JP2006280195A - Permanent magnet type rotary electric machine - Google Patents

Permanent magnet type rotary electric machine Download PDF

Info

Publication number
JP2006280195A
JP2006280195A JP2006052156A JP2006052156A JP2006280195A JP 2006280195 A JP2006280195 A JP 2006280195A JP 2006052156 A JP2006052156 A JP 2006052156A JP 2006052156 A JP2006052156 A JP 2006052156A JP 2006280195 A JP2006280195 A JP 2006280195A
Authority
JP
Japan
Prior art keywords
permanent magnet
coercive force
rotor
low
type rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052156A
Other languages
Japanese (ja)
Other versions
JP5398103B2 (en
Inventor
Kazuto Sakai
和人 堺
Masanori Shin
政憲 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006052156A priority Critical patent/JP5398103B2/en
Publication of JP2006280195A publication Critical patent/JP2006280195A/en
Application granted granted Critical
Publication of JP5398103B2 publication Critical patent/JP5398103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet type rotary electric machine which can execute variable speed operation in a wide range of from a low speed to a high speed, with a high output, and to realize improvement of efficiency and reliability. <P>SOLUTION: The permanent magnet type rotary electric machine is constituted by a stator provided with a winding, a permanent magnet having low coercive force to the extent of the magnetic flux density being changed irreversibly by a magnetic field generated by a current in the stator winding, and a rotor arranging the permanent magnet of high coercive force, having the coercive force of two times or more the low coercive force. In a high-speed rotational region, generating the maximum voltage or higher of the power source voltage, the permanent magnet of low coercive force is magnetized by the magnetic field due to the current with a total inter-linkage magnetic flux by the permanent magnet of low/high coercive force, so as to make the amount of the total inter-linkage magnetic flux decrease and the total inter-linkage magnetic flux is adjusted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、永久磁石式回転電機に関する。   The present invention relates to a permanent magnet type rotating electrical machine.

一般に、永久磁石モータは大きく分けて2種類のタイプがある。回転子鉄心の外周に永久磁石を貼り付けた表面磁石型永久磁石モータと永久磁石を回転子鉄心の中に埋め込んだ埋め込み型永久磁石モータである。可変速駆動用モータとしては、埋め込み型永久磁石モータが適している。   Generally, permanent magnet motors are roughly divided into two types. These are a surface magnet type permanent magnet motor in which a permanent magnet is attached to the outer periphery of a rotor core and an embedded type permanent magnet motor in which a permanent magnet is embedded in the rotor core. An embedded permanent magnet motor is suitable as the variable speed drive motor.

図19を用いて、埋め込み型永久磁石モータの回転子の構成を説明する。図19において、11は回転子、12は回転子鉄心、14は高保磁力永久磁石を示している。回転子鉄心12の外周部に長方形の空洞を等配で極数の数だけ設ける。図19は4極の回転子11であり、4個の空洞を設けて永久磁石14を挿入する。永久磁石14は回転子の半径方向、又は、永久磁石14の断面の長方形におけるエアギャップ面に対向する辺に直角方向に磁化される。永久磁石14は負荷電流により減磁しないように保磁力の高いNdFeB永久磁石等が主に適用される。回転子鉄心12は空洞を打抜いた電磁鋼板を積層して形成する。このような従来例は、「埋込磁石同期モータの設計と制御」、武田洋次・他、オーム社発行(非特許文献1)に記載され、また埋め込み型の変形例は特開平7−336919号公報(特許文献1)に記載されている。また、可変速特性に優れて高出力のモータとしては特開平11−27913号公報(特許文献2)、特開平特開平11−136912号公報(特許文献3)に記載されている永久磁石式リラクタンス型回転電機がある。   The configuration of the rotor of the embedded permanent magnet motor will be described with reference to FIG. In FIG. 19, 11 is a rotor, 12 is a rotor core, and 14 is a high coercivity permanent magnet. A rectangular cavity is provided in the outer peripheral portion of the rotor core 12 by the same number as the number of poles. FIG. 19 shows a four-pole rotor 11 in which four cavities are provided and a permanent magnet 14 is inserted. The permanent magnet 14 is magnetized in the radial direction of the rotor or in the direction perpendicular to the side facing the air gap surface in the rectangle of the cross section of the permanent magnet 14. The permanent magnet 14 is mainly an NdFeB permanent magnet having a high coercive force so as not to be demagnetized by a load current. The rotor core 12 is formed by laminating electromagnetic steel plates punched out of cavities. Such a conventional example is described in “Design and Control of an Embedded Magnet Synchronous Motor”, Yoji Takeda et al., Issued by Ohm (Non-Patent Document 1), and an embedded type modification is disclosed in Japanese Patent Laid-Open No. 7-336919. It is described in the gazette (patent document 1). Further, as a motor with excellent variable speed characteristics and high output, a permanent magnet type reluctance described in Japanese Patent Application Laid-Open No. 11-27913 (Patent Document 2) and Japanese Patent Application Laid-Open No. 11-136912 (Patent Document 3). There is a type rotating electrical machine.

永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定で発生しているので永久磁石による誘導電圧は回転速度に比例して高くなる。低速から高速まで可変速運転する場合は、高速回転では永久磁石による誘導電圧が極めて高くなり、永久磁石による誘導電圧がインバータの電子部品に印加し、電子部品の耐電圧以上になると部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計が行うことが考えられるが、永久磁石式回転電機の低速域での出力及び効率が低下する。   In the permanent magnet type rotating electrical machine, the interlinkage magnetic flux of the permanent magnet is always generated at a constant value, so that the induced voltage by the permanent magnet increases in proportion to the rotational speed. In variable speed operation from low speed to high speed, the induced voltage by the permanent magnet becomes extremely high at high speed rotation, and when the induced voltage by the permanent magnet is applied to the electronic components of the inverter and exceeds the withstand voltage of the electronic components, the components break down. To do. For this reason, it is conceivable to perform a design in which the amount of magnetic flux of the permanent magnet is reduced so as to be equal to or lower than the withstand voltage.

低速から高速まで定出力に近い可変速運転を行う場合、永久磁石の鎖交磁束は一定であるので、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速域では出力が大幅に低下し、さらには高速までの広範囲で駆動できなくなるため、最近では可変速範囲を拡大する方法として弱め磁束制御(非特許文献1参照)が適用されはじめた。弱め磁束制御は、d軸電流による減磁界を高保磁力永久磁石4に作用させ、可逆の範囲で永久磁石の磁気的な動作点を移動させて磁束量を変化させる。このため、永久磁石は減磁界により不可逆減磁しないように高保磁力のNdFeB磁石を適用する。   When performing variable speed operation close to constant output from low speed to high speed, the flux linkage of the permanent magnet is constant, so the rotating electrical machine voltage reaches the upper limit of the power supply voltage in the high-speed rotation range and the current required for output does not flow. . As a result, the output is greatly reduced in the high speed region, and further, it becomes impossible to drive in a wide range up to the high speed. Recently, the flux weakening control (see Non-Patent Document 1) has begun to be applied as a method for expanding the variable speed range. . In the flux weakening control, a demagnetizing field due to the d-axis current is applied to the high coercive force permanent magnet 4, and the magnetic operating point of the permanent magnet is moved within a reversible range to change the amount of magnetic flux. For this reason, a NdFeB magnet having a high coercive force is applied to the permanent magnet so that it is not irreversibly demagnetized by a demagnetizing field.

d軸電流の減磁界により永久磁石の鎖交磁束が減少するので、鎖交磁束の減少分が電圧上限値に対する電圧の余裕分をつくる。そして、電流を増加できるので高速域での出力が増加する。また、電圧余裕分だけ回転速度を上昇させることができ、可変速運転の範囲が拡大される。   Since the interlinkage magnetic flux of the permanent magnet decreases due to the demagnetizing field of the d-axis current, the decrease of the interlinkage magnetic flux creates a voltage margin with respect to the voltage upper limit value. Since the current can be increased, the output in the high speed region increases. Further, the rotational speed can be increased by the voltage margin, and the range of variable speed operation is expanded.

しかし、永久磁石に減磁界を与え続ける必要があり、出力には寄与しないd軸電流を常時流し続けるため銅損が増加して効率は悪化する。さらに、d軸電流による減磁界は高調波磁束を生じ、高調波磁束等で生じる電圧の増加は弱め磁束制御による電圧低減の限界をつくる。これらより埋め込み型永久磁石式回転電機に弱め磁束制御を適用しても基底速度の3倍以上の可変速運転は困難である。さらに、前記の高調波磁束により鉄損が増加し、高調波磁束による電磁力で振動を発生する。   However, it is necessary to continue to apply a demagnetizing field to the permanent magnet, and since the d-axis current that does not contribute to the output is continuously supplied, the copper loss increases and the efficiency deteriorates. Further, the demagnetizing field due to the d-axis current generates a harmonic magnetic flux, and the increase in voltage generated by the harmonic magnetic flux or the like is weakened, creating a limit of voltage reduction by the magnetic flux control. Therefore, even if the flux-weakening control is applied to the embedded permanent magnet type rotating electric machine, it is difficult to operate at a variable speed that is three times or more the base speed. Furthermore, the iron loss is increased by the harmonic magnetic flux, and vibration is generated by the electromagnetic force generated by the harmonic magnetic flux.

また、ハイブリッド自動車用駆動モータに埋め込み型永久磁石モータを適用した場合、エンジンのみで駆動される状態ではモータは連れ回される。中・高速回転ではモータの永久磁石による誘導電圧が電源電圧以上になり、弱め磁束制御でd軸電流を流し続ける。この状態では、モータは損失のみを発生するので総合運転効率が悪化する。   Further, when an embedded permanent magnet motor is applied to a drive motor for a hybrid vehicle, the motor is rotated in a state where it is driven only by an engine. At medium / high speed rotation, the induced voltage of the motor's permanent magnet exceeds the power supply voltage, and the d-axis current continues to flow under the flux-weakening control. In this state, since the motor generates only a loss, the overall operation efficiency is deteriorated.

電車用駆動モータに埋め込み型永久磁石モータを適用した場合、電車は惰行運転する状態があり、前記と同様に永久磁石による誘導電圧を電源電圧以下にするため弱め磁束制御でd軸電流を流し続ける。モータは損失のみを発生するので総合運転効率が悪化する。
特開平7−336919号公報 特開平11−27913号公報 特開平11−136912号公報 「埋込磁石同期モータの設計と制御」、武田洋次、他、オーム社発行
When an embedded permanent magnet motor is applied to a train drive motor, the train is in a coasting state, and the d-axis current continues to flow with a flux weakening control so that the induced voltage by the permanent magnet is equal to or lower than the power supply voltage in the same manner as described above. . Since the motor generates only a loss, the overall operation efficiency deteriorates.
JP 7-336919 A JP-A-11-27913 JP-A-11-136912 "Design and control of embedded magnet synchronous motor", Yoji Takeda, etc., published by Ohm

本発明は、上述したような従来技術の問題点に鑑みてなされたものであり、低速から高速までの広範囲で可変速運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上、信頼性向上を提供することのできる永久磁石式回転電機を提供することを目的とする。   The present invention has been made in view of the problems of the prior art as described above, and enables variable speed operation in a wide range from low speed to high speed, with high torque in the low speed rotation range and in the middle / high speed rotation range. An object of the present invention is to provide a permanent magnet type rotating electrical machine that can provide higher output, improved efficiency, and improved reliability.

本発明の永久磁石式回転電機は、固定子巻線を設けた固定子と、回転子鉄心中に前記固定子巻線の電流で作る磁界により不可逆的に磁束密度が変化する程度の保磁力を有する低保磁力永久磁石と前記低保磁力永久磁石の2倍以上の保磁力を有する高保磁力永久磁石とを配置した回転子とを備えたことを特徴とするものである。   The permanent magnet type rotating electrical machine according to the present invention has a coercive force such that the magnetic flux density is irreversibly changed by a magnetic field generated by a current of the stator winding in the stator core and the stator core. And a rotor provided with a low coercivity permanent magnet and a high coercivity permanent magnet having a coercivity twice or more that of the low coercivity permanent magnet.

本発明によれば、低速から高速までの広範囲で可変速運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上、信頼性向上を実現した永久磁石式回転電機を提供できる。   According to the present invention, it is possible to perform variable speed operation in a wide range from low speed to high speed, and achieve high torque in the low speed rotation range, high output in the middle / high speed rotation range, improvement in efficiency, and improvement in reliability. A magnet-type rotating electrical machine can be provided.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施の形態)図1は、本発明の第1の実施の形態の永久磁石式回転電機における回転子の断面図である。本実施の形態の回転子1は、回転子鉄心2、8個の低保磁力永久磁石3、8個の高保磁力永久磁石4から構成されており、5は低保磁力永久磁石3の空洞である第1の空洞、6は高保磁力永久磁石4の空洞である第2の空洞、7は回転子鉄心2の磁極部を示している。回転子鉄心2は珪素鋼板を積層して構成し、低保磁力永久磁石3はアルニコ磁石、又はFeCrCo磁石であり、高保磁力磁石4はNdFeB磁石とする。   (First Embodiment) FIG. 1 is a sectional view of a rotor in a permanent magnet type rotating electric machine according to a first embodiment of the present invention. The rotor 1 of the present embodiment is composed of a rotor core 2, eight low coercivity permanent magnets 3, and eight high coercivity permanent magnets 4, and 5 is a cavity of the low coercivity permanent magnet 3. A certain first cavity 6 is a second cavity which is a cavity of the high coercive force permanent magnet 4, and 7 is a magnetic pole portion of the rotor core 2. The rotor core 2 is formed by laminating silicon steel plates, the low coercivity permanent magnet 3 is an alnico magnet or an FeCrCo magnet, and the high coercivity magnet 4 is an NdFeB magnet.

図2は、本実施の形態に適用する低保磁力永久磁石としてのアルニコ磁石(AlNiCo)、低保磁力永久磁石としてのFeCrCo磁石、高保磁力永久磁石としてのNdFeB磁石の磁気特性を示す図である。アルニコ磁石の保磁力(磁束密度が0になる磁界)は60〜120kA/mであり、NdFeB磁石の保磁力950kA/mに対して1/15〜1/8になる。また、FeCrCo磁石の保磁力は約60kA/mであり、NdFeB磁石の保磁力950kA/mに対して1/15になる。アルニコ磁石とFeCrCo磁石は、NdFeBの高保磁力磁石と比較してかなり低保磁力であることがわかる。本実施の形態では、低保磁力永久磁石3の8〜15倍の保磁力を有する高保磁力永久磁石4を適用しており、これにより優れた特性の回転電機を得ることができる。   FIG. 2 is a diagram showing the magnetic characteristics of an Alnico magnet (AlNiCo) as a low coercivity permanent magnet, an FeCrCo magnet as a low coercivity permanent magnet, and an NdFeB magnet as a high coercivity permanent magnet applied to this embodiment. . The coercive force of the alnico magnet (magnetic field at which the magnetic flux density becomes 0) is 60 to 120 kA / m, which is 1/15 to 1/8 of the coercive force of 950 kA / m of the NdFeB magnet. The coercive force of the FeCrCo magnet is about 60 kA / m, which is 1/15 of the coercive force of the NdFeB magnet of 950 kA / m. It can be seen that the alnico magnet and the FeCrCo magnet have a considerably low coercive force as compared with the NdFeB high coercive force magnet. In the present embodiment, the high coercive force permanent magnet 4 having a coercive force 8 to 15 times that of the low coercive force permanent magnet 3 is applied, whereby a rotating electrical machine having excellent characteristics can be obtained.

低保磁力永久磁石3は回転子鉄心2の中に埋め込まれ、低保磁力永久磁石3の両端部には第1の空洞5が設けられている。低保磁力永久磁石3は磁極間の中心軸になるq軸と一致する回転子の半径方向に沿って配置され、半径方向に対して直角方向に磁化される。高保磁力永久磁石4は回転子鉄心2内に埋め込まれ、高保磁力永久磁石4の両端部には第2の空洞6が設けられている。高保磁力永久磁石4は、2個の低保磁力永久磁石3により回転子1内周側で挟まれるように回転子1のほぼ周方向に配置されている。高保磁力永久磁石4は回転子1の周方向に対してほぼ直角方向に磁化されている。   The low coercivity permanent magnet 3 is embedded in the rotor core 2, and first cavities 5 are provided at both ends of the low coercivity permanent magnet 3. The low coercive force permanent magnet 3 is disposed along the radial direction of the rotor that coincides with the q axis serving as the central axis between the magnetic poles, and is magnetized in a direction perpendicular to the radial direction. The high coercivity permanent magnet 4 is embedded in the rotor core 2, and second cavities 6 are provided at both ends of the high coercivity permanent magnet 4. The high coercive force permanent magnet 4 is disposed substantially in the circumferential direction of the rotor 1 so as to be sandwiched between the two low coercive force permanent magnets 3 on the inner peripheral side of the rotor 1. The high coercive force permanent magnet 4 is magnetized in a direction substantially perpendicular to the circumferential direction of the rotor 1.

回転子鉄心2の磁極部7は2個の低保磁力永久磁石3と1個の高保磁力永久磁石4で取り囲まれるようにして形成されている。図3に示すように、回転子鉄心2の磁極部7の中心軸方向がd軸、磁極間の中心軸方向がq軸となる。したがって、低保磁力永久磁石3は磁極間の中心軸となるq軸方向に配置され、低保磁力永久磁石3の磁化方向はq軸に対して90°、又は−90°方向となっている。隣り合う低保磁力永久磁石3において、互いに向かい合う磁極面は同極になるようにしてある。また、高保磁力永久磁石4は磁極部7の中心軸となるd軸に対して直角方向に配置され、その磁化方向はd軸に対して0°、又は180°の方向となっている。隣り合う高保磁力永久磁石4において、互いに磁極部7の向きは逆極性にしてある。   The magnetic pole portion 7 of the rotor core 2 is formed so as to be surrounded by two low coercivity permanent magnets 3 and one high coercivity permanent magnet 4. As shown in FIG. 3, the central axis direction of the magnetic pole portion 7 of the rotor core 2 is the d axis, and the central axis direction between the magnetic poles is the q axis. Therefore, the low coercive force permanent magnet 3 is arranged in the q-axis direction which is the central axis between the magnetic poles, and the magnetization direction of the low coercive force permanent magnet 3 is 90 ° or −90 ° direction with respect to the q-axis. . In the adjacent low coercive force permanent magnets 3, the magnetic pole surfaces facing each other are made to have the same polarity. Further, the high coercive force permanent magnet 4 is arranged in a direction perpendicular to the d-axis which is the central axis of the magnetic pole part 7, and the magnetization direction is 0 ° or 180 ° with respect to the d-axis. In the adjacent high coercive force permanent magnets 4, the directions of the magnetic pole portions 7 are opposite to each other.

このように構成された本実施の形態の回転子1を採用する永久磁石式回転電機20は図18に示す構成である。回転子1における低保磁力永久磁石3であるFeCrCo磁石又はアルニコ磁石の保磁力は60〜120kA/mで小さく、これらの低保磁力の永久磁石は200〜300kA/mの磁界で磁化できる。高保磁力永久磁石4であるNdFeB磁石の保磁力は950kA/mと高く、約2400kA/mの磁界で磁化できる。つまり、低保磁力永久磁石3は高保磁力永久磁石4の約1/10の磁界で着磁できる。本実施の形態の回転子1を採用した永久磁石式回転電機20では、固定子巻線に通電時間が極短時間(100μs〜1ms程度)となるパルス的な電流を流して磁界を形成し、低保磁力永久磁石3に磁界を作用させる。着磁磁界を250kA/mとすると、理想的には低保磁力永久磁石3には十分な着磁磁界が作用し、高保磁力永久磁石4には着磁による不可逆減磁はない。   A permanent magnet type rotating electrical machine 20 that employs the rotor 1 of the present embodiment configured as described above has a configuration shown in FIG. The coercive force of the FeCrCo magnet or alnico magnet, which is the low coercive permanent magnet 3 in the rotor 1, is as small as 60 to 120 kA / m, and these low coercive permanent magnets can be magnetized with a magnetic field of 200 to 300 kA / m. The coercive force of the NdFeB magnet which is the high coercive force permanent magnet 4 is as high as 950 kA / m and can be magnetized with a magnetic field of about 2400 kA / m. That is, the low coercive force permanent magnet 3 can be magnetized with a magnetic field about 1/10 that of the high coercive force permanent magnet 4. In the permanent magnet type rotating electrical machine 20 employing the rotor 1 of the present embodiment, a magnetic current is formed by passing a pulse-like current having a very short energization time (about 100 μs to 1 ms) through the stator winding, A magnetic field is applied to the low coercive force permanent magnet 3. When the magnetizing magnetic field is 250 kA / m, ideally, a sufficient magnetizing magnetic field acts on the low coercive force permanent magnet 3, and the high coercive force permanent magnet 4 does not undergo irreversible demagnetization due to magnetization.

図3は、本実施の形態のd軸電流による着磁磁界を作用させる前の初期状態における永久磁石の磁束を示す図であり、図4は着磁磁界を作用させたときの永久磁石の磁束を示す図である。尚、図3、図4での磁束分布は1極のみを示している。着磁磁界を形成するパルス電流は固定子の電機子巻線のd軸電流成分である。図4では低保磁力永久磁石を減磁させる場合であり、負のd軸電流による磁界は永久磁石にとっては減磁界となり、回転子1の磁極中心から低保磁力永久磁石3と高保磁力永久磁石4に対して磁化方向とほぼ逆方向に作用している。本実施の形態の回転子1を採用した永久磁石式回転電機においては、d軸電流による磁界は高保磁力永久磁石4では永久磁石2個分(N極とS極の2個の永久磁石)に作用することになり、高保磁力永久磁石4に作用する磁界は低保磁力永久磁石3に作用する磁界の約半分になる。したがって、本実施の形態の回転子1を採用した永久磁石式回転電機では、d軸電流による磁界は低保磁力永久磁石3を磁化し易くなる。   FIG. 3 is a diagram showing the magnetic flux of the permanent magnet in the initial state before applying the magnetizing magnetic field due to the d-axis current of this embodiment, and FIG. 4 is the magnetic flux of the permanent magnet when the magnetizing magnetic field is applied. FIG. The magnetic flux distribution in FIGS. 3 and 4 shows only one pole. The pulse current that forms the magnetizing magnetic field is the d-axis current component of the armature winding of the stator. In FIG. 4, the low coercivity permanent magnet is demagnetized, and the magnetic field due to the negative d-axis current is demagnetized for the permanent magnet, and the low coercivity permanent magnet 3 and the high coercivity permanent magnet from the magnetic pole center of the rotor 1. 4 acts in a direction almost opposite to the magnetization direction. In the permanent magnet type rotating electrical machine employing the rotor 1 of the present embodiment, the magnetic field due to the d-axis current is equivalent to two permanent magnets (two permanent magnets of N pole and S pole) in the high coercive force permanent magnet 4. The magnetic field acting on the high coercive force permanent magnet 4 is about half of the magnetic field acting on the low coercive force permanent magnet 3. Therefore, in the permanent magnet type rotating electrical machine employing the rotor 1 of the present embodiment, the magnetic field due to the d-axis current is likely to magnetize the low coercive force permanent magnet 3.

図5は本実施の形態の回転子1の着磁後の磁束を示す図である。低保磁力永久磁石3は保磁力が高保磁力永久磁石4の1/10程度であり、さらに前述のように低保磁力永久磁石3には高保磁力永久磁石4の2倍の着磁磁界が作用することになる。図5では、低保磁力永久磁石3は着磁磁界の方向に磁化され、図3の初期の磁化方向とは逆方向に磁化されている。そして、d軸電流の大きさを変えて着磁磁界の強さを変化させることにより、低保磁力永久磁石3の磁化状態を調整することが可能となる。すなわち、低保磁力永久磁石3の磁力を低下させる状態、低保磁力永久磁石3の磁束を0にさせる状態、低保磁力永久磁石3の磁束を逆方向にさせる状態の3つの状態を作り出すことができる。一方、高保磁力永久磁石4は保磁力が低保磁力永久磁石3より10倍以上大きく、また、本実施の形態では高保磁力永久磁石4に作用する着磁磁界は低保磁力永久磁石3の1/2になる。したがって、低保磁力永久磁石3を着磁する程度の磁界であれば高保磁力永久磁石4は可逆減磁状態であり、着磁後でも高保磁力永久磁石4は初期の状態の磁束を維持できる。   FIG. 5 is a diagram showing the magnetic flux after magnetization of the rotor 1 of the present embodiment. The low coercive force permanent magnet 3 has a coercive force of about 1/10 that of the high coercive force permanent magnet 4, and a magnetic field twice as large as that of the high coercive force permanent magnet 4 acts on the low coercive force permanent magnet 3 as described above. Will do. In FIG. 5, the low coercive force permanent magnet 3 is magnetized in the direction of the magnetizing magnetic field and magnetized in the direction opposite to the initial magnetization direction in FIG. Then, the magnetization state of the low coercive force permanent magnet 3 can be adjusted by changing the magnitude of the d-axis current to change the strength of the magnetizing magnetic field. That is, three states are created: a state in which the magnetic force of the low coercivity permanent magnet 3 is reduced, a state in which the magnetic flux of the low coercivity permanent magnet 3 is zero, and a state in which the magnetic flux of the low coercivity permanent magnet 3 is reversed. Can do. On the other hand, the coercive force of the high coercive permanent magnet 4 is 10 times or more larger than that of the low coercive force permanent magnet 3, and the magnetizing magnetic field acting on the high coercive force permanent magnet 4 is 1 of the low coercive force permanent magnet 3 in this embodiment. / 2. Accordingly, the high coercivity permanent magnet 4 is in a reversible demagnetization state as long as the magnetic field is such that the low coercivity permanent magnet 3 is magnetized, and the high coercivity permanent magnet 4 can maintain the initial magnetic flux even after magnetization.

以上のような構成により、本実施の形態の回転子1を採用した永久磁石式回転電機20では、回転子1のd軸電流により低保磁力永久磁石3の鎖交磁束量を最大から0まで大きく変化でき、また磁化方向も正逆の両方向にできる。すなわち、高保磁力永久磁石4の鎖交磁束を正方向とすると、低保磁力永久磁石3の鎖交磁束を正方向の最大値から0、さらには逆方向の最大値まで広範囲に調整することができる。したがって、本実施の形態の回転子では、低保磁力永久磁石3をd軸電流で着磁することにより低保磁力永久磁石3と高保磁力永久磁石4を合わせた全鎖交磁束量を広範囲に調整することができる。   With the configuration as described above, in the permanent magnet type rotating electrical machine 20 employing the rotor 1 of the present embodiment, the amount of interlinkage magnetic flux of the low coercive force permanent magnet 3 is increased from the maximum to 0 by the d-axis current of the rotor 1. The direction of magnetization can be changed in both forward and reverse directions. That is, assuming that the linkage flux of the high coercivity permanent magnet 4 is the positive direction, the linkage flux of the low coercivity permanent magnet 3 can be adjusted over a wide range from the maximum value in the positive direction to 0, and further to the maximum value in the reverse direction. it can. Therefore, in the rotor of the present embodiment, the total amount of interlinkage magnetic flux combining the low coercivity permanent magnet 3 and the high coercivity permanent magnet 4 is widened by magnetizing the low coercivity permanent magnet 3 with the d-axis current. Can be adjusted.

例えば、低速域では低保磁力永久磁石3は高保磁力永久磁石4の鎖交磁束と同方向(初期状態)で最大値になるようにd軸電流で磁化することにより、永久磁石によるトルクは最大値になるので、回転電機のトルク及び出力は最大にすることができる。   For example, in the low speed region, the low coercive force permanent magnet 3 is magnetized by the d-axis current so that the maximum value is obtained in the same direction (initial state) as the interlinkage magnetic flux of the high coercive force permanent magnet 4, so that the torque by the permanent magnet is maximized. Therefore, the torque and output of the rotating electrical machine can be maximized.

また、中・高速域では、図5に示すように低保磁力永久磁石3の磁束量を低下させ、全鎖交磁束量を下げることにより、回転電機の電圧は下がるので、電源電圧の上限値に対して余裕ができ、回転速度(周波数)をさらに高くすることが可能となる。   Further, in the middle / high speed range, as shown in FIG. 5, the magnetic flux of the low coercive force permanent magnet 3 is decreased and the total flux linkage is decreased, so that the voltage of the rotating electrical machine is lowered. Therefore, the rotational speed (frequency) can be further increased.

さらに、最高速度を著しく高くするとき(可変速範囲をさらに拡大、例えば基底速度の5倍以上の可変速範囲のとき)は、低保磁力永久磁石3は高保磁力永久磁石4の鎖交磁束と逆方向になるように磁化させる(磁束の向きは図5の状態で磁化は最大とする)。永久磁石の全鎖交磁束は、高保磁力永久磁石4と低保磁力永久磁石3の鎖交磁束の差となり最も小さくでき、回転電機の電圧も最小となるので回転速度(周波数)を最高値まで上げることができる。   Further, when the maximum speed is remarkably increased (when the variable speed range is further expanded, for example, when the variable speed range is 5 times or more of the base speed), the low coercive force permanent magnet 3 and the interlinkage magnetic flux of the high coercivity permanent magnet 4 Magnetization is performed in the opposite direction (the direction of magnetic flux is the state shown in FIG. 5 and the magnetization is maximized). The total interlinkage magnetic flux of the permanent magnet can be minimized by the difference of the interlinkage magnetic flux between the high coercivity permanent magnet 4 and the low coercivity permanent magnet 3, and the voltage of the rotating electrical machine can be minimized, so that the rotational speed (frequency) is maximized. Can be raised.

本実施の形態の回転子1によれば、これを図18に示す回転電機20に採用することによって高出力で低速から高速まで広範囲の可変速運転を実現でき、また鎖交磁束を変化させるときの着磁電流は極短時間のみ流すので損失を著しく低減できるので高効率にすることができる。尚、図18において21は固定子巻線、22はエアギャップである。   According to the rotor 1 of the present embodiment, when this is adopted in the rotating electrical machine 20 shown in FIG. 18, a wide range of variable speed operation from low speed to high speed can be realized with high output, and the flux linkage is changed. Since the magnetizing current flows for only a very short time, the loss can be remarkably reduced, so that high efficiency can be achieved. In FIG. 18, 21 is a stator winding, and 22 is an air gap.

上記の回転電機が出力を発生するときは、固定子巻線にq軸電流を流すことにより、このq軸電流と回転子1の永久磁石の磁束との磁気作用でトルクを発生させる。このときq軸電流による磁界が発生する。しかし、低保磁力永久磁石3はq軸方向に配置され、磁化方向はq軸方向とは直角方向であり、低保磁力永久磁石3の磁化方向とq軸電流による磁界とは直交する方向になるのでq軸電流による磁界の影響はわずかとなる。   When the rotating electrical machine generates an output, a q-axis current is caused to flow through the stator winding, thereby generating a torque by the magnetic action of the q-axis current and the magnetic flux of the permanent magnet of the rotor 1. At this time, a magnetic field is generated by the q-axis current. However, the low coercivity permanent magnet 3 is arranged in the q-axis direction, the magnetization direction is perpendicular to the q-axis direction, and the magnetization direction of the low coercivity permanent magnet 3 and the magnetic field due to the q-axis current are orthogonal to each other. Therefore, the influence of the magnetic field due to the q-axis current is small.

次に、第1の空洞5及び第2の空洞6の作用について述べる。空洞5、6は、永久磁石による遠心力が回転子鉄心2に作用した時の回転子鉄心2への応力集中と減磁界を緩和する。図1にあるように空洞5,6を設けることにより鉄心は曲率のついた形状にでき、応力が緩和される。また、電流による磁界が永久磁石の角部に集中して減磁界が作用し、角部が不可逆減磁する場合があるが、本実施の形態の回転子1では磁石端部に空洞5、6を設けているため、永久磁石端部での電流による減磁界が緩和される。   Next, the operation of the first cavity 5 and the second cavity 6 will be described. The cavities 5 and 6 alleviate stress concentration and demagnetizing field on the rotor core 2 when centrifugal force by the permanent magnets acts on the rotor core 2. As shown in FIG. 1, by providing the cavities 5 and 6, the iron core can have a curved shape, and the stress is relieved. Further, the magnetic field due to the current concentrates on the corners of the permanent magnet and a demagnetizing field acts, and the corners are irreversibly demagnetized. However, in the rotor 1 of the present embodiment, the cavities 5 and 6 are formed at the magnet ends. Therefore, the demagnetizing field due to the current at the end of the permanent magnet is relaxed.

以上のような本実施の形態の回転子1は、次のような作用、効果を奏する。高保磁力永久磁石4の鎖交磁束を正方向とすると、低保磁力永久磁石3の鎖交磁束を正方向の最大値から0、さらには逆方向の最大値まで広範囲に調整することができ、したがって、低保磁力永久磁石3をd軸電流で着磁することにより低保磁力永久磁石3と高保磁力永久磁石4を合わせた全鎖交磁束量を広範囲に調整することができる。   The rotor 1 of the present embodiment as described above has the following operations and effects. If the interlinkage magnetic flux of the high coercivity permanent magnet 4 is in the positive direction, the interlinkage magnetic flux of the low coercivity permanent magnet 3 can be adjusted over a wide range from the maximum value in the positive direction to 0, and further to the maximum value in the reverse direction. Accordingly, by magnetizing the low coercive force permanent magnet 3 with the d-axis current, the total amount of interlinkage magnetic flux combining the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 can be adjusted over a wide range.

この永久磁石の全鎖交磁束量を広範囲に調整できることは、当該回転子1を採用する回転電機の電圧を広範囲に調整することを可能とし、着磁は極短時間のパルス電流で行うので常時弱め磁束電流を流し続ける必要もないので損失を大幅に低減できる。また、従来のように弱め磁束制御を行う必要がないので高調波磁束による鉄損も発生しない。以上より、本実施の形態の回転子によれば、これを採用する回転電機を高出力で低速から高速までの広範囲の可変速運転を可能なものにし、高効率化が図れる。   The ability to adjust the total flux linkage of the permanent magnet over a wide range makes it possible to adjust the voltage of the rotating electrical machine that employs the rotor 1 over a wide range, and magnetization is performed with a pulse current in a very short time. Since it is not necessary to continue the flux-weakening current, the loss can be greatly reduced. Further, since it is not necessary to perform the flux-weakening control as in the prior art, iron loss due to harmonic magnetic flux does not occur. As described above, according to the rotor of the present embodiment, the rotating electrical machine that employs the rotor can perform variable speed operation over a wide range from low speed to high speed with high output, and high efficiency can be achieved.

また、永久磁石による誘導電圧に関しては、低保磁力永久磁石3をd軸電流で着磁して永久磁石の全鎖交磁束量を小さくできるので永久磁石の誘導電圧によるインバータ電子部品の破損がなくなり、信頼性の向上が図れる。さらに、回転電機が無負荷で回される時に、低保磁力永久磁石3をd軸電流で着磁して永久磁石の全鎖交磁束量を小さくでき、これより、誘導電圧を著しく低くし、誘導電圧を下げるための弱め磁束電流を常時通電する必要をほとんどなくし、総合効率の向上が図れる。尚、本実施の形態では8極の場合を説明したが、他の極数に代えても同様に適用できる。   Further, with respect to the induced voltage by the permanent magnet, the low coercive force permanent magnet 3 can be magnetized by the d-axis current to reduce the total interlinkage magnetic flux of the permanent magnet, so that the inverter electronic components are not damaged by the induced voltage of the permanent magnet. Reliability can be improved. Furthermore, when the rotating electrical machine is rotated without load, the low coercive force permanent magnet 3 can be magnetized with the d-axis current to reduce the total interlinkage magnetic flux of the permanent magnet, thereby significantly reducing the induced voltage, There is almost no need to constantly apply a flux-weakening current for lowering the induced voltage, and overall efficiency can be improved. In the present embodiment, the case of 8 poles has been described, but the present invention can be similarly applied even if the number of poles is changed.

(第2の実施の形態)本発明の第2の実施の形態の回転電機20は、回転子1の最高回転速度時に当該回転子の高保磁力永久磁石4の発生する逆起電圧を回転電機の電源であるインバータ電子部品の耐電圧以下にすることを特徴とする。   (Second Embodiment) A rotating electrical machine 20 according to a second embodiment of the present invention uses a counter electromotive voltage generated by the high coercive force permanent magnet 4 of the rotor 1 at the maximum rotational speed of the rotor 1 to The withstand voltage of the inverter electronic component as a power source is set to be equal to or lower than the withstand voltage.

永久磁石による逆起電圧は回転速度に比例して高くなり、この逆起電圧がインバータの電子部品に印加し電子部品の耐電圧以上になると電子部品が絶縁破壊する。そのため従来の永久磁石式回転電機では設計時に耐電圧で制限されて永久磁石の磁束量が削減され、モータの低速域での出力及び効率が低下していた。   The counter electromotive voltage generated by the permanent magnet increases in proportion to the rotational speed. When this counter electromotive voltage is applied to the electronic component of the inverter and exceeds the withstand voltage of the electronic component, the electronic component breaks down. Therefore, in the conventional permanent magnet type rotating electrical machine, the withstand voltage is limited at the time of design, the amount of magnetic flux of the permanent magnet is reduced, and the output and efficiency in the low speed range of the motor are reduced.

上記の回転電機20では、高速回転時になると負のd軸電流により減磁方向の着磁磁界を永久磁石に作用させて低保磁力永久磁石3の磁束を0近傍まで小さくできるので、低保磁力永久磁石3による逆起電圧はほぼ0にできる。そして、磁束量を調整できない高保磁力永久磁石4による逆起電圧を最高回転速度で耐電圧以下にすればよい。すなわち、高保磁力永久磁石4のみの磁束量を耐電圧以下までになるまで小さくすることになる。一方、低速回転時では、最大の磁束量となるように着磁された低保磁力永久磁石3と高保磁力永久磁石4による鎖交磁束量は従来の永久磁石式回転電機よりも大幅に増加できる。   In the rotating electrical machine 20 described above, when rotating at high speed, the magnetic field in the demagnetizing direction is applied to the permanent magnet by the negative d-axis current, and the magnetic flux of the low coercive force permanent magnet 3 can be reduced to near zero. The back electromotive force generated by the permanent magnet 3 can be made almost zero. And what is necessary is just to make the back electromotive voltage by the high coercive force permanent magnet 4 which cannot adjust magnetic flux amount into a withstand voltage or less at the maximum rotational speed. That is, the amount of magnetic flux of only the high coercive force permanent magnet 4 is reduced until it reaches the withstand voltage or less. On the other hand, at the time of low speed rotation, the amount of flux linkage between the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 magnetized so as to obtain the maximum amount of magnetic flux can be significantly increased as compared with the conventional permanent magnet type rotating electrical machine. .

以上より、本実施の形態の永久磁石式回転電機20では、低速回転時での高出力と高効率を維持しながら高速回転時の逆起電圧を抑制でき、インバータを含めたシステムの信頼性を高めることができる。   As described above, in the permanent magnet type rotating electrical machine 20 of the present embodiment, the back electromotive voltage during high speed rotation can be suppressed while maintaining high output and high efficiency during low speed rotation, and the reliability of the system including the inverter can be improved. Can be increased.

(第3の実施の形態)本発明の第3の実施の形態の永久磁石式回転電機20は、その最大トルクを発生するときの永久磁石の磁束量が最大となる状態で、高保磁力永久磁石4による磁束量が低保磁力永久磁石3の最大磁束量よりも少なくすることを特徴とする。   (Third Embodiment) A permanent magnet type rotating electrical machine 20 according to a third embodiment of the present invention has a high coercive force permanent magnet in a state where the amount of magnetic flux of the permanent magnet is maximized when the maximum torque is generated. 4 is less than the maximum magnetic flux amount of the low coercive force permanent magnet 3.

回転電機が最大トルクを発生するときは当該回転子の低保磁力永久磁石3と高保磁力永久磁石4の磁束量を最大の状態にすることにより、必要な電流が少なくなり高効率になる。最高回転時には、d軸電流の着磁磁界により低保磁力永久磁石3の磁束量は0近傍に小さくすることができるので、低保磁力永久磁石3による逆起電圧はほぼ0にできる。そして、磁束量を調整できない高保磁力永久磁石4による逆起電圧を最高回転速度でインバータの電子部品の耐電圧以下にすればよい。本実施の形態では、高保磁力永久磁石4の磁束を低保磁力永久磁石3の磁束よりも小さくするので、高保磁力永久磁石4による回転速度当たりの逆起電圧は小さくなり、さらに高い回転速度まで回転させることができる。   When the rotating electrical machine generates the maximum torque, the required current is reduced and the efficiency is increased by maximizing the amount of magnetic flux of the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 of the rotor. At the maximum rotation time, the amount of magnetic flux of the low coercive permanent magnet 3 can be reduced to near zero by the magnetizing magnetic field of the d-axis current, so that the counter electromotive voltage by the low coercive permanent magnet 3 can be made substantially zero. Then, the counter electromotive voltage generated by the high coercive force permanent magnet 4 in which the amount of magnetic flux cannot be adjusted may be made equal to or lower than the withstand voltage of the electronic components of the inverter at the maximum rotation speed. In the present embodiment, since the magnetic flux of the high coercive force permanent magnet 4 is made smaller than the magnetic flux of the low coercive force permanent magnet 3, the counter electromotive voltage per rotational speed by the high coercive force permanent magnet 4 is reduced, and even higher rotational speeds are achieved. Can be rotated.

(第4の実施の形態)図6は、本発明の第4の実施の形態の永久磁石式回転電機の回転子1の断面図である。尚、図1と同一又は均等の要素には同一の符号を用いて示してある。図6において1は回転子、2は回転子鉄心、3は低保磁力永久磁石、4は高保磁力永久磁石、5は低保磁力永久磁石3の空洞である第1の空洞、6は高保磁力永久磁石4の空洞である第2の空洞、7は回転子鉄心2の磁極部、8は鉄心の窪み部である。   (Fourth Embodiment) FIG. 6 is a sectional view of a rotor 1 of a permanent magnet type rotating electric machine according to a fourth embodiment of the present invention. In addition, the same code | symbol is shown using the same or equivalent element as FIG. In FIG. 6, 1 is a rotor, 2 is a rotor core, 3 is a low coercivity permanent magnet, 4 is a high coercivity permanent magnet, 5 is a first cavity which is a cavity of the low coercivity permanent magnet 3, and 6 is a high coercivity. A second cavity which is a cavity of the permanent magnet 4, 7 is a magnetic pole part of the rotor core 2, and 8 is a recess part of the iron core.

本実施の形態の回転子1は、磁極間の中心軸になるq軸と一致する回転子1の半径方向に低保磁力永久磁石3を配置し、低保磁力永久磁石3の端部の鉄心を除いた低保磁力永久磁石3の端部近傍のエアギャップ側鉄心を回転子鉄心2の最外周より窪ませ、窪み部8を形成してある。   In the rotor 1 of the present embodiment, a low coercive force permanent magnet 3 is disposed in the radial direction of the rotor 1 that coincides with the q axis that is the central axis between the magnetic poles, and the iron core at the end of the low coercive force permanent magnet 3. The air gap side iron core in the vicinity of the end of the low coercive force permanent magnet 3 excluding the above is recessed from the outermost periphery of the rotor core 2 to form a recess 8.

次に、本実施の形態の回転子1の作用について説明する。当該回転子1を採用する永久磁石式回転電機20は図18と同様の構成となる。そしてそのような回転電機では、d軸方向の電流の磁束(d軸磁束)は回転子1の低保磁力永久磁石3と高保磁力永久磁石4を横断することになり、永久磁石は空気の透磁率とほぼ等しいのでd軸インダクタンスは小さくなる。一方、q軸方向の磁束は回転子鉄心2の磁極部7を低保磁力永久磁石3と高保磁力永久磁石4の長手方向に沿うように流れる。鉄心の磁極部7の透磁率は永久磁石の1000〜10000倍あるので、q軸方向の回転子鉄心2に窪みがなく回転子鉄心2の外径が周方向で均一であれば、q軸インダクタンスは大きくなる。そして、電流と磁束の磁気的作用でトルクを発生するためにq軸電流を流すが、q軸インダクタンスは大きいのでq軸電流で生じる電圧は大きくなる。すなわち、q軸インダクタンスが大きくなることにより、力率が悪くなる。   Next, the operation of the rotor 1 of the present embodiment will be described. A permanent magnet type rotating electrical machine 20 employing the rotor 1 has the same configuration as that shown in FIG. In such a rotating electric machine, the magnetic flux of the current in the d-axis direction (d-axis magnetic flux) crosses the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 of the rotor 1, and the permanent magnet passes through the air. Since it is almost equal to the magnetic susceptibility, the d-axis inductance is small. On the other hand, the magnetic flux in the q-axis direction flows through the magnetic pole portion 7 of the rotor core 2 along the longitudinal direction of the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4. Since the magnetic permeability of the magnetic pole portion 7 of the iron core is 1000 to 10,000 times that of the permanent magnet, if the rotor core 2 in the q-axis direction has no depression and the outer diameter of the rotor core 2 is uniform in the circumferential direction, the q-axis inductance Will grow. A q-axis current is supplied to generate torque by the magnetic action of the current and the magnetic flux. However, since the q-axis inductance is large, the voltage generated by the q-axis current increases. That is, as the q-axis inductance increases, the power factor deteriorates.

本実施の形態では、低保磁力永久磁石3の端部近傍のエアギャップ22側の鉄心は回転子鉄心2の最外周より窪んだ窪み部8としているので、鉄心2の窪み部8を通る磁束は減少する。すなわち、窪み部8はq軸方向にあるのでq軸インダクタンスを小さくすることができる。これより、力率を向上できる。また、鉄心2の窪み部8により低保磁力永久磁石3の端部近傍では等価的にエアギャップ長が長くなるので、低保磁力永久磁石3の端部近傍の平均的な磁界は低くなる。これより、トルクを発生するために必要なq軸電流による低保磁力永久磁石3への減磁界の影響を小さくできる。   In the present embodiment, the iron core on the air gap 22 side in the vicinity of the end of the low coercive force permanent magnet 3 is the recessed portion 8 that is recessed from the outermost periphery of the rotor core 2, so the magnetic flux that passes through the recessed portion 8 of the iron core 2. Decrease. That is, since the depression 8 is in the q-axis direction, the q-axis inductance can be reduced. Thereby, a power factor can be improved. Further, since the air gap length is equivalently increased in the vicinity of the end of the low coercive force permanent magnet 3 due to the recess 8 of the iron core 2, the average magnetic field in the vicinity of the end of the low coercive force permanent magnet 3 is reduced. Thus, the influence of the demagnetizing field on the low coercive force permanent magnet 3 due to the q-axis current necessary for generating torque can be reduced.

また、低保磁力永久磁石3の端部にある永久磁石を保持する鉄心部分のみは窪んでないため、低保磁力永久磁石3の径方向長さはできるだけ長くでき、よって、同一の外径の回転子において永久磁石体積を大きく取れる。すなわち、永久磁石の磁束量が増加でき、同一の回転子体積当りの出力を大きくとることができる。   Further, since only the iron core portion that holds the permanent magnet at the end of the low coercive force permanent magnet 3 is not recessed, the radial direction length of the low coercive force permanent magnet 3 can be made as long as possible. The permanent magnet volume can be increased in the child. That is, the amount of magnetic flux of the permanent magnet can be increased, and the output per rotor volume can be increased.

(第5の実施の形態)図7は、本発明の第5の実施の形態の永久磁石式回転電機の回転子1の断面図である。尚、図1、図6と同一又は均等の要素には同一の符号を用いて示す。図7において、1は回転子、2は回転子鉄心、3は低保磁力永久磁石、4は高保磁力永久磁石、5は低保磁力永久磁石3の空洞である第1の空洞、6は高保磁力永久磁石4の空洞である第2の空洞、7は回転子鉄心2の磁極部、8は回転子鉄心2の窪み部を示している。   (Fifth Embodiment) FIG. 7 is a sectional view of a rotor 1 of a permanent magnet type rotating electric machine according to a fifth embodiment of the present invention. In addition, the same code | symbol is shown using the same or equivalent element as FIG. 1, FIG. In FIG. 7, 1 is a rotor, 2 is a rotor core, 3 is a low coercive force permanent magnet, 4 is a high coercive force permanent magnet, 5 is a first cavity which is a cavity of the low coercive force permanent magnet 3, and 6 is a high coercive force. A second cavity which is a cavity of the magnetic permanent magnet 4, 7 indicates a magnetic pole part of the rotor core 2, and 8 indicates a recessed part of the rotor core 2.

磁極間の中心軸になるq軸と一致する半径方向に低保磁力永久磁石3を配置している。そして、低保磁力永久磁石3の端部と回転子鉄心2の磁極部7の中央までの間において、回転子鉄心2の磁極部7の中央部が回転子1の最外周部分となり、磁極部7の中央部から低保磁力永久磁石3の端部の外周側鉄心部分に至るにつれて、回転子1の軸中心からの回転子鉄心2の外周までの距離が短くしてある。   The low coercive force permanent magnet 3 is arranged in the radial direction that coincides with the q axis that is the central axis between the magnetic poles. Then, between the end of the low coercive force permanent magnet 3 and the center of the magnetic pole part 7 of the rotor core 2, the central part of the magnetic pole part 7 of the rotor core 2 becomes the outermost peripheral part of the rotor 1, and the magnetic pole part 7, the distance from the axial center of the rotor 1 to the outer periphery of the rotor core 2 is shortened from the central portion of the rotor 7 to the outer peripheral core portion of the end of the low coercive force permanent magnet 3.

次に、上記構成の回転子1の作用について述べる。当該回転子1を採用した永久磁石式回転電機20は図18に示したものと同様の構成である。そしてその回転電機20では、d軸方向の電流の磁束(d軸磁束)は回転子1の低保磁力永久磁石3と高保磁力永久磁石4を横断することになり、永久磁石は空気の透磁率とほぼ等しいのでd軸インダクタンスは小さくなる。一方、q軸方向の磁束は回転子鉄心の磁極部7を低保磁力永久磁石3と高保磁力永久磁石4に長手方向沿うように流れる。磁極の鉄心部7は透磁率が磁石の1000〜10000倍あるので、q軸方向の回転子鉄心に窪みがなく回転子鉄心外径が周方向で均一であれば、q軸インダクタンスは大きくなる。そして、電流と磁束の磁気的作用でトルクを発生するためにq軸電流を流すが、q軸インダクタンスは大きいのでq軸電流で生じる電圧は大きくなる。すなわち、インダクタンスが大きくなるので力率が悪くなる。   Next, the operation of the rotor 1 having the above configuration will be described. A permanent magnet type rotating electrical machine 20 employing the rotor 1 has the same configuration as that shown in FIG. In the rotating electrical machine 20, the magnetic flux of the current in the d-axis direction (d-axis magnetic flux) crosses the low coercivity permanent magnet 3 and the high coercivity permanent magnet 4 of the rotor 1, and the permanent magnet has air permeability. Therefore, the d-axis inductance is small. On the other hand, the magnetic flux in the q-axis direction flows along the longitudinal direction of the low coercivity permanent magnet 3 and the high coercivity permanent magnet 4 through the magnetic pole portion 7 of the rotor core. Since the magnetic core 7 has a magnetic permeability 1000 to 10000 times that of the magnet, the q-axis inductance increases if the rotor core in the q-axis direction has no depression and the outer diameter of the rotor core is uniform in the circumferential direction. A q-axis current is supplied to generate torque by the magnetic action of the current and the magnetic flux. However, since the q-axis inductance is large, the voltage generated by the q-axis current increases. That is, since the inductance is increased, the power factor is deteriorated.

本実施の形態では、磁極部7の外周の中央部から低保磁力永久磁石3の端部の外周側鉄心部分に至るにつれて、回転子1の軸中心からの回転子鉄心2の外周までの距離が短くなる形状としてある。これにより、当該回転子1を採用した永久磁石式回転電機におけるエアギャップ側鉄心は磁極部7の中央から低保磁力永久磁石3の端部に至るにつれて窪み部8の窪みが深くなる形状となる。このような形状の窪み部8があることによりエアギャップ長は長くなるので、窪みが深くなるほどその窪み部8を通る磁束は減少する。すなわち、窪み部8はq軸方向にあるのでq軸インダクタンスを小さくすることができる。これより、q軸インダクタンスを小さくできるので、力率を向上できる。特にq軸上にある低保磁力永久磁石3の端部近傍の鉄心部では窪みが最も深くなるので、効果的にq軸インダクタンスを低下させることができる。   In the present embodiment, the distance from the central part of the outer periphery of the magnetic pole part 7 to the outer peripheral side core part of the end of the low coercive force permanent magnet 3 to the outer periphery of the rotor core 2 from the axial center of the rotor 1. Is a shape that shortens. Thereby, the air gap side iron core in the permanent magnet type rotating electrical machine adopting the rotor 1 has a shape in which the depression of the depression 8 becomes deeper from the center of the magnetic pole part 7 to the end of the low coercive force permanent magnet 3. . Since the air gap length is increased by the presence of the recess 8 having such a shape, the magnetic flux passing through the recess 8 decreases as the recess becomes deeper. That is, since the depression 8 is in the q-axis direction, the q-axis inductance can be reduced. As a result, the q-axis inductance can be reduced, and the power factor can be improved. In particular, since the depression is deepest in the iron core near the end of the low coercivity permanent magnet 3 on the q axis, the q axis inductance can be effectively reduced.

また、窪み部8によって低保磁力永久磁石3の端部では上記回転電機のエアギャップ長が最も長くなるので、低保磁力永久磁石3の端部近傍の磁界は低くなる。これにより、トルクを発生するためのq軸電流による低保磁力への減磁界の影響を小さくできる。   Further, since the air gap length of the rotating electrical machine is the longest at the end of the low coercive force permanent magnet 3 due to the recess 8, the magnetic field in the vicinity of the end of the low coercive force permanent magnet 3 becomes low. Thereby, the influence of the demagnetizing field on the low coercive force due to the q-axis current for generating torque can be reduced.

(第6の実施の形態)図8は、本発明の第6の実施の形態の永久磁石式回転電機の回転子1の断面図である。尚、図1、図6、図7と同一又は均等の要素には同一の符号を用いて示す。図8において、1は回転子、2は回転子鉄心、3は低保磁力永久磁石、4は高保磁力永久磁石、5は低保磁力永久磁石3の空洞である第1の空洞、6は高保磁力永久磁石4の空洞である第2の空洞、7は回転子鉄心2の磁極部、8は窪み部、αは磁極中央部の円弧の中心角を示している。   (Sixth Embodiment) FIG. 8 is a sectional view of a rotor 1 of a permanent magnet type rotating electric machine according to a sixth embodiment of the present invention. In addition, the same code | symbol is shown using the same or equivalent element as FIG.1, FIG.6, FIG.7. In FIG. 8, 1 is a rotor, 2 is a rotor core, 3 is a low coercivity permanent magnet, 4 is a high coercivity permanent magnet, 5 is a first cavity that is a cavity of the low coercivity permanent magnet 3, and 6 is a high coercivity. A second cavity which is a cavity of the magnetic permanent magnet 4, 7 is a magnetic pole part of the rotor core 2, 8 is a hollow part, and α indicates a central angle of an arc of the magnetic pole central part.

回転子鉄心2の磁極部7の中央部は回転子の最大半径(回転子中心軸から回転子外周までの長さが最大)の円弧で形成され、磁極中央部の円弧の中心角αは電気角で90〜140度の範囲とする。中心角αを外れた領域の回転子1では、回転子1の最大半径の円弧よりも内周側に回転子鉄心2の外周が窪んだ形状とし、ここを窪み部8としている。   The central part of the magnetic pole part 7 of the rotor core 2 is formed by an arc having the maximum radius of the rotor (the length from the rotor central axis to the outer periphery of the rotor is maximum), and the central angle α of the arc at the magnetic pole central part The angle is in the range of 90 to 140 degrees. In the rotor 1 in a region outside the central angle α, the outer periphery of the rotor core 2 is recessed on the inner peripheral side with respect to the arc of the maximum radius of the rotor 1, and this is a recess 8.

当該回転子1を採用した永久磁石式回転電機20は図18に示した構成とほぼ同様である。そしてそのような回転電機20では、低・中速域で電源電圧の最大値以下で駆動する場合、高効率を得るため永久磁石の磁束を最大限に利用する。本実施の形態では中心角αで範囲が示される回転子鉄心2の磁極部7の中央部分は回転子1の最大半径の円弧で形成されるので、回転電機のd軸近傍のエアギャップ長が最小となる。したがって、中心角αのd軸近傍の磁極中央部分では、高保磁力永久磁石4と低保磁力永久磁石3の鎖交磁束量を多くできる。   A permanent magnet type rotating electrical machine 20 employing the rotor 1 has substantially the same configuration as that shown in FIG. In such a rotating electrical machine 20, when driving at a low or medium speed range below the maximum value of the power supply voltage, the magnetic flux of the permanent magnet is utilized to the maximum in order to obtain high efficiency. In the present embodiment, the central portion of the magnetic pole portion 7 of the rotor core 2 whose range is indicated by the central angle α is formed by an arc having the maximum radius of the rotor 1, so that the air gap length near the d-axis of the rotating electrical machine is Minimal. Therefore, the amount of interlinkage magnetic flux between the high coercivity permanent magnet 4 and the low coercivity permanent magnet 3 can be increased in the central portion of the magnetic pole near the d-axis having the central angle α.

低保磁力永久磁石3があるq軸近傍の回転子1では、回転子1の最大半径の円弧よりも内周側に回転子鉄心2の外周が窪んだ形状であるので、q軸電流による磁界は弱くなる。したがって、トルクを発生させるためにq軸電流を与えたとき、低保磁力永久磁石3がq軸電流による磁界で減磁するのを防ぐことができる。   In the rotor 1 near the q-axis where the low coercive force permanent magnet 3 is present, the outer periphery of the rotor core 2 is recessed on the inner peripheral side of the arc having the maximum radius of the rotor 1. Becomes weaker. Therefore, when a q-axis current is applied to generate torque, it is possible to prevent the low coercive force permanent magnet 3 from being demagnetized by a magnetic field due to the q-axis current.

以上の構成により、本実施の形態の回転子1を採用した永久磁石式回転電機20では、d軸近傍に生じる永久磁石の磁束量を多くすることにより高出力と高トルクを確保するとともに、同時にq軸電流による低保磁力永久磁石3の減磁の影響を大幅に緩和できる。   With the above configuration, in the permanent magnet type rotating electrical machine 20 adopting the rotor 1 of the present embodiment, a high output and a high torque are ensured by increasing the amount of magnetic flux of the permanent magnet generated in the vicinity of the d-axis. The influence of the demagnetization of the low coercive force permanent magnet 3 due to the q-axis current can be greatly reduced.

図9は、本実施の形態を適用した永久磁石式回転電機の磁極中心角αに対するトルクの変化を示した図である。磁極中央部の円弧の中心角αが電気角で90〜140度の範囲のときに、大きなトルクが得られることがわかる。   FIG. 9 is a diagram showing a change in torque with respect to the magnetic pole center angle α of the permanent magnet type rotating electrical machine to which the present embodiment is applied. It can be seen that a large torque can be obtained when the central angle α of the arc at the center of the magnetic pole is in the range of 90 to 140 degrees in electrical angle.

(第7の実施の形態)本発明の第7の実施の形態の永久磁石式回転電機20は、図18に示した構成で、低保磁力永久磁石3の磁化方向厚みが高保磁力永久磁石4の磁化方向厚みよりも薄くすることを特徴とする。永久磁石を着磁する磁界の強さは磁化方向厚みにほぼ比例する。そのため、低保磁力永久磁石3の磁化方向厚みを高保磁力永久磁石4の磁化方向厚みよりも薄くすることで、低保磁力永久磁石3を着磁する磁界を低くでき、着磁電流を少なくできる。   (Seventh Embodiment) A permanent magnet type rotating electrical machine 20 according to a seventh embodiment of the present invention has the configuration shown in FIG. It is characterized by being made thinner than the thickness in the magnetization direction. The strength of the magnetic field that magnetizes the permanent magnet is almost proportional to the thickness in the magnetization direction. Therefore, by making the magnetization direction thickness of the low coercivity permanent magnet 3 thinner than the magnetization direction thickness of the high coercivity permanent magnet 4, the magnetic field for magnetizing the low coercivity permanent magnet 3 can be lowered and the magnetization current can be reduced. .

また、一般に高保磁力永久磁石4は高磁気エネルギー積になるにつれて温度特性が悪くなり100℃以上の高温度状態で保磁力が小さくなり、より小さな減磁界で永久磁石が不可逆減磁するようになる。ところが、本実施の形態では、低保磁力永久磁石3を着磁する磁界を小さくできるので、永久磁石が高温状態において着磁磁界を作用させても高保磁力永久磁石4が不可逆減磁することを防ぐことができる。   In general, the temperature characteristics of the high coercive force permanent magnet 4 become worse as the product of high magnetic energy is increased, and the coercive force is reduced at a high temperature state of 100 ° C. or higher, and the permanent magnet is irreversibly demagnetized with a smaller demagnetizing field. . However, in the present embodiment, the magnetic field for magnetizing the low coercive force permanent magnet 3 can be reduced, so that the high coercive force permanent magnet 4 is irreversibly demagnetized even if the magnetizing magnetic field acts in a high temperature state. Can be prevented.

(第8の実施の形態)図10は、本発明の第8の実施の形態の永久磁石式回転電機の回転子1の断面図である。尚、図1、図6〜図8と同一又は均等の要素には同一の符号を用いて示す。図10において、1は回転子、2は回転子鉄心、3は低保磁力永久磁石、4は高保磁力永久磁石、5は低保磁力永久磁石3の空洞である第1の空洞、6は高保磁力永久磁石4の空洞である第2の空洞、7は回転子鉄心2の磁極部、8は回転子鉄心2の窪み部である。本実施の形態の回転子1は、低保磁力永久磁石3の磁化方向厚みが一定でなく、回転子1の外周側になるにつれて厚みを徐々に増す形状にしている。   (Eighth Embodiment) FIG. 10 is a sectional view of a rotor 1 of a permanent magnet type rotating electric machine according to an eighth embodiment of the present invention. In addition, the same code | symbol is shown using the same or equivalent element as FIG. 1, FIG. In FIG. 10, 1 is a rotor, 2 is a rotor core, 3 is a low coercivity permanent magnet, 4 is a high coercivity permanent magnet, 5 is a first cavity which is a cavity of the low coercivity permanent magnet 3, and 6 is a high coercivity. A second cavity which is a cavity of the magnetic permanent magnet 4, 7 is a magnetic pole part of the rotor core 2, and 8 is a recess part of the rotor core 2. The rotor 1 of the present embodiment has a shape in which the thickness in the magnetization direction of the low coercive force permanent magnet 3 is not constant, and the thickness gradually increases toward the outer peripheral side of the rotor 1.

着磁磁界を低保磁力永久磁石3に作用させた場合、回転子1内の低保磁力永久磁石3に作用する着磁磁界は一様に分布してなくて、磁界の強さが永久磁石内で偏る。一部に磁界が偏ると、着磁電流量による低保磁力永久磁石3の磁束量の調整が難しくなる。また、着磁磁界の変動及び駆動時の温度状態によっても永久磁石の磁束量が変わるので、着磁したときの磁束量の少ないばらつきの範囲での再現性を得ることが難しくなる。そこで、本実施の形態は、永久磁石の着磁に必要な磁化力は永久磁石の磁化方向厚みにより大きく変化する特性を応用している。   When a magnetizing magnetic field is applied to the low coercive force permanent magnet 3, the magnetizing magnetic field acting on the low coercive force permanent magnet 3 in the rotor 1 is not uniformly distributed, and the strength of the magnetic field is permanent magnet. Biased in. If the magnetic field is partially biased, it becomes difficult to adjust the amount of magnetic flux of the low coercive force permanent magnet 3 by the amount of magnetizing current. Further, since the amount of magnetic flux of the permanent magnet varies depending on the fluctuation of the magnetizing magnetic field and the temperature state at the time of driving, it becomes difficult to obtain reproducibility within a range of variations with a small amount of magnetic flux when magnetized. Therefore, the present embodiment applies the characteristic that the magnetizing force necessary for the magnetization of the permanent magnet greatly changes depending on the thickness in the magnetization direction of the permanent magnet.

そこで本実施の形態の回転子1は、低保磁力永久磁石3の磁化方向厚みが一定でなく、厚みを変えている。そのため、着磁磁界を作用させたときに各厚みの永久磁石部分で発生する磁束量を変えることができ、着磁磁界の強さは永久磁石の厚みによる影響に大きく依存させることができる。これにより、磁界の集中等による偏り、着磁磁界の変動等の外部条件変動による影響を小さくすることができ、着磁電流に対する磁束量の調整も容易になり、外部条件変動による磁束量のばらつきを少なくできる。   Therefore, in the rotor 1 of the present embodiment, the magnetization direction thickness of the low coercive force permanent magnet 3 is not constant, but the thickness is changed. Therefore, the amount of magnetic flux generated in the permanent magnet portion of each thickness when the magnetizing magnetic field is applied can be changed, and the strength of the magnetizing magnetic field can be largely dependent on the influence of the thickness of the permanent magnet. This makes it possible to reduce the influence of fluctuations in external conditions such as bias due to magnetic field concentration and fluctuations in the magnetizing magnetic field, facilitating adjustment of the amount of magnetic flux with respect to the magnetizing current, and variations in the amount of magnetic flux due to fluctuations in external conditions. Can be reduced.

図11は、本実施の形態の低保磁力永久磁石3の長手方向の断面図である。図11では、低保磁力永久磁石3の磁化方向厚みを階段状に異なる厚みにしている。この形状により永久磁石の厚みの変化幅と同様に永久磁石の磁束量の変化幅を段階的に大きくできる。したがって、外乱や雰囲気条件による着磁磁界の変動幅よりも永久磁石の厚みの変化幅による磁束量への影響を極めて大きくすることができる。すなわち、低保磁力永久磁石3を磁化させて磁束量を変化させる場合、着磁磁界の変動による磁束量のばらつきを少なくでき、同じ着磁電流における低保磁力永久磁石3の磁束量の再現性も高いものが得られる。   FIG. 11 is a longitudinal sectional view of the low coercive force permanent magnet 3 of the present embodiment. In FIG. 11, the thickness in the magnetization direction of the low coercive force permanent magnet 3 is set to be different in a stepwise manner. With this shape, the change width of the amount of magnetic flux of the permanent magnet can be increased stepwise in the same manner as the change width of the thickness of the permanent magnet. Therefore, the influence on the magnetic flux amount due to the change width of the permanent magnet thickness can be made much larger than the fluctuation width of the magnetizing magnetic field due to disturbances and atmospheric conditions. That is, when the amount of magnetic flux is changed by magnetizing the low coercive force permanent magnet 3, variation in the amount of magnetic flux due to fluctuations in the magnetizing magnetic field can be reduced, and the reproducibility of the amount of magnetic flux of the low coercive force permanent magnet 3 at the same magnetization current. Can also be obtained.

(第9の実施の形態)図12は、本発明の第9の実施の形態の永久磁石式回転電機の回転子1の断面図である。尚、図1、図6〜図8、図10と同一又は均等の要素には同一の符号を用いて示す。図12において、1は回転子、2は回転子鉄心、3は低保磁力永久磁石、4は高保磁力永久磁石、5は低保磁力永久磁石3の空洞である第1の空洞、6は高保磁力永久磁石4の空洞である第2の空洞、7は回転子鉄心2の磁極部、8は回転子鉄心2の窪み部を示している。   (Ninth Embodiment) FIG. 12 is a sectional view of a rotor 1 of a permanent magnet type rotating electric machine according to a ninth embodiment of the present invention. In addition, the same code | symbol is shown using the same code | symbol to the element which is the same as that of FIG. 1, FIG. In FIG. 12, 1 is a rotor, 2 is a rotor core, 3 is a low coercive force permanent magnet, 4 is a high coercive force permanent magnet, 5 is a first cavity which is a cavity of the low coercive force permanent magnet 3, and 6 is a high coercive force. A second cavity which is a cavity of the magnetic permanent magnet 4, 7 indicates a magnetic pole part of the rotor core 2, and 8 indicates a recessed part of the rotor core 2.

本実施の形態においては、低保磁力永久磁石3は回転子1の外周側になるにつれて磁化方向厚みが薄くなるテーパー状の形状としている。このように回転子1の外周側になるにつれて低保磁力永久磁石3の厚みを薄くすることで、低保磁力永久磁石3と接する回転子鉄心面で低保磁力永久磁石3の遠心力を受けることにより回転子鉄心2が低保磁力永久磁石3を保持できる。また、低保磁力永久磁石3の磁化方向厚みの寸法精度が粗くても、寸法に応じた径方向位置で低保磁力永久磁石3が回転子鉄心2に接することで永久磁石を固定できる。本実施の形態を成型による永久磁石の製造法とともに適用すると、型製造の欠点でもある成型後の寸法精度の悪い永久磁石を適用することが可能となり、低保磁力永久磁石の型製造により量産性が向上する。   In the present embodiment, the low coercive force permanent magnet 3 has a tapered shape in which the thickness in the magnetization direction becomes thinner toward the outer peripheral side of the rotor 1. Thus, by reducing the thickness of the low coercive force permanent magnet 3 toward the outer peripheral side of the rotor 1, the centrifugal force of the low coercive force permanent magnet 3 is received on the rotor core surface in contact with the low coercive force permanent magnet 3. Thus, the rotor core 2 can hold the low coercive force permanent magnet 3. Moreover, even if the dimensional accuracy of the magnetization direction thickness of the low coercive force permanent magnet 3 is rough, the permanent magnet can be fixed by the low coercive force permanent magnet 3 coming into contact with the rotor core 2 at a radial position corresponding to the size. When this embodiment is applied together with a method for producing a permanent magnet by molding, it becomes possible to apply a permanent magnet with poor dimensional accuracy after molding, which is also a drawback of mold production, and mass production is possible by producing a mold with a low coercive force permanent magnet. Will improve.

さらに、低保磁力永久磁石3の保持と量産性の向上と同時に次の作用と効果も得られる。低保磁力永久磁石3の厚みが一定である場合、低保磁力永久磁石3において着磁磁界の偏りが生じて低保磁力の永久磁石の一部分のみの磁束量が偏って変化することと、磁界変化幅に対する永久磁石の磁束量の変化幅が急峻である問題がある。永久磁石の着磁磁界は永久磁石の厚みに大きく依存し、着磁したときに厚みによってその部分の永久磁石の磁束量が大きく変化する。本実施の形態では低保磁力永久磁石3の厚みが異なるため、それぞれの厚みに応じた着磁磁界でその該当部分磁束量が大きく変化する。すなわち、永久磁石の厚みにより永久磁石の磁束が大きく変化する磁界の強さが異なる。これにより低保磁力永久磁石3の磁束量の変化幅に対する着磁磁界の変化幅を広く取ることができる。つまり、回転電機において着磁電流を調整することにより任意の永久磁石の磁束量を容易に調整でき、着磁を繰り返したときの低保磁力の永久磁石の磁束量のばらつきが少なく(良好な再現性)、着磁電流の変動、温度等の周条件の変動による着磁時の永久磁石の磁束量の変動幅を小さくすることができる。   Further, the following actions and effects can be obtained simultaneously with the retention of the low coercive force permanent magnet 3 and the improvement of mass productivity. When the thickness of the low coercive force permanent magnet 3 is constant, the low coercive force permanent magnet 3 is biased in the magnetizing magnetic field, and the magnetic flux amount of only a part of the low coercive force permanent magnet is biased, and the magnetic field There is a problem that the change width of the magnetic flux amount of the permanent magnet with respect to the change width is steep. The magnetizing magnetic field of the permanent magnet greatly depends on the thickness of the permanent magnet, and when magnetized, the amount of magnetic flux of the permanent magnet in that portion varies greatly depending on the thickness. In the present embodiment, since the thickness of the low coercive force permanent magnet 3 is different, the corresponding partial magnetic flux amount greatly changes in the magnetizing magnetic field corresponding to each thickness. That is, the strength of the magnetic field at which the magnetic flux of the permanent magnet changes greatly depends on the thickness of the permanent magnet. Thereby, the change width of the magnetization magnetic field with respect to the change width of the magnetic flux amount of the low coercive force permanent magnet 3 can be widened. In other words, the amount of magnetic flux of an arbitrary permanent magnet can be easily adjusted by adjusting the magnetizing current in a rotating electrical machine, and the variation in the amount of magnetic flux of a low-coercivity permanent magnet when magnetization is repeated (good reproduction) ), The fluctuation width of the magnetic flux amount of the permanent magnet at the time of magnetization due to the fluctuation of the surrounding conditions such as the fluctuation of the magnetizing current and the temperature.

(第10の実施の形態)図13は、本発明の第10の実施の形態の永久磁石式回転電機の回転子1の断面図である。尚、図1、図6〜図8、図10、図12と同一又は均等の要素には同一の符号を用いて示す。図13において、1は回転子、2は回転子鉄心、3は低保磁力永久磁石、4は高保磁力永久磁石、5は低保磁力永久磁石3の空洞である第1の空洞、6は高保磁力永久磁石4の空洞である第2の空洞、7は回転子鉄心2の磁極部、8は回転子鉄心2の窪み部、9は磁気障壁、10は突起を示している。   (Tenth Embodiment) FIG. 13 is a sectional view of a rotor 1 of a permanent magnet type rotating electric machine according to a tenth embodiment of the present invention. In addition, the same code | symbol is shown for the element which is the same as that of FIG. 1, FIG. 6-FIG. 8, FIG. 10, FIG. In FIG. 13, 1 is a rotor, 2 is a rotor core, 3 is a low coercive force permanent magnet, 4 is a high coercive force permanent magnet, 5 is a first cavity which is a cavity of the low coercive force permanent magnet 3, and 6 is a high coercive force. A second cavity which is a cavity of the magnetic permanent magnet 4, 7 is a magnetic pole part of the rotor core 2, 8 is a recessed part of the rotor core 2, 9 is a magnetic barrier, and 10 is a protrusion.

本実施の形態の回転子1では、低保磁力永久磁石3のエアギャップ側端部近傍の回転子鉄心2に低保磁力永久磁石3の磁化方向の厚みよりも回転子の周方向に長い磁気障壁9を設けている。磁気障壁9は穴であり、空気があることになる。また、低保磁力の永久磁石3の外周側(エアギャップ側)端部に突起10を設けている。突起10は低保磁力永久磁石3の遠心力を受けて永久磁石を保持する。   In the rotor 1 of the present embodiment, the magnetic force that is longer in the circumferential direction of the rotor than the thickness in the magnetization direction of the low coercive force permanent magnet 3 on the rotor core 2 near the air gap side end of the low coercive force permanent magnet 3. A barrier 9 is provided. The magnetic barrier 9 is a hole and there will be air. Further, a protrusion 10 is provided on the outer peripheral side (air gap side) end of the low coercive force permanent magnet 3. The protrusion 10 receives the centrifugal force of the low coercive force permanent magnet 3 and holds the permanent magnet.

本実施の形態の回転子1を採用した図18に示すような永久磁石式回転電機20に対してトルクを発生するためにq軸電流を流すと、q軸上にある低保磁力永久磁石3にq軸電流による磁界が生じる。本実施の形態の回転子1では低保磁力永久磁石3の端部近傍に磁気障壁9が設けてあるため、磁気障壁9の空気層により低保磁力永久磁石3の端部に作用するq軸電流の磁界を小さくすることができ、これによりq軸電流による低保磁力永久磁石3の減磁と増磁を抑制できる。また、磁気障壁9は低保磁力永久磁石3の磁化方向厚みより周方向に長いので、低保磁力永久磁石3の端部の角部に集中するq軸電流による磁界を緩和でき、q軸電流の磁界の回り込みによる低保磁力永久磁石3の減磁と増磁を防ぐことができる。さらに、磁気障壁9はq軸を中心にして回転子の周方向に長く存在するので、q軸方向の磁気抵抗が高くなりq軸電流による磁束量を低減できる。したがって、q軸インダクタンスが小となるので、力率を高くすることができる。   When a q-axis current is applied to generate a torque for a permanent magnet type rotating electrical machine 20 as shown in FIG. 18 employing the rotor 1 of the present embodiment, the low coercive force permanent magnet 3 on the q axis. Produces a magnetic field due to the q-axis current. In the rotor 1 of the present embodiment, since the magnetic barrier 9 is provided in the vicinity of the end of the low coercive permanent magnet 3, the q axis acting on the end of the low coercive permanent magnet 3 by the air layer of the magnetic barrier 9. The magnetic field of the current can be reduced, thereby suppressing the demagnetization and the magnetization of the low coercive force permanent magnet 3 due to the q-axis current. Further, since the magnetic barrier 9 is longer in the circumferential direction than the magnetization direction thickness of the low coercive force permanent magnet 3, the magnetic field due to the q axis current concentrated on the corner of the end of the low coercive force permanent magnet 3 can be relaxed, and the q axis current It is possible to prevent demagnetization and magnetization of the low coercive force permanent magnet 3 due to the wraparound of the magnetic field. Furthermore, since the magnetic barrier 9 is long in the circumferential direction of the rotor around the q axis, the magnetic resistance in the q axis direction is increased, and the amount of magnetic flux due to the q axis current can be reduced. Therefore, since the q-axis inductance is small, the power factor can be increased.

(第11の実施の形態)図14は、本発明の第11の実施の形態の永久磁石式回転電機の回転子1の断面図である。尚、図1、図6〜図8、図10、図12、図13と同一又は均等の要素には同一の符号を用いて示す。図14において、1は回転子、2は回転子鉄心、3は低保磁力永久磁石、4は高保磁力永久磁石、5は低保磁力永久磁石3の空洞である第1の空洞、6は高保磁力永久磁石4の空洞である第2の空洞、7は回転子鉄心2の磁極部、8は窪み部、9は磁気障壁、10は突起、11はスリットを示している。   (Eleventh Embodiment) FIG. 14 is a sectional view of a rotor 1 of a permanent magnet type rotating electric machine according to an eleventh embodiment of the present invention. In addition, the same code | symbol is shown using the same code | symbol to the element which is the same as that of FIG. 1, FIG. 6-FIG. 8, FIG. 10, FIG. In FIG. 14, 1 is a rotor, 2 is a rotor core, 3 is a low coercivity permanent magnet, 4 is a high coercivity permanent magnet, 5 is a first cavity which is a cavity of the low coercivity permanent magnet 3, and 6 is a high coercivity. A second cavity which is a cavity of the magnetic permanent magnet 4, 7 is a magnetic pole part of the rotor core 2, 8 is a recessed part, 9 is a magnetic barrier, 10 is a protrusion, and 11 is a slit.

本実施の形態では、隣り合う低保磁力永久磁石3の間の鉄心の磁極部7でd軸の中心軸と一致する位置にスリット11を設けている。このスリット11はd軸上にあるのでd軸磁束の磁気的な障壁にはならなく、q軸磁束の磁気的な障壁となる。したがって、d軸を中心に分布する永久磁石の磁束への影響は僅かとしながら、q軸の磁束を減少させることができる。すなわち、永久磁石によるトルクを維持しながら力率を向上させることができる。   In the present embodiment, the slit 11 is provided at a position coincident with the central axis of the d-axis in the magnetic pole portion 7 of the iron core between the adjacent low coercive force permanent magnets 3. Since the slit 11 is on the d-axis, it does not become a magnetic barrier for d-axis magnetic flux but a magnetic barrier for q-axis magnetic flux. Therefore, the q-axis magnetic flux can be reduced while the influence on the magnetic flux of the permanent magnet distributed around the d-axis is small. That is, the power factor can be improved while maintaining the torque by the permanent magnet.

(第12の実施の形態)図15は、本発明の第12の実施の形態の永久磁石式回転電機の回転子1の断面図である。尚、図1、図6〜図8、図10、図12〜図14と同一又は均等の要素には同一の符号を用いて示す。図15において、1は回転子、2は回転子鉄心、3Aは高保磁力永久磁石、4Aは低保磁力永久磁石、5は高保磁力永久磁石3Aの空洞である第1の空洞、6は低保磁力永久磁石4Aの空洞である第2の空洞、7は回転子鉄心2の磁極部、8は回転子鉄心2の窪み部を示している。   (Twelfth Embodiment) FIG. 15 is a sectional view of a rotor 1 of a permanent magnet type rotating electric machine according to a twelfth embodiment of the present invention. 1, 6 to 8, 10, and 12 to 14, the same or equivalent elements are denoted by the same reference numerals. In FIG. 15, 1 is a rotor, 2 is a rotor core, 3A is a high coercivity permanent magnet, 4A is a low coercivity permanent magnet, 5 is a first cavity which is a cavity of the high coercivity permanent magnet 3A, and 6 is a low coercivity. A second cavity which is a cavity of the magnetic permanent magnet 4 </ b> A, 7 is a magnetic pole part of the rotor core 2, and 8 is a recessed part of the rotor core 2.

尚、本実施の形態の回転子1は、他の実施の形態と同様、図18に示すような永久磁石式回転電機20の固定子の中央部に配置し、固定子コイルの作る磁界によって回転駆動させる。   As in the other embodiments, the rotor 1 of the present embodiment is arranged at the center of the stator of the permanent magnet type rotating electrical machine 20 as shown in FIG. 18 and is rotated by the magnetic field generated by the stator coil. Drive.

本実施の形態の永久磁石式回転電機は、第1〜第11の実施の形態とは異なり、高保磁力永久磁石3Aを回転子1の径方向に配置し、回転子鉄心2の内周側に周方向に平行に低保磁力永久磁石4Aを配置したことを特徴としている。   Unlike the first to eleventh embodiments, the permanent magnet type rotating electrical machine of the present embodiment has a high coercive force permanent magnet 3 </ b> A arranged in the radial direction of the rotor 1, and on the inner peripheral side of the rotor core 2. The low coercive force permanent magnet 4A is arranged in parallel with the circumferential direction.

径方向に配置した高保磁力永久磁石3Aに作用する固定子電流による磁界に関しては、次のような磁路となる。固定子鉄心→エアギャップ20→回転子磁極7→径方向に位置した高保磁力永久磁石3A(横断)→隣りの回転子磁極7→固定子鉄心。一方、内周側の周方向に配置した低保磁力永久磁石4Aに作用する固定子電流による磁界に関しては、次のような磁路となる。固定子鉄心→エアギャップ20→回転子磁極7→周方向に位置した低保磁力永久磁石4A(横断〉→回転子鉄心2の最内周部分→隣りの回転子鉄心2の最内周部分→隣りの周方向に位置した低保磁力永久磁石4A(横断)→隣りの回転子磁極7→固定子鉄心。   Regarding the magnetic field due to the stator current acting on the high coercivity permanent magnet 3 </ b> A arranged in the radial direction, the magnetic path is as follows. Stator core → air gap 20 → rotor magnetic pole 7 → radially positioned high coercivity permanent magnet 3A (transverse) → adjacent rotor magnetic pole 7 → stator core. On the other hand, the magnetic path due to the stator current acting on the low coercive force permanent magnet 4 </ b> A arranged in the circumferential direction on the inner peripheral side has the following magnetic path. Stator core → air gap 20 → rotor magnetic pole 7 → low coercive force permanent magnet 4A (transverse) located in the circumferential direction → the innermost peripheral part of the rotor core 2 → the innermost peripheral part of the adjacent rotor core 2 → Low coercive force permanent magnet 4A (transverse) located in the adjacent circumferential direction → adjacent rotor magnetic pole 7 → stator core.

したがって、電流による磁界は、2個の周方向に配置した低保磁力永久磁石4Aに作用し、1個の径方向に配置した高保磁力永久磁石3Aに作用する。これより、高保磁力永久磁石3Aと低保磁力永久磁石4Aとの厚みが同一とすると、径方向に配置した高保磁力永久磁石3Aに作用する電流による磁界は、周方向に配置した低保磁力永久磁石4Aより2倍強くなる。   Therefore, the magnetic field due to the current acts on the two low coercivity permanent magnets 4A arranged in the circumferential direction, and acts on the single high coercivity permanent magnet 3A arranged in the radial direction. Accordingly, if the thickness of the high coercivity permanent magnet 3A and the thickness of the low coercivity permanent magnet 4A are the same, the magnetic field generated by the current acting on the high coercivity permanent magnet 3A arranged in the radial direction is the low coercivity permanent magnet arranged in the circumferential direction. It is twice as strong as the magnet 4A.

固定子を水冷却や油冷却で行って比電気装荷(単位周長当りのアンペアターン)を大きくすることにより高出力化した回転電機では、負荷電流による磁界が大きく、この負荷電流による強い磁界により部分的に減磁が生じる。このような高出力密度の回転電機の場合でも、本実施の形態の永久磁石式回転電機では、磁界の影響を受けやすい低保磁力永久磁石4Aは内周側に配置することにより、部分的な減磁の影響を小さくすることができる。これにより、本実施の形態の永久磁石式回転電機によれば、回転子1のd軸電流で永久磁石を磁化することにより永久磁束の鎖交磁束量を可変できると同時に負荷電流による永久磁石の特性変化を抑制して高出力化も維持できる。   In a rotating electrical machine with high output by increasing the specific electrical load (ampere turn per unit circumference) by performing water cooling or oil cooling on the stator, the magnetic field due to the load current is large, and the strong magnetic field due to this load current Partial demagnetization occurs. Even in the case of such a high power density rotating electric machine, in the permanent magnet type rotating electric machine according to the present embodiment, the low coercive force permanent magnet 4A that is easily affected by a magnetic field is arranged on the inner peripheral side, thereby partially The effect of demagnetization can be reduced. Thereby, according to the permanent magnet type rotating electrical machine of the present embodiment, the amount of interlinkage magnetic flux of the permanent magnetic flux can be varied by magnetizing the permanent magnet with the d-axis current of the rotor 1, and at the same time, High output can be maintained by suppressing characteristic changes.

尚、本実施の形態にあっては、鉄心窪み部8は必要に応じて形成することができるものであり、図1に示した第1の実施の形態のように回転子鉄心2の外周面が真円断面となる構成であってもよく、また図6、図8に示す形状であってもよい。また、第1の空洞5は図13、図14に示す形状にしてもよい。さらに、外周側の永久磁石となる高保磁力永久磁石3Aについても、図11、図12あるいは図13の形状にすることができる。   In the present embodiment, the core recess 8 can be formed as necessary, and the outer peripheral surface of the rotor core 2 as in the first embodiment shown in FIG. May have a perfect circular cross section, or may have the shape shown in FIGS. Further, the first cavity 5 may have the shape shown in FIGS. Further, the high coercive force permanent magnet 3 </ b> A serving as the outer peripheral side permanent magnet can be formed in the shape of FIG. 11, FIG. 12, or FIG. 13.

(第13の実施の形態)図16は、本発明の第13の実施の形態の永久磁石式回転電機の回転子1の断面図である。尚、図1、図6〜図8、図10、図12〜図15と同一又は均等の要素には同一の符号を用いて示す。本実施の形態の永久磁石式回転電機は、回転子鉄心2の径方向の永久磁石として高保磁力永久磁石3Bを配置し、回転子鉄心2の内周側の周方向の永久磁石としても高保磁力永久磁石4Bを配置したことを特徴とする。その他の構成は、図15に示した第12の実施の形態と同様である。   (Thirteenth Embodiment) FIG. 16 is a sectional view of a rotor 1 of a permanent magnet type rotating electric machine according to a thirteenth embodiment of the present invention. 1, 6 to 8, 10, and 12 to 15, the same or equivalent elements are denoted by the same reference numerals. In the permanent magnet type rotating electrical machine of the present embodiment, a high coercive force permanent magnet 3B is disposed as a radial permanent magnet of the rotor core 2, and a high coercive force is also provided as a circumferential permanent magnet on the inner peripheral side of the rotor core 2. The permanent magnet 4B is arranged. Other configurations are the same as those of the twelfth embodiment shown in FIG.

永久磁石3B,4Bはd軸電流による着磁磁界で磁化状態を変化できる磁化方向厚みにする。あるいは、径方向の高保磁力永久磁石3Bか、周方向の高保磁力永久磁石4Bのみがd軸電流による着磁磁界で磁化状態を変化できる磁化方向厚みにする。   The permanent magnets 3B and 4B have a magnetization direction thickness that can change the magnetization state by a magnetization magnetic field generated by a d-axis current. Alternatively, only the radial high coercivity permanent magnet 3 </ b> B or the circumferential high coercivity permanent magnet 4 </ b> B has a thickness in the magnetization direction in which the magnetization state can be changed by the magnetization magnetic field generated by the d-axis current.

本実施の形態の永久磁石式回転電機では、回転子鉄心2の径方向の永久磁石3Bにも回転子鉄心2の内周側の周方向の永久磁石4Bにも、共に高保磁力永久磁石を配置したので、負荷電流による磁界など外乱に対して安定した特性が得られる。   In the permanent magnet type rotating electrical machine of the present embodiment, high coercive force permanent magnets are arranged both in the radial permanent magnet 3B of the rotor core 2 and in the circumferential permanent magnet 4B on the inner peripheral side of the rotor core 2. Therefore, stable characteristics against disturbance such as a magnetic field due to load current can be obtained.

水や油で固定子を冷却することにより回転電機は比電気装荷(単位周長当りのアンペアターン)を大きくして高出力化できる。しかし、負荷電流による磁界が大きくなるため、負荷電流による強い磁界により周囲の永久磁石にも部分的な減磁が生じる。このような高出力密度の回転電機の場合では、高保磁力永久磁石を適用することにより負荷電流による磁界の影響を小さくし、安定した永久磁石特性が得られる。ただし、永久磁石はd軸電流による着磁磁界でも十分に磁化できる厚みとする。例えば、径方向永久磁石3Bは周方向永久磁石4Bよりも薄くしてより小さな着磁磁界(少ないd軸電流)で永久磁石の磁化量を調整できるようにする。   By cooling the stator with water or oil, the rotating electrical machine can increase the specific electrical load (ampere turn per unit circumference) and increase the output. However, since the magnetic field due to the load current is increased, the surrounding permanent magnet is also partially demagnetized due to the strong magnetic field due to the load current. In the case of such a high power density rotating electrical machine, by applying a high coercive force permanent magnet, the influence of the magnetic field due to the load current is reduced, and stable permanent magnet characteristics can be obtained. However, the permanent magnet has a thickness that can be sufficiently magnetized even by a magnetizing magnetic field generated by a d-axis current. For example, the radial permanent magnet 3B is thinner than the circumferential permanent magnet 4B so that the magnetization amount of the permanent magnet can be adjusted with a smaller magnetizing magnetic field (less d-axis current).

尚、本実施の形態にあっても、鉄心窪み部8は必要に応じて形成することができるものであり、図1に示した第1の実施の形態のように回転子鉄心2の外周面が真円断面となる構成であってもよく、また図6、図8に示す形状であってもよい。また、第1の空洞5は図13、図14に示す形状にしてもよい。さらに、外周側の永久磁石となる高保磁力永久磁石3Aについても、図11、図12あるいは図13の形状にすることができる。   Even in the present embodiment, the core recess 8 can be formed as necessary, and the outer peripheral surface of the rotor core 2 as in the first embodiment shown in FIG. May have a perfect circular cross section, or may have the shape shown in FIGS. Further, the first cavity 5 may have the shape shown in FIGS. Further, the high coercive force permanent magnet 3 </ b> A serving as the outer peripheral side permanent magnet can be formed in the shape of FIG. 11, FIG. 12, or FIG. 13.

(第14の実施の形態)本発明の第14の実施の形態の永久磁石式回転電機について、図17を用いて説明する。尚、図1、図6〜図8、図10、図12〜図16と同一又は均等の要素には同一の符号を用いて示す。   (Fourteenth Embodiment) A permanent magnet type rotating electric machine according to a fourteenth embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is shown using the same code | symbol to the element which is the same as that of FIG. 1, FIG. 6 ~ FIG. 8, FIG. 10, FIG.

本実施の形態の特徴は、図17に示したように、永久磁石による減磁界防止用のスリット12を回転子鉄心2に設けた点にある。回転子鉄心2の外周側に径方向に低保磁力永久磁石3を配置し、回転子鉄心2の内周側に周方向に高保磁力永久磁石4を配置している。そして、永久磁石による減磁界防止用のスリット12を回転子鉄心2の磁極部7に設け、低保磁力永久磁石3による磁束と高保磁力永久磁石4による磁束をこのスリット12が遮断するようにしている。   The feature of this embodiment is that a slit 12 for preventing demagnetization by a permanent magnet is provided in the rotor core 2 as shown in FIG. A low coercivity permanent magnet 3 is arranged in the radial direction on the outer peripheral side of the rotor core 2, and a high coercivity permanent magnet 4 is arranged in the circumferential direction on the inner peripheral side of the rotor core 2. A slit 12 for preventing a demagnetizing field by a permanent magnet is provided in the magnetic pole portion 7 of the rotor core 2 so that the slit 12 blocks the magnetic flux by the low coercive force permanent magnet 3 and the magnetic flux by the high coercive force permanent magnet 4. Yes.

低保磁力永久磁石3と高保磁力永久磁石4とは同じ磁極鉄心部内の配置しているために互いに減磁界が作用するが、本実施の形態ではスリット12を相互間に介在させているため、他の永久磁石による減磁界の影響をほとんど受けないほどに小さくできる。したがって、低保磁力永久磁石3が負荷時に高保磁力永久磁石4による減磁界と負荷電流とによる減磁界で減磁することはない。また、d軸電流の着磁磁界による低保磁力永久磁石3の磁束の増減も、高保磁力永久磁石4の影響を受けなくて容易となる。尚、回転子鉄心2内の永久磁石3,4を全て高保磁力永久磁石にしても同様の効果を得ることはできる。   Since the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 are arranged in the same magnetic core, the demagnetizing field acts on each other, but in the present embodiment, the slits 12 are interposed between each other, It can be made small enough not to be affected by the demagnetizing field due to other permanent magnets. Therefore, the low coercive force permanent magnet 3 is not demagnetized by a demagnetizing field caused by the high coercive force permanent magnet 4 and a load current due to the load current. Further, the increase / decrease of the magnetic flux of the low coercive force permanent magnet 3 due to the magnetizing magnetic field of the d-axis current is not affected by the high coercive force permanent magnet 4 and is easy. The same effect can be obtained even if the permanent magnets 3 and 4 in the rotor core 2 are all high coercivity permanent magnets.

(第15の実施の形態)以上の第1〜第14の実施の形態それぞれにおいて、固定子巻線の電流が作る磁界で低保磁力永久磁石の磁化方向を両方向に反転させる構成とすることができる。   (Fifteenth Embodiment) In each of the first to fourteenth embodiments, the magnetization direction of the low coercive force permanent magnet is reversed in both directions by the magnetic field generated by the current of the stator winding. it can.

d軸電流による着磁磁界により回転子1の径方向、または周方向に配置させた永久磁石の磁束量を低減させる。磁束を減少させるだけでは、着磁する永久磁石の磁束量が0になったときに全永久磁石による総鎖交磁束量は最小になる。そこで、本実施の形態ではさらに着磁する永久磁石を逆方向に磁化することで他の永久磁石の磁束と差し引くことになり、さらに全永久磁石による総鎖交磁束量を小さくすることができる。理想的には総鎖交磁束量を0にできる。これにより無負荷状態で高速回転で駆動されても誘導電圧は極めて小さく、鉄損の少ない回転電機が得られる。   The amount of magnetic flux of the permanent magnets arranged in the radial direction or circumferential direction of the rotor 1 is reduced by the magnetizing magnetic field generated by the d-axis current. If the magnetic flux amount of the permanent magnet to be magnetized becomes zero only by reducing the magnetic flux, the total interlinkage magnetic flux amount by all the permanent magnets is minimized. Therefore, in the present embodiment, by further magnetizing the magnetized permanent magnet in the reverse direction, it is subtracted from the magnetic flux of the other permanent magnet, and the total flux linkage by all the permanent magnets can be further reduced. Ideally, the total flux linkage can be reduced to zero. As a result, even when driven at high speed in a no-load state, the induced voltage is extremely small, and a rotating electrical machine with little iron loss can be obtained.

(第16の実施の形態)本発明の第16の実施の形態は、図18に示したような構成の永久磁石式回転電機20において、その電圧が供給電源の最大電圧の近傍、又は最大電圧を超える高速回転時には、低保磁力永久磁石3と高保磁力永久磁石4による鎖交磁束が減じるように固定子巻線の電流が形成する磁界を用いて低保磁力永久磁石3を磁化させ、永久磁石の全鎖交磁束量を調整することを特徴とする。本実施の形態に用いる低保磁力永久磁石3はFeCrCo磁石、又はアルニコ磁石を使用しており、高保磁力永久磁石4にはNdFeB磁石を使用する。   (Sixteenth Embodiment) The sixteenth embodiment of the present invention is the permanent magnet type rotating electrical machine 20 having the configuration as shown in FIG. When rotating at a high speed exceeding 1, the low coercive force permanent magnet 3 is magnetized by using a magnetic field formed by the current of the stator winding so that the interlinkage magnetic flux by the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 is reduced. The total flux linkage of the magnet is adjusted. The low coercive force permanent magnet 3 used in the present embodiment uses an FeCrCo magnet or an alnico magnet, and the high coercive force permanent magnet 4 uses an NdFeB magnet.

永久磁石式回転電機では、永久磁石の磁束量は一定であるので、回転子1の回転速度に比例して永久磁石の鎖交磁束による電圧は高くなる。したがって、電源電圧に上限があり、回転電機を低速から高速までに広範囲で運転する場合は、電源電圧の上限値に達するとそれ以上の回転速度では運転できないことになる。そこで、回転電機の電圧は巻線インダクタンスと永久磁石による鎖交磁束でその大きさが決定されるので、高速回転時の電圧の上昇を抑制するためには永久磁石の鎖交磁束量を低減することが考えられる。   In the permanent magnet type rotating electrical machine, since the amount of magnetic flux of the permanent magnet is constant, the voltage due to the interlinkage magnetic flux of the permanent magnet increases in proportion to the rotational speed of the rotor 1. Therefore, when the power supply voltage has an upper limit and the rotating electrical machine is operated in a wide range from a low speed to a high speed, it cannot be operated at a higher rotational speed when the upper limit value of the power supply voltage is reached. Therefore, the magnitude of the voltage of the rotating electrical machine is determined by the winding inductance and the interlinkage magnetic flux generated by the permanent magnet. Therefore, the amount of interlinkage magnetic flux of the permanent magnet is reduced in order to suppress the voltage increase during high-speed rotation. It is possible.

本実施の形態に用いる低保磁力永久磁石3であるFeCrCo磁石、アルニコ磁石は、保磁力が60〜200kA/mで小さく、200〜300kA/mの磁界で磁化できる。高保磁力永久磁石4であるNdFeB磁石は、保磁力が950kA/mと高く、2400kA/mの磁界で磁化できる。したがって、低保磁力永久磁石3は高保磁力永久磁石4の1/10程度の磁界で着磁できる。本実施の形態では、固定子巻線21に通電時間が極短時間(100μs〜1ms程度)となるパルス的な電流を流して磁界を形成し、低保磁力永久磁石3に磁界を作用させる。着磁磁界を250kA/mとすると、理想的には低保磁力永久磁石3には十分な磁界が作用し、高保磁力永久磁石4には着磁による不可逆減磁はない。   The FeCrCo magnet and the alnico magnet which are the low coercive force permanent magnets 3 used in the present embodiment have a small coercive force of 60 to 200 kA / m and can be magnetized with a magnetic field of 200 to 300 kA / m. The NdFeB magnet which is the high coercive force permanent magnet 4 has a high coercive force of 950 kA / m and can be magnetized by a magnetic field of 2400 kA / m. Therefore, the low coercive force permanent magnet 3 can be magnetized with a magnetic field of about 1/10 that of the high coercive force permanent magnet 4. In the present embodiment, a magnetic field is formed by applying a pulsed current whose energization time is extremely short (about 100 μs to 1 ms) to the stator winding 21, and the magnetic field is applied to the low coercive force permanent magnet 3. When the magnetizing magnetic field is 250 kA / m, ideally, a sufficient magnetic field acts on the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 does not undergo irreversible demagnetization due to magnetization.

初期状態では、低保磁力永久磁石3の鎖交磁束と高保磁力永久磁石4の鎖交磁束は同方向で加えあわせで増加する状態にある。そして、回転電機の電圧が供給電源の最大電圧の近傍、又は最大電圧を超える高速回転時になったときは、負のd軸電流をパルス的に流して図4に示すように低保磁力永久磁石3の磁化方向とは逆方向の磁界をかける。低保磁力永久磁石3は減磁するか、図5に示すように逆方向に磁化される。これにより、低保磁力永久磁石3と高保磁力永久磁石4の総和である鎖交磁束を減少させることができる。鎖交磁束量が減少するので回転電機の電圧は電源電圧上限よりも低くなり、電源電圧の上限値になるまでさらに高速回転で運転することが可能となる。   In the initial state, the interlinkage magnetic flux of the low coercive force permanent magnet 3 and the interlinkage magnetic flux of the high coercivity permanent magnet 4 are in a state of increasing in addition in the same direction. Then, when the rotating electrical machine voltage is near the maximum voltage of the power supply or at high speed rotation exceeding the maximum voltage, a negative d-axis current is applied in a pulsed manner to generate a low coercive force permanent magnet as shown in FIG. A magnetic field in the direction opposite to the magnetization direction of 3 is applied. The low coercivity permanent magnet 3 is demagnetized or magnetized in the reverse direction as shown in FIG. Thereby, the flux linkage which is the sum of the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 can be reduced. Since the amount of magnetic flux linkage decreases, the voltage of the rotating electrical machine becomes lower than the upper limit of the power supply voltage, and it is possible to operate at higher speed until the upper limit value of the power supply voltage is reached.

そして、d軸電流の大きさを変えて着磁磁界の強さを変化させることにより、低保磁力永久磁石3の磁化状態を変化させて、電圧を調整することができる。このとき、低保磁力永久磁石3は、磁力を低下させる状態、低保磁力の永久磁石の磁束を0にさせる状態、低保磁力の永久磁石の磁束を逆方向にさせる状態の3つの状態にすることができる。   The voltage can be adjusted by changing the magnetization state of the low coercive force permanent magnet 3 by changing the magnitude of the d-axis current to change the strength of the magnetizing magnetic field. At this time, the low coercivity permanent magnet 3 has three states: a state in which the magnetic force is reduced, a state in which the magnetic flux of the low coercivity permanent magnet is zero, and a state in which the magnetic flux of the low coercivity permanent magnet is reversed. can do.

一方、高保磁力永久磁石4は保磁力が低保磁力永久磁石3より10倍以上大きく、また本実施の形態では高保磁力永久磁石4に作用する着磁磁界は低保磁力永久磁石3の1/2になる。したがって、低保磁力永久磁石3を着磁する程度の磁界であれば、高保磁力永久磁石4は可逆減磁状態であり、着磁後でも高保磁力の永久磁石は初期の状態の磁束を維持できる。   On the other hand, the high coercive force permanent magnet 4 has a coercive force 10 times or more larger than that of the low coercive force permanent magnet 3, and the magnetizing magnetic field acting on the high coercive force permanent magnet 4 is 1/0 of that of the low coercive force permanent magnet 3 in this embodiment. 2 Therefore, if the magnetic field is sufficient to magnetize the low coercivity permanent magnet 3, the high coercivity permanent magnet 4 is in a reversible demagnetization state, and the high coercivity permanent magnet can maintain the initial magnetic flux even after magnetization. .

出力を発生するときは、固定子巻線にq軸電流を流すことにより、q軸電流と永久磁石の磁束との磁気作用でトルクを発生させる。このとき、q軸電流による磁界が発生する。しかし、低保磁力永久磁石3はq軸方向に配置され、磁化方向はq軸方向とは直角方向であるので、低保磁力の永久磁石の磁化方向とq軸電流による磁界とは直交する方向になる。したがって、q軸電流による磁界の影響はわずかとなる。   When generating an output, a q-axis current is caused to flow through the stator winding, thereby generating a torque by the magnetic action of the q-axis current and the magnetic flux of the permanent magnet. At this time, a magnetic field due to the q-axis current is generated. However, since the low coercivity permanent magnet 3 is arranged in the q-axis direction and the magnetization direction is perpendicular to the q-axis direction, the magnetization direction of the low coercivity permanent magnet and the magnetic field due to the q-axis current are orthogonal to each other. become. Therefore, the influence of the magnetic field due to the q-axis current is small.

(第17の実施の形態)本発明の第17の実施の形態は、図18に示したような構成の永久磁石式回転電機において、その電圧が供給電源の最大電圧以下となる低速回転時には、低保磁力永久磁石3と高保磁力永久磁石4による鎖交磁束が増加するように固定子巻線の電流が形成する磁界により低保磁力永久磁石3を磁化させ、回転電機の電圧が供給電源の最大電圧近傍又は超える高速回転時には、低保磁力永久磁石3と高保磁力永久磁石4による鎖交磁束が減じるように固定子巻線の電流が形成する磁界により低保磁力永久磁石3を磁化させ、永久磁石の鎖交磁束量を調整することを特徴とする。   (Seventeenth Embodiment) A seventeenth embodiment of the present invention is a permanent magnet type rotating electrical machine having a configuration as shown in FIG. The low coercivity permanent magnet 3 is magnetized by the magnetic field formed by the current of the stator winding so that the interlinkage magnetic flux by the low coercivity permanent magnet 3 and the high coercivity permanent magnet 4 is increased, and the voltage of the rotating electrical machine During high-speed rotation near or exceeding the maximum voltage, the low coercivity permanent magnet 3 is magnetized by the magnetic field formed by the current of the stator winding so that the linkage flux between the low coercivity permanent magnet 3 and the high coercivity permanent magnet 4 is reduced. The interlinkage magnetic flux amount of the permanent magnet is adjusted.

本実施の形態に用いる低保磁力永久磁石3はFeCrCo磁石、又はアルニコ磁石を使用しており、高保磁力永久磁石4にはNdFeB磁石を使用する。本実施の形態で用いる低保磁力永久磁石3であるFeCrCo磁石、アルニコ磁石は、保磁力が60〜200kA/mで小さく、200〜300kA/mの磁界で磁化できる。高保磁力永久磁石4であるNdFeB磁石は、保磁力が950kA/mと高く、2400kA/mの磁界で磁化できる。したがって、低保磁力永久磁石3は高保磁力永久磁石4の1/10の磁界で着磁できる。本実施の形態では、固定子巻線に通電時間が極短時間(100μs〜1ms程度)となるパルス的な電流を流して磁界を形成し、低保磁力永久磁石3に磁界を作用させる。着磁磁界を250kA/mとすると、理想的には低保磁力永久磁石3には十分な磁界が作用し、高保磁力永久磁石4には着磁による不可逆減磁はない。   The low coercive force permanent magnet 3 used in the present embodiment uses an FeCrCo magnet or an alnico magnet, and the high coercive force permanent magnet 4 uses an NdFeB magnet. The FeCrCo magnet and alnico magnet, which are the low coercivity permanent magnets 3 used in the present embodiment, have a small coercive force of 60 to 200 kA / m and can be magnetized with a magnetic field of 200 to 300 kA / m. The NdFeB magnet which is the high coercive force permanent magnet 4 has a high coercive force of 950 kA / m and can be magnetized by a magnetic field of 2400 kA / m. Therefore, the low coercive force permanent magnet 3 can be magnetized with a magnetic field 1/10 that of the high coercive force permanent magnet 4. In the present embodiment, a magnetic field is formed by applying a pulsed current whose energization time is extremely short (about 100 μs to 1 ms) to the stator winding, and the magnetic field is applied to the low coercive force permanent magnet 3. When the magnetizing magnetic field is 250 kA / m, ideally, a sufficient magnetic field acts on the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 does not undergo irreversible demagnetization due to magnetization.

低速回転時等で電源電圧の最大値に対して回転電機の電圧に余裕がある場合は、正のd軸電流による着磁磁界を発生させ、低保磁力永久磁石3を磁化させる。低保磁力永久磁石3は高保磁力永久磁石4の鎖交磁束と同方向とし、加えあわせで増加する方向に磁化させる状態にする。永久磁石の鎖交磁束とq軸電流によりトルクが発生するので、永久磁石の鎖交磁束の増加によりトルクを増加することができる。   When there is a margin in the voltage of the rotating electrical machine with respect to the maximum value of the power supply voltage, such as during low-speed rotation, a magnetizing magnetic field is generated by a positive d-axis current, and the low coercive force permanent magnet 3 is magnetized. The low coercive force permanent magnet 3 is set in the same direction as the interlinkage magnetic flux of the high coercive force permanent magnet 4 and is magnetized in an increasing direction by addition. Since torque is generated by the interlinkage magnetic flux and q-axis current of the permanent magnet, the torque can be increased by increasing the interlinkage magnetic flux of the permanent magnet.

回転電機の電圧が電源の最大電圧近傍又は超える高速回転時には、第16の実施の形態と同様にして低保磁力永久磁石3と高保磁力永久磁石4による鎖交磁束が減じるように固定子巻線の電流が形成する磁界により低保磁力永久磁石3を磁化させ、永久磁石の鎖交磁束量を調整する。鎖交磁束量が減少するので回転電機の電圧は電源電圧最大値よりも低くなり、電源電圧の最大値になるまでさらに高速回転まで運転することが可能となる。   At the time of high-speed rotation where the voltage of the rotating electrical machine is close to or exceeds the maximum voltage of the power supply, the stator windings are set so that the interlinkage magnetic flux by the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 is reduced as in the sixteenth embodiment The low coercive force permanent magnet 3 is magnetized by the magnetic field generated by the current of the current to adjust the amount of flux linkage of the permanent magnet. Since the amount of flux linkage decreases, the voltage of the rotating electrical machine becomes lower than the maximum value of the power supply voltage, and it is possible to operate at higher speed until the maximum value of the power supply voltage is reached.

以上より、d軸電流を着磁電流として磁界を発生させ、d軸電流により低保磁力永久磁石3の鎖交磁束量を調整することにより、低速時に高トルクを発生さ、高出力で高速回転駆動を可能とし、高出力で低速から高速までの広範囲の可変速運転が可能な回転電機が得られる。   As described above, a magnetic field is generated using the d-axis current as a magnetizing current, and the amount of interlinkage magnetic flux of the low coercive force permanent magnet 3 is adjusted by the d-axis current, thereby generating high torque at low speed and high speed and high speed rotation. A rotating electrical machine that can be driven and can be operated in a wide range of variable speeds from low speed to high speed with high output is obtained.

(第18の実施の形態)本発明の第20の実施の形態は、図18に示したような構成の永久磁石式回転電機20において、固定子巻線21のd軸電流が作る磁界で低保磁力永久磁石3の磁束量を調整し、低保磁力永久磁石3と高保磁力永久磁石4による鎖交磁束量を0にすることを特徴とする。   (Eighteenth Embodiment) The twentieth embodiment of the present invention is a low magnetic field generated by the d-axis current of the stator winding 21 in the permanent magnet type rotating electrical machine 20 having the configuration shown in FIG. The amount of magnetic flux of the coercive force permanent magnet 3 is adjusted, and the amount of flux linkage between the low coercive force permanent magnet 3 and the high coercive force permanent magnet 4 is set to zero.

本実施の形態に用いる低保磁力永久磁石3はFeCrCo磁石、又はアルニコ磁石を使用しており、高保磁力永久磁石4にはNdFeB磁石を使用する。本実施の形態に用いる低保磁力永久磁石3であるFeCrCo磁石、アルニコ磁石は、保磁力が60〜200kA/mで小さく、200〜300kA/mの磁界で磁化できる。高保磁力永久磁石4であるNdFeB磁石は、保磁力が950kA/mと高く、2400kA/mの磁界で磁化できる。したがって、低保磁力永久磁石3は高保磁力永久磁石4の1/10程度の磁界で着磁できる。   The low coercive force permanent magnet 3 used in the present embodiment uses an FeCrCo magnet or an alnico magnet, and the high coercive force permanent magnet 4 uses an NdFeB magnet. The FeCrCo magnet and the alnico magnet which are the low coercive force permanent magnets 3 used in the present embodiment have a small coercive force of 60 to 200 kA / m and can be magnetized with a magnetic field of 200 to 300 kA / m. The NdFeB magnet which is the high coercive force permanent magnet 4 has a high coercive force of 950 kA / m and can be magnetized by a magnetic field of 2400 kA / m. Therefore, the low coercive force permanent magnet 3 can be magnetized with a magnetic field of about 1/10 that of the high coercive force permanent magnet 4.

本実施の形態では、固定子巻線に通電時間が極短時間(100μs〜1ms程度)となるパルス的な電流を流して磁界を形成し、低保磁力永久磁石3に磁界を作用させる。着磁磁界を250kA/mとすると、理想的には低保磁力永久磁石3には十分な磁界が作用して着磁されるが、高保磁力永久磁石4は磁化されずにパルス電流が0になると可逆変化して元の状態に戻る。すなわち、低保磁力永久磁石3の鎖交磁束量は調整され、高保磁力永久磁石4の鎖交磁束量は一定になる。   In the present embodiment, a magnetic field is formed by applying a pulsed current whose energization time is extremely short (about 100 μs to 1 ms) to the stator winding, and the magnetic field is applied to the low coercive force permanent magnet 3. If the magnetizing magnetic field is 250 kA / m, ideally a sufficient magnetic field acts on the low coercive force permanent magnet 3 to be magnetized, but the high coercive force permanent magnet 4 is not magnetized and the pulse current becomes zero. Then, it changes reversibly and returns to the original state. That is, the amount of flux linkage of the low coercivity permanent magnet 3 is adjusted, and the amount of flux linkage of the high coercivity permanent magnet 4 is constant.

そして、d軸電流による着磁磁界により低保磁力永久磁石3の磁束量を調整し、低保磁力永久磁石3と高保磁力永久磁石4による鎖交磁束量を0にする。永久磁石による鎖交磁束は0なので、外部から回転電機が連れ回された場合、永久磁石の鎖交磁束による鉄損が発生しない。さらに、ハイブリッド自動車や電車用駆動システムに従来の永久磁石モータを適用した場合、高速回転時に永久磁石による誘導電圧がインバータの電子部品の耐電圧以上になって電子部品を破損する。また、モータの電圧を電源電圧以下に保つため無負荷でも高速回転領域では常時弱め磁束電流を流し続ける必要があり、モータの総合効率が悪化する。   Then, the amount of magnetic flux of the low coercivity permanent magnet 3 is adjusted by the magnetizing magnetic field generated by the d-axis current, and the amount of flux linkage between the low coercivity permanent magnet 3 and the high coercivity permanent magnet 4 is set to zero. Since the interlinkage magnetic flux by the permanent magnet is 0, when the rotating electrical machine is rotated from the outside, iron loss due to the interlinkage magnetic flux of the permanent magnet does not occur. Further, when a conventional permanent magnet motor is applied to a hybrid vehicle or a train drive system, the induced voltage by the permanent magnet exceeds the withstand voltage of the electronic components of the inverter during high-speed rotation, and the electronic components are damaged. In addition, in order to keep the motor voltage below the power supply voltage, it is necessary to constantly weaken the flux current in the high-speed rotation region even when there is no load, and the overall efficiency of the motor deteriorates.

本実施の形態の永久磁石式回転電機をハイブリッド自動車や電車用駆動システムに適用した場合、永久磁石による鎖交磁束を0に調整できるので永久磁石の誘導電圧によるインバータの電子部品を破損することはなく、高速回転領域において無負荷で弱め磁束電流を常時流し続ける必要はない。   When the permanent magnet type rotating electrical machine of the present embodiment is applied to a hybrid vehicle or a train drive system, the interlinkage magnetic flux by the permanent magnet can be adjusted to 0, so that the electronic components of the inverter are damaged by the induced voltage of the permanent magnet. In other words, it is not necessary to keep the magnetic flux current constantly flowing without any load in the high-speed rotation region.

したがって、本実施の形態の回転電機を適用すれば、適用システムの信頼性が向上し、同時に高効率も得ることができる。   Therefore, if the rotating electrical machine of the present embodiment is applied, the reliability of the applied system can be improved and at the same time high efficiency can be obtained.

(第19の実施の形態)本発明の第19の実施の形態は、図18に示したような構成の永久磁石式回転電機20において、d軸電流で着磁されて最大の磁束量が得られたときの前記低保磁力永久磁石3が作る磁束量と、高保磁力永久磁石4が作る磁束量を同一とすることを特徴とする。   (Nineteenth Embodiment) In the nineteenth embodiment of the present invention, the permanent magnet type rotating electrical machine 20 having the configuration shown in FIG. 18 is magnetized with a d-axis current to obtain the maximum amount of magnetic flux. The amount of magnetic flux generated by the low coercive force permanent magnet 3 and the amount of magnetic flux generated by the high coercive force permanent magnet 4 are the same.

本実施の形態に用いる回転子1の低保磁力永久磁石3はFeCrCo磁石、又はアルニコ磁石を使用しており、高保磁力永久磁石4にはNdFeB磁石を使用する。   The low coercivity permanent magnet 3 of the rotor 1 used in the present embodiment uses an FeCrCo magnet or an alnico magnet, and the high coercivity permanent magnet 4 uses an NdFeB magnet.

本実施の形態に用いる低保磁力永久磁石3であるFeCrCo磁石、アルニコ磁石は、保磁力が60〜200kA/mで小さく、200〜300kA/mの磁界で磁化できる。高保磁力永久磁石4であるNdFeB磁石は、保磁力が950kA/mと高く、2400kA/mの磁界で磁化できる。したがって、低保磁力永久磁石3は高保磁力永久磁石4の1/10の磁界で着磁できる。   The FeCrCo magnet and the alnico magnet which are the low coercive force permanent magnets 3 used in the present embodiment have a small coercive force of 60 to 200 kA / m and can be magnetized with a magnetic field of 200 to 300 kA / m. The NdFeB magnet which is the high coercive force permanent magnet 4 has a high coercive force of 950 kA / m and can be magnetized by a magnetic field of 2400 kA / m. Therefore, the low coercive force permanent magnet 3 can be magnetized with a magnetic field 1/10 that of the high coercive force permanent magnet 4.

本実施の形態では、固定子巻線に通電時間が極短時間(100μs〜1ms程度)となるパルス的な電流を流して磁界を形成し、低保磁力永久磁石3に磁界を作用させる。着磁磁界を250kA/mとすると、理想的には低保磁力永久磁石3には十分な磁界が作用して着磁されるが、高保磁力永久磁石4は磁化されずにパルス電流が0になると可逆変化して元の状態に戻る。すなわち、低保磁力永久磁石3の鎖交磁束量は調整され、高保磁力永久磁石4の鎖交磁束量は一定になる。   In the present embodiment, a magnetic field is formed by applying a pulsed current whose energization time is extremely short (about 100 μs to 1 ms) to the stator winding, and the magnetic field is applied to the low coercive force permanent magnet 3. If the magnetizing magnetic field is 250 kA / m, ideally a sufficient magnetic field acts on the low coercive force permanent magnet 3 to be magnetized, but the high coercive force permanent magnet 4 is not magnetized and the pulse current becomes zero. Then, it changes reversibly and returns to the original state. That is, the amount of flux linkage of the low coercivity permanent magnet 3 is adjusted, and the amount of flux linkage of the high coercivity permanent magnet 4 is constant.

そして、第18の実施の形態に述べたように永久磁石の鎖交磁束量を0にできると回転電機の適用システムの信頼性が向上し、同時に高効率も得る大きな効果がある。これより、d軸電流による着磁磁界により低保磁力永久磁石3の磁束量を調整し、低保磁力永久磁石3と高保磁力永久磁石4による鎖交磁束量を0にする。   As described in the eighteenth embodiment, if the amount of flux linkage of the permanent magnet can be reduced to 0, the reliability of the application system of the rotating electrical machine is improved, and at the same time, there is a great effect of obtaining high efficiency. Thus, the amount of magnetic flux of the low coercivity permanent magnet 3 is adjusted by the magnetizing magnetic field generated by the d-axis current, and the amount of flux linkage between the low coercivity permanent magnet 3 and the high coercivity permanent magnet 4 is set to zero.

第19の実施の形態では保磁力の永久磁石3が作る磁束量と高保磁力永久磁石4が作る磁束量を同一としている。したがって、低保磁力永久磁石3の磁化方向は高保磁力永久磁石4の鎖交磁束と逆方向に鎖交磁束が生じる向きとして、低保磁力永久磁石3に250kA/m以上の着磁磁界をかけて完全着磁すればよい。つまり、250kA/m以上の着磁磁界とするのみで着磁電流の変動、着磁時の温度などの雰囲気条件を影響受けることなく、永久磁石の全鎖交磁束量を0にすることが確実に容易にできる。   In the nineteenth embodiment, the amount of magnetic flux generated by the coercive permanent magnet 3 and the amount of magnetic flux generated by the high coercive permanent magnet 4 are the same. Therefore, the magnetization direction of the low coercivity permanent magnet 3 is set to a direction in which a linkage magnetic flux is generated in a direction opposite to the linkage magnetic flux of the high coercivity permanent magnet 4, and a magnetizing magnetic field of 250 kA / m or more is applied to the low coercivity permanent magnet 3. Can be fully magnetized. That is, it is ensured that the total interlinkage magnetic flux of the permanent magnet is set to 0 without being affected by atmospheric conditions such as fluctuations in the magnetization current and temperature at the time of magnetization simply by applying a magnetizing magnetic field of 250 kA / m or more. Easy to do.

尚、上記の第2以降の実施の形態における永久磁石の着磁方向については、図1に示した第1の実施の形態と同様である。   The magnetization direction of the permanent magnet in the second and subsequent embodiments is the same as that of the first embodiment shown in FIG.

本発明の第1の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of the 1st Embodiment of this invention. 本発明の第1の実施の形態に使用した低保磁力永久磁石と高保磁力永久磁石の磁気特性を示す図。The figure which shows the magnetic characteristic of the low coercive force permanent magnet and the high coercive force permanent magnet which were used for the 1st Embodiment of this invention. 本発明の第1の実施の形態における回転子の初期状態の永久磁石の磁束を示す断面図。Sectional drawing which shows the magnetic flux of the permanent magnet of the initial state of the rotor in the 1st Embodiment of this invention. 本発明の第1の実施の形態における回転子のd軸電流による着磁磁界の磁束を示す断面図。Sectional drawing which shows the magnetic flux of the magnetization magnetic field by the d-axis current of the rotor in the 1st Embodiment of this invention. 本発明の第1の実施の形態における回転子のd軸電流による着磁磁界が作用した後の磁束を示す断面図。Sectional drawing which shows the magnetic flux after the magnetizing magnetic field by the d-axis current of the rotor in the 1st Embodiment of this invention acts. 本発明の第4の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of the 4th Embodiment of this invention. 本発明の第5の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of the 5th Embodiment of this invention. 本発明の第6の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of the 6th Embodiment of this invention. 本発明の第6の実施の形態における磁極の中心角αに対するトルクの変化を示した図。The figure which showed the change of the torque with respect to the central angle (alpha) of the magnetic pole in the 6th Embodiment of this invention. 本発明の第8の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of the 8th Embodiment of this invention. 本発明の第8の実施の形態の低保磁力永久磁石の長手方向の断面図。Sectional drawing of the longitudinal direction of the low coercive force permanent magnet of the 8th Embodiment of this invention. 本発明の第9の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of the 9th Embodiment of this invention. 本発明の第10の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of the 10th Embodiment of this invention. 本発明の第11の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of the 11th Embodiment of this invention. 本発明の第12の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of the 12th Embodiment of this invention. 本発明の第13の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of 13th Embodiment of this invention. 本発明の第14の実施の形態の永久磁石式回転電機の回転子の断面図。Sectional drawing of the rotor of the permanent-magnet-type rotary electric machine of 14th Embodiment of this invention. 本発明の第1の実施の形態の回転子を採用した永久磁石式回転電機の断面図。Sectional drawing of the permanent magnet type rotary electric machine which employ | adopted the rotor of the 1st Embodiment of this invention. 従来の埋め込み型永久磁石モータの回転子の断面図。Sectional drawing of the rotor of the conventional embedded permanent magnet motor.

符号の説明Explanation of symbols

1 回転子
2 回転子鉄心
3 低保磁力永久磁石
3A 高保磁力永久磁石
3B 高保磁力永久磁石
4 高保磁力永久磁石
4A 低保磁力永久磁石
4B 高保磁力永久磁石
5 第1の空洞
6 第2の空洞
7 鉄心の磁極部
8 窪み部
9 磁気障壁
10 突起
11 スリット
12 スリット
1 Rotor 2 Rotor Core 3 Low Coercivity Permanent Magnet 3A High Coercivity Permanent Magnet 3B High Coercivity Permanent Magnet 4 High Coercivity Permanent Magnet 4A Low Coercivity Permanent Magnet 4B High Coercivity Permanent Magnet 5 First Cavity 6 Second Cavity 7 Magnetic core part of iron core 8 Recessed part 9 Magnetic barrier 10 Protrusion 11 Slit 12 Slit

Claims (32)

固定子巻線を設けた固定子と、
回転子鉄心中に前記固定子巻線の電流で作る磁界により不可逆的に磁束密度が変化する程度の保磁力を有する低保磁力永久磁石と前記低保磁力永久磁石の2倍以上の保磁力を有する高保磁力永久磁石とを配置した回転子とを備えたことを特徴とする永久磁石式回転電機。
A stator provided with a stator winding;
A low coercivity permanent magnet having a coercive force such that the magnetic flux density is irreversibly changed by a magnetic field generated by the current of the stator winding in the rotor core, and a coercivity more than twice that of the low coercivity permanent magnet. A permanent magnet type rotating electrical machine comprising a rotor having a high coercive force permanent magnet disposed therein.
前記低保磁力永久磁石と高保磁力永久磁石とは、その一方が前記回転子鉄心の外周側に配置され、その他方が前記回転子鉄心の内周側に配置されていることを特徴とする請求項1に記載の永久磁石式回転電機。   One of the low coercive force permanent magnet and the high coercive force permanent magnet is disposed on the outer peripheral side of the rotor core, and the other is disposed on the inner peripheral side of the rotor core. Item 10. The permanent magnet type rotating electrical machine according to Item 1. 前記低保磁力永久磁石は前記回転子鉄心の外周側に配置され、前記高保磁力永久磁石は前記回転子鉄心の内周側に配置されていることを特徴とする請求項2に記載の永久磁石式回転電機。   3. The permanent magnet according to claim 2, wherein the low coercive force permanent magnet is disposed on an outer peripheral side of the rotor core, and the high coercive force permanent magnet is disposed on an inner peripheral side of the rotor core. Rotary electric machine. 前記低保磁力永久磁石は前記回転子の磁極間の中心軸となるq軸に対して45°〜135°方向、又は−45°〜−135°方向に磁化されていることを特徴とする請求項3に記載の永久磁石式回転電機。   The low coercive force permanent magnet is magnetized in a 45 ° to 135 ° direction or a −45 ° to −135 ° direction with respect to a q axis that is a central axis between magnetic poles of the rotor. Item 4. The permanent magnet type rotating electric machine according to Item 3. 前記低保磁力永久磁石は前記回転子の磁極間の中心軸となるq軸に対して45°〜135°方向、又は−45°〜−135°方向に磁化され、前記高保磁力永久磁石は前記回転子の磁極中心軸となるd軸に対して−45°〜45°又は−135°〜−225°方向に磁化されていることを特徴とする請求項3に記載の永久磁石式回転電機。   The low coercive force permanent magnet is magnetized in the direction of 45 ° to 135 ° or −45 ° to −135 ° with respect to the q axis that is the central axis between the magnetic poles of the rotor, and the high coercive force permanent magnet is 4. The permanent magnet type rotating electric machine according to claim 3, wherein the permanent magnet type rotating electric machine is magnetized in a direction of −45 ° to 45 ° or −135 ° to −225 ° with respect to a d-axis serving as a magnetic pole central axis of the rotor. 前記高保磁力永久磁石は前記回転子鉄心の外周側に配置され、前記低保磁力永久磁石は前記回転子鉄心の内周側に配置されていることを特徴とする請求項2に記載の永久磁石式回転電機。   3. The permanent magnet according to claim 2, wherein the high coercive force permanent magnet is disposed on an outer peripheral side of the rotor core, and the low coercive force permanent magnet is disposed on an inner peripheral side of the rotor core. Rotary electric machine. 前記高保磁力永久磁石は前記回転子の磁極間の中心軸となるq軸に対して45°〜135°方向又は−45°〜−135°方向に磁化されていることを特徴とする請求項6に記載の永久磁石式回転電機。   The high coercive force permanent magnet is magnetized in a 45 ° to 135 ° direction or a −45 ° to −135 ° direction with respect to a q axis that is a central axis between magnetic poles of the rotor. The permanent magnet type rotating electrical machine described in 1. 前記高保磁力永久磁石は前記回転子の磁極間の中心軸となるq軸に対して45°〜135°方向又は−45°〜−135°方向に磁化され、前記低保磁力永久磁石は前記回転子の磁極中心軸となるd軸に対して−45°〜45°又は−135°〜−225°方向に磁化されていることを特徴とする請求項6に記載の永久磁石式回転電機。   The high coercive force permanent magnet is magnetized in the direction of 45 ° to 135 ° or −45 ° to −135 ° with respect to the q axis which is the central axis between the magnetic poles of the rotor, and the low coercive force permanent magnet is rotated. The permanent magnet type rotating electrical machine according to claim 6, wherein the permanent magnet type rotating electric machine is magnetized in a -45 ° to 45 ° or -135 ° to -225 ° direction with respect to a d-axis serving as a magnetic pole central axis of the child. 前記回転子の径方向断面形状を、前記低保磁力永久磁石と前記高保磁力永久磁石とが磁極部となる回転子鉄心部分を取り囲む形状にしたことを特徴とする請求項1〜8のいずれかに記載の永久磁石式回転電機。   The radial cross-sectional shape of the rotor is a shape in which the low coercive force permanent magnet and the high coercive force permanent magnet surround a rotor core portion that serves as a magnetic pole portion. The permanent magnet type rotating electrical machine described in 1. 前記回転子が最高回転速度になったときの前記高保磁力永久磁石による逆起電圧を、当該永久磁石式回転電機の電源であるインバータ電子部品の耐電圧以下にしたことを特徴とする請求項1〜9のいずれかに記載の永久磁石式回転電機。   The back electromotive force generated by the high coercive force permanent magnet when the rotor reaches the maximum rotation speed is set to be equal to or lower than a withstand voltage of an inverter electronic component that is a power source of the permanent magnet type rotating electrical machine. The permanent-magnet-type rotary electric machine in any one of -9. 前記低保磁力永久磁石と高保磁力永久磁石との磁束量が最大の状態における前記高保磁力永久磁石による磁束量を、前記低保磁力永久磁石の最大磁束量よりも少なくしたことを特徴とする請求項1〜10のいずれかに記載の永久磁石式回転電機。   The amount of magnetic flux by the high coercivity permanent magnet in a state where the amount of magnetic flux between the low coercivity permanent magnet and the high coercivity permanent magnet is maximum is smaller than the maximum amount of magnetic flux of the low coercivity permanent magnet. Item 11. The permanent magnet type rotating electrical machine according to any one of Items 1 to 10. 前記回転子鉄心は、前記回転子の磁極中心軸となるd軸方向の磁気抵抗を小さくし、磁極間の中心軸になるq軸方向の磁気抵抗を大きくする形状であることを特徴とする請求項1〜11のいずれかに記載の永久磁石式回転電機。   The rotor iron core has a shape in which a magnetic resistance in a d-axis direction serving as a magnetic pole central axis of the rotor is reduced and a magnetic resistance in a q-axis direction serving as a central axis between the magnetic poles is increased. Item 12. The permanent magnet type rotating electrical machine according to any one of Items 1 to 11. 前記回転子における前記低保磁力永久磁石のエアギャップ側近傍の部分の磁気抵抗を高くしたことを特徴とする請求項3〜5、9〜12のいずれかに記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 3 to 5, and 9 to 12, wherein a magnetic resistance of a portion of the rotor near the air gap side of the low coercive force permanent magnet is increased. 前記低保磁力永久磁石を前記回転子鉄心の外周側において前記回転子の径方向に配置し、当該低保磁力永久磁石の径方向外端部を除き、当該低保磁力永久磁石の前記外端部近傍のエアギャップ側鉄心部分を窪ませたことを特徴とする請求項1〜3、9〜13のいずれかに記載の永久磁石式回転電機。   The low coercivity permanent magnet is arranged in the radial direction of the rotor on the outer peripheral side of the rotor core, and the outer end of the low coercivity permanent magnet is excluded except for the radially outer end of the low coercivity permanent magnet. The permanent magnet type rotating electrical machine according to any one of claims 1 to 3 and 9 to 13, wherein an air gap side iron core portion in the vicinity of the portion is recessed. 前記低保磁力永久磁石を前記回転子鉄心の外周側において前記回転子の径方向に配置し、前記回転子鉄心の磁極中央部を当該回転子鉄心の最外周部分とし、前記磁極中央部近傍から前記低保磁力永久磁石の径方向外端部近傍のエアギャップ側鉄心部分を前記回転子鉄心の最外周部分よりも窪ませたことを特徴とする請求項1〜3、9〜13のいずれかに記載の永久磁石式回転電機。   The low coercive force permanent magnet is arranged in the radial direction of the rotor on the outer peripheral side of the rotor core, the magnetic pole central portion of the rotor core is the outermost peripheral portion of the rotor core, and from the vicinity of the magnetic pole central portion 14. The air gap side iron core portion in the vicinity of the radially outer end portion of the low coercive force permanent magnet is recessed from the outermost peripheral portion of the rotor iron core. 15. The permanent magnet type rotating electrical machine described in 1. 前記高保磁力永久磁石を前記回転子鉄心の外周側において前記回転子の径方向に配置し、当該高保磁力永久磁石の径方向外端部を除き、当該高保磁力永久磁石の前記外端部近傍のエアギャップ側鉄心部分を窪ませたことを特徴とする請求項1、2、6、9〜13のいずれかに記載の永久磁石式回転電機。   The high coercive force permanent magnet is arranged in the radial direction of the rotor on the outer peripheral side of the rotor core, except for the radially outer end portion of the high coercive force permanent magnet, in the vicinity of the outer end portion of the high coercive force permanent magnet. The permanent magnet type rotating electric machine according to any one of claims 1, 2, 6, and 9 to 13, wherein the air gap side iron core portion is recessed. 前記高保磁力永久磁石を前記回転子鉄心の外周側において前記回転子の径方向に配置し、前記回転子鉄心の磁極中央部を当該回転子鉄心の最外周部分とし、前記磁極中央部近傍から前記高保磁力永久磁石の径方向外端部近傍のエアギャップ側鉄心部分を前記回転子鉄心の最外周部分よりも窪ませたことを特徴とする請求項1、2、6、9〜13のいずれかに記載の永久磁石式回転電機。   The high coercive force permanent magnet is arranged in the radial direction of the rotor on the outer peripheral side of the rotor core, the magnetic pole central portion of the rotor core is the outermost peripheral portion of the rotor core, and from the vicinity of the magnetic pole central portion 14. The air gap side iron core portion in the vicinity of the radially outer end portion of the high coercive force permanent magnet is recessed from the outermost peripheral portion of the rotor iron core. The permanent magnet type rotating electrical machine described in 1. 前記回転子鉄心の磁極中央部は前記回転子の最大半径の円弧で形成され、前記磁極中央部の円弧の中心角は電気角で90〜140度の範囲としたことを特徴とする請求項1〜17のいずれかに記載の永久磁石式回転電機。   2. The magnetic pole central portion of the rotor core is formed by an arc having the maximum radius of the rotor, and the central angle of the circular arc of the magnetic pole central portion is in an electrical angle range of 90 to 140 degrees. The permanent-magnet-type rotary electric machine in any one of -17. 前記低保磁力永久磁石を前記回転子鉄心の外周側に配置し、当該低保磁力永久磁石の磁化方向厚みは前記高保磁力永久磁石の磁化方向厚みよりも薄くしたことを特徴とする請求項1〜5、9〜18のいずれかに記載の永久磁石式回転電機。   The low coercivity permanent magnet is disposed on the outer peripheral side of the rotor core, and the magnetization direction thickness of the low coercivity permanent magnet is smaller than the magnetization direction thickness of the high coercivity permanent magnet. The permanent magnet type rotating electrical machine according to any one of? 5 and 9-18. 前記低保磁力永久磁石を前記回転子鉄心の外周側に配置し、当該低保磁力永久磁石の磁化方向厚みは一定でないことを特徴とする請求項1〜5、9〜19のいずれかに記載の永久磁石式回転電機。   The low coercivity permanent magnet is disposed on the outer peripheral side of the rotor core, and the magnetization direction thickness of the low coercivity permanent magnet is not constant. Permanent magnet type rotating electric machine. 前記低保磁力永久磁石を前記回転子鉄心の外周側に配置し、当該低保磁力永久磁石の磁化方向厚みは段階的に異なることを特徴とする請求項1〜5、9〜20のいずれかに記載の永久磁石式回転電機。   The low coercivity permanent magnet is disposed on the outer peripheral side of the rotor core, and the magnetization direction thickness of the low coercivity permanent magnet varies stepwise. The permanent magnet type rotating electrical machine described in 1. 前記低保磁力永久磁石を前記回転子鉄心の外周側に配置し、当該低保磁力永久磁石はその回転子外周側の厚みが回転子内周側の厚みよりも薄くなる形状にしたことを特徴とする請求項1〜5、9〜21のいずれかに記載の永久磁石式回転電機。   The low coercive force permanent magnet is arranged on the outer peripheral side of the rotor core, and the low coercive force permanent magnet has a shape in which the thickness on the outer peripheral side of the rotor is thinner than the thickness on the inner peripheral side of the rotor. The permanent magnet type rotating electrical machine according to any one of claims 1 to 5 and 9 to 21. 前記回転子の外周側に配置した永久磁石のエアギャップ側端部に当該永久磁石の厚みよりも周方向に長い磁気障壁を設けたことを特徴とする請求項1〜22のいずれかに記載の永久磁石式回転電機。   The magnetic barrier longer in the circumferential direction than the thickness of the said permanent magnet was provided in the air gap side edge part of the permanent magnet arrange | positioned at the outer peripheral side of the said rotor, The Claim 1 characterized by the above-mentioned. Permanent magnet type rotating electric machine. 前記低保磁力永久磁石を前記回転子鉄心の外周側に配置し、当該低保磁力永久磁石のエアギャップ側端部に当該低保磁力永久磁石の厚みよりも周方向に長い磁気障壁を設けたことを特徴とする請求項1〜5、9〜22のいずれかに記載の永久磁石式回転電機。   The low coercive force permanent magnet is disposed on the outer peripheral side of the rotor core, and a magnetic barrier that is longer in the circumferential direction than the thickness of the low coercive force permanent magnet is provided at the air gap side end of the low coercive force permanent magnet. The permanent magnet type rotating electrical machine according to any one of claims 1 to 5 and 9 to 22. 前記回転子における磁極間の中心軸になるq軸方向の磁気抵抗を大きくするように当該回転子における磁極部の鉄心部分にスリットを設けたことを特徴とする請求項1〜24のいずれかに記載の永久磁石式回転電機。   The slit is provided in the iron core part of the magnetic pole part in the said rotor so that the magnetoresistance of the q-axis direction used as the central axis between the magnetic poles in the said rotor may be enlarged. The permanent magnet type rotating electric machine described. 当該永久磁石式回転電機の電圧が供給電源の最大電圧近傍又はそれを超える高速回転時には、前記低保磁力永久磁石と前記高保磁力永久磁石とによる鎖交磁束が減じるように前記固定子巻線の電流が形成する磁界により前記低保磁力永久磁石を磁化させ、全鎖交磁束量を調整するようにしたことを特徴とする請求項1〜25のいずれかに記載の永久磁石式回転電機。   When the permanent magnet type rotating electrical machine rotates at a high speed near or exceeding the maximum voltage of the power supply, the interlinkage magnetic flux generated by the low coercive force permanent magnet and the high coercive force permanent magnet is reduced. The permanent magnet type rotating electrical machine according to any one of claims 1 to 25, wherein the low coercive force permanent magnet is magnetized by a magnetic field generated by an electric current to adjust a total amount of flux linkage. 当該永久磁石式回転電機の電圧が供給電源の最大電圧以下となる低速回転時には、前記低保磁力永久磁石と前記高保磁力永久磁石とによる鎖交磁束が増加するように前記固定子巻線の電流が形成する磁界により前記低保磁力永久磁石を磁化させ、当該永久磁石式回転電機の電圧が供給電源の最大電圧近傍又はそれを超える高速回転時には、前記低保磁力永久磁石と前記高保磁力永久磁石による鎖交磁束が減じるように前記固定子巻線の電流が形成する磁界により前記低保磁力永久磁石を磁化させ、鎖交磁束量を調整するようにしたことを特徴とする請求項1〜25のいずれかに記載の永久磁石式回転電機。   At the time of low-speed rotation where the voltage of the permanent magnet type rotating electrical machine is equal to or lower than the maximum voltage of the power supply, the current of the stator winding is increased so that the linkage flux between the low coercivity permanent magnet and the high coercivity permanent magnet increases. The low coercive force permanent magnet is magnetized by a magnetic field formed by the magnetic field, and the low coercive force permanent magnet and the high coercive force permanent magnet at the time of high-speed rotation near or exceeding the maximum voltage of the power supply. 26. The amount of interlinkage magnetic flux is adjusted by magnetizing the low coercive force permanent magnet with a magnetic field formed by a current of the stator winding so as to reduce interlinkage magnetic flux by the magnetic flux. The permanent magnet type rotating electrical machine according to any one of the above. 前記固定子巻線の電流が作る磁界で前記低保磁力永久磁石の磁束量を調整し、前記低保磁力永久磁石と前記高保磁力永久磁石による鎖交磁束量を0にしたことを特徴とする請求項1〜27のいずれかに記載の永久磁石式回転電機。   The amount of magnetic flux of the low coercivity permanent magnet is adjusted by a magnetic field generated by the current of the stator winding, and the amount of flux linkage between the low coercivity permanent magnet and the high coercivity permanent magnet is set to zero. The permanent magnet type rotating electrical machine according to any one of claims 1 to 27. 前記低保磁力永久磁石が作る磁束量と前記高保磁力永久磁石が作る磁束量とを同一としたことを特徴とする請求項1〜28のいずれかに記載の永久磁石式回転電機。   The permanent magnet type rotating electric machine according to any one of claims 1 to 28, wherein the amount of magnetic flux generated by the low coercive force permanent magnet and the amount of magnetic flux generated by the high coercive force permanent magnet are the same. 前記固定子巻線の電流が作る磁界で前記低保磁力永久磁石の磁化方向を両方向に反転させることを特徴とする請求項1〜29のいずれかに記載の永久磁石式回転電機。   30. The permanent magnet type rotating electrical machine according to claim 1, wherein the magnetization direction of the low coercive force permanent magnet is reversed in both directions by a magnetic field generated by a current of the stator winding. 前記低保磁力永久磁石及び高保磁力永久磁石は互いに作用する減磁界が小さくなるように前記回転子鉄心にスリットを設けたことを特徴とする請求項1〜30のいずれかに記載の永久磁石式回転電機。   The permanent magnet type according to any one of claims 1 to 30, wherein the low coercivity permanent magnet and the high coercivity permanent magnet are provided with slits in the rotor core so that a demagnetizing field acting on each other is reduced. Rotating electric machine. 前記永久磁石はいずれも高保磁力永久磁石としたことを特徴とする請求項1〜31のいずれかに記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 31, wherein each of the permanent magnets is a high coercive force permanent magnet.
JP2006052156A 2005-03-01 2006-02-28 Permanent magnet rotating electric machine Active JP5398103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052156A JP5398103B2 (en) 2005-03-01 2006-02-28 Permanent magnet rotating electric machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005056135 2005-03-01
JP2005056135 2005-03-01
JP2006052156A JP5398103B2 (en) 2005-03-01 2006-02-28 Permanent magnet rotating electric machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011243205A Division JP2012029563A (en) 2005-03-01 2011-11-07 Permanent magnet type rotary electric machine

Publications (2)

Publication Number Publication Date
JP2006280195A true JP2006280195A (en) 2006-10-12
JP5398103B2 JP5398103B2 (en) 2014-01-29

Family

ID=37214318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052156A Active JP5398103B2 (en) 2005-03-01 2006-02-28 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP5398103B2 (en)

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117497A1 (en) 2007-03-26 2008-10-02 Kabushiki Kaisha Toshiba Permanent magnet rotary electric machine and permanent magnet motor drive system
JP2008245367A (en) * 2007-03-26 2008-10-09 Toshiba Corp Permanent magnet type rotating electrical machine and permanent magnet motor drive system
JP2008289300A (en) * 2007-05-18 2008-11-27 Toshiba Corp Permanent-magnet rotary electric machine
JP2009000809A (en) * 2007-06-20 2009-01-08 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Magnetic clamping device
JP2009095151A (en) * 2007-10-09 2009-04-30 Sumida Corporation Rotary electromagnetic generator
WO2009060588A1 (en) 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba Inverter device for washing machine
WO2009104529A1 (en) 2008-02-22 2009-08-27 株式会社 東芝 Permanent magnet type dynamo electric machine, method for assembling permanent magnet type dynamo electric machine, method for disassembling permanent magnet type dynamo electric machine and permanent magnet motor drive system
WO2009104553A1 (en) 2008-02-21 2009-08-27 株式会社 東芝 Permanent magnet type rotary motor, assembly method for permanent magnet type rotary motor, disassembly method for permanent magnet type rotary motor, and permanent magnet type rotary motor drive system
JP2009284746A (en) * 2007-11-05 2009-12-03 Toshiba Corp Permanent magnet motor and washing machine
WO2009154007A1 (en) 2008-06-20 2009-12-23 株式会社 東芝 Permanent magnet type rotating electric machine
EP2139093A2 (en) 2008-06-27 2009-12-30 Hitachi, Ltd. Permanent-magnet type electric rotating machine
JP2010004673A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type rotating electrical machine
JP2010004671A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type electric rotating machine
JP2010022107A (en) * 2008-07-09 2010-01-28 Toshiba Corp Permanent magnet motor and washing machine
US20100090640A1 (en) * 2008-10-15 2010-04-15 Kabushiki Kaisha Toshiba Motor controller, motor control system, and washing machine
WO2010058576A1 (en) 2008-11-19 2010-05-27 株式会社 東芝 Permanent magnet type rotating electric machine
JP2010130859A (en) * 2008-11-28 2010-06-10 Toshiba Corp Permanent magnet type dynamo electric machine
JP2010130719A (en) * 2008-11-25 2010-06-10 Toshiba Corp Permanent magnet motor and washing machine
WO2010070900A1 (en) 2008-12-18 2010-06-24 株式会社 東芝 Permanent magnet type rotary electric machine
JP2010141994A (en) * 2008-12-10 2010-06-24 Toshiba Corp Motor control apparatus and drum-type washing machine
JP2010154676A (en) * 2008-12-25 2010-07-08 Toshiba Carrier Corp Permanent magnet motor and hermetic compressor
JP2010226848A (en) * 2009-03-23 2010-10-07 Toshiba Corp Permanent magnet motor, motor control system, and washing machine
JP2010226915A (en) * 2009-03-25 2010-10-07 Toshiba Corp Permanent magnet motor, motor control system, and washing machine
JP2010239779A (en) * 2009-03-31 2010-10-21 Nissan Motor Co Ltd Permanent magnet type motor
JP2010263998A (en) * 2009-05-13 2010-11-25 Toshiba Corp Washing machine
JP2010264104A (en) * 2009-05-15 2010-11-25 Toshiba Corp Washing machine
JP2010273426A (en) * 2009-05-20 2010-12-02 Toshiba Corp Permanent magnet motor
JP2011172323A (en) * 2010-02-16 2011-09-01 Toshiba Corp Permanent magnet type rotary electric machine
US8030817B2 (en) 2006-08-11 2011-10-04 Kabushiki Kaisha Toshiba Rotor of permanent-magnet-type rotating electrical machine
US20110304235A1 (en) * 2008-12-15 2011-12-15 Kabushiki Kaisha Toshiba Permanent magnet electric motor
JP2012029514A (en) * 2010-07-27 2012-02-09 Nissan Motor Co Ltd Rotary electric machine
US8129931B2 (en) 2008-04-23 2012-03-06 Kabushiki Kaisha Toshiba Motor control device, motor drive system, washing machine, air conditioner and method of changing magnetization amount of permanent magnet motor
CN102647037A (en) * 2012-04-26 2012-08-22 张学义 Tangential and biradial permanent magnet hybrid magnetic circuit generator
CN102664473A (en) * 2012-04-26 2012-09-12 张学义 Permanent magnet hybrid magnetic path generator
CN102664474A (en) * 2012-04-26 2012-09-12 张学义 Bi-radial permanent-magnet composite magnetic circuit generator
WO2012118787A3 (en) * 2011-02-28 2012-11-22 Uqm Technologies Inc. Brushless pm machine construction enabling low coercivity magnets
JP2013081311A (en) * 2011-10-04 2013-05-02 Nsk Ltd Motor, motor control device, and motor-driven power steering device
CN103219852A (en) * 2013-04-18 2013-07-24 台州市金宇机电有限公司 Built-in low-speed large-torque permanent magnetic hub motor
CN103236762A (en) * 2013-04-18 2013-08-07 台州市金宇机电有限公司 EV (electric vehicle) brushless direct-current hub motor and control system thereof
JP2013162612A (en) * 2012-02-03 2013-08-19 Suzuki Motor Corp Electric rotary machine
WO2014003729A1 (en) 2012-06-26 2014-01-03 Nissan Motor Co., Ltd. Variable magnetomotive force rotary electric machine and control device for variable magnetomotive force rotary electric machine
WO2014003730A1 (en) 2012-06-26 2014-01-03 Nissan Motor Co., Ltd. Variable magnetic flux-type rotary electric machine
JP2014007852A (en) * 2012-06-25 2014-01-16 Nissan Motor Co Ltd Motor
JP2014039424A (en) * 2012-08-20 2014-02-27 Denso Corp Rotor of rotary electric machine
KR101398702B1 (en) 2013-03-22 2014-05-27 뉴모텍(주) Motor with variable magnet flux
US8739581B2 (en) 2007-11-05 2014-06-03 Kabushiki Kaisha Toshiba Washing machine
JP2014168320A (en) * 2013-02-28 2014-09-11 Toyo Univ Pole change permanent magnet dynamo-electric machine and drive system thereof
WO2014156678A1 (en) * 2013-03-29 2014-10-02 株式会社小松製作所 Electric motor
JP2014207830A (en) * 2013-04-15 2014-10-30 多摩川精機株式会社 Rotor structure of ipm motor, rotor and ipm motor
CN104659940A (en) * 2015-02-09 2015-05-27 苏州力久新能源科技有限公司 Rotor of rotating motor
US9331532B2 (en) 2011-06-30 2016-05-03 Johnson Electric S.A. Permanent magnet rotor brushless motor
CN105990922A (en) * 2015-01-29 2016-10-05 珠海格力节能环保制冷技术研究中心有限公司 Rotor and tangential permanent magnet synchronous motor having same
JP2018046703A (en) * 2016-09-16 2018-03-22 富士電機株式会社 Permanent magnet rotary electric machine and manufacturing method thereof
CN107994704A (en) * 2017-12-21 2018-05-04 珠海格力节能环保制冷技术研究中心有限公司 Rotor and magneto
CN108110980A (en) * 2018-01-31 2018-06-01 哈尔滨工业大学 Mid-series type has the adjustable flux electric machine of hybrid permanent magnet of passive adjustable magnetic magnetic barrier
DE112016004789T5 (en) 2015-10-20 2018-07-05 Exedy Corporation Power transmission device for vehicle and power transmission system for vehicle
CN109067045A (en) * 2018-11-01 2018-12-21 珠海格力电器股份有限公司 Motor rotor and permanent magnet motor
CN109301958A (en) * 2018-11-08 2019-02-01 珠海格力电器股份有限公司 motor rotor structure and permanent magnet motor
US10491065B2 (en) 2014-09-11 2019-11-26 Nissan Motor Co., Ltd. Permanent magnet synchronous motor
CN110829652A (en) * 2019-10-24 2020-02-21 东南大学 A series-parallel magnetic circuit hybrid magnetic pole type memory motor
CN112994393A (en) * 2019-12-16 2021-06-18 大银微系统股份有限公司 Permanent-magnet spindle motor
CN113964981A (en) * 2021-11-11 2022-01-21 东南大学 A hybrid permanent magnet rotor self-leakage variable flux memory motor
CN114123572A (en) * 2021-11-12 2022-03-01 珠海格力电器股份有限公司 Variable flux permanent magnet motor rotor and variable flux permanent magnet motor
US11289959B2 (en) 2017-09-11 2022-03-29 Kabushiki Kaisha Toshiba Rotor and rotary electric machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012006031A5 (en) 2012-03-13 2015-02-26 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Electric machine
CN109194078B (en) * 2018-09-21 2020-04-24 东南大学 Double-layer permanent magnet composite magnetic circuit memory motor
CN109510344B (en) * 2018-12-28 2021-04-02 哈尔滨工业大学 Magnetic circuit split type V-shaped parallel combined magnetic pole adjustable flux motor with double-layer magnetic barrier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189481A (en) * 1992-11-06 1994-07-08 Aichi Emerson Electric Co Ltd Rotor
JPH07336980A (en) * 1994-06-01 1995-12-22 Nippondenso Co Ltd Brushless dc motor
JPH089610A (en) * 1994-06-21 1996-01-12 Toshiba Corp Permanent magnet rotating electric machine
JP2002044889A (en) * 2000-05-17 2002-02-08 Hitachi Metals Ltd 3-axis anistropic one-body permanent magnet and rotating machine
JP2002136011A (en) * 2000-10-26 2002-05-10 Fujitsu General Ltd Permanent magnet motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189481A (en) * 1992-11-06 1994-07-08 Aichi Emerson Electric Co Ltd Rotor
JPH07336980A (en) * 1994-06-01 1995-12-22 Nippondenso Co Ltd Brushless dc motor
JPH089610A (en) * 1994-06-21 1996-01-12 Toshiba Corp Permanent magnet rotating electric machine
JP2002044889A (en) * 2000-05-17 2002-02-08 Hitachi Metals Ltd 3-axis anistropic one-body permanent magnet and rotating machine
JP2002136011A (en) * 2000-10-26 2002-05-10 Fujitsu General Ltd Permanent magnet motor

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030817B2 (en) 2006-08-11 2011-10-04 Kabushiki Kaisha Toshiba Rotor of permanent-magnet-type rotating electrical machine
US20100060223A1 (en) * 2007-03-26 2010-03-11 Kabushiki Kaisha Toshiba Permanent magnet rotating electrical machine and permanent magnet motor drive system
JP2008245367A (en) * 2007-03-26 2008-10-09 Toshiba Corp Permanent magnet type rotating electrical machine and permanent magnet motor drive system
JP2008245368A (en) * 2007-03-26 2008-10-09 Toshiba Corp Permanent magnet type rotary electric machine and permanent magnet motor drive system
US8334667B2 (en) 2007-03-26 2012-12-18 Kabushiki Kaisha Toshiba Permanent magnet rotating electrical machine and permanent magnet motor drive system
WO2008117497A1 (en) 2007-03-26 2008-10-02 Kabushiki Kaisha Toshiba Permanent magnet rotary electric machine and permanent magnet motor drive system
EP2136467A4 (en) * 2007-03-26 2016-09-28 Toshiba Kk Permanent magnet rotary electric machine and permanent magnet motor drive system
JP2008289300A (en) * 2007-05-18 2008-11-27 Toshiba Corp Permanent-magnet rotary electric machine
JP2009000809A (en) * 2007-06-20 2009-01-08 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Magnetic clamping device
JP2009095151A (en) * 2007-10-09 2009-04-30 Sumida Corporation Rotary electromagnetic generator
EP2210972A4 (en) * 2007-11-05 2015-10-07 Toshiba Kk Washing machine
US8739581B2 (en) 2007-11-05 2014-06-03 Kabushiki Kaisha Toshiba Washing machine
JP2009284746A (en) * 2007-11-05 2009-12-03 Toshiba Corp Permanent magnet motor and washing machine
US7923879B2 (en) 2007-11-05 2011-04-12 Kabushiki Kaisha Toshiba Permanent magnet motor and washing machine provided therewith
US8704467B2 (en) 2007-11-07 2014-04-22 Kabushiki Kaisha Toshiba Inverter device for washing machine
WO2009060588A1 (en) 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba Inverter device for washing machine
JP2009118663A (en) * 2007-11-07 2009-05-28 Toshiba Corp Inverter device of washing machine
TWI452820B (en) * 2007-11-07 2014-09-11 Toshiba Kk Inverter device of washing machine
TWI452821B (en) * 2007-11-07 2014-09-11 Toshiba Kk Inverter device of washing machine
WO2009104553A1 (en) 2008-02-21 2009-08-27 株式会社 東芝 Permanent magnet type rotary motor, assembly method for permanent magnet type rotary motor, disassembly method for permanent magnet type rotary motor, and permanent magnet type rotary motor drive system
US8269390B2 (en) 2008-02-21 2012-09-18 Kabushiki Kaisha Toshiba Permanent-magnet-type rotating electrical machine and permanent magnet motor drive system
WO2009104529A1 (en) 2008-02-22 2009-08-27 株式会社 東芝 Permanent magnet type dynamo electric machine, method for assembling permanent magnet type dynamo electric machine, method for disassembling permanent magnet type dynamo electric machine and permanent magnet motor drive system
US8330404B2 (en) 2008-02-22 2012-12-11 Kabushiki Kaisha Toshiba Permanent-magnet-type rotating electrical machine
EP2246966A4 (en) * 2008-02-22 2016-09-28 Toshiba Kk PERMANENT MAGNET TYPE DYNAMOELECTRIC MACHINE, METHOD FOR MOUNTING PERMANENT MAGNET TYPE DYNAMOELECTRIC MACHINE, METHOD FOR DISASSEMBLING PERMANENT MAGNET DYNAMOELECTRIC MACHINE, AND PERMANENT MAGNET MOTOR DRIVE SYSTEM
CN101567659B (en) * 2008-04-23 2012-06-20 株式会社东芝 Motor control device, motor drive system, and method of changing magnetization amount of permanent magnet motor
US8129931B2 (en) 2008-04-23 2012-03-06 Kabushiki Kaisha Toshiba Motor control device, motor drive system, washing machine, air conditioner and method of changing magnetization amount of permanent magnet motor
WO2009154007A1 (en) 2008-06-20 2009-12-23 株式会社 東芝 Permanent magnet type rotating electric machine
JP2010004671A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type electric rotating machine
US8674575B2 (en) 2008-06-20 2014-03-18 Kabushiki Kaisha Toshiba Permanent magnet electric motor inducing short circuit current in short circuit coil
JP2010004673A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type rotating electrical machine
EP2139093A3 (en) * 2008-06-27 2011-07-13 Hitachi, Ltd. Permanent-magnet type electric rotating machine
EP2139093A2 (en) 2008-06-27 2009-12-30 Hitachi, Ltd. Permanent-magnet type electric rotating machine
JP2010022107A (en) * 2008-07-09 2010-01-28 Toshiba Corp Permanent magnet motor and washing machine
JP2010098813A (en) * 2008-10-15 2010-04-30 Toshiba Corp Motor control apparatus, motor control system, washing machine and magnetizing method of permanent magnet motor
US20100090640A1 (en) * 2008-10-15 2010-04-15 Kabushiki Kaisha Toshiba Motor controller, motor control system, and washing machine
US8248018B2 (en) 2008-10-15 2012-08-21 Kabushiki Kaisha Toshiba Motor controller, motor control system, and washing machine
US8624457B2 (en) 2008-11-19 2014-01-07 Kabushiki Kaisha Toshiba Permanent magnet electric motor
WO2010058576A1 (en) 2008-11-19 2010-05-27 株式会社 東芝 Permanent magnet type rotating electric machine
US8354766B2 (en) 2008-11-25 2013-01-15 Kabushiki Kaisha Toshiba Permanent magnet motor and washing machine provided therewith
JP2010130719A (en) * 2008-11-25 2010-06-10 Toshiba Corp Permanent magnet motor and washing machine
JP2010130859A (en) * 2008-11-28 2010-06-10 Toshiba Corp Permanent magnet type dynamo electric machine
KR101045155B1 (en) 2008-12-10 2011-06-30 가부시끼가이샤 도시바 Motor control unit and drum washing machine
US8327670B2 (en) 2008-12-10 2012-12-11 Kabushiki Kaisha Toshiba Motor controller and drum washing machine
JP2010141994A (en) * 2008-12-10 2010-06-24 Toshiba Corp Motor control apparatus and drum-type washing machine
DE102009057433A1 (en) 2008-12-10 2010-08-26 Kabushiki Kaisha Toshiba Motor control and drum washing machine
US9373992B2 (en) 2008-12-15 2016-06-21 Kabushiki Kaisha Toshiba Permanent magnet electric motor
US20110304235A1 (en) * 2008-12-15 2011-12-15 Kabushiki Kaisha Toshiba Permanent magnet electric motor
US8796898B2 (en) 2008-12-15 2014-08-05 Kabushiki Kaisha Toshiba Permanent magnet electric motor
US9496774B2 (en) 2008-12-15 2016-11-15 Kabushiki Kaisha Toshiba Permanent magnet electric motor
US9490684B2 (en) 2008-12-15 2016-11-08 Kabushiki Kaisha Toshiba Permanent magnet electric motor
US20110309706A1 (en) * 2008-12-18 2011-12-22 Kabushiki Kaisha Toshiba Permanent magnet electric motor
WO2010070900A1 (en) 2008-12-18 2010-06-24 株式会社 東芝 Permanent magnet type rotary electric machine
US8653710B2 (en) 2008-12-18 2014-02-18 Kabushiki Kaisha Toshiba Permanent magnet electric motor
JP2010154676A (en) * 2008-12-25 2010-07-08 Toshiba Carrier Corp Permanent magnet motor and hermetic compressor
JP2010226848A (en) * 2009-03-23 2010-10-07 Toshiba Corp Permanent magnet motor, motor control system, and washing machine
JP2010226915A (en) * 2009-03-25 2010-10-07 Toshiba Corp Permanent magnet motor, motor control system, and washing machine
JP2010239779A (en) * 2009-03-31 2010-10-21 Nissan Motor Co Ltd Permanent magnet type motor
JP2010263998A (en) * 2009-05-13 2010-11-25 Toshiba Corp Washing machine
JP2010264104A (en) * 2009-05-15 2010-11-25 Toshiba Corp Washing machine
JP2010273426A (en) * 2009-05-20 2010-12-02 Toshiba Corp Permanent magnet motor
JP2011172323A (en) * 2010-02-16 2011-09-01 Toshiba Corp Permanent magnet type rotary electric machine
JP2012029514A (en) * 2010-07-27 2012-02-09 Nissan Motor Co Ltd Rotary electric machine
US8928198B2 (en) 2011-02-28 2015-01-06 Uqm Technologies Inc. Brushless PM machine construction enabling low coercivity magnets
JP2014511669A (en) * 2011-02-28 2014-05-15 ユーキューエム テクノロジーズ インコーポレーテッド Brushless permanent magnet electric machine capable of using low coercivity magnets
WO2012118787A3 (en) * 2011-02-28 2012-11-22 Uqm Technologies Inc. Brushless pm machine construction enabling low coercivity magnets
US9331532B2 (en) 2011-06-30 2016-05-03 Johnson Electric S.A. Permanent magnet rotor brushless motor
JP2013081311A (en) * 2011-10-04 2013-05-02 Nsk Ltd Motor, motor control device, and motor-driven power steering device
JP2013162612A (en) * 2012-02-03 2013-08-19 Suzuki Motor Corp Electric rotary machine
CN102664474A (en) * 2012-04-26 2012-09-12 张学义 Bi-radial permanent-magnet composite magnetic circuit generator
CN102664473A (en) * 2012-04-26 2012-09-12 张学义 Permanent magnet hybrid magnetic path generator
CN102647037A (en) * 2012-04-26 2012-08-22 张学义 Tangential and biradial permanent magnet hybrid magnetic circuit generator
JP2014007852A (en) * 2012-06-25 2014-01-16 Nissan Motor Co Ltd Motor
WO2014003729A1 (en) 2012-06-26 2014-01-03 Nissan Motor Co., Ltd. Variable magnetomotive force rotary electric machine and control device for variable magnetomotive force rotary electric machine
US9692265B2 (en) 2012-06-26 2017-06-27 Nissan Motor Co., Ltd. Variable magnetic flux-type rotary electric machine
US9577484B2 (en) 2012-06-26 2017-02-21 Nissan Motor Co., Ltd. Variable magnetomotive force rotary electric machine and control device for variable magnetomotive force rotary electric machine
WO2014003730A1 (en) 2012-06-26 2014-01-03 Nissan Motor Co., Ltd. Variable magnetic flux-type rotary electric machine
CN104412493A (en) * 2012-06-26 2015-03-11 日产自动车株式会社 Variable magnetic flux-type rotary electric machine
JP2015521838A (en) * 2012-06-26 2015-07-30 日産自動車株式会社 Variable magnetic flux type rotating electrical machine
JP2014039424A (en) * 2012-08-20 2014-02-27 Denso Corp Rotor of rotary electric machine
JP2014168320A (en) * 2013-02-28 2014-09-11 Toyo Univ Pole change permanent magnet dynamo-electric machine and drive system thereof
KR101398702B1 (en) 2013-03-22 2014-05-27 뉴모텍(주) Motor with variable magnet flux
US9819234B2 (en) 2013-03-22 2017-11-14 New Motech Co., Ltd. Method for operating variable magnetic flux motor
WO2014148731A1 (en) * 2013-03-22 2014-09-25 New Motech Co., Ltd. Method for operating variable magnetic flux motor
WO2014156678A1 (en) * 2013-03-29 2014-10-02 株式会社小松製作所 Electric motor
JP2014197971A (en) * 2013-03-29 2014-10-16 株式会社小松製作所 Motor
JP2014207830A (en) * 2013-04-15 2014-10-30 多摩川精機株式会社 Rotor structure of ipm motor, rotor and ipm motor
CN103219852A (en) * 2013-04-18 2013-07-24 台州市金宇机电有限公司 Built-in low-speed large-torque permanent magnetic hub motor
CN103236762A (en) * 2013-04-18 2013-08-07 台州市金宇机电有限公司 EV (electric vehicle) brushless direct-current hub motor and control system thereof
US10491065B2 (en) 2014-09-11 2019-11-26 Nissan Motor Co., Ltd. Permanent magnet synchronous motor
CN105990922A (en) * 2015-01-29 2016-10-05 珠海格力节能环保制冷技术研究中心有限公司 Rotor and tangential permanent magnet synchronous motor having same
CN104659940A (en) * 2015-02-09 2015-05-27 苏州力久新能源科技有限公司 Rotor of rotating motor
US10788110B2 (en) 2015-10-20 2020-09-29 Exedy Corporation Hybrid driving apparatus
DE112016004789T5 (en) 2015-10-20 2018-07-05 Exedy Corporation Power transmission device for vehicle and power transmission system for vehicle
US10724616B2 (en) 2015-10-20 2020-07-28 Exedy Corporation Power transmission apparatus for vehicle and power transmission system for vehicle
JP2018046703A (en) * 2016-09-16 2018-03-22 富士電機株式会社 Permanent magnet rotary electric machine and manufacturing method thereof
US11289959B2 (en) 2017-09-11 2022-03-29 Kabushiki Kaisha Toshiba Rotor and rotary electric machine
CN107994704A (en) * 2017-12-21 2018-05-04 珠海格力节能环保制冷技术研究中心有限公司 Rotor and magneto
CN107994704B (en) * 2017-12-21 2024-05-07 珠海格力节能环保制冷技术研究中心有限公司 Motor rotor and permanent magnet motor
CN108110980A (en) * 2018-01-31 2018-06-01 哈尔滨工业大学 Mid-series type has the adjustable flux electric machine of hybrid permanent magnet of passive adjustable magnetic magnetic barrier
CN109067045A (en) * 2018-11-01 2018-12-21 珠海格力电器股份有限公司 Motor rotor and permanent magnet motor
CN109067045B (en) * 2018-11-01 2024-05-17 珠海格力电器股份有限公司 Motor rotor and permanent magnet motor
CN109301958A (en) * 2018-11-08 2019-02-01 珠海格力电器股份有限公司 motor rotor structure and permanent magnet motor
CN110829652A (en) * 2019-10-24 2020-02-21 东南大学 A series-parallel magnetic circuit hybrid magnetic pole type memory motor
CN112994393A (en) * 2019-12-16 2021-06-18 大银微系统股份有限公司 Permanent-magnet spindle motor
CN113964981A (en) * 2021-11-11 2022-01-21 东南大学 A hybrid permanent magnet rotor self-leakage variable flux memory motor
CN113964981B (en) * 2021-11-11 2022-10-28 东南大学 Self-leakage variable magnetic flux memory motor with hybrid permanent magnet rotor
CN114123572A (en) * 2021-11-12 2022-03-01 珠海格力电器股份有限公司 Variable flux permanent magnet motor rotor and variable flux permanent magnet motor

Also Published As

Publication number Publication date
JP5398103B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5398103B2 (en) Permanent magnet rotating electric machine
US8044548B2 (en) Permanent-magnet-type rotating electrical machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5305753B2 (en) Permanent magnet rotating electric machine
JP5159577B2 (en) Permanent magnet rotating electric machine
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5361260B2 (en) Permanent magnet rotary electric machine
JP5159171B2 (en) Permanent magnet rotating electric machine
JP5787673B2 (en) Permanent magnet type rotating electric machine
JP7076188B2 (en) Variable magnetic force motor
JP5355055B2 (en) Permanent magnet rotating electric machine
JP2012029563A (en) Permanent magnet type rotary electric machine
JP5198178B2 (en) Permanent magnet type rotating electric machine and permanent magnet motor drive system
JP2019154232A (en) Rotor and dynamo-electric machine
JP4574297B2 (en) Rotating electrical machine rotor
JP6987318B1 (en) Permanent magnet synchronous motor
JP2012228077A (en) Permanent magnet type rotary electrical machine
JP5390314B2 (en) Permanent magnet rotating electric machine
JP2011172323A (en) Permanent magnet type rotary electric machine
JP2023151657A (en) Permanent magnet motor
JP2023151655A (en) Permanent magnet motor
JP2004096851A (en) Permanent magnet type reluctance dynamo-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R151 Written notification of patent or utility model registration

Ref document number: 5398103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151