JP2006281408A - 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 - Google Patents

耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 Download PDF

Info

Publication number
JP2006281408A
JP2006281408A JP2005107569A JP2005107569A JP2006281408A JP 2006281408 A JP2006281408 A JP 2006281408A JP 2005107569 A JP2005107569 A JP 2005107569A JP 2005107569 A JP2005107569 A JP 2005107569A JP 2006281408 A JP2006281408 A JP 2006281408A
Authority
JP
Japan
Prior art keywords
layer
hard coating
cutting
coating layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005107569A
Other languages
English (en)
Other versions
JP4645818B2 (ja
Inventor
Natsuki Ichinomiya
夏樹 一宮
Keiji Nakamura
惠滋 中村
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005107569A priority Critical patent/JP4645818B2/ja
Publication of JP2006281408A publication Critical patent/JP2006281408A/ja
Application granted granted Critical
Publication of JP4645818B2 publication Critical patent/JP4645818B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

【課題】 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具を提供する。
【解決手段】超硬基体の表面に、(a)いずれも(Ti,Al,Y)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、上記薄層Aは特定の組成式:[Ti1-(A+B)Al]N(Ti,Al,Y)N層、上記薄層Bは特定の組成式:[Ti1-(C+D)Al]N(Ti,Al,Y)N層、からなり、(c)上記下部層は、単一相構造を有し特定の組成式:[Ti1-(E+F)Al]N(Ti,Al,Y)N層、からなる硬質被覆層を蒸着形成してなる。
【選択図】 なし

Description

この発明は、硬質被覆層がすぐれた高温耐酸化性を有し、したがって特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の切削加工を、高い発熱を伴う高速切削加工条件で行った場合にも、硬質被覆層の摩耗進行が著しく抑制され、この結果すぐれた耐摩耗性を長期に亘って発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、単一相構造を有し、かつ、
組成式:[Ti1-(E+F) Al]N(ただし、原子比で、Eは0.50〜0.65、Fは0.001〜0.05を示す)、
を満足するTiとAlとY(イットリウム)の複合窒化物[以下、(Ti,Al,Y)Nで示す]層からなる硬質被覆層を2〜6μmの平均層厚で蒸着形成してなる被覆超硬工具が知られており、前記(Ti,Al,Y)N層は、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度、さらに同Yによって高温耐酸化性の向上した特性を具備することも知られている。
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−Y合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Y)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開平8−199338号公報
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを炭素鋼や低合金鋼、さらに普通鋳鉄などの切削を高速切削加工条件で行うのに用いた場合には、通常の切削性能を示し問題はないが、特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の切削加工を、高速切削加工条件で行うのに用いた場合には、切削時の熱発生が著しく、硬質被覆層である(Ti,Al,Y)N層には、高温耐酸化性不足が原因で摩耗が急速に進行するようになり、この結果比較的短時間で摩耗寿命に至るのが現状である。
そこで、本発明者等は、上述のような観点から、特に上記耐熱合金の高速切削加工で硬質被覆層が正常摩耗形態をとり、すぐれた耐摩耗性を長期に亘って発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具の硬質被覆層を構成する(Ti,Al,Y)N層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al,Y)N層において、Y成分の含有割合を多くすればするほど高温耐酸化性は向上するようになるが、上記の従来(Ti,Al,Y)N層における0.001〜0.05原子%程度のY含有割合では、前記耐熱合金の高熱発生を伴う高速切削加工で摩耗進行を充分に抑制するにたるすぐれた高温耐酸化性を具備せしめることはできず、前記耐熱合金の高速切削加工で摩耗進行を充分に抑制するに足る、すぐれた高温耐酸化性を確保するためには前記0.001〜0.05原子%をはるかに越えた15〜25原子%のY成分の含有が必要であり、一方15〜25原子%のY成分を含有した(Ti,Al,Y)N層は脆化がひどく、このため高温強度の向上に寄与するTi成分の所定量の含有が不可欠となるが、このように多量のY成分と所定量のTi成分を含有した場合、Al成分の含有余地はきわめて小さなものとなり、この結果高温硬さおよび耐熱性のきわめて低いものとなるので、これ単独では硬質被覆層として実用に供することができないこと。
(b)組成式:「Ti1-(A+B)Al]N(ただし、原子比で、Aは0.01〜0.06、Bは0.15〜0.25を示す)を満足する、Y含有割合が15〜25原子%の(Ti,Al,Y)N層と、
組成式:[Ti1-(C+D)Al]N(ただし、原子比で、Cは0.20〜0.35、Dは0.05〜0.10を示す)を満足する、相対的にAl成分の含有割合を多くした(Ti,Al,Y)N層、
を、それぞれの層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この結果の(Ti,Al,Y)N層は、薄層の交互積層構造によって、上記の高Y含有の(Ti,Al,Y)N層(以下、薄層Aという)のもつすぐれた高温耐酸化性と、前記薄層Aに比して相対的にY含有割合を低く、かつ相対的にAl含有割合を高くした(Ti,Al,Y)N層(以下、薄層Bという)のもつ相対的に高い高温硬さと耐熱性とを具備するようになるので、硬質被覆層として実用に供することができるようになること。
(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,Y)N層は、耐熱合金の高速切削加工で要求される、すぐれた高温耐酸化性を有するものの、十分満足な高温硬さおよび耐熱性を有するものではないので、これを硬質被覆層の上部層として設け、一方同下部層として、十分な高温耐酸化性は具備しないものの、相対的にAl成分の含有割合が高く、すぐれた高温硬さと耐熱性を具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,Y)N層、すなわち、
組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.50〜0.65、Fは0.001〜0.05を示す)を満足する、単一相構造の(Ti,Al,Y)N層、
を設けた構造にすると、この結果の硬質被覆層は、一段とすぐれた高温耐酸化性に加えて、高温硬さと耐熱性、さらに高温強度を複合的に具備したものとなるので、この硬質被覆層を蒸着形成してなる被覆超硬工具は、上記の耐熱合金の高熱発生を伴う高速切削加工でも、前記硬質被覆層の摩耗進行が著しく抑制されるようになることから、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)いずれも(Ti,Al,Y)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)Al]N(ただし、原子比で、Aは0.01〜0.06、Bは0.15〜0.25を示す)を満足する(Ti,Al,Y)N層、
上記薄層Bは、
組成式:[Ti1-(C+D)Al]N(ただし、原子比で、Cは0.20〜0.35、Dは0.05〜0.10を示す)を満足する(Ti,Al,Y)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.50〜0.65、Fは0.001〜0.05を示す)を満足する(Ti,Al,Y)N層、
からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
つぎに、この発明の被覆超硬工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Ti,Al,Y)N層におけるAl成分には高温硬さおよび耐熱性を向上させ、一方同Ti成分には高温強度、さらに同Y成分には高温耐酸化性を向上させる作用があり、下部層ではAl成分の含有割合を全体的に多くして、高い高温硬さと耐熱性を具備せしめるが、Alの含有割合を示すE値がTiとYとの合量に占める割合(原子比、以下同じ)で0.50未満では、きわめて発熱の高い耐熱合金の高速切削加工に要求されるすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行促進の原因となり、一方Alの割合を示すE値が同0.65を越えると、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、E値を0.50〜0.65と定めた。
また、Yの割合を示すF値がTiとAlの合量に占める割合で、0.001未満では、所定の最小限の高温耐酸化性を確保することができず、一方同F値が0.05を超えると、下部層の具備する上記のすぐれた特性、すなわち高温硬さと耐熱性、および高温強度が急激に低下するようになることから、F値を0.001〜0.05と定めた。
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,Y)NにおけるY成分は、上記の通りその含有割合をできるだけ高くして、高温耐酸化性を一段と向上させ、もって高熱発生を伴う耐熱合金の高速切削加工での摩耗進行を抑制する目的で含有するものであり、したがってB値が0.15未満では所望のすぐれた高温耐酸化性を確保することができず、一方B値が0.25を越えると、相対的にTi成分の含有割合が少なくなり過ぎて、層自体が具備すべき高温強度を確保することができなり、層として実用に供することができなくなることから、B値を0.15〜0.25と定めた。
また、Alの割合を示すA値がTiとYの合量に占める割合で、0.01未満では、最低限の高温硬さおよび耐熱性を確保することができず、摩耗促進の原因となり、一方同A値が0.06を超えると、高温強度が急激に低下するようになり、チッピング発生の原因となることから、A値を0.01〜0.06と定めた。
(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、上記薄層Aに比してY成分の含有割合を相対的に低くし、かつAl成分の含有割合を相対的に高く維持することで、前記薄層Aに不足する高温硬さと耐熱性を具備せしめ、隣接する薄層Aの高温硬さおよび耐熱性不足を補強し、もって、前記薄層Aの有するすぐれた高温耐酸化性と、前記薄層Bの有する相対的にすぐれた高温硬さと耐熱性を具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すC値が0.20未満になると、所定の相対的にすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行が促進するようになり、一方同C値が0.35を越えると、上部層全体の高温強度低下は避けられず、チッピング発生の原因となることから、C値を0.20〜0.35と定めた。
また、Yの割合を示すD値がTiとAlの合量に占める割合で、0.05未満では、上部層全体の高温耐酸化性の低下が避けられず、一方同D値が0.10を超えると、上部層全体の高温強度が急激に低下するようになることから、D値を0.05〜0.10と定めた。
(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた高温耐酸化性、さらに所定の相対的に高い高温硬さと耐熱性を確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さと耐熱性不足、薄層Bであれば高温耐酸化性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進するようになることから、それぞれの層厚を5〜20nmと定めた。
(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた高温耐酸化性および所定の高温硬さと耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
この発明の被覆超硬工具は、硬質被覆層が(Ti,Al,Y)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによって、所定の高温硬さと耐熱性を保持した状態で、すぐれた高温耐酸化性を具備せしめ、同単一相構造の下部層が相対的にすぐれた高温硬さと耐熱性を有することから、特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の高い発熱を伴う高速切削加工でも、前記硬質被覆層の摩耗進行が抑制され、すぐれた耐摩耗性を長期に亘って発揮するものである。
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。
(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−Y合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−Y合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−Y合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として下部層形成用Ti−Al−Y合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Y合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Y合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Y合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3,4に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−Y合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−Y合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−Y合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−Y合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3,4に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表5に示される目標組成に対応した成分組成をもったTi−Al−Y合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Y合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Y合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Y合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具に相当する比較被覆超硬工具としての比較表面被覆超硬製スローアウエイチップ(以下、比較被覆超硬チップと云う)1〜16をそれぞれ製造した。
つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および比較被覆超硬チップ1〜16について、
被削材:JIS・SUH31の丸棒、
切削速度:70m/min.、
切り込み:1.0mm、
送り:0.2mm/rev.、
切削時間:3分、
の条件(切削条件A)での耐熱鋼の乾式連続高速切削加工試験(通常の切削速度は30m/min.)、
被削材:質量%で、Co−25.5%Cr−7.5%W−10.5%Niの組成をもったCo合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度:60m/min.、
切り込み:1.2mm、
送り:0.15mm/rev.、
切削時間:4分、
の条件(切削条件B)でのCo合金の乾式断続高速切削加工試験(通常の切削速度は30m/min.)、
被削材:質量%で、Ni−15.5%Cr−0.9%Co−8%Feの組成をもったNi合金の丸棒、
切削速度:80m/min.、
切り込み:1.5mm、
送り:0.15mm/rev.、
切削時間:4分、
の条件(切削条件C)でのNi合金の乾式連続高速切削加工試験(通常の切削速度は35m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Figure 2006281408
Figure 2006281408
Figure 2006281408
Figure 2006281408
Figure 2006281408
Figure 2006281408
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層からなる下部層と、同じく層厚方向に沿って表8に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表8に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表9に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具に相当する比較被覆超硬工具としての比較表面被覆超硬製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
つぎに、上記本発明被覆超硬エンドミル1〜8および比較被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および比較被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Ni−15.5%Cr−0.9%Co−8%Fe)のNi合金の板材、
切削速度:45m/min.、
溝深さ(切り込み):3mm、
テーブル送り:280mm/分、
の条件でのNi合金の乾式高速溝切削加工試験(通常の切削速度は20m/min.)、本発明被覆超硬エンドミル4〜6および比較被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUH31の板材、
切削速度:45m/min.、
溝深さ(切り込み):4mm、
テーブル送り:300mm/分、
の条件での耐熱鋼の乾式高速溝切削加工試験(通常の切削速度は20m/min.)、本発明被覆超硬エンドミル7,8および比較被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Co−25.5%Cr−7.5%W−10.5%Ni)のCo合金の板材、
切削速度:75m/min.、
溝深さ(切り込み):5mm、
テーブル送り:160mm/分、
の条件でのCo合金の乾式高速溝切削加工試験(通常の切削速度は35m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表8,9にそれぞれ示した。
Figure 2006281408
Figure 2006281408
Figure 2006281408
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層からなる下部層と、同じく層厚方向に沿って表10に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表10に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具に相当する比較被覆超硬工具としての比較表面被覆超硬製ドリル(以下、比較被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
つぎに、上記本発明被覆超硬ドリル1〜8および比較被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および比較被覆超硬ドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法をもった上記組成(質量%で、Co−25.5%Cr−7.5%W−10.5%Ni)のCo合金の板材、
切削速度:45m/min.、
送り:0.3mm/rev、
穴深さ:6mm、
の条件でのCo合金の湿式高速穴あけ切削加工試験(通常の切削速度は20m/min.)、本発明被覆超硬ドリル4〜6および比較被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Ni−15.5%Cr−0.9%Co−8%Fe)のNi合金の板材、
切削速度:50m/min.、
送り:0.2mm/rev、
穴深さ:15mm、
の条件でのNi合金の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、本発明被覆超硬ドリル7,8および比較被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUH31の板材、
切削速度:60m/min.、
送り:0.25mm/rev、
穴深さ:30mm、
の条件での耐熱鋼の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Figure 2006281408
Figure 2006281408
この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8の(Ti,Al,Y)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに従来被覆超硬工具に相当する比較被覆超硬工具としての比較被覆超硬チップ1〜16、比較被覆超硬エンドミル1〜8、および比較被覆超硬ドリル1〜8の(Ti,Al,Y)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
表3〜11に示される結果から、本発明被覆超硬工具は、いずれも硬質被覆層がそれぞれ組成の異なる、(Ti,Al,Y)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成され、前記下部層がすぐれた高温硬さと耐熱性、さらに前記上部層がすぐれた高温耐酸化性を有し、硬質被覆層はこれらのすぐれた特性を総合的に兼ね備えたものとなるので、特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の高い発熱を伴う高速切削加工に用いた場合にも、前記硬質被覆層の摩耗進行が抑制され、この結果すぐれた耐摩耗性を発揮するの対して、硬質被覆層が単一相構造の(Ti,Al,Y)N層からなる比較被覆超硬工具は、前記耐熱合金の高速切削加工では、前記硬質被覆層の高温耐酸化性不足が原因で摩耗が進行し、この結果比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、特に各種の炭素鋼や低合金鋼、さらに普通鋳鉄などの高速切削条件での切削加工は勿論のこと、特に耐熱合金の高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであり、被削材に対して汎用性を有するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
本発明被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。 通常のアークイオンプレーティング装置の概略説明図である。

Claims (1)

  1. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
    (a)いずれもTiとAlとY(イットリウム)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
    (b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
    上記薄層Aは、
    組成式:[Ti1-(A+B)Al]N(ただし、原子比で、Aは0.01〜0.06、Bは0.15〜0.25を示す)を満足するTiとAlとYの複合窒化物層、
    上記薄層Bは、
    組成式:[Ti1-(C+D)Al]N(ただし、原子比で、Cは0.20〜0.35、Dは0.05〜0.10を示す)を満足するTiとAlとYの複合窒化物層、からなり、
    (c)上記下部層は、単一相構造を有し、
    組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.50〜0.65、Fは0.001〜0.05を示す)を満足するTiとAlとYの複合窒化物層、
    からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
JP2005107569A 2005-04-04 2005-04-04 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 Expired - Fee Related JP4645818B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107569A JP4645818B2 (ja) 2005-04-04 2005-04-04 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107569A JP4645818B2 (ja) 2005-04-04 2005-04-04 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具

Publications (2)

Publication Number Publication Date
JP2006281408A true JP2006281408A (ja) 2006-10-19
JP4645818B2 JP4645818B2 (ja) 2011-03-09

Family

ID=37403836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107569A Expired - Fee Related JP4645818B2 (ja) 2005-04-04 2005-04-04 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具

Country Status (1)

Country Link
JP (1) JP4645818B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492885A (en) * 2011-07-08 2013-01-16 Kennametal Inc Yttrium-containing coating applied by PVD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209337A (ja) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd 被覆硬質合金
JPH11131216A (ja) * 1997-10-29 1999-05-18 Hitachi Tool Eng Ltd 被覆硬質工具
JP2003311507A (ja) * 2002-04-26 2003-11-05 Mitsubishi Materials Corp 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209337A (ja) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd 被覆硬質合金
JPH11131216A (ja) * 1997-10-29 1999-05-18 Hitachi Tool Eng Ltd 被覆硬質工具
JP2003311507A (ja) * 2002-04-26 2003-11-05 Mitsubishi Materials Corp 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492885A (en) * 2011-07-08 2013-01-16 Kennametal Inc Yttrium-containing coating applied by PVD
US8475943B2 (en) 2011-07-08 2013-07-02 Kennametal Inc. Coated article having yttrium-containing coatings applied by physical vapor deposition and method for making the same

Also Published As

Publication number Publication date
JP4645818B2 (ja) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4702520B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2009101491A (ja) 高速切削加工で硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮する表面被覆切削工具
JP2009061520A (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4697661B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4645821B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP4706915B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP2009125832A (ja) 表面被覆切削工具
JP2009028800A (ja) 表面被覆切削工具
JP2006334740A (ja) 高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP4771198B2 (ja) 高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4756445B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4645820B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2007069276A (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4645819B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP4771199B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4678582B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP4645818B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP4697389B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP5239950B2 (ja) 溶着生の高い被削材の重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP4766443B2 (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4697659B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4771200B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4621975B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP4725770B2 (ja) 高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP4310693B2 (ja) 難削材の高速切削で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4645818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees