JP2006284787A - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP2006284787A
JP2006284787A JP2005103027A JP2005103027A JP2006284787A JP 2006284787 A JP2006284787 A JP 2006284787A JP 2005103027 A JP2005103027 A JP 2005103027A JP 2005103027 A JP2005103027 A JP 2005103027A JP 2006284787 A JP2006284787 A JP 2006284787A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
voltage
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005103027A
Other languages
English (en)
Inventor
Yuichi Inoue
雄一 井ノ上
Takahiro Sasaki
貴啓 佐々木
Takashi Sasabayashi
貴 笹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005103027A priority Critical patent/JP2006284787A/ja
Priority to US11/366,458 priority patent/US8134669B2/en
Publication of JP2006284787A publication Critical patent/JP2006284787A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/207Display of intermediate tones by domain size control
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133776Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers having structures locally influencing the alignment, e.g. unevenness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed

Abstract

【課題】複雑な駆動回路が不要であり、応答特性が優れた液晶表示装置を提供する。
【解決手段】画素毎に画素電極120が設けられたTFT基板110と、コモン電極133が設けられた対向基板130と、TFT基板110及び対向基板130間に封入された液晶140とを有する液晶表示装置において、画素電極120に印加する電圧が第1の電圧(例えば黒表示電圧)から第2の電圧(例えば白表示電圧)に変化したときに、液晶分子の配向状態の変化に伴って透過率が最大透過率まで上昇した後に、第2の電圧に応じた安定時の透過率まで減少することを利用して、応答時間(立ち上がり時間)の短縮を図る。
【選択図】図16

Description

本発明はパーソナルコンピュータ用ディスプレイ、テレビ及び投射型プロジェクタ等に使用される液晶表示装置に関し、特に応答特性が優れていて動画の表示に好適な液晶表示装置に関する。
液晶表示装置は、薄くて軽量であるとともに低電圧で駆動できて消費電力が少ないという長所があり、各種電子機器に広く利用されている。特に、画素毎にスイッチング素子としてTFT(Thin Film Transistor :薄膜トランジスタ)が設けられたアクティブマトリクス方式の液晶表示装置は、表示品質の点でもCRT(Cathode-Ray Tube)に匹敵するほど優れているため、パーソナルコンピュータ用ディスプレイだけでなく、テレビや投射型プロジェクタ等にも使用されている。
一般的な液晶表示装置は、相互に対向して配置された2枚の基板の間に液晶を封入した構造を有している。一方の基板にはTFT及び画素電極等が形成され、他方の基板にはカラーフィルタ及びコモン(共通)電極等が形成されている。以下、TFT及び画素電極等が形成された基板をTFT基板と呼び、TFT基板に対向して配置される基板を対向基板と呼ぶ。また、TFT基板と対向基板との間に液晶を封入してなる構造物を液晶パネルと呼ぶ。
液晶パネルの厚さ方向の両側にはそれぞれ偏光板が配置される。画素電極とコモン電極との間に電圧を印加して液晶分子の配向状態を変化させることにより、これら2枚の偏光板を透過する光の量を調整することができる。
従来は、2枚の基板間に誘電率異方性が正の液晶を封入し、液晶分子をツイスト配向させるTN(Twisted Nematic )型液晶表示装置が広く使用されていた。しかし、TN型液晶表示装置には視野角特性が悪く、画面を斜め方向から見たときにコントラストや色調が大きく変化するという欠点がある。このため、視野角特性が良好なMVA(Multi-domain Vertical Alignment )型液晶表示装置が開発され、実用化されている。
MVA型液晶表示装置では、2枚の基板間に誘電率異方性が負の液晶を封入し、電圧印加時に1画素内に液晶分子の配向方向が相互に異なる複数の領域(ドメイン)が形成されるように配向制御用構造物を設けている。配向制御用構造物としては、例えば誘電体からなる突起や電極のスリットが用いられる。特開2003−195328号公報及び特開2003−330043号公報には、画素電極に設けられたスリットを配向制御用構造物とした液晶表示装置の例が記載されている。
図1は、液晶表示装置の1画素分の等価回路図である。この図1に示すように、液晶表示装置の1画素は、TFT10と、液晶セルCLCと、補助容量Csとにより構成されている。液晶セルCLCは、画素電極と、コモン電極と、それらの間の液晶とにより構成されている。
TFT10はゲートバスライン11に供給される走査信号によりオン−オフし、TFT10がオンになるとデータバスライン12から液晶セルCLC及び補助容量Csに表示信号(表示電圧)が供給される。その後、TFT10がオフになっても、液晶セルCLC及び補助容量Csに保持された電圧が液晶に印加される。
液晶表示装置では、画素電極とコモン電極との間に電圧が印加されてから画素内の全ての液晶分子が電圧に応じた所定の方向に配向するまでには時間がかかる。また、液晶分子は誘電率異方性を有しているため、電圧を印加してから全ての液晶分子が所定の方向に配向するまでの間に液晶セルCLCの容量値が変化し、その結果液晶に印加される電圧が低下してしまう。そこで、図1に示すように液晶セルCLCに並列に補助容量Csを接続して、液晶に印加される電圧の変化を小さくしている。
しかし、従来の液晶表示装置は応答特性が十分でなく、動画を表示すると残像が発生するという問題があった。図2は、横軸に1回目の表示信号を印加してからの時間をとり、縦軸に透過率(輝度)をとって、従来の液晶表示装置の応答特性を示す図である。この図2に示すように、従来の液晶表示装置では、黒表示の状態から白表示の状態に変化するときに、1回目の表示信号の印加では所望の透過率に到達せず、2回目の表示信号の印加で所望の透過率に到達するものが多い。一般的に、白表示時の透過率を100%としたときに、応答時間は、透過率が10%から90%まで変化するのに要する時間(立ち上がり時間)τrと、透過率が90%から10%まで変化するのに要する時間(立ち下がり時間)τfとにより定義される。
液晶表示装置の応答特性を改善するためには、液晶材料を改良することが考えられる。しかし、現状では、液晶表示装置に使用したときに十分な応答特性を示し、且つ表示性能と長期間に亘る信頼性とをいずれも満足する液晶材料は得られていない。
補助容量Csの容量値を大きくして液晶分子の誘電率異方性に起因する印加電圧の低下を抑制することも考えられる。しかし、通常、補助容量Csを構成する電極は金属により形成されているので、容量値を大きくするために電極を大きくすると、開口率が減少して画面が暗くなってしまう。
そこで、駆動方法を工夫して応答特性を改善するオーバードライブと呼ばれる技術が開発されている。この技術は、黒表示から中間調表示に変化するときに、黒表示電圧(低電圧)→白表示電圧(高電圧)→中間調表示電圧(中間電圧)というように3段階に電圧を変化させることにより、液晶分子の状態変化を加速するものである。
特開2003−195328号公報 特開2003−330043号公報 特開2003−172915号公報
しかしながら、オーバードライブでは、データバスラインに供給する電圧を黒表示電圧→白表示電圧→中間調表示電圧というように3段階に変化させる必要があり、駆動回路が複雑になるという欠点がある。また、黒表示から中間調表示に変化させるときにはオーバードライブにより応答時間を短縮することができるが、黒表示から白表示に変化させるときには, 白表示時よりも高い電圧を印加することができないため、応答時間を短縮することはできない。
特開2003−172915号公報には、黒表示から白表示に変化させるときに白表示電圧(最高階調電圧)よりも高い電圧を印加することが記載されている。しかし、その場合も表示電圧を3段階に変化させる必要がある。また、耐電圧が高いTFTを形成することが必要となり、設計の変更や工程の変更が必要になるという問題も発生する。
以上から、本発明の目的は、複雑な駆動回路が不要であり、応答特性が優れた液晶表示装置を提供することである。
上記した課題は、画素毎に画素電極が設けられた第1の基板と、コモン電極が設けられ、前記第1の基板に対向して配置された第2の基板と、前記第1及び第2の基板間に封入された液晶とを有する液晶表示装置において、前記画素電極に印加する電圧が第1の電圧から第2の電圧に変化したときに、液晶分子の配向状態の変化に伴って透過率が最大透過率まで上昇した後、前記第2の電圧に応じた安定時の透過率まで減少することを特徴とする液晶表示装置により解決する。
本願発明者等は、液晶層に電圧を印加してから配向が安定するまでの間の液晶分子の挙動をシミュレーションした結果、液晶分子の配向が安定したときの透過率よりも配向が安定する直前の透過率のほうが高くなることがあることが判明した。この現象(以下、オーバーシュートと呼ぶ)を利用することにより、オーバードライブのような特別の駆動回路を使用しなくても、応答時間(立ち上がり時間τr)の短縮を図ることができる。
次に、本願発明者等は、オーバーシュートが発生する条件について種々研究を行った。その結果、MVA型液晶表示装置の場合、配向規制用構造物(画素電極又はコモン電極のスリットや、誘電体からなる土手状の突起等)の間隔を一定の値以下にすることにより、オーバーシュートが発生することが判明した。また、配向規制用構造物がスリットの場合はスリットの幅を一定の範囲に設定したり、配向規制用構造物が突起の場合は突起の高さや幅を一定の範囲に設定することによっても、オーバーシュートを発生させることができることが判明した。これらの条件を適切に設定することにより、オーバーシュートの程度(オーバーシュート率)を制御することも可能である。また、配向膜に所定の配向処理を施すことによっても、オーバーシュートを発生させることができる。
このように、本実施形態においては、液晶層に電圧を印加してから配向が安定するまでの間に、液晶分子の配向状態の変化に伴って透過率が最大透過率まで上昇した後に第2の電圧に応じた安定時の透過率まで減少する現象(オーバーシュート)を利用して応答時間の短縮を図るので、オーバードライブと異なり複雑な駆動回路が不要である。
以下、本発明の実施形態について、添付の図面を参照して説明する。
(第1の実施形態)
本願発明者等は、MVA型液晶表示装置において、液晶層に電圧を印加してから配向が安定するまでの間の液晶分子の挙動をシミュレーションした。その結果、MVA型液晶表示装置では、液晶分子の配向が安定したときの透過率(輝度)よりも、安定する直前の透過率のほうが高くなる現象(オーバーシュート)があることが判明した。本発明では、オーバーシュートを利用して液晶表示装置の応答時間の短縮を図る。
オーバーシュートを説明する前に、MVA型液晶表示装置について簡単に説明する。図3は、MVA型液晶表示装置の一例を示す模式図である。MVA型液晶表示装置では、液晶パネルを構成する2枚の基板のうちの一方の基板に画素電極21が形成され、他方の基板にコモン電極22が形成されている。また、液晶パネルの厚さ方向の両側にはそれぞれ偏光板(図示せず)がその吸収軸を相互に直交させて配置されている。
画素電極21には配向制御用構造物としてスリット21aが設けられており、コモン電極22の上(図3では下側)には配向制御用構造物として誘電体からなる土手状の突起23が設けられている。また、画素電極21とコモン電極22との間には誘電率異方性が負の液晶が封入されている。これらの画素電極21、コモン電極22及び突起23の表面は、ポリイミド等からなる垂直配向膜(図示せず)に覆われている。
このようなMVA型液晶表示装置において、画素電極21とコモン電極23との間に電圧が印加されていない状態では、液晶分子30aは基板面に対しほぼ垂直に配向する。但し、突起23の近傍の液晶分子30aは、突起23の傾斜面に垂直な方向に配向する。
画素電極21とコモン電極22との間に所定の電圧を印加すると、液晶分子30aは電圧に応じた角度で傾斜する。但し、電圧印加直後は、突起23及びスリット21aの近傍の液晶分子30aは突起23及びスリット21aの伸びる方向に対し直角な方向に傾斜するが、突起23及びスリット21aから離れた位置にある液晶分子30aは、傾斜角度(基板面に垂直な法線と液晶分子の長軸とのなす角度)は電圧に応じて決まるものの、傾斜方位(液晶分子の長軸を基板面に投影してできる線と基板のX軸とのなす角度)は決まらないため、不安定な状態になる。
その後、突起23及びスリット21aの近傍の液晶分子30aの配向状態が突起23及びスリット21aから離れた位置にある液晶分子30aに伝播して、それらの液晶分子30aの傾斜方位が決定され、安定した配向状態になる。
図4(a),(b)は、突起23の周辺近傍の領域における液晶分子の配向状態を示す模式平面図である。この図4(a),(b)を参照してオーバーシュートが発生する理由を説明する。なお、図中の矢印は、液晶パネルを挟んで配置される2枚の偏光板の吸収軸の方向を示している。この場合、画素電極とコモン電極との間に電圧を印加していないときには黒表示(ノーマリーブラック)となる。
画素電極とコモン電極との間に電圧を印加した直後は、図4(a)に示すように、突起23の両側の液晶分子30aは突起23の伸びる方向に対し垂直な方位に傾斜する。しかし、突起23の中央部に位置する液晶分子30aはどの方位に傾斜するのか決まっていない。この状態では、突起23の中央に1本の暗線35が発生する。
その後、時間が経過すると、図4(b)に示すように、突起23の中央部の液晶分子30aの傾斜方位は、突起23の両側の液晶分子30aの配向に連続するように決定される。この状態では、液晶分子30aの傾斜方位が偏光板の吸収軸の方向と同じになる部分、すなわち突起23の両側のエッジ近傍にそれぞれ暗線35が発生し、図4(a)の状態のときよりも透過率が減少する。この暗線35の本数の変化により、オーバーシュートが発生するものと考えられる。
配向制御用構造物がスリットの場合も、これと同様に電圧印加した直後ではスリットの中央部に1本の暗線が発生し、その後スリットの両側のエッジ近傍に2本の暗線が発生して、透過率が減少する。
図5は、横軸に時間をとり、縦軸に透過率をとって、表示信号を印加してから透過率が安定するまでの間の透過率の変化(透過率特性)を示す図である。前述したように、配向制御用構造物(突起及びスリット)の近傍の領域(以下、「領域I」という)の液晶分子は、画素電極に表示信号が印加されると比較的短時間で配向が安定する。このとき、図5中に破線で示すように、オーバーシュートが発生する。
一方、配向制御用構造物から離れた領域(以下、「領域II」という)の液晶分子は、電圧印加直後には傾斜方向が決定せず、配向制御用構造物の近傍の液晶分子の配向が伝播して所定の方向に配向する。従って、図5中に一点鎖線で示すように、領域IIの液晶分子の配向が安定するには比較的長い時間がかかる。
画素全体の透過率は、領域Iにおける透過率と領域IIにおける透過率とを合成したものとなる。従って、領域IIの液晶分子の配向の安定に要する時間が長い場合は、図5中に実線で示すように、領域Iで発生するオーバーシュートは領域IIの透過率特性にマスクされて、画素全体の透過率特性にはオーバーシュートが発生しない。
図6は、配向制御用構造物(突起及びスリット)間の領域の液晶分子の応答時間が速い場合の透過率特性を示す図である。この図6に示すように、配向制御用構造物の近傍の領域(領域I)における透過率特性は図5と同じであるが、配向制御用構造物から離れた領域(領域II)の応答時間が速い場合は画素全体の透過率特性にオーバーシュートが観測される。配向制御用構造物間の領域(領域II)の液晶分子の応答時間を速くするためには、例えば突起とスリットとの間隔を小さくすることが考えられる。
本願発明者等は、突起とスリットとの間隔とオーバーシュート率との関係をシミュレーションした。その結果を図7に示す。なお、突起とスリットとの間隔は、図8中にLで示す部分の長さである。また、突起23の幅W1を12μm、突起23の高さHを1.4μm、スリット21aの幅W2を10μm、液晶層の厚さ(セルギャップ)dを3.8μmとしている。
図7からわかるように、突起とスリットとの間隔Lが25μmのときはオーバーシュート率は1%程度であり、実質的に無視できる程度である。しかし、突起とスリットとの間隔Lを20μmとするとオーバーシュート率が約5%となり、15μmとするとオーバーシュート率が約9%となり、10μmとするとオーバーシュート率が約12%になる。なお、ここでは、図9に示すように、白表示時における安定後の透過率をTo とし、最高透過率をTmax としたときに、オーバーシュート率を、(Tmax −To )×100/To と定義している。
このように、突起とスリットとの間隔Lを20μm以下とすると、オーバーシュート率が大きくなる。但し、突起とスリットとの間隔Lが10μmよりも小さくなると、画素の面積に対する配向制御用構造物(突起及びスリット)の面積の割合が大きくなり、開口率が極端に低下する。このため、突起とスリットとの間隔Lは10〜20μmとすることが好ましい。なお、突起とスリットとの間隔Lが25μmであっても、他の条件(パラメータ)を適切に設定することにより、十分なオーバーシュート率を確保することが可能である。
図10は、横軸にスリットの幅W2をとり、縦軸にオーバーシュート率をとって、両者の関係をシミュレーションした結果を示す図である。但し、突起の幅W1は12μm、突起の高さHは1.4μm、突起とスリットとの間隔Lは20μm、液晶層の厚さ(セルギャップ)dは3.8μmとしている。
この図10からわかるように、スリットの幅W2を10μm以下とすると、オーバーシュート率が約5%以上となる。但し、スリットの幅W2が6μmよりも狭くなると、スリット近傍における液晶分子の配向性が低下する。このため、スリットの幅W2は6〜10μmとすることが好ましい。
図11は、横軸に突起の幅W1をとり、縦軸にオーバーシュート率をとって、両者の関係をシミュレーションした結果を示す図である。但し、突起の高さHは1.4μm、スリットの幅W2は10μm、突起とスリットとの間隔Lは20μm、液晶層の厚さ(セルギャップ)dは3.8μmとしている。この図11からわかるように、突起の幅W1を12μm以下とすることにより、オーバーシュート率を約5%以上とすることができる。但し、突起の幅W1が6μmよりも狭くなると、突起近傍における液晶分子の配向性が低下する。このため、突起の幅W1は6〜12μmとすることが好ましい。
図12は、横軸に突起の高さHをとり、縦軸にオーバーシュート率をとって、両者の関係をシミュレーションした結果を示す図である。但し、突起の幅W1は12μm、スリットの幅W2は10μm、突起とスリットとの間隔Lは20μm、液晶層の厚さ(セルギャップ)dは3.8μmとしている。
この図12からわかるように、突起の高さHを1.4μm以下とすることにより、オーバーシュート率を約5%以上とすることができる。但し、突起の高さHが0.7μmよりも低くなると、突起近傍における液晶分子の配向性が低下する。このため、突起の高さHは0.7〜1.4μmとすることが好ましい。
図13は、横軸に電圧無印加時における液晶セルの容量(以下、液晶容量ともいう)CLCに対する補助容量Csの割合(Cs/CLC)をとり、縦軸にオーバーシュート率をとって、両者の関係をシミュレーションした結果を示す図である。Cs/CLCの値が0〜1の場合は応答速度が極端に遅くなるため、従来は補助容量Csの値を液晶容量CLCの値の約2倍に設定している。しかし、図13に示すように、オーバーシュート率はCsの値に殆ど依存しない。このため、オーバーシュートを利用して応答速度を速くした液晶表示装置では、補助容量Csの容量値を液晶容量CLCの容量値の2倍以下に設定しても、表示品質の劣化を回避することができる。一方、補助容量Csの容量値を液晶容量CLCの容量値の2倍以下に設定することにより従来に比べて開口率が向上するので、明るい表示が可能になる。但し、補助容量Csの容量値が液晶容量CLCの容量値の0.5倍よりも小さいと、書き込み電圧(TFTがオフの間に液晶層に印加される電圧)の低下が大きくなる。このため、補助容量Csの値は液晶容量CLCの値の0.5〜2.0倍とすることが好ましい。
これらのパラメータを各々適切な値に設定することで、オーバーシュート率を所望の値に制御することができる。但し、オーバーシュート率が大きすぎると目視でも輝度の変化が認識できるようになり、表示品質の低下を招く。このため、オーバーシュート率は10%以下にすることが好ましい。
図14は、横軸に時間をとり、縦軸に透過率(輝度)をとって、表示信号を印加してから透過率が安定するまでの間の本発明に係る液晶表示装置の透過率の変化を示す図である。この図14に示すように、本発明に係る液晶表示装置ではオーバーシュートを利用しているので、透過率が安定状態の90%になるまでの時間(立ち上がり時間)τrが短く、従来の液晶表示装置(図2参照)に比べて応答特性が向上する。また、本発明に係る液晶表示装置は、黒表示から白表示に変化するときには表示電圧を2段階に変化させればよい。すなわち、本発明の液晶表示装置は、オーバードライブのように電圧を3段階に変化させて駆動する方式とは異なるので、複雑な駆動回路が不要である。
以下、本実施形態に係る液晶表示装置の具体例について説明する。
図15は本実施形態の液晶表示装置を示す平面図、図16は同じくその模式断面図である。
図16に示すように、液晶パネル100は、TFT基板110と、対向基板130と、それらの間に封入された誘電率異方性が負の液晶(例えばメルク社製:Δεが−3.8、NI点が70℃)からなる液晶層140とにより構成されている。液晶パネル100の前面側(観察者側:図16では上側)及び裏面側(図16では下側)にはそれぞれ偏光板(図示せず)が配置され、更に裏面側にはバックライト(図示せず)が配置されている。一方の偏光板は吸収軸を図15に示すX軸に一致させて配置され、他方の偏光板は吸収軸をY軸に一致させて配置されている。
TFT基板110のベースとなるガラス基板110aの上には、図15に示すように、水平方向(X軸方向)に伸びる複数のゲートバスライン111と、垂直方向(Y軸方向)に伸びる複数のデータバスライン115とが形成されている。ゲートバスライン111は垂直方向に例えば約300μmのピッチで配置されており、データバスライン115は水平方向に例えば約100μmのピッチで配置されている。これらのゲートバスライン111及びデータバスライン115により区画される矩形の領域がそれぞれ画素領域である。また、TFT基板110には、ゲートバスライン111に平行に配置されて画素領域の中央を横断する補助容量バスライン112が形成されている。
更に、TFT基板110には、画素領域毎に、TFT117と、補助容量電極118と、画素電極120とが形成されている。TFT117はゲートバスライン111の一部をゲート電極としている。図16に示すように、このゲート電極の上方にはTFT17の活性層となる半導体膜114aとチャネル保護膜114bとが形成されており、半導体膜114aの両側にはドレイン電極117a及びソース電極117bが相互に対向して配置されている。そして、ドレイン電極117aはデータバスライン115に接続されている。
また、補助容量電極118は、第1の絶縁膜113を挟んで補助容量バスライン112に対向する位置に形成されている。この補助容量電極118と、補助容量バスライン112と、それらの間の第1の絶縁膜113とにより補助容量Csが構成される。本実施形態では、補助容量Csの容量値を例えば電圧無印加時における液晶容量CLCの容量値と同じにする。
画素電極120は、ITO等の透明導電体により形成されている。この画素電極120には、配向制御用構造物として、Y軸方向に対し斜め方向に伸びるスリット120aが設けられている。スリット120aは、補助容量バスライン112の中心線を軸としてほぼ上下対称に形成されている。
ゲートバスライン115、TFT117及び補助容量電極118aと画素電極120との間には第2の絶縁膜119が形成されており、画素電極120は第2の絶縁膜119に形成されたコンタクトホール119a,119bを介してソース電極117b及び補助容量電極118に電気的に接続されている。画素電極120の表面は、例えばJSR社製ポリイミドにより形成された垂直配向膜(図示せず)に覆われている。
一方、対向基板130のベースとなるガラス基板130aの上(図16では下側)には、ブラックマトリクス(遮光膜)131と、カラーフィルタ132と、コモン電極133と、配向制御用構造物である土手状の突起135とが形成されている。ブラックマトリクス131はCr(クロム)等の金属又は黒色樹脂により形成されており、TFT基板110側のゲートバスライン111、データバスライン115及びTFT117に対向する位置に配置されている。カラーフィルタ132には赤色(R)、緑色(G)及び青色(B)の3種類があり、画素毎にいずれか1色のカラーフィルタが配置されている。コモン電極133はITO等の透明導電体からなり、カラーフィルタ132の上(図16では下側)に形成されている。土手状の突起135は樹脂等の誘電体(例えばシプレイ製レジスト材料)により形成されている。この突起135は、図15に示すように画素電極120のスリット120a間の領域に、スリット120aに平行に形成されている。コモン電極133及び突起135の表面は、例えばJSR社製ポリイミドにより形成された垂直配向膜(図示せず)に覆われている。
本実施形態においては、前述したように突起135とスリット120aとの間隔L、突起135の幅W1、突起135の高さH、及びスリット120aの幅W2を適切に設定することにより、5〜10%のオーバーシュートを発生させて応答時間(立ち上がり時間)τrを短縮する。
下記表1は、突起とスリットとの間隔Lを15μm(実施例1)、20μm(実施例2)及び25μm(従来例)とした液晶表示装置のオーバーシュート率と応答時間(立ち上がり時間)τrとを調べた結果を示している。但し、液晶層の厚さ(セルギャップ)dはいずれも3.8μm、突起135の高さHはいずれも1.4μm、突起135の幅W1はいずれも12μm、スリット120aの幅W2はいずれも10μmである。
Figure 2006284787
この表1に示すように、従来例の液晶表示装置のオーバーシュート率が1%であるのに対し、実施例1の液晶表示装置のオーバーシュート率は5%、実施例2の液晶表示装置のオーバーシュート率は9%である。また、従来例の液晶表示装置の応答時間τrが14msであるのに対し、実施例1の液晶表示装置の応答時間τrは8ms、実施例2の液晶表示装置の応答時間τrは6msである。これにより、本実施形態に係る液晶表示装置は、従来例の液晶表示装置に比べて応答時間τrを大幅に短縮できることが確認された。
(第2の実施形態)
図17(a)は本発明の第2の実施形態の液晶表示装置を示す模式断面図、図17(b)は同じくそのTFT基板の模式平面図である。また、図18(a)は電圧印加直後の液晶分子の配向状態を示す模式断面図、図18(b)は同じくその模式平面図である。更に、図19(a)は電圧を印加してから十分に時間が経過した後の液晶分子の配向状態を示す模式断面図、図19(b)は同じくその模式平面図である。
これらの図17(a),(b)、図18(a),(b)及び図19(a),(b)において、220はTFT基板側に形成された画素電極を示し、220aは画素電極220に設けられたスリット(配向制御用構造物)を示し、221は画素電極220の表面を覆う垂直配向膜を示している。また、233は対向基板側に形成されたコモン電極を示し、235は対向基板側に形成された突起(配向制御用構造物)を示し、236はコモン電極233及び突起235の表面を覆う垂直配向膜を示し、230aは液晶分子を示している。なお、本実施形態の液晶表示装置の基本的な構造は図15,図16に示す第1の実施形態の液晶表示装置と同じであるので、ここでは重複する部分の説明を省略する。
本実施形態の液晶表示装置においては、図17(a),(b)に示すように、画素電極220上の配向膜221のうちスリット220aの近傍の領域(図17(a),(b)中にA,A’で示す領域)の配向膜221に、配向処理としてラビング処理を施している。ラビング処理は、配向膜の表面をナイロン等の布で一方向に擦ることによって行われ、これにより電圧印加時に液晶分子が傾斜する方位をラビング方向(布を擦る方向)に規制する配向規制力が付与される。本実施形態では、スリット220aの伸びる方向に直角な方向に対し5〜90°の方向、より好ましくは5〜60°の方向にラビング処理を施す。
このように構成された本実施形態の液晶表示装置において、電圧印加直後は配向膜221による配向規制力よりも配向制御用構造物(突起225及びスリット220a)による配向規制力のほうが大きく、図18(a),(b)に示すように、液晶分子230aは配向制御用構造物(突起及225びスリット220a)の伸びる方向に対し直角の方向に配向する。その後、時間が十分に経過すると(例えば1秒後)、配向膜221による配向規制力の影響が現れて、図19(a),(b)に示すようにラビング処理を施した領域A,A’の液晶分子230aは配向制御用構造物(突起及225びスリット220a)により決まる方位(すなわち、配向制御用構造物の伸びる方向に垂直な方向)からずれた方位に配向し、その結果液晶表示装置の透過率が低下する。本実施形態の液晶表示装置では、このようにしてオーバーシュートを発生させている。この場合に、オーバーシュート率を調整するために、偏光板の吸収軸の方位を図15にX軸及びY軸で示す方位から若干ずらしてもよい。
図20は、横軸に時間をとり、縦軸に透過率をとって、スリット220aの伸びる方向に直角な方向に対し45°の方向にラビング処理を施した本実施形態に係る液晶表示装置の応答特性と、ラビング処理を施していない従来の液晶表示装置の応答特性とを調べた結果を示す図である。この図20から、本実施形態の液晶表示装置ではオーバーシュートが発生し、応答時間(立ち上がり時間)が従来の液晶表示装置に比べて短縮していることがわかる。
図21(a),(b)はラビング方法を示す模式図である。図21(a)に示すように、基板210上に画素電極220及び配向膜221を形成した後、フォトレジスト法により所望の領域(領域A)に対応する部分に開口部を有する第1のレジスト膜224を形成する。そして、ナイロン等の布で配向膜221の表面を一方向(第1の方向)に擦る。その後、第1のレジスト膜224を除去する。
次に、図21(b)に示すように、フォトレジスト法により所望の領域(領域A’)に対応する部分に開口部を有する第2のレジスト膜225を形成し、ナイロン等の布で配向膜221の表面を一方向(第2の方向)に擦る。その後、第2のレジスト膜225を除去する。
このように配向膜221をラビング処理する場合は、ラビング処理回数やラビング強さ(圧力)を変えることにより、オーバーシュート率を制御することができる。
下記表2は、上述した方法によりスリットの近傍の領域にラビング処理を施した本実施形態の液晶表示装置の応答時間(立ち上がり時間)τrを調べた結果を示している。但し、実施例3の液晶表示装置のオーバーシュート率は3%であり、実施例4の液晶表示装置のオーバーシュート率は9%である。また、ラビング処理を施していない液晶表示装置(従来例)の応答時間を調べた結果も併せて示している。ここで、液晶の誘電率異方性Δεは−3.8、屈折率異方性Δnは0.09、NI点は70℃、1画素のサイズは約100μm×300μm、補助容量Csの容量値は液晶容量CLCの容量値と同じとしている。また、突起とスリットとの間隔Lは25μm、突起の高さHは1.4μm、突起の幅W1は12μm、スリットの幅W2は10μm、液晶層の厚さ(セルギャップ)dは3.8μmとしている。
Figure 2006284787
この表2に示すように、実施例3の液晶表示装置では応答時間τrが10ms、実施例4の液晶表示装置では応答時間τrが8msであり、従来例の液晶表示装置に比べて応答時間が短縮されることが確認された。
上記実施形態では、スリットの近傍の配向膜にラビング処理を施してオーバーシュートを発生させる場合について説明したが、図22(a),(b)に示すように、TFT基板側の配向膜221のうち突起225に対向する領域A,A’又はその近傍の領域にラビング処理を施しても同様の効果を得ることができる。また、図23(a),(b)に示すように、対向基板側の配向膜226のうちスリット220aに対向する領域の近傍の領域A,A’にラビング処理を施してもよい。更に、ラビング処理に替えて、配向膜に斜め方向から紫外線を照射しても、同様の効果を得ることができる。紫外線を照射する場合は、紫外線の波長、強度及び照射量を制御することにより、オーバーシュート率を調整することができる。
ラビング処理に替えて、図24(a),(b)に示すようにスリット220aに対し斜め方向に延びる複数の微細スリット220bを設けても、同様の効果を得ることができる。この場合は、微細スリット220bの幅及び長さを制御することにより、オーバーシュート率を調整することができる。
微細スリット220bに替えて、画素電極220又はコモン電極223の上に、誘電体膜からなる微細パターンを微細スリット220bと同様の形状に形成してもよい。この場合は、微細パターンの幅、長さ及び厚さを制御することにより、オーバーシュート率を調整することができる。
なお、上述の第1及び第2の実施形態では本発明をノーマリーブラックの液晶表示装置に適用した場合について説明したが、本発明をノーマリーホワイトの液晶表示装置に適用しても、同様の効果を得ることができる。
また、上述の第1及び第2の実施形態では配向制御用構造物としてTFT基板側の電極(画素電極)にスリットを設け、対向基板側の電極(コモン電極)の上に突起を設けた場合について説明したが、本発明はこれに限定されるものではない。例えば、配向制御用構造物として画素電極及びコモン電極にそれぞれスリットを設けてもよい。また、配向制御用構造物として、画素電極及びコモン電極の上にそれぞれ突起を設けてもよい。更に、配向制御用構造物がTFT基板及び対向基板のいずれか一方のみに設けられていてもよい。
以下、本発明の諸態様を、付記としてまとめて記載する。
(付記1)画素毎に画素電極が設けられた第1の基板と、
コモン電極が設けられ、前記第1の基板に対向して配置された第2の基板と、
前記第1及び第2の基板間に封入された液晶とを有する液晶表示装置において、
前記画素電極に印加する電圧が第1の電圧から第2の電圧に変化したときに、液晶分子の配向状態の変化に伴って透過率が最大透過率まで上昇した後、前記第2の電圧に応じた安定時の透過率まで減少することを特徴とする液晶表示装置。
(付記2)前記最大透過率と前記安定時の透過率との差が前記安定時の透過率の10%以下であることを特徴とする付記1に記載の液晶表示装置。
(付記3)更に、前記画素電極及び前記コモン電極の表面をそれぞれ覆う配向膜と、前記第1及び第2の基板の少なくとも一方に設けられて液晶分子の配向方向を制御する配向制御用構造物とを有し、且つ前記液晶の誘電率異方性が負であることを特徴とする付記1に記載の液晶表示装置。
(付記4)前記配向制御用構造物の間隔が10乃至25μmであることを特徴とする付記3に記載の液晶表示装置。
(付記5)前記配向制御用構造物が、前記画素電極又は前記コモン電極に設けられたスリットであることを特徴とする付記3に記載の液晶表示装置。
(付記6)前記スリットの幅が6乃至12μmであることを特徴とする付記5に記載の液晶表示装置。
(付記7)前記配向制御用構造物が、前記画素電極又は前記コモン電極の上に形成された誘電体からなる突起であることを特徴とする付記3に記載の液晶表示装置。
(付記8)前記突起の高さが0.7乃至1.4μmであることを特徴とする付記7に記載の液晶表示装置。
(付記9)前記突起の幅が6乃至12μmであることを特徴とする付記7に記載の液晶表示装置。
(付記10)前記画素電極に接続した補助容量を有し、前記補助容量の容量値Csが電圧無印加時における前記画素電極と前記コモン電極との間の容量値CLCの0.5乃至2.0倍であることを特徴とする付記1に記載の液晶表示装置。
(付記11)前記第1及び第2の基板のうち前記配向制御用構造物が設けられた一方の基板に対向する他方の基板の前記配向制御用構造物に対向する領域又はその近傍の領域に、配向処理が施されていることを特徴とする付記3に記載の液晶表示装置。
(付記12)前記第1及び第2の基板のうち前記配向制御用構造物が設けられた一方の基板の前記配向制御用構造物の近傍の領域に、配向処理が施されていることを特徴とする付記3に記載の液晶表示装置。
(付記13)前記配向処理による配向方向が、前記配向制御用構造物による配向方向に対し5乃至90°ずれていることを特徴とする付記11又は12に記載の液晶表示装置。
(付記14)前記配向処理が、前記配向膜に対するラビング処理であることを特徴とする付記11又は12に記載の液晶表示装置。
(付記15)前記配向処理が、前記配向膜に対し斜め方向から紫外線を照射する紫外線照射処理であることを特徴とする付記11又は12に記載の液晶表示装置。
(付記16)前記配向処理が、前記画素電極又は前記コモン電極に、前記配向制御用構造物の伸びる方向に対し斜め方向に延びる複数のスリットを形成するものであることを特徴とする付記11又は12に記載の液晶表示装置。
(付記17)前記配向処理が、前記画素電極又は前記コモン電極の上に、前記配向制御用構造物の伸びる方向に対し斜め方向に延びる複数の誘電体膜パターンを形成するものであることを特徴とする付記11又は12に記載の液晶表示装置。
図1は、液晶表示装置の1画素分の等価回路図である。 図2は、従来の液晶表示装置の応答特性を示す図である。 図3は、MVA型液晶表示装置の一例を示す模式図である。 図4(a),(b)は、突起の周辺近傍の領域における液晶分子の配向状態を示す模式平面図である。 図5は、配向制御用構造物(突起及びスリット)間の領域の液晶分子の応答時間が遅い場合の透過率特性を示す図である。 図6は、配向制御用構造物(突起及びスリット)間の領域の液晶分子の応答時間が速い場合の透過率特性を示す図である。 図7は、突起とスリットとの間隔とオーバーシュート率との関係をシミュレーションした結果を示す図である。 図8は、突起の高さ及び幅、スリットの幅、突起とスリットとの間隔及び液晶層の厚さを示す図である。 図9は、オーバーシュート率の定義を示す図である。 図10は、スリットの幅W2とオーバーシュート率との関係をシミュレーションした結果を示す図である。 図11は、突起の幅W1とオーバーシュート率との関係をシミュレーションした結果を示す図である。 図12は、突起の高さHとオーバーシュート率との関係をシミュレーションした結果を示す図である。 図13は、液晶セルの容量CLCと補助容量Csとの割合(Cs/CLC)と、オーバーシュート率との関係をシミュレーションした結果を示す図である。 図14は、表示信号を印加してから透過率が安定するまでの間の本発明に係る液晶表示装置の透過率の変化を示す図である。 図15は、本発明の第1の実施形態の液晶表示装置を示す平面図である。 図16は、同じくその模式断面図である。 図17(a)は本発明の第2の実施形態の液晶表示装置を示す模式断面図、図17(b)は同じくそのTFT基板の模式平面図である。 図18(a)は電圧印加直後の液晶分子の配向状態を示す模式断面図、図18(b)は同じくその模式平面図である。 図19(a)は電圧を印加してから十分に時間が経過した後の液晶分子の配向状態を示す模式断面図、図19(b)は同じくその模式平面図である。 図20は、スリットの伸びる方向に直角な方向に対し45°の方向にラビング処理を施した本発明の第2の実施形態に係る液晶表示装置の応答特性と、ラビング処理を施していない従来の液晶表示装置の応答特性とを調べた結果を示す図である。 図21(a),(b)は、ラビング方法を示す模式図である。 図22(a)は第2の実施形態の変形例(その1)を示す模式断面図、図22(b)は同じくその模式平面図である。 図23(a)は第2の実施形態の変形例(その2)を示す模式断面図、図23(b)は同じくその模式平面図である。 図24(a)は第2の実施形態の変形例(その3)を示す模式断面図、図24(b)は同じくその模式平面図である。
符号の説明
10…TFT,
11,111…ゲートバスライン、
12,115…データバスライン、
21,120,220…画素電極、
21a,120a,220a…スリット、
22,133,233…コモン電極、
23,135m235…突起、
30a,230a…液晶分子、
35…暗線、
100…液晶パネル、
110…TFT基板、
112…補助容量バスライン、
118…補助容量電極、
130…対向基板、
131…ブラックマトリクス、
132…カラーフィルタ、
140…液晶層、
221,236…配向膜。

Claims (5)

  1. 画素毎に画素電極が設けられた第1の基板と、
    コモン電極が設けられ、前記第1の基板に対向して配置された第2の基板と、
    前記第1及び第2の基板間に封入された液晶とを有する液晶表示装置において、
    前記画素電極に印加する電圧が第1の電圧から第2の電圧に変化したときに、液晶分子の配向状態の変化に伴って透過率が最大透過率まで上昇した後、前記第2の電圧に応じた安定時の透過率まで減少することを特徴とする液晶表示装置。
  2. 前記最大透過率と前記安定時の透過率との差が前記安定時の透過率の10%以下であることを特徴とする請求項1に記載の液晶表示装置。
  3. 更に、前記画素電極及び前記コモン電極の表面をそれぞれ覆う配向膜と、前記第1及び第2の基板の少なくとも一方に設けられて液晶分子の配向方向を制御する配向制御用構造物とを有し、且つ前記液晶の誘電率異方性が負であることを特徴とする請求項1に記載の液晶表示装置。
  4. 前記第1及び第2の基板のうち前記配向制御用構造物が設けられた一方の基板に対向する他方の基板の前記配向制御用構造物に対向する領域又はその近傍の領域に、配向処理が施されていることを特徴とする請求項3に記載の液晶表示装置。
  5. 前記第1及び第2の基板のうち前記配向制御用構造物が設けられた一方の基板の前記配向制御用構造物の近傍の領域に、配向処理が施されていることを特徴とする請求項3に記載の液晶表示装置。
JP2005103027A 2005-03-31 2005-03-31 液晶表示装置 Pending JP2006284787A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005103027A JP2006284787A (ja) 2005-03-31 2005-03-31 液晶表示装置
US11/366,458 US8134669B2 (en) 2005-03-31 2006-03-03 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103027A JP2006284787A (ja) 2005-03-31 2005-03-31 液晶表示装置

Publications (1)

Publication Number Publication Date
JP2006284787A true JP2006284787A (ja) 2006-10-19

Family

ID=37069796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103027A Pending JP2006284787A (ja) 2005-03-31 2005-03-31 液晶表示装置

Country Status (2)

Country Link
US (1) US8134669B2 (ja)
JP (1) JP2006284787A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330605A (ja) * 2005-05-30 2006-12-07 Sharp Corp 液晶表示装置
KR101368203B1 (ko) * 2007-07-06 2014-02-28 엘지디스플레이 주식회사 액정표시장치 및 이의 구동방법
WO2012060254A1 (ja) * 2010-11-02 2012-05-10 シャープ株式会社 表示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155317A (ja) * 1998-09-18 2000-06-06 Fujitsu Ltd 液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337963A (ja) * 1998-05-27 1999-12-10 Sanyo Electric Co Ltd 垂直配向型液晶表示装置
JP3849959B2 (ja) * 1998-08-05 2006-11-22 シャープ株式会社 液晶表示装置
JP3926056B2 (ja) * 1999-03-16 2007-06-06 シャープ株式会社 液晶表示装置
JP3461757B2 (ja) * 1999-06-15 2003-10-27 シャープ株式会社 液晶表示装置
JP2003172915A (ja) * 2001-09-26 2003-06-20 Sharp Corp 液晶表示装置
JP4172750B2 (ja) 2001-12-26 2008-10-29 東芝松下ディスプレイテクノロジー株式会社 液晶表示装置
JP4127623B2 (ja) 2002-05-10 2008-07-30 東芝松下ディスプレイテクノロジー株式会社 液晶表示装置
US7248318B2 (en) * 2002-05-31 2007-07-24 Sharp Kabushiki Kaisha Liquid crystal display device and method of producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155317A (ja) * 1998-09-18 2000-06-06 Fujitsu Ltd 液晶表示装置

Also Published As

Publication number Publication date
US20060221023A1 (en) 2006-10-05
US8134669B2 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
KR100825343B1 (ko) 액정 표시 장치
US7522242B2 (en) Liquid crystal display device and method of controlling viewing angle thereof
US7277140B2 (en) Image shifting device, image display, liquid crystal display, and projection image display
JP4926063B2 (ja) 液晶表示装置およびそれを備えた電子機器
JPWO2005111708A1 (ja) 液晶表示装置およびそれを備えた電子機器
JPWO2007086474A1 (ja) 液晶表示装置の製造方法及び液晶表示装置
JP2008026756A (ja) 液晶表示装置
JP4156342B2 (ja) 液晶表示装置
US7786965B2 (en) Liquid crystal display device
JP4551230B2 (ja) 液晶表示装置の製造方法
JP2006267689A (ja) 液晶表示装置の製造方法、及び液晶表示装置
JP5332548B2 (ja) カラーフィルタ及びそれを備えた液晶表示装置
JP2006284787A (ja) 液晶表示装置
JP2009003484A (ja) 液晶表示装置
JP4297775B2 (ja) 液晶表示装置
JP5689436B2 (ja) 液晶表示装置
JP2010198043A (ja) 液晶表示装置
JP4870945B2 (ja) 液晶表示装置
US9063377B2 (en) Liquid crystal display device
JP4245473B2 (ja) 液晶表示装置
JP4349961B2 (ja) 液晶表示装置
JP4248383B2 (ja) 液晶表示装置
US11221522B2 (en) Liquid crystal panel
JP2006018116A (ja) 液晶表示装置
JP2008058689A (ja) 液晶装置、及び電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727