いられる。
冷却液循環配管21は、冷却液を循環させるための流路となるものである。ラジエータ22は、燃料電池スタック10を冷却したことにより温度上昇した冷却液を冷却するものである。冷却液ポンプ23は、ラジエータ22によって冷却された冷却液を燃料電池スタック10に送り込むためのもので、ラジエータ22から燃料電池スタック10に至るまでの冷却液循環配管21上に設けられている。
冷却液回収系30は、氷点下などの低温時に冷却液循環系20に存在する冷却液を抜き取り、所定の条件を満たすときに抜き取った冷却液を冷却液循環系20に戻すものである。この冷却液回収系30は、冷却液貯留タンク(冷却液貯留手段)31と、冷却液導入配管32と、冷却液排出配管33と、水位センサ34と、通気管35とを有している。
冷却液貯留タンク31は、冷却液循環系20に存在する冷却液を抜き取って貯留しておくためのタンクである。冷却液導入配管32は冷却液循環系20から冷却液貯留タンク31に冷却液を導くものであって、一端が燃料電池スタック10からラジエータ22に至るまでの冷却液循環配管21に接続され、他端が冷却液貯留タンク31に接続されている。なお、以下の説明において冷却液導入配管32と冷却液循環配管21とが接続される箇所を接続点Aというものとする。
また、冷却液排出配管33は、冷却液貯留タンク31から冷却液循環系20に冷却液を導くものであって、一端が冷却液貯留タンク31に接続され、他端がラジエータ22から冷却液ポンプ23に至るまでの冷却液循環配管21に接続されている。なお、以下の説明において冷却液排出配管33と冷却液循環配管21とが接続される箇所を接続点Bというものとする。
水位センサ34は、冷却液貯留タンク31内の冷却液の水位を検出するものである。通気管35は、冷却液貯留タンク31に冷却液を出し入れする際の空気の通り道となるものである。
また、上記燃料電池システム1は、コンプレッサ41と、空気供給配管42と、第1〜第6のバルブ51〜56と、第1〜第4の温度センサ61〜64と、制御部(制御手段)70とを有している。コンプレッサ41は、空気を圧送して冷却液循環系20に存在する冷却液を冷却液貯留タンク31まで送り込む(空気により押し出す)ためのものであって、空気供給配管42上に設けられている。空気供給配管42は一端が外部とつながっており、他端が冷却液ポンプ23から燃料電池スタック10に至るまでの冷却液循環配管21に接続されている。なお、以下の説明において空気供給配管42と冷却液循環配管21とが接続される箇所を接続点Cというものとする。
第1〜第6のバルブ51〜56は開閉動作することによって冷却液を流したり遮断したりするものである。具体的に第1のバルブ51は接続点Aからラジエータ22に至るまでの冷却液循環配管21上に設けられている。第2のバルブ52はラジエータ22から接続点Bに至るまでの冷却液循環配管21上に設けられている。第3のバルブ53は冷却液ポンプ23から接続点Cに至るまでの冷却液循環配管21上に設けられている。また、第4のバルブ54は冷却液導入配管32上に設けられ、第5のバルブ55は冷却液排出配管33上に設けられている。さらに、第6のバルブ56は、コンプレッサ41から接続点Cに至るまでの空気供給配管42上に設けられている。
第1〜第4の温度センサ61〜64は、各部の温度を検出するものである。具体的に第1の温度センサ(貯留冷却液温度検出手段)61は、冷却液貯留タンク31により貯留された冷却液の温度を検出するものである。第2の温度センサ(スタック温度検出手段)62は燃料電池スタック10の温度を検出するものである。第3の温度センサ(スタック内冷却液温度検出手段)63は、燃料電池スタック10内の冷却液の温度を検出するものである。また、第4の温度センサ(残存冷却液温度検出手段)64は、冷却液循環系20から冷却液を抜き取る際に、抜き取ることができなかった残存冷却液の温度を検出するものである。後述するが、本実施形態に係る燃料電池システム1において冷却液を抜き取る動作を行った場合、第1のバルブ51から第2のバルブ52までの間に存在する冷却液が抜き取られず残存するようになっている。このため、本実施形態において第4の温度センサ64は、第1のバルブ51から第2のバルブ52まで区間における冷却液の温度を検出できるように配置されていることとなる。
制御部70は、本実施形態に係る燃料電池システム1において冷却液の循環等を制御するものである。この制御部70は、概略的に冷却液循環系20において冷却液を循環させる制御と、冷却液循環系20に存在する冷却液を抜き取って冷却液貯留タンク31に貯留させる制御と、冷却液貯留タンク31により冷却液が貯留されている場合に冷却液を冷却液循環系20に戻す制御とを行うようになっている。
次に、本実施形態に係る燃料電池システム1の動作の概略を、図2〜図9を参照して説明する。まず、冷却液循環系20において冷却液を循環させる場合の動作を説明する。図2は、冷却液循環系20において冷却液を循環させる場合の動作を示す説明図である。冷却液循環系20において冷却液を循環させる場合、図2に示すように、制御部70は、第1〜第3のバルブ51〜53を開状態とし、第4〜第6のバルブ54〜56を閉状態とする。また、制御部70は、冷却液ポンプ23を駆動させる。これにより、冷却液は冷却液循環配管21を通じて燃料電池スタック10とラジエータ22との間を循環することとなる。
また、制御部70は、第2の温度センサ62により検出された燃料電池スタック10の温度が所定温度(例えば0度)以下の場合、冷却液循環系20から冷却液を抜き取る。例えば、氷点下などの状況においては、燃料電池スタック10の発電性能が悪く、速やかに温度を上昇させて通常起動可能最低温度に到達させる必要がある。このため、制御部70は、冷却液を抜き取る制御を行って冷却液を循環させず、燃料電池スタック10の温度を速やかに上昇させることとしている。
図3は、冷却液循環系20から冷却液を抜き取る場合の動作を示す説明図である。この制御の際、制御部70は、図3に示すように、第1〜第3及び第5のバルブ51〜53,55を閉状態とし、第4及び第6のバルブ54,56を開状態とする。また、制御部70は、冷却液ポンプ23を停止させ、コンプレッサ41を駆動させる。これにより、コンプレッサ41から圧送される空気が燃料電池スタック10内に入り、燃料電池スタック10内や冷却液循環配管21内の冷却液を押し出す。そして、第1のバルブ51が閉じられ第4のバルブ54が開けられていることから、冷却液は冷却液導入配管32を通って冷却液貯留タンク31に至る。このとき、通気管35によって冷却液貯留タンク31内の空気が抜けるため、冷却液は容易に冷却液貯留タンク31に溜まっていくこととなる。
また、制御部70は、冷却液貯留タンク31に冷却液が貯留されている場合に、第2の温度センサ62により検出された燃料電池スタック10の温度が、通常起動可能最低温度と第1の温度センサ61により検出された貯留冷却液の温度とから設定される第1設定温度以上となった場合に、冷却液貯留タンク31に貯留された冷却液を冷却液循環系20に戻すこととしている。
ここで、従来では、燃料電池スタック10が通常起動可能最低温度に到達した場合、燃料電池スタック10が高温となり過ぎないように冷却液を循環させるべく、冷却液を戻すこととしていた。ところが、抜き取った冷却液の温度が低い場合、冷却液を戻したときに燃料電池スタック10の温度が通常起動可能最低温度を下回り、発電効率が悪くなってしまう可能性がある。
そこで、本実施形態では、燃料電池スタック10が通常起動可能最低温度に到達したときでなく、燃料電池スタック10が第1設定温度となったときに、貯留した冷却液を戻すこととしている。この場合において、制御部70は、冷却液貯留タンク31により貯留された冷却液と燃料電池スタック10とを通常起動可能最低温度まで上昇させるのに必要となる第1熱量を求め、この第1熱量を燃料電池スタック10において発熱させたときに到達する燃料電池スタック10の温度を、第1設定温度とする。
ここで、第1熱量及び第1設定温度を説明する。図4は第1熱量及び第1設定温度の説明図である。同図に示すように、燃料電池スタック10の温度がT62であり、貯留冷却液の温度がT61であるとする。このとき、燃料電池スタック10を通常起動可能最低温度T0まで上昇させるには、燃料電池スタック10を(T0−T62)の温度分上昇させるだけの熱量C11が必要となる。また、貯留冷却液を通常起動可能最低温度T0まで上昇させるには、貯留冷却液を(T0−T61)の温度分上昇させるだけの熱量C12が必要となる。
上記した第1熱量C1とは、これら熱量C11,C12を足しあわせたものである。制御部70は第1熱量C1を燃料電池スタック10にて発熱させたときに到達する温度を第1設定温度T1とする。このため、燃料電池スタック10が第1設定温度T1に達した場合、冷却液を冷却液循環系20に戻して燃料電池スタック10から熱量C12が奪われても、燃料電池スタック10は通常起動可能最低温度T0を下回らないこととなる。
図5は、冷却液を冷却液循環系20に戻す場合の動作を示す説明図である。同図に示すように、冷却液を戻す場合、制御部70は第1,第2及び第6のバルブ51,52,56を閉状態とし、第3〜第5のバルブ53〜55を開状態とする。また、制御部70は、コンプレッサ41を停止させ、冷却液ポンプ23を駆動させる。これにより、冷却液ポンプ23によって冷却液貯留タンク31に貯留される冷却液が吸い上げられ、燃料電池スタック10内に送り込まれる。また、冷却液循環配管21内に入っていた空気は、冷却液導入配管32を通って冷却液貯留タンク31に至り、通気管35によって外部に排出されることとなる。なお、上記から明らかなように、冷却液ポンプ23は、冷却液を循環させるためだけのものでなく、冷却液貯留タンク31から冷却液を冷却液循環系20に戻すものとしても機能することとなる。
ここで、制御部70は、冷却液ポンプ23が冷却液を冷却液循環系20に戻すときの単位時間あたりの流量を、該ポンプ23の性能範囲内で最大に制御する。これにより、制御部70は、冷却液ポンプ23にて多くの熱量を発生させ、冷却液を暖めながら冷却液循環系20に戻すようにしている。
図6は、冷却液を冷却液循環系20に戻した後の第1動作を示す説明図である。冷却液循環系20に冷却液を戻した場合、制御部70は、即座に冷却液を循環させるわけでなく、冷却液を循環させない期間を経た後に冷却液を循環させることとする。すなわち、制御部70は、図6に示すように、第1〜第6のバルブ51〜56の全てを閉状態とし、コンプレッサ41及び冷却液ポンプ23を停止させる。
ここで、図3に示した如く、冷却液循環系20から冷却液を抜き取る場合、第1及び第2のバルブ51,52は閉じられる。また、冷却液導入配管32は第1のバルブ51と燃料電池スタック10との間に接続され、第1のバルブ51と第2のバルブ52との間に接続されていない。このため、冷却液循環系20から冷却液を抜き取る場合、第1のバルブ51と第2のバルブ52との間の冷却液は、冷却液貯留タンク31に貯留されることなく、冷却液循環系20に残存することとなる。よって、冷却液を冷却液循環系20に戻して循環させた場合、残存冷却液によって燃料電池スタック10温度が通常起動可能最低温度T0を下回る可能性がある。
そこで、本実施形態に係る燃料電池システム1は、冷却液循環系20に冷却液を戻した後に、まず冷却液を循環させない期間を設けている。すなわち、燃料電池システム1は、冷却液貯留タンク31から冷却液を戻した場合、すぐに残存冷却液を循環させず、燃料電池スタック10の発熱により燃料電池スタック10の冷却液流路内の冷却液を暖めることとしている。これにより、たとえ残存冷却液の温度が低かったとしても、燃料電池スタック10温度が通常起動可能最低温度T0を下回らないようにしている。
具体的に説明すると、制御部70は、冷却液貯留タンク31から冷却液循環系20に冷却液を戻した場合、第4の温度センサ64により検出された残存冷却液の温度から、残存冷却液全体を通常起動可能最低温度T0まで上昇させるのに必要となる第2熱量を求める。そして、制御部70は、第2熱量を燃料電池スタック10において発熱させたときに到達する燃料電池スタック10の温度を第2設定温度とする。次に、制御部70は、第3の温度センサ63により検出された燃料電池スタック10内の冷却液の温度が、第2設定温度以上になった場合に、冷却液循環系20において冷却液を循環させる。他方、燃料電池スタック10内の冷却液の温度が第2設定温度以上でない場合には、冷却液は、循環させられることがなく、燃料電池スタック10によって暖められることとなる。
ここで、上記第2熱量及び第2設定温度とは図7に示すようなものである。図7は、第2熱量及び第2設定温度の説明図である。燃料電池スタック10の温度は、図3,4を参照して説明したように、貯留冷却液を戻したことによって第1設定温度T1から熱量C12だけ減じられて、ほぼ通常起動可能最低温度T0となったと考えられる。このため、燃料電池スタック10の冷却液の温度もほぼ通常起動可能最低温度T0であると考えられる。
また、残存冷却液の温度はT64である。このため、残存冷却液を通常起動可能最低温度T0まで上昇させるには、残存冷却液を(T0−T64)の温度分上昇させるだけの熱量C2が必要となる。この熱量C2が第2熱量である。そして、制御部70は第2熱量C2を燃料電池スタック10にて発熱させたときに到達する燃料電池スタック10内の冷却液温度を第2設定温度T2とする。このため、燃料電池スタック10内の冷却液が第2設定温度T2に達した場合、残存冷却液を循環させても、残存冷却液によって燃料電池スタック10の温度は通常起動可能最低温度T0を下回らないこととなる。
図8は、冷却液を冷却液循環系20に戻した後の第2動作を示す説明図である。上記のように冷却液循環系20に冷却液を戻して冷却液の循環を停止した後、制御部70は、冷却液を冷却液循環系20において循環させる。すなわち、制御部70は、図8に示すように、第1〜第3のバルブ51〜53を開状態とし、第4〜第6のバルブ54〜56を閉状態とし、冷却液ポンプ23を駆動させる。
図9は、燃料電池スタック10の温度の推移を示す説明図である。まず、燃料電池スタック10の温度が所定温度以下の場合、冷却液循環系20から冷却液が抜かれ、冷却液貯留タンク31に貯留される。また、燃料電池スタック10は発電により熱を生じ、スタック温度は上昇していく(時刻0〜t1)。
そして、燃料電池スタック10の温度が第1設定温度T1に到達したとすると、制御部70は、冷却液貯留タンク31から冷却液循環系20に冷却液を戻す(時刻t1)。ここで、貯留冷却液の温度が低い場合には、貯留冷却液により燃料電池スタック10が冷やされることとなり、燃料電池スタック10の温度は、通常起動可能最低温度T0付近まで低下する。その後、燃料電池スタック10は、該スタック10の発熱によって暖まり、第2設定温度T2まで上昇する(時刻t2)。ここで、制御部70は、時刻t1〜t2の間に冷却液を循環させず、残存冷却液によって燃料電池スタック10が冷やされないようにしている。そして、燃料電池スタック10の冷却液が第2設定温度T2まで上昇すると、制御部70は、冷却液を循環させ、通常の制御を行うこととなる(時刻t2以降)。
図10は、燃料電池システム1の詳細動作を示すフローチャートである。なお、図10に示す処理は、冷却液循環系20から冷却液を抜き取った後の処理を示している。同図に示すように、冷却液を抜き取った後に、第2の温度センサ62は燃料電池スタック10の温度を検出する(ST1)。その後、第1の温度センサ61冷却液貯留タンク31に貯留される冷却液の温度を検出する(ST2)。
次に、燃料電池スタック10は発電を開始する。次いで、制御部70は、第2の温度センサ62により検出される燃料電池スタック10の温度が、第1設定温度T1以上であるか否かを判断する(ST4)。ここで、燃料電池スタック10の温度が第1設定温度T1以上でないと判断した場合(ST4:NO)、制御部70は、燃料電池スタック10の温度が第1設定温度T1以上であると判断されるまで、この処理を繰り返すこととなる。
一方、燃料電池スタック10の温度が第1設定温度T1以上であると判断した場合(ST4:YES)、制御部70は、冷却液ポンプ23が冷却液を戻すときの単位時間あたりの流量が、該ポンプ23の性能範囲内で最大となるように制御する(ST5)。また、制御部70は、第1,第2及び第6のバルブ51,52,56を閉じ、第3〜第5のバルブ53〜55を開ける(ST5)。これにより、冷却液貯留タンク31に貯留される冷却液が冷却液循環系20に戻されることとなる。
次に、制御部70は、水位センサ34により検出される水位が設定水位未満となったか否かを判断する(ST6)。水位が設定水位未満となっていないと判断した場合(ST6:NO)、制御部70は、冷却液貯留タンク31の冷却液を冷却液循環系20に戻し切っていないと判断し、水位が設定水位未満となったと判断するまで、この処理を繰り返すこととなる。
他方、水位が設定水位未満となったと判断した場合(ST6:YES)、制御部70は、冷却液貯留タンク31の冷却液を冷却液循環系20に戻し切ったと判断する。そして、制御部70は、第3〜第5のバルブ53〜55を閉じ、冷却液ポンプ23を停止させる(ST7)。
次に、第4の温度センサ64は第1のバルブ51と第2のバルブ52との間に残存する残存冷却液の温度を検出する(ST8)。そして、第3の温度センサ63は燃料電池スタック10の内部の冷却液温度を検出し、制御部70は、第3の温度センサ63により検出された燃料電池スタック10の内部の冷却液温度が第2設定温度T2以上であるか否かを判断する(ST9)。ここで、燃料電池スタック10の内部の冷却液温度が第2設定温度T2以上でないと判断した場合(ST9:NO)、制御部70は、燃料電池スタック10の内部の冷却液温度が第2設定温度T2以上であると判断するまで、この処理を繰り返すこととなる。
一方、燃料電池スタック10の内部の冷却液温度が第2設定温度T2以上であると判断した場合(ST9:YES)、制御部70は、冷却液を循環させる(ST10)。そして、図10に示す処理は終了し、通常運転(燃料電池スタック10の温度が通常起動可能最低温度T0以上を維持し、且つ冷却液を冷却液循環系20において循環させている運転)を行うこととなる。
このようにして、第1実施形態に係る燃料電池システム1によれば、第2の温度センサ62により検出された燃料電池スタック10の温度が所定温度(例えば0度)以下の場合に、冷却液循環系20から冷却液を抜き取って冷却液を冷却液貯留タンク31に貯留させることとしている。このため、燃料電池スタック10が所定温度以下という低温環境下において燃料電池スタック10に冷却液を流入せないこととなり、速やかに燃料電池スタック10を通常起動可能最低温度T0まで昇温させることができる。
また、燃料電池スタック10の温度が、通常起動可能最低温度T0と貯留された冷却液の温度とから設定される第1設定温度T1以上となった場合に、貯留された冷却液を冷却液循環系20に戻すこととしている。ここで、冷却液の温度が低い場合、冷却液を冷却液循環系20に戻すと燃料電池スタック10の温度を低下させることとなってしまう。このため、燃料電池スタック10の温度が通常起動可能最低温度T0以上となったからといって直ちに冷却液を冷却液循環系20に戻すと、燃料電池スタック10は通常起動可能最低温度T0を下回り発電効率が悪くなる可能性があるが、本実施形態では、第1設定温度T1以上となったときに冷却液を冷却液循環系20に戻すため、冷却液を戻したことにより燃料電池スタック10の温度が通常起動可能最低温度T0を下回らないようになっている。
従って、低温環境下において発電効率の向上を図ることができる。
また、冷却液循環系20に冷却液を戻す際に、冷却液ポンプ23が冷却液を戻すときの単位時間あたりの流量を該冷却液ポンプ23の性能範囲内で最大に制御することとしている。このため、冷却液ポンプ23において熱量を多く発生させることができ、冷却液ポンプ23によって冷却液を暖めることができる。この結果、上記第1設定温度T1をやや少なく見積もることなどが可能となり、速やかに燃料電池システム1を通常運転とすることができる。
なお、単位時間あたりの流量を該冷却液ポンプ23の性能範囲内で最大に制御するため、冷却液を戻す際の時間を短縮することもできる。また、冷却液ポンプ23が冷却液を暖めることにより、冷却液を暖める部位が燃料電池スタック10と冷却液ポンプ23との2カ所になるため、燃料電池スタック10の1カ所のみで冷却液を暖めるよりも、冷却液温度の隔たりを少なくすることができる。
また、貯留された冷却液と燃料電池スタック10とを通常起動可能最低温度T0まで上昇させるのに必要となる第1熱量C1を求め、この第1熱量C1を燃料電池スタック10において発熱させたときに到達する燃料電池スタック10の温度を、第1設定温度T1とすることとしている。このため、冷却液を冷却液循環系20に戻したことにより冷却液に奪われると予測される分の熱量C12が予め燃料電池スタック10にて発熱されることとなり、冷却液を冷却液循環系20に戻したとしても燃料電池スタック10の温度は通常起動可能最低温度T0を下回ることないようになっている。従って、燃料電池スタックの温度10が通常起動可能最低温度T0を下回ることを確実に防止することができる。
また、冷却液循環系20に冷却液を戻した場合、冷却液を循環させない期間を経た後に、冷却液を循環させることとしている。このため、冷却液を循環させない期間において、燃料電池スタック10の冷却液流路内の冷却液を暖め、暖めたうえで冷却液を循環させることとなり、燃料電池スタック10の温度が通常起動可能最低温度T0を下回る可能性を一層減じることができる。
また、冷却液を抜き取る際に抜き取ることができなかった残存冷却液全体を通常起動可能最低温度T0まで上昇させるのに必要となる第2熱量C2を求め、この第2熱量C2を燃料電池スタック10において発熱させたときに到達する燃料電池スタック10の温度を、第2設定温度T2とする。そして、燃料電池スタック10内の冷却液の温度が第2設定温度T2以上となったときに、冷却液循環系20において冷却液を循環させることとしている。このため、残存冷却液が循環することにより奪われる熱量C2が予め燃料電池スタック10にて発熱されることとなり、残存冷却液を循環させたとしても燃料電池スタック10の温度は通常起動可能最低温度T0を下回ることないようになっている。従って、残存冷却液によって燃料電池スタック10の温度が通常起動可能最低温度T0を下回ることを確実に防止することができる。
次に、本発明の第2実施形態を説明する。第2実施形態に係る燃料電池システムは、第1実施形態のものと同様であるが、処理内容が異なっている。具体的に第2実施形態に係る燃料電池システムは、冷却液貯留タンク31から冷却液循環系20に冷却液を戻した後の処理内容が第1実施形態のものと異なっている。
次に、図11〜図13を参照して、本発明の第2実施形態に係る燃料電池システム2の動作の概略を説明する。まず、第2実施形態において、制御部70は、冷却液循環系20に冷却液を戻した場合、第4の温度センサ64により検出された残存冷却液の温度を検出する。次に、制御部70は、燃料電池スタック10の冷却液流路の容積に相当する量の残存冷却液を通常起動可能最低温度T0まで上昇させるのに必要となる第3熱量を求める(第1処理)。そして、制御部70は、第3熱量を燃料電池スタック10において発熱させたときの燃料電池スタック10の温度を第3設定温度とする。
上記第1処理後に、制御部70は、第4の温度センサ64により検出された燃料電池スタック10内の冷却液の温度が、第3設定温度以上になった場合、燃料電池スタック10の冷却液流路の容積に相当する量の冷却液を燃料電池スタック10に流入させる(第2処理)。
図11は、第3熱量及び第3設定温度の説明図である。同図に示すように、燃料電池スタック10内の冷却液の温度が通常起動可能最低温度T0であるとする。また、残存冷却液の温度がT64とする。このとき、燃料電池スタック10の冷却液流路の容積に相当する量の残存冷却液を通常起動可能最低温度T0まで上昇させるには、残存冷却液を(T0−T64)の温度分上昇させるだけの熱量C3が必要となる。この熱量が第3熱量C3である。そして、制御部70は第3熱量C3を燃料電池スタック10にて発熱させたときに到達する燃料電池スタック10内の冷却液温度を第3設定温度T3とする。このため、燃料電池スタック10内の冷却液が第3設定温度T3に達した場合、燃料電池スタック10の流路分の残存冷却液を燃料電池スタック10に流入させても、流路分の残存冷却液によって燃料電池スタック10の温度は通常起動可能最低温度T0を下回らないこととなる。
次に、冷却液流路分の冷却液を燃料電池スタック10に流入させた後、制御部70は、冷却液の流入を停止させる。図12は、冷却液の流入を停止させる場合の動作を示す説明図である。図12に示すように、第1及び第3〜第6のバルブ51,53〜56を閉状態とし、第2バルブ52のみを開状態とする。また、制御部70は、冷却液ポンプ23を停止させる。
そして、流入停止後に、制御部70は、第4の温度センサ64により検出された冷却液の温度が通常起動可能最低温度T0未満か否かを判断する(第3処理)。この時点において、残存冷却液の一部は冷却液貯留タンク31から戻された冷却液と混ざるため、もはや残存冷却液とは言えない。従って、第2実施形態において、第4の温度センサ64は、冷却液循環系20の冷却液の温度を検出可能であって、冷却液循環系20から冷却液を抜き取り冷却液を戻して冷却液を循環させるまでは、抜き取ることができなかった残存冷却液の温度を検出可能なものとして機能することとなる。
次に、制御部70は、第4の温度センサ64により検出された温度が通常起動可能最低温度T0未満である場合、第4の温度センサ64により検出された冷却液の温度から、燃料電池スタック10の冷却液流路の容積に相当する量の冷却液を通常起動可能最低温度T0まで上昇させるのに必要となる第3熱量C3を再度求め、その後第2処理を実行していく。すなわち、制御部70は、再度、冷却液流路分の冷却液を通常起動可能最低温度T0まで上昇させる第3熱量C3を求め、第3設定温度T3を設定し、冷却液流路分の冷却液を燃料電池スタック10に流入させ、第4の温度センサ64により検出された温度が通常起動可能最低温度T0未満か否かを判断することとなる。
他方、制御部70は、検出された温度が通常起動可能最低温度T0以上である場合、第3温度センサ63により検出された燃料電池スタック10内の冷却液の温度が通常起動可能最低温度T0以上となるまで冷却液を循環させず待機する。そして、制御部70は、燃料電池スタック10内の冷却液の温度が通常起動可能最低温度T0以上となった後に、冷却液を循環させる。すなわち、燃料電池スタック10に冷却液を流入した直後に、冷却液を循環させると、燃料電池スタック10にて発熱した熱量を燃料電池スタック10内の冷却液に伝えることなく、冷却液の一部が通常起動可能最低温度T0となってしまう可能性がある。このため、制御部70は、燃料電池スタック10内の冷却液が通常起動可能最低温度T0以上となるのを待ってから、冷却液を循環させることとしている。
図13は、第2実施形態に係る燃料電池スタック10の温度の推移を示す説明図である。まず、燃料電池スタック10の温度が所定温度以下の場合、冷却液循環系20から冷却液が抜かれ、冷却液貯留タンク31に貯留される。また、燃料電池スタック10は発電により熱を生じ、スタック温度は上昇していく(時刻0〜t1)。
そして、燃料電池スタック10の温度が第1設定温度T1に到達したとすると、制御部70は、冷却液貯留タンク31から冷却液循環系20に冷却液を戻す(時刻t1)。ここで、貯留冷却液の温度が低い場合には、貯留冷却液により燃料電池スタック10が冷やされることとなり、燃料電池スタック10の温度は、通常起動可能最低温度T0付近まで低下する。その後、燃料電池スタック10は、該スタック10の発熱によって暖まり、第3設定温度T3まで上昇する(時刻t2)。ここで、制御部70は、時刻t1〜t2の間に冷却液を循環させず、残存冷却液によって燃料電池スタック10が冷やされないようにしている。
そして、制御部70は、燃料電池スタック10の冷却液流路分の冷却液を燃料電池スタック10内に流入させる。この冷却液流路分の冷却液の流入により、燃料電池スタック10は冷やされることとなり、燃料電池スタック10の温度は通常起動可能最低温度T0付近まで低下する(時刻t3)。
次いで、第4の温度センサ64は冷却液の温度を検出する。このとき、第4の温度センサ64により検出された温度が通常起動可能最低温度T0未満であれば、再度、制御部70は、燃料電池スタック10内の冷却液の温度が第3設定温度T3に到達するまで、冷却液の流入を停止する(時刻t3〜t4)。そして、制御部70は、燃料電池スタック10内の冷却液の温度が第3設定温度T3に到達すると、冷却液流路分の冷却液を燃料電池スタック10内に流入させる。これにより、燃料電池スタック10の温度は通常起動可能最低温度T0付近まで低下する(時刻t5)。
次に、第4の温度センサ64により検出された温度が通常起動可能最低温度T0以上であれば、冷却液全体が通常起動可能最低温度以上になったと考えられるため、冷却液全体を循環させる(時刻t6以降)。
なお、第4の温度センサ64により検出された温度が通常起動可能最低温度T0以上であった場合、即座に冷却液を循環させると、燃料電池スタック10内に流入したばかりの冷却液が暖められることなく、循環することとなる。このため、制御部70は、燃料電池スタック10内に流入したばかりの冷却液が通常起動可能最低温度T0以上に暖められるのを待ってから、冷却液を循環させる。
図14は、第2実施形態に係る燃料電池システム2の詳細動作を示すフローチャートである。なお、図14に示すステップST11〜ST18の処理は、図10に示したステップST1〜ST8の処理と同様であるため、説明を省略する。
第4の温度センサ64は第1のバルブ51と第2のバルブ52との間に残存する残存冷却液の温度を検出した後(ST18の後)。制御部70は、第3の温度センサ63により検出された燃料電池スタック10の内部の冷却液温度が第3設定温度T3以上であるか否かを判断する(ST19)。ここで、燃料電池スタック10の内部の冷却液温度が第3設定温度T3以上でないと判断した場合(ST19:NO)、制御部70は、燃料電池スタック10の内部の冷却液温度が第3設定温度T3以上であると判断するまで、この処理を繰り返すこととなる。
一方、燃料電池スタック10の内部の冷却液温度が第3設定温度T3以上であると判断した場合(ST19:YES)、制御部70は、冷却液ポンプ23が冷却液を戻すときの単位時間あたりの流量が、該ポンプ23の性能範囲内で最大となるように制御する(ST20)。また、制御部70は、第1〜第3のバルブ51〜53を開ける(ST20)。
次に、制御部70は、燃料電池スタック10内への冷却液の流入量が、設定流量(燃料電池スタック10の冷却液流路分の量)以上となったか否かを判断する(ST21)。燃料電池スタック10内への冷却液の流入量が設定流量以上でないと判断した場合(ST21:NO)、制御部70は、流入量が設定流量以上となるまで、この処理を繰り返すこととなる。
一方、流入量が設定流量以上となった場合(ST21:YES)、制御部70は、第1及び第3のバルブ51,53を閉じ、冷却液ポンプ23を停止させる(ST22)。そして、制御部70は、第4の温度センサ64により検出される温度が通常起動可能最低温度T0以上であるか否かを判断する(ST23)。第4の温度センサ64により検出される温度が通常起動可能最低温度T0以上でないと判断した場合(ST23:NO)、制御部70は、ステップST19に戻ることとなる。
また、第4の温度センサ64により検出される温度が通常起動可能最低温度T0以上であると判断した場合(ST23:YES)、制御部70は、第3の温度センサ62により検出される燃料電池スタック10内の冷却液の温度が通常起動可能最低温度T0以上であるか否かを判断する(ST24)。第4の温度センサ64により検出される温度が通常起動可能最低温度T0以上でないと判断した場合(ST24:NO)、制御部70は、通常起動可能最低温度T0以上であると判断するまで、この処理を繰り返すこととなる。
また、第3温度センサ64により検出される燃料電池スタック10内の冷却液の温度が通常起動可能最低温度T0以上であると判断した場合(ST24:YES)、制御部70は、冷却液を循環させることとなる(ST54)。そして、図14に示す処理は終了し、通常運転(燃料電池スタック10の温度が通常起動可能最低温度T0以上を維持し、且つ冷却液を冷却液循環系20において循環させている運転)を行うこととなる。
このようにして、第2実施形態に係る燃料電池システム2によれば、第1実施形態と同様に、低温環境下において発電効率の向上を図ることができる。また、速やかに燃料電池システム2を通常運転とすることができ、燃料電池スタックの温度10が通常起動可能最低温度T0を下回ることを確実に防止することができる。
さらに、第2実施形態によれば、冷却液貯留タンク31から冷却液循環系20に冷却液を戻した場合、残存冷却液の温度から燃料電池スタック10の冷却液流路の容積に相当する量の残存冷却液を通常起動可能最低温度T0まで上昇させるのに必要となる第3熱量C3を求める(第1処理)。そして、第3熱量C3を燃料電池スタック10において発熱させたときの燃料電池スタック10の温度を第3設定温度T3とし、燃料電池スタック10内の冷却液の温度が、第3設定温度T3以上になった場合、燃料電池スタック10の冷却液流路の容積に相当する量の冷却液を燃料電池スタック10に流入させる(第2処理)。このため、燃料電池スタック10の冷却液流路分だけ残存冷却液が流入することにより奪われる熱量C3が予め燃料電池スタック10にて発熱されることとなり、冷却液流路分だけ残存冷却液を流入させたとしても燃料電池スタック10の温度は通常起動可能最低温度T0を下回ることないようになっている。
次いで、第4の温度センサ64により検出された温度が通常起動可能最低温度T0未満か否かを判断し(第3処理)、通常起動可能最低温度T0未満である場合、第4の温度センサ64により検出された温度から、燃料電池スタック10の冷却液流路の容積に相当する量の残存冷却液を通常起動可能最低温度T0まで上昇させるのに必要となる第3熱量C3を求め、その後、第2処理から再度実行していくこととしている。このため、第4の温度センサ64により検出された温度が通常起動可能最低温度T0未満である場合、新たに燃料電池スタック10の冷却液流路分の残存冷却液を取り込んで、再度第3設定温度T3以上に暖め、これを繰り返していくこととなる。この繰り返しの間、燃料電池スタック10の温度は上記の如く通常起動可能最低温度T0を下回ることがない。
従って、残存冷却液によって燃料電池スタックの温度が通常起動可能最低温度を下回ることを確実に防止することができる。
また、冷却液を上記の如く繰り返し暖めていった後、第4の温度センサ64により検出された温度が通常起動可能最低温度T0以上である場合、冷却液全体を循環させることとしている。このように、第4の温度センサ64により検出された温度が通常起動可能最低温度T0以上である場合、冷却液全体が通常起動可能最低温度T0以上になったと考えられるため、冷却液全体を循環させる通常動作を行っても、燃料電池スタック10の温度は通常起動可能最低温度T0を下回ることはない。従って、燃料電池スタック10の温度が確実に通常起動可能最低温度T0を下回ることがない状況で、通常の動作に移行するため、燃料電池スタック10の温度が通常起動可能最低温度T0を下回ることを確実に防止することができる。
また、冷却液を上記の如く繰り返し暖めていった後、第3の温度センサ63により検出された燃料電池スタック10内の冷却液の温度が通常起動可能最低温度T0以上となるまで冷却液の循環を停止する。その後、第4の温度センサ64により検出された温度が通常起動可能最低温度T0以上である場合、冷却液全体を循環させることとしている。ここで、第4の温度センサ64により検出された温度が通常起動可能最低温度T0以上である場合、冷却液全体が通常起動可能最低温度T0以上になったと考えられるが、燃料電池スタック10内の冷却液の温度については通常起動可能最低温度T0まで昇温されていない可能性があり得る。このため、燃料電池スタック10内の冷却液を通常起動可能最低温度T0となるまで暖めてから、冷却液全体を循環させることで、全ての冷却液について通常起動可能最低温度T0以上としたうえで、冷却液を循環させることとなる。従って、燃料電池スタック10の温度が通常起動可能最低温度を下回ることを一層確実に防止することができる。
以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよい。
本発明の第1実施形態に係る燃料電池システムの構成図である。 冷却液循環系において冷却液を循環させる場合の動作を示す説明図である。 冷却液循環系から冷却液を抜き取る場合の動作を示す説明図である。 第1熱量及び第1設定温度の説明図である。 冷却液を冷却液循環系に戻す場合の動作を示す説明図である。 冷却液を冷却液循環系に戻した後の第1動作を示す説明図である。 第2熱量及び第2設定温度の説明図である。 冷却液を冷却液循環系に戻した後の第2動作を示す説明図である。 燃料電池スタックの温度の推移を示す説明図である。 燃料電池システムの詳細動作を示すフローチャートである。 第3熱量及び第3設定温度の説明図である。 冷却液の流入を停止させる場合の動作を示す説明図である。 第2実施形態に係る燃料電池スタックの温度の推移を示す説明図である。 第2実施形態に係る燃料電池システムの詳細動作を示すフローチャートである。
符号の説明
C1…第1熱量
C2…第2熱量
C3…第3熱量
T0…通常起動可能最低温度
T1…第1設定温度
T2…第2設定温度
T3…第3設定温度
1,2…燃料電池システム
10…燃料電池スタック
20…冷却液循環系
21…冷却液循環配管
22…ラジエータ
23…冷却液ポンプ
30…冷却液回収系
31…冷却液貯留タンク(冷却液貯留手段)
32…冷却液導入配管
33…冷却液排出配管
34…水位センサ
35…通気管
41…コンプレッサ
42…空気供給配管
51〜56…バルブ
61…第1の温度センサ(貯留冷却液温度検出手段)
62…第2の温度センサ(スタック温度検出手段)
63…第3の温度センサ(スタック内冷却液温度検出手段)
64…第4の温度センサ(残存冷却液温度検出手段)
70…制御部(制御手段)

Claims (8)

  1. 発電を行う燃料電池スタックと、
    前記燃料電池スタックの発電により生じた熱を放熱すべく該燃料電池スタックに冷却液を導入させ、該燃料電池スタックを冷却したことにより暖められた冷却液を冷却して再度燃料電池スタックに導入させる冷却液循環系と、
    前記冷却液循環系に存在する冷却液を抜き取って貯留しておく冷却液貯留手段と、
    前記冷却液貯留手段により貯留された冷却液の温度を検出する貯留冷却液温度検出手段と、
    前記燃料電池スタックの温度を検出するスタック温度検出手段と、
    前記冷却液循環系に存在する冷却液を抜き取って前記冷却液貯留手段に貯留させる制御、及び前記冷却液貯留手段により冷却液が貯留されている場合に冷却液を前記冷却液循環系に戻す制御を行う制御手段と、を備え、
    前記制御手段は、前記スタック温度検出手段により検出された燃料電池スタックの温度が所定温度以下の場合に、前記冷却液循環系から冷却液を抜き取って前記冷却液貯留手段に貯留させ、前記スタック温度検出手段により検出された燃料電池スタックの温度が、燃料電池スタックが発電を効率的に行い得る温度として予め設定された通常起動可能最低温度と前記貯留冷却液温度検出手段により検出された冷却液の温度とから設定される第1設定温度以上となった場合に、前記冷却液貯留手段に貯留された冷却液を前記冷却液循環系に戻す
    ことを特徴とする燃料電池システム。
  2. 前記冷却液貯留手段から前記冷却液循環系に冷却液を戻す冷却液ポンプをさらに備え、
    前記制御手段は、前記冷却液貯留手段から前記冷却液循環系に冷却液を戻す際に、前記冷却液ポンプが冷却液を戻すときの単位時間あたりの流量を該冷却液ポンプの性能範囲内で最大に制御する
    ことを特徴とする請求項1に記載の燃料電池システム。
  3. 前記制御手段は、前記冷却液貯留手段により貯留された冷却液と前記燃料電池スタックとを前記通常起動可能最低温度まで上昇させるのに必要となる第1熱量を求め、この第1熱量を前記燃料電池スタックにおいて発熱させたときに到達する燃料電池スタックの温度を、前記第1設定温度とすることを特徴とする請求項1又は請求項2のいずれかに記載の燃料電池システム。
  4. 前記制御手段は、前記冷却液貯留手段から前記冷却液循環系に冷却液を戻した場合、冷却液を循環させない期間を経た後に、前記冷却液循環系において冷却液を循環させることを特徴する請求項1〜請求項3のいずれか1項に記載の燃料電池システム。
  5. 前記冷却液循環系から冷却液を抜き取る際に、抜き取ることができなかった残存冷却液の温度を検出する残存冷却液温度検出手段と、
    前記燃料電池スタック内の冷却液の温度を検出するスタック内冷却液温度検出手段と、をさらに備え、
    前記制御手段は、前記冷却液貯留手段から前記冷却液循環系に冷却液を戻した場合、
    前記残存冷却液温度検出手段により検出された残存冷却液の温度から、残存冷却液全体を前記通常起動可能最低温度まで上昇させるのに必要となる第2熱量を求め、
    前記第2熱量を前記燃料電池スタックにおいて発熱させたときに到達する前記燃料電池スタックの温度を第2設定温度とし、前記スタック内冷却液温度検出手段により検出された燃料電池スタック内の冷却液の温度が、前記第2設定温度以上になった場合に、前記冷却液循環系において冷却液を循環させる
    ことを特徴する請求項4に記載の燃料電池システム。
  6. 前記冷却液循環系の冷却液の温度を検出可能であって、前記冷却液循環系から冷却液を抜き取り冷却液を戻して冷却液を循環させるまでは、抜き取ることができなかった残存冷却液の温度を検出可能な残存冷却液温度検出手段と、
    前記燃料電池スタック内の冷却液の温度を検出するスタック内冷却液温度検出手段と、
    をさらに備え、
    前記制御手段は、前記冷却液貯留手段から前記冷却液循環系に冷却液を戻した場合、
    前記残存冷却液温度検出手段により検出された残存冷却液の温度から、前記燃料電池スタックの冷却液流路の容積に相当する量の残存冷却液を前記通常起動可能最低温度まで上昇させるのに必要となる第3熱量を求める第1処理を実行し、
    前記第3熱量を前記燃料電池スタックにおいて発熱させたときの燃料電池スタックの温度を第3設定温度とし、前記第1処理後に、前記スタック内冷却液温度検出手段により検出された燃料電池スタック内の冷却液の温度が、前記第3設定温度以上になった場合、前記燃料電池スタックの冷却液流路の容積に相当する量の冷却液を前記燃料電池スタックに流入させる第2処理を実行し、
    前記第2処理後に、前記残存冷却液温度検出手段により再度検出された温度が前記通常起動可能最低温度未満か否かを判断する第3処理を実行し、
    前記第3処理を行った結果、前記残存冷却液温度検出手段により検出された冷却液の温度が前記通常起動可能最低温度未満である場合、前記残存冷却液温度検出手段により検出された冷却液の温度から、前記燃料電池スタックの冷却液流路の容積に相当する量の冷却液を前記通常起動可能最低温度まで上昇させるのに必要となる第3熱量を再度求め、その後第2処理を実行していく
    ことを特徴する請求項4に記載の燃料電池システム。
  7. 前記制御手段は、前記第3処理を行った結果、前記残存冷却液温度検出手段により検出された温度が前記通常起動可能最低温度以上である場合、冷却液を循環させることを特徴とする請求項6に記載の燃料電池システム。
  8. 前記制御手段は、前記第3処理を行った結果、前記残存冷却液温度検出手段により検出された温度が前記通常起動可能最低温度以上である場合、冷却液を循環させるのに先だって、前記スタック内冷却液温度検出手段により検出された燃料電池スタック内の冷却液の温度が前記通常起動可能最低温度以上となるまで冷却液を循環させず、前記スタック内冷却液温度検出手段により検出された燃料電池スタック内の冷却液の温度が前記通常起動可能最低温度以上となった後に、冷却液を循環させることを特徴とする請求項7に記載の燃料電池システム。
JP2005107505A 2005-04-04 2005-04-04 燃料電池システム Pending JP2006286516A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107505A JP2006286516A (ja) 2005-04-04 2005-04-04 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107505A JP2006286516A (ja) 2005-04-04 2005-04-04 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2006286516A true JP2006286516A (ja) 2006-10-19

Family

ID=37408191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107505A Pending JP2006286516A (ja) 2005-04-04 2005-04-04 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2006286516A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090091A1 (ja) * 2009-02-04 2010-08-12 トヨタ自動車株式会社 燃料電池システム
KR101448764B1 (ko) 2012-12-28 2014-10-08 현대자동차 주식회사 연료 전지 차량의 냉 시동 방법
CN106602172A (zh) * 2016-12-23 2017-04-26 深圳宣顶实业有限公司 一种动力电池恒温系统
CN107634242A (zh) * 2016-07-19 2018-01-26 北京晟泽科技有限公司 一种用于高空无人机燃料电池模块的热管理系统及方法
CN114976110A (zh) * 2022-06-27 2022-08-30 中国第一汽车股份有限公司 燃料电池及低温环境运行控制方法
CN115275444A (zh) * 2022-09-30 2022-11-01 中国第一汽车股份有限公司 车辆的电池温度的调节方法、装置和车辆

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090091A1 (ja) * 2009-02-04 2010-08-12 トヨタ自動車株式会社 燃料電池システム
KR101448764B1 (ko) 2012-12-28 2014-10-08 현대자동차 주식회사 연료 전지 차량의 냉 시동 방법
CN107634242A (zh) * 2016-07-19 2018-01-26 北京晟泽科技有限公司 一种用于高空无人机燃料电池模块的热管理系统及方法
CN106602172A (zh) * 2016-12-23 2017-04-26 深圳宣顶实业有限公司 一种动力电池恒温系统
CN114976110A (zh) * 2022-06-27 2022-08-30 中国第一汽车股份有限公司 燃料电池及低温环境运行控制方法
CN115275444A (zh) * 2022-09-30 2022-11-01 中国第一汽车股份有限公司 车辆的电池温度的调节方法、装置和车辆
CN115275444B (zh) * 2022-09-30 2023-01-10 中国第一汽车股份有限公司 车辆的电池温度的调节方法、装置和车辆

Similar Documents

Publication Publication Date Title
JP2006286516A (ja) 燃料電池システム
US8132422B2 (en) Cogeneration system
JP2007132612A (ja) コージェネレーションシステム及びその制御方法並びにプログラム
US10794160B2 (en) Geothermal heat recovery device and geothermal heat recovery device operating method
CN107178845A (zh) 冷却系统及冷却方法
JP2002181427A (ja) 自動回収機構付き冷却液循環装置
KR102212854B1 (ko) 조수기 열원 공급용 열매체 순환 시스템 및 그것의 운전 방법
JP2008116131A (ja) 給湯器の凍結防止装置
US20110094498A1 (en) Drainback Solar Water Heater
JPWO2013129476A1 (ja) コジェネレーションシステムの制御装置及び制御方法
JP2006132889A (ja) 貯湯式ヒートポンプ給湯装置
US20080087034A1 (en) Thermal energy recovery system for an ice making plant of an ice rink
JP2009276033A (ja) 給湯装置
JP2006132888A (ja) ヒートポンプ給湯装置
JP2009150612A (ja) ヒートポンプ式給湯機
JP2007155275A (ja) ヒートポンプ給湯機
JP4962104B2 (ja) 貯湯式給湯機
JP7182483B2 (ja) 熱輸送システム、および熱輸送システムの制御方法
JP2004325045A (ja) 空調装置
JP2009216335A (ja) ヒートポンプ給湯機
JP4969422B2 (ja) 貯湯式電気給湯機
JP2005300057A (ja) ヒートポンプ給湯装置
JP6766601B2 (ja) 濃度調節装置
JP5268110B2 (ja) 太陽熱利用システム
JP2007212103A (ja) ヒートポンプ式給湯機