JP2006283611A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2006283611A
JP2006283611A JP2005102265A JP2005102265A JP2006283611A JP 2006283611 A JP2006283611 A JP 2006283611A JP 2005102265 A JP2005102265 A JP 2005102265A JP 2005102265 A JP2005102265 A JP 2005102265A JP 2006283611 A JP2006283611 A JP 2006283611A
Authority
JP
Japan
Prior art keywords
nox
amount
exhaust
flow path
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005102265A
Other languages
English (en)
Inventor
嘉則 ▲高▼橋
Yoshinori Takahashi
Sei Kawatani
聖 川谷
Nobuhiro Kondo
暢宏 近藤
Hitoshi Yokomura
仁志 横村
Shojiro Kotooka
正二郎 琴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2005102265A priority Critical patent/JP2006283611A/ja
Publication of JP2006283611A publication Critical patent/JP2006283611A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】 リッチスパイク時に還元剤が多く供給される箇所にNOxを多く吸蔵させることができる内燃機関の排気浄化装置を提供する。
【解決手段】 内燃機関の排気通路に介装されており、内部に複数の流路が並設され、且つ、各流路内の排気流れを直列方向に組み合わせるとともに、リーン運転時に排気中のNOxを吸蔵してリッチ運転時に吸蔵されたNOxを放出還元するNOx吸蔵触媒(50)と、NOx吸蔵触媒に配設され、直列方向に組み合わされた各流路内の排気流れの方向を逆転可能に切り換える切換弁(508,518)とを具備し、NOx吸蔵触媒は、直列方向に組み合わされた各流路内の排気流れの最上流側及び最下流側の両箇所(501,503)の触媒担持量を他の箇所(502)の触媒担持量に比して多くさせる。
【選択図】 図2

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、NOx吸蔵触媒に吸蔵されたNOxをリッチスパイクによって放出還元させる内燃機関に好適な排気浄化装置に関する。
この種の排気浄化装置は、気筒内に対して行われる燃焼の改善のみでは対応困難な問題を解決する。しかし、その構造の大型化は避けなければならず、この排気浄化装置の内部を分割させた技術が開示されている(例えば、特許文献1参照)。
詳しくは、当該排気浄化装置は、並列に区分された第1から第3までの3つの構造体を備え、これら第1から第3の各構造体内には、NOx吸蔵剤、酸化触媒(三元触媒)等がそれぞれ備えられている。これにより、NOxの吸蔵や放出、HC及びCOの浄化等の各機能が発揮されるとともに、構造のコンパクト化が図られる。しかしながら、NOx吸蔵剤にはSOxも吸蔵され(S被毒と呼ばれる)、その放出も必要となる。
特開2002−89251号公報
ところで、上記特許文献1に記載の排気浄化装置には、第1から第3の各構造体内の総てをNOx吸蔵触媒とする構成についても開示されている。また、この排気浄化装置は、機関から排出された排気の流れ方向を第1から第3の構造体の順に流す場合と、逆に第3から第1の構造体の順に流す場合と、第1から第3の各構造体に同方向の排気の流れを形成させる場合とに切り換え可能な切換弁を具備する。そして、定常時には切換弁を中立位置に保持して第1から第3の各構造体に同方向の排気の流れを形成させ、リーン運転時に排気中のNOxを吸蔵してリッチ運転時に吸蔵されたNOxを放出還元させている。
一方、上記定常時から軽負荷時に移行して排気温度が低くなった場合には、上記中立位置での保持が解除され、第1から第3の構造体の順に向かう排気の流れと、第3から第1の構造体の順に向かう排気の流れとを交互に形成させる。中立位置にて低くなった各構造体の前段部分を昇温させ、失活を防止するためである。更に、触媒温度が高温時のリッチスパイクではリッチスパイクの終了後に排気の流れを切り換えることで反応熱を触媒内に貯めないようにすることも可能である。触媒の更なる高温化によるNOx吸蔵性能の低下を防ぐためである。
すなわち、上記特許文献1に記載の排気浄化装置では、各構造体の前段部分を活性させるために排気の流れ方向を切り換える等の点については考慮されているが、リッチスパイク時における排気の流れ方向の切り換えについては格別の配慮がなされていない。
また、上記リッチスパイク時には、吸蔵されたNOxを還元するためにHC等の還元剤を添加することになるが、この還元剤が多く供給される箇所にNOxを多く吸蔵させる必要がある点にも留意しなければならない。つまり、この添加された還元剤はNOxの放出還元及び触媒の酸素ストレージ剤にそれぞれ消費され、下流側に至るに連れて還元剤の量が少なくなるからである。
本発明は、このような課題に鑑みてなされたもので、リッチスパイク時に還元剤が多く供給される箇所にNOxを多く吸蔵させることができる内燃機関の排気浄化装置を提供することを目的とする。
上記の目的を達成するべく、請求項1記載の内燃機関の排気浄化装置は、内燃機関の排気通路に介装されており、内部に複数の流路が並設され、且つ、各流路内の排気流れを直列方向に組み合わせるとともに、リーン運転時に排気中のNOxを吸蔵してリッチ運転時に吸蔵されたNOxを放出還元するNOx吸蔵触媒と、NOx吸蔵触媒に配設され、直列方向に組み合わされた各流路内の排気流れの方向を逆転可能に切り換える切換弁とを具備し、NOx吸蔵触媒は、直列方向に組み合わされた各流路内の排気流れの最上流側及び最下流側の両箇所の触媒担持量を他の箇所の触媒担持量に比して多くさせたことを特徴としている。
また、請求項2記載の発明では、リーン運転時にはNOxの吸蔵温度に応じたNOxの熱解離量を反映させてNOxの吸蔵量を演算し、演算されたNOxの吸蔵量に基づいて最上流側及び最下流側の両箇所に対するNOxの吸蔵量を推定するNOx吸蔵量推定手段と、リッチスパイク時には、両箇所の推定されたNOxの吸蔵量のうち、いずれか多い方の箇所が上流側となるように切換弁を作動させる切換弁制御手段とを更に具備していることを特徴としている。
更に、請求項3記載の発明では、直列方向に組み合わされた各流路は、同一の断面積を有していることを特徴としている。
従って、請求項1記載の本発明の内燃機関の排気浄化装置によれば、排気流れの方向が逆転可能に構成されたNOx吸蔵触媒の直列方向に組み合わされた各流路内において、排気の流入側になり得る箇所の触媒担持量をこの排気の中継側になり得る箇所の触媒担持量よりも多くしている。よって、NOxの吸蔵量は触媒担持量の多い最上流側の箇所にまず多く分布され、この最上流側の箇所はリッチスパイク時に還元剤が最も豊富に存在し得る箇所であることから、NOxの効率の良い放出還元が可能となる。
更に、仮にNOxの熱解離の発生やリッチスパイクが不完全となる運転状態に至り、最上流側の箇所に吸蔵されていたNOxがスリップして下流側に向けて移動したとしても、触媒担持量の多い最下流側の箇所で再び吸蔵可能となる結果、良好な排気の浄化が維持される。
また、請求項2記載の発明によれば、NOx吸蔵量推定手段がNOxの熱解離量を考慮してNOxの吸蔵量を推定しているので、NOxが触媒に吸蔵された時点の温度によってNOxの吸蔵量が異なる場合にも十分に対応可能となり、この吸蔵量の推定精度が大幅に向上する。
また、リッチスパイク時には、切換弁制御手段がNOxの吸蔵量の多い方の箇所が最上流側となるように切換弁を作動させることから、高いNOx浄化率が維持可能となる。更に、供給された還元剤の無駄な消費も防止されて、還元剤の添加量が低減され、リッチスパイク時の燃費低減が図られる。
更に、請求項3記載の発明によれば、最上流側及び最下流側の両箇所の断面積を同じに構成すれば、排気流れの方向を切り換えても最上流側となる箇所にNOxを常に多く吸蔵することができ、その機能が確保される。また、各流路の断面積を同じに構成すれば、排気の流れが絞られないことから、スリップしたNOxを最下流側の箇所で確実に吸蔵可能となる。
以下、図面により本発明の実施形態について説明する。
図1は本発明に係る排気浄化装置が適用されるディーゼル機関(以下、エンジンという)2を示す。同図に示されるように、エンジン2の各気筒4には燃料噴射装置を有した燃料供給系6が配設されている。この気筒4には、吸気弁8の開弁により燃焼室10に新気を導入させる吸気通路12と、排気弁14の開弁により燃焼室10からの排気を導出させる排気通路16とが接続されている。
吸気通路12の上流側には過給機18が介装され、この吸気通路12の先端部には図示しないエアクリーナが接続されている。また、吸気通路12の適宜位置にはインタークーラ20が介装され、更に、この吸気通路12の流路面積を調節する給気スロットル22が配設されている。
一方、排気通路16の下流側の適宜位置には後述するNOx吸蔵触媒50が介装されている。このNOx吸蔵触媒50は、排気空燃比がストイキオよりも希薄(リーン)状態のときに排気中のNOxを吸蔵するのに対し、排気空燃比が過濃(リッチ)状態にて排気中に還元剤としての未燃燃料(HC)や一酸化炭素(CO)が存在するときに、吸蔵したNOxの放出還元を行う。なお、NOx吸蔵触媒50の機能については公知である。
また、排気通路16からはEGR通路24が分岐して延び、EGR通路24の先端は吸気通路12に接続され、このEGR通路24には、EGRクーラ26や電子コントロールユニット(ECU)60に電気的に接続されたEGRバルブ28が設けられている。
エアクリーナからの新気は、過給機18を介して吸気通路12に入ってインタークーラ20に達し、給気スロットル22で調整された後、各気筒4の燃焼室10内に導かれる。そして、燃料供給系6から供給される燃料の燃焼により、クランク軸30及びフライホイール32を作動させる。燃焼が終了すると、排気は排気通路16に排出され、NOx吸蔵触媒50に導入される。
本実施形態のNOx吸蔵触媒50は、排気通路16から導入された排気の流れの方向を逆転可能に構成されている。
具体的には、図2に示されるように、NOx吸蔵触媒50は円筒状の触媒本体500を備え、この触媒本体500の内部は3つの流路501,502,503が区画されている。より詳しくは、第1の流路501及び第3の流路503は触媒本体500の長手軸方向に沿って筒状に延び(同図(a))、これら流路501及び流路503は触媒本体500の外周縁に沿ってこの縁の内側に形成されており、触媒本体500の直径部分を境にして上側には流路501が(同図(b))、下側には流路503が(同図(c))それぞれ配設されている。
第2の流路502は流路501及び流路503の内側に配設され、触媒本体500の長手軸方向に沿って筒状に延びており、これら流路501、流路502及び流路503は並設されている(同図(a))。また、これら流路501、流路502及び流路503は同一の断面積を有するように構成されている。
一方、これら流路501、流路502及び流路503の触媒担持量は均一ではなく、流路501及び流路503の触媒担持量が流路502の触媒担持量よりも多くされている。例えば、本実施形態においては、流路501及び流路503では約400g/lが担持されているのに対し、流路502では約100g/lが担持されており、一般的な構成に比して流路501及び流路503では約2倍、流路502では約1/2倍の触媒担持量を有するように構成されている。
触媒本体500の中心軸部分、つまり、流路502の中央部分には、上記長手軸方向に沿って筒状のロッド支持部504が配設されており、ロッド支持部504内にはロッド506が貫挿されている。このロッド506の両端部分は触媒本体500の両端面からそれぞれ突出し、ロッド506の一端側には係止部514を介して流入方向切換弁(切換弁)508が固定され、ロッド506の他端側にも係止部516を介して流入方向切換弁(切換弁)518が固定されている。更に、このロッド506の他端側は継手524を介して駆動軸526に連結され、駆動軸526はECU60からの指示信号に応じて回転される。つまり、ECU60からオン信号が出力されると、この駆動軸526の回転がロッド506に伝達され、各流入方向切換弁508,518もロッド506と同方向に回転される。
この流入方向切換弁508は、同図(b)に示されるように、触媒本体500の直径を基準とした半円状の蓋部510と、流路502の直径を基準とした半円状の蓋部511とから構成され、蓋部510と蓋部511とは一体に形成されている。そして、流入方向切換弁508はロッド506の回転に応じて、流路502及び流路503(同図(b))、或いは流路501及び流路502のいずれかを覆う。また、蓋部510及び蓋部511と触媒本体500の一端面側との間には通路512が形成されている(同図(a))。
これに対し、流入方向切換弁518もまた、同図(c)に示されるように、触媒本体500の直径を基準とした半円状の蓋部520と、流路502の直径を基準とした半円状の蓋部521とから構成され、蓋部520と蓋部521とが一体に形成されている。そして、流入方向切換弁518はロッド506の回転に応じて、流路501及び流路502(同図(c))、或いは流路502及び流路503のいずれかを覆う。また、蓋部520及び蓋部521と触媒本体500の他端面側との間にも通路522が形成されている(同図(a))。
ところで、これら流入方向切換弁508と流入方向切換弁518とは逆位相の向きに配置されている。詳しくは、同図(a)に示されるように、流入方向切換弁508が流路502及び流路503(同図(b))を覆う位置では、流入方向切換弁518は流路501及び流路502(同図(c))を覆う位置に設けられている。この結果、流入方向切換弁508が流路502及び流路503の上流側を覆う場合には、流入方向切換弁518は流路501の下流側及び流路502を覆い、流路501が流路502よりも上流側に位置するとともに、この流路502が流路503よりも上流側に位置する。
一方、流入方向切換弁508が流路501の上流側及び流路502を覆う場合には、流入方向切換弁518は流路502及び流路503の下流側を覆い、流路503が流路502よりも上流側に位置するとともに、この流路502が流路501よりも上流側に位置する。
再び図1に戻ると、本実施形態においては、NOx吸蔵触媒50の上流側の適宜位置に、HCをNOx吸蔵触媒50に直接供給する添加インジェクタ44が配設され、この添加インジェクタ44は燃料添加ライン46を介してポンプ48に接続されている。
また、排気通路16においてNOx吸蔵触媒50の上流側の適宜位置には、出力電圧に基づきNOx濃度等を検出するNOxセンサ36や、排気通路16内の温度を検出する排気温度センサ38がそれぞれ配設されている。この排気温度センサ38はNOx吸蔵触媒50の上流側の温度も検出可能である。更に、NOx吸蔵触媒50の下流側の適宜位置には、NOx濃度等を検出するNOxセンサ40や、NOx吸蔵触媒50の下流側の温度を検出する触媒温度センサ42がそれぞれ配設され、これら各センサ36、38、40、42はECU60に電気的に接続されている。
そして、ECU60の入力側には、上述のNOxセンサ36、排気温度センサ38、NOxセンサ40、触媒温度センサ42の他、クランク角センサ34等のエンジン2の運転状態を検出する各種センサも電気的に接続されている。これに対してECU60の出力側には、上述の燃料供給系6、給気スロットル22、添加インジェクタ44及び駆動軸526を回転させるアクチュエータやポンプ48等が電気的に接続されている。
また、ECU60には種々のマップが設けられており、例えば、NOx吸蔵触媒50の上流側の空気過剰率(還元剤濃度)を求めるマップの他、NOx吸蔵量マップやNOx放出量マップ等のNOx吸蔵量推定に関する各種マップも設けられている。
ここで、上述したNOx吸蔵触媒50は酸化雰囲気にて排気中のNOxを吸蔵する一方、NOx吸蔵量の増加に伴う触媒の性能低下を抑制すべく、NOx吸蔵量が飽和に至る前にリッチ運転へ間欠的に切り換えるリッチスパイクを行ってNOx吸蔵触媒50の再生を図る。これにより排気の浄化が良好に行われる。
具体的には、本実施形態のリッチスパイクは筒外リッチにて行われている。すなわち、上流側からのNOxの吸蔵量の増加に応じてリッチスパイクの指示がなされると、排気通路16に設けられた添加インジェクタ44を用い、ポンプ48から圧送されたHCを排気中に直接投入してリッチ運転の条件を作り、この条件が成立すればNOxの放出還元を行う。そして、このNOxの放出還元の際には流入方向切換弁508,518を作動させる。
より詳しくは、ECU60はNOx吸蔵量推定部(NOx吸蔵量推定手段)62と、切換弁制御部(切換弁制御手段)64とを備えている。
このNOx吸蔵量推定部62では、流路501及び流路503に対するNOx吸蔵量Pi(i=1,3)を推定している。より具体的には、リーン運転時には、まず、吸入空気量から求められた排気通路16の排気流量、NOxセンサ36,40からのNOx濃度に基づいてNOx量αを演算し、このNOx量αを今回のリーン運転開始時点から積算してNOxの積算吸蔵量Intαとする。次に、排気温度センサ38にて現在の最上流側の温度TU、触媒温度センサ42にて現在の最下流側の温度TLをそれぞれ検出して各流路501,503内の温度を推定し、NOxが触媒に吸蔵された時点の温度(以下、NOx吸蔵温度とする)と認識する。続いて、これら流路501,503内の温度から現在の最上流側及び最下流側におけるNOxの各最大吸蔵量P0(TU)、P0(TL)を上記NOx吸蔵量マップから演算する。そして、NOxの熱解離が生じた場合には、この最上流側の最大吸蔵量P0(TU)から熱解離量Dを減ずる一方、最下流側の最大吸蔵量P0(TL)に当該熱解離量Dを加えてNOxの各吸蔵量P(TU)、P(TL)を演算する。
これに対し、筒外リッチ中には、上記排気流量、ECU60のマップで読み出された上流側の空気過剰率及び排気温度センサ38からの排気温度に基づいてNOx放出量Rを上記NOx放出量マップから演算する。そして、上記演算された吸蔵量P(TU)或いは吸蔵量P(TL)から上記演算された放出量Rをそれぞれ減算し、各流路501及び流路503の現在のNOx吸蔵量Pi(i=1,3)をそれぞれ推定している。その結果は切換弁制御部64に出力される。
この切換弁制御部64では、流路501或いは流路503のうち、推定されたNOx吸蔵量Piの多い方が最上流側となるように、駆動軸526を回転させて流入方向切換弁508,518を作動させる。
図3には、上記NOx吸蔵量推定部62及び切換弁制御部64による排気流入方向の切り換え制御のフローチャートが示されており、以下、上記のように構成された排気浄化装置の本発明に係る作用について説明する。
同図のステップS301ではリーン運転が実施され、NOx吸蔵量推定部62にて熱解離量Dを反映させたNOxの吸蔵量P(TU)、P(TL)を演算してステップS302に進み、このステップS302ではリーン運転が終了してリッチ運転が開始される。
本実施形態によるリーン運転からリッチ運転への変更については図4に示される。つまり、上記ステップS301のリーン運転中において、同図のステップS401では、現在の最上流側の温度TU及び最下流側の温度TLがそれぞれ読み込まれ、上記最上流側及び最下流側の各最大吸蔵量P0(TU)、P0(TL)が求められている。これは、NOx吸蔵温度によってNOxの最大吸蔵量が異なることを鑑みたものである。より具体的には、図5(a)に各NOx吸蔵温度に対する上記最上流側の最大吸蔵量P0(TU)の遷移が示されており、所定のNOx吸蔵温度TUB(例えば約300℃)に達するまでは最大吸蔵量P0(TU)が増加傾向にあるのに対し、この吸蔵温度TUBを超えると、最大吸蔵量P0(TU)は減少傾向に移行する。つまり、前のNOx吸蔵温度TUBでの最大吸蔵量P0(TUB)が、後のNOx吸蔵温度TUA(例えば約400℃)での最大吸蔵量P0(TUA)よりも多くなっていることが分かる。
続いて、図4のステップS402では、上述した前のNOx吸蔵温度TUB及び後のNOx吸蔵温度TUAがそれぞれ読み込まれ、最大吸蔵量P0(TUB)、P0(TUA)が求められる。そして、ステップS403では、前のNOx吸蔵温度TUBの最大吸蔵量P0(TUB)が後のNOx吸蔵温度TUAの最大吸蔵量P0(TUA)よりも大きいか否かが判別される。そして、最大吸蔵量P0(TUB)の方が大きいと判定された場合、すなわち、YESのときには流路内の温度の上昇によって最上流側の流路501(或いは503)ではNOxの熱解離が発生し得ることから、ステップS404に進む。これは、NOx吸蔵温度によって熱解離量も異なることを鑑みたものであり、具体的には、図5(b)に示される如く、前のNOx吸蔵温度TUBにおける熱解離量(図中、実線で示す)は後のNOx吸蔵温度TUAにおける熱解離量(図中、一点鎖線で示す)よりも高いピークを有していることが分かる。そして、これら実線及び一点鎖線で囲まれた斜線部分は、前のNOx吸蔵温度TUBで吸蔵されたNOxが後のNOx吸蔵温度TUAに達した時に最上流側の流路501(或いは503)で発生する熱解離量Dであり、下流側に向けて移動することになる。
次いで、図4のステップS404では、NOxの積算吸蔵量Intα、熱解離量D及びNOx量αの合計量が後のNOx吸蔵温度TUAの最大吸蔵量P0(TUA)よりも大きいか否かが判別される。当該合計量の方が大きいと判定された場合、すなわち、YESのときには当該最上流側の流路では、生じた熱解離量Dやこの時点で導入されたNOx量αを既に吸蔵できない状態にあるので、ステップS405に進む。
このステップS405では、NOxの積算吸蔵量Intαが上記ステップS401で演算された最下流側503(或いは501)の最大吸蔵量P0(TL)よりも大きいか否かが判別される。そして、積算吸蔵量Intαの方が大きいと判定された場合、すなわち、YESのときには当該最下流側の流路でも許容量を超える状態にあることから、ステップS406に進んでリッチスパイクを要求し、一連のルーチンを抜ける。なお、上記ステップS404にて最大吸蔵量P0(TUA)よりも上記合計量の方が大きいと判定された場合にもリッチスパイクを要求しても良い。
再び図3のステップS302では、上記リッチスパイクが要求されてリッチ運転が開始されるとともに、NOx吸蔵量推定部62にて上記放出量Rを演算してステップS303に進む。
このステップS303では、NOx吸蔵量推定部62にてNOx吸蔵量Pi、つまり、上記ステップS301で演算された吸蔵量P(TU)或いは吸蔵量P(TL)から放出量Rをそれぞれ減ずることによって、流路501の現在のNOx吸蔵量P1及び流路503の現在のNOx吸蔵量P3をそれぞれ推定する。
次いで、ステップS304では、これら推定されたNOx吸蔵量P1と吸蔵量P3とを比較し、NOx吸蔵量P1が吸蔵量P3よりも大きいか否かが判別される。そして、流路501のNOx吸蔵量P1の方が大きいと判定された場合、すなわち、YESのときにはステップS305に進み、切換弁制御部64にて流路501(図中(1)と示す)を上流側にする位置、つまり、流入方向切換弁508が流路502及び流路503の上流側を覆うとともに、流入方向切換弁518が流路501の下流側及び流路502を覆う位置にそれぞれ作動されて一連のルーチンを抜ける。よって、この場合には、流路501、流路502及び流路503内の排気流れはこの順序で直列方向に組み合わせられ、排気通路16からの排気は、最上流側として流路501に導入され、通路522を経て流路502に導入される。次いで、通路512を経て流路503に導入された後、外部に向かうことになる(図2)。
これに対し、ステップS304にて流路503のNOx吸蔵量P3の方が大きいと判定されたときにはステップS306に進み、切換弁制御部64にて流路503(図中(3)と示す)を上流側にする位置、つまり、流入方向切換弁508が流路501の上流側及び流路502を覆うとともに、流入方向切換弁518が流路502及び流路503の下流側を覆う位置に作動されて一連のルーチンを抜ける。よって、この場合には、流路503、流路502及び流路501内の排気流れはこの順序で直列方向に組み合わせられ、排気の流れの方向が上述とは逆転される。換言すれば、最上流側として流路503に導入され、次いで、通路522を経て流路502に導入され、通路512を経て流路501に導入された後、外部に向かうことになる。
以上のように、本発明によれば、排気流れの方向が逆転可能に構成されたNOx吸蔵触媒50の直列方向に組み合わされた各流路501,502,503内において、排気の流入側になり得る流路501,503の触媒担持量をこの排気の中継側になり得る流路502の触媒担持量よりも多くさせている。
詳しくは、図6に示されるように、NOx吸蔵量は最上流側となり得る流路501(或いは503)にまず多く分布されるが、本発明では従来に比して限界吸蔵量が高くなるように担持され、NOxが多く吸蔵されている(同図(a))。また、この最上流側となり得る流路501(或いは503)ではリッチスパイク時にHCが最も豊富に存在し得る箇所である。従って、リッチスパイク時にはHCが多く供給される箇所にNOxを多く吸蔵させることができ、NOxの効率の良い放出還元が可能となるし、HCを有効に利用することができ、HCスリップが発生し難くなる。
また、NOx吸蔵量は最下流側となり得る流路503(或いは501)でも多く分布可能であり、本発明では従来に比して限界吸蔵量が高くなるように担持され、NOxが多く吸蔵可能に構成されている。よって、仮にNOxの熱解離の発生やリッチスパイクが不完全となる運転状態に至り、最上流側となり得る流路501(或いは503)に吸蔵されていたNOxがスリップして下流側に向けて移動したとしても、この最下流側となり得る流路503(或いは501)で再び吸蔵可能となる(同図(b))。つまり、同図の斜線部分は、従来の触媒担持量ではNOxが触媒外にそのまま放出される部分であったのに対し、本発明では吸蔵できる部分になり、良好な排気の浄化が維持される。
なお、本実施形態の如く、流路501,503の触媒担持量を従来の約2倍にする一方、流路502の触媒担持量を従来の約1/2倍にすれば、触媒のコストも従来の構成と同程度に維持可能となる。
また、NOx吸蔵量推定部62がNOxの熱解離量Dを考慮してNOx吸蔵量P1,P3を推定しているので、NOx吸蔵温度に応じてNOxの吸蔵量が変動しても十分に対応可能となり、NOx吸蔵量P1,P3の推定精度が大幅に向上する。
更に、リッチスパイク時には、切換弁制御部64がNOx吸蔵量P1,P3の多い方の流路501(或いは503)が最上流側となるように流入方向切換弁508,518を作動させるので、高いNOx浄化率が維持可能となる。更にまた、供給されたHCの無駄な消費が防止される結果、HCの添加量も低減され、リッチスパイク時の燃費低減が図られる。
また、最上流側或いは最下流側となる流路501,503の断面積が同じに構成されると、流入方向切換弁508,518によって排気流れの方向が切り換えられても流路501(或いは503)にはNOxを常に多く吸蔵可能となり、その機能を確保できる。更に、各流路501,502,503の断面積も同じに構成されると、排気の流れが流路501から503の間にて絞られないことから、最上流側でスリップしたNOxは最下流側で確実に吸蔵される。
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では、NOx吸蔵触媒50が3つの流路501,502,503に区画されているが、必ずしもこの形態に限定されるものではない。つまり、任意の複数の流路に区画することができる。
また、上記実施形態では、排気温度センサ38や触媒温度センサ42を用いてNOx吸蔵触媒50の上流側や下流側の温度をそれぞれ検出しているが、この構成に代えて流路501の内部に温度センサを設けるとともに、流路503の内部にも温度センサを設けてNOx吸蔵触媒50の上流側や下流側の温度をそれぞれ検出しても良い。更に、NOxセンサ36,40からのNOx濃度の検出に代えてECU60に備えられたマップからNOx濃度を読み出しても良い。
更に、上記実施形態では、熱解離量Dを考慮してリッチスパイクの要求やNOx吸蔵量の推定を行っているが、熱解離が生ずる温度に達しない場合等には図7の如くの制御を行っても良い。
つまり、リーン運転中において、同図のステップS701では、現在の最上流側の温度TU、中流側の温度TM及び最下流側の温度TLがそれぞれ読み込まれ、NOxの最大吸蔵量P0(TU)、P0(TM)、P0(TL)を上記マップから求める。なお、中流側の温度TMは図示しない温度センサにて検出される。
続いて、ステップS702では、NOxの積算吸蔵量Intαが最上流側の最大吸蔵量P0(TU)よりも大きいか否かが判別され、積算吸蔵量Intαの方が大きいと判定された場合、すなわち、YESのときにはこの最上流側の流路では許容量を超える状態にあることから、ステップS703に進み、積算吸蔵量Intαが中流側の最大吸蔵量P0(TM)よりも大きいか否かが判別される。そして、積算吸蔵量Intαの方が大きいと判定された場合には、この中流側の流路でも許容量を超える状態にあることから、ステップS704に進み、積算吸蔵量Intαが最下流側の最大吸蔵量P0(TL)よりも大きいか否かが判別され、積算吸蔵量Intαの方が大きいと判定されたときには、この最下流側の流路でも許容量を超える状態にあるので、ステップS705に進んでリッチスパイクを要求し、一連のルーチンを抜ける。なお、上記ステップS702にて最大吸蔵量P0(TU)よりも積算吸蔵量Intαの方が大きいと判定された場合にはリッチスパイクを準備し、また、ステップS703にて最大吸蔵量P0(TM)よりも積算吸蔵量Intαの方が大きいと判定された場合にもリッチスパイクを要求しても良い。
そして、この後、NOx吸蔵量推定部62にてNOx放出量Rを演算し、上記最大吸蔵量P0(TU)或いは最大吸蔵量P0(TL)から放出量Rをそれぞれ減ずることにより、流路501の現在のNOx吸蔵量P1及び流路503の現在のNOx吸蔵量P3をそれぞれ推定することになる。
本発明の一実施形態に係る内燃機関の排気浄化装置が適用されるエンジンシステム構成図である。 NOx吸蔵触媒の断面図である。 ECUが実行する排気流入方向の切り換え制御ルーチンを示すフローチャートである。 ECUが実行するリッチスパイクの指示制御ルーチンを示すフローチャートである。 熱解離量を説明する図である。 触媒内のNOx濃度分布を説明する図である。 ECUが実行する他のリッチスパイクの指示制御ルーチンを示すフローチャートである。
符号の説明
2 内燃機関
16 排気通路
50 NOx吸蔵触媒
60 ECU(電子コントロールユニット)
62 NOx吸蔵量推定部(NOx吸蔵量推定手段)
64 切換弁制御部(切換弁制御手段)
501 第1の流路(1)
502 第2の流路
503 第3の流路(3)
508 流入方向切換弁(切換弁)
518 流入方向切換弁(切換弁)

Claims (3)

  1. 内燃機関の排気通路に介装されており、内部に複数の流路が並設され、且つ、該各流路内の排気流れを直列方向に組み合わせるとともに、リーン運転時に排気中のNOxを吸蔵してリッチ運転時に該吸蔵されたNOxを放出還元するNOx吸蔵触媒と、
    該NOx吸蔵触媒に配設され、前記直列方向に組み合わされた各流路内の排気流れの方向を逆転可能に切り換える切換弁とを具備し、
    前記NOx吸蔵触媒は、前記直列方向に組み合わされた各流路内の排気流れの最上流側及び最下流側の両箇所の触媒担持量を他の箇所の触媒担持量に比して多くさせたことを特徴とする内燃機関の排気浄化装置。
  2. 前記リーン運転時にはNOxの吸蔵温度に応じたNOxの熱解離量を反映させてNOxの吸蔵量を演算し、該演算されたNOxの吸蔵量に基づいて前記最上流側及び最下流側の両箇所に対するNOxの吸蔵量を推定するNOx吸蔵量推定手段と、
    リッチスパイク時には、前記両箇所の推定されたNOxの吸蔵量のうち、いずれか多い方の箇所が上流側となるように前記切換弁を作動させる切換弁制御手段と
    を更に具備していることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  3. 前記直列方向に組み合わされた各流路は、同一の断面積を有していることを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。
JP2005102265A 2005-03-31 2005-03-31 内燃機関の排気浄化装置 Withdrawn JP2006283611A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102265A JP2006283611A (ja) 2005-03-31 2005-03-31 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102265A JP2006283611A (ja) 2005-03-31 2005-03-31 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
JP2006283611A true JP2006283611A (ja) 2006-10-19

Family

ID=37405799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102265A Withdrawn JP2006283611A (ja) 2005-03-31 2005-03-31 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP2006283611A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8146353B2 (en) 2007-05-22 2012-04-03 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine, and exhaust control device and exhaust control method for internal combustion engine
JP2012117511A (ja) * 2010-12-02 2012-06-21 Hyundai Motor Co Ltd 窒素酸化物低減触媒に貯蔵される窒素酸化物の量を予測する方法及びこれを用いた排気装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8146353B2 (en) 2007-05-22 2012-04-03 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine, and exhaust control device and exhaust control method for internal combustion engine
JP2012117511A (ja) * 2010-12-02 2012-06-21 Hyundai Motor Co Ltd 窒素酸化物低減触媒に貯蔵される窒素酸化物の量を予測する方法及びこれを用いた排気装置
US9133746B2 (en) 2010-12-02 2015-09-15 Hyundai Motor Company Method for predicting NOx loading at DeNOx catalyst and exhaust system using the same

Similar Documents

Publication Publication Date Title
JP3573044B2 (ja) 内燃機関の排気浄化装置
KR100375846B1 (ko) 내연 기관의 배기 정화 장치
US6834496B2 (en) Exhaust gas purifying apparatus for internal combustion engine and control method thereof
US9115660B2 (en) Exhaust purifying system for internal combustion engine
JP2005201276A (ja) NOxトラップから放出されるNOx量を最小化するシステム及び方法
JP4572709B2 (ja) 内燃機関の排気浄化システム
JP5459521B2 (ja) 内燃機関の空燃比制御装置
JP2006283611A (ja) 内燃機関の排気浄化装置
US7003945B2 (en) Exhaust emission control device for internal combustion engine
JP4241784B2 (ja) 内燃機関の排気浄化システム
JP4962740B2 (ja) 内燃機関の排気浄化装置
JP4289185B2 (ja) 内燃機関の空燃比制御装置
JP6489070B2 (ja) 内燃機関の排気浄化装置
JP2850551B2 (ja) 内燃機関の排気浄化装置
JP2006274910A (ja) 内燃機関の排気浄化装置
JP2003286907A (ja) 内燃機関異常判定方法及び装置
JP2006274985A (ja) 排気後処理装置
JP2009019553A (ja) 内燃機関の排気浄化装置
JP2004346844A (ja) 排気ガス浄化システム
JP2006274908A (ja) 内燃機関の排気浄化装置
JP2006274913A (ja) 内燃機関の排気浄化装置
JP2009046994A (ja) NOx触媒の劣化診断装置
JP2008106696A (ja) 内燃機関の排気浄化装置
JP2006274909A (ja) 内燃機関の排気浄化装置
JP2008038806A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060928

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603