JP2010004671A - Permanent magnet type electric rotating machine - Google Patents

Permanent magnet type electric rotating machine Download PDF

Info

Publication number
JP2010004671A
JP2010004671A JP2008162201A JP2008162201A JP2010004671A JP 2010004671 A JP2010004671 A JP 2010004671A JP 2008162201 A JP2008162201 A JP 2008162201A JP 2008162201 A JP2008162201 A JP 2008162201A JP 2010004671 A JP2010004671 A JP 2010004671A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotating electrical
electrical machine
type rotating
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008162201A
Other languages
Japanese (ja)
Other versions
JP5361260B2 (en
Inventor
Kazuto Sakai
和人 堺
Kazuaki Yuki
和明 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008162201A priority Critical patent/JP5361260B2/en
Publication of JP2010004671A publication Critical patent/JP2010004671A/en
Application granted granted Critical
Publication of JP5361260B2 publication Critical patent/JP5361260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet type electric rotating machine capable of variable operation ranging from low speed to high speed with high output, by suppressing increase in the magnetization current, when magnetization increases. <P>SOLUTION: A rotor 1 includes a rotor core 2, a permanent magnet 3 having a small product of a coercive force and a magnetization direction thickness, and a permanent magnet 4, having a large product of a coercive force and a magnetization direction thickness. The rotor core 2 is configured by stacking silicon steel plates, and the permanent magnets 3, 4 are embedded in the rotor core 2. Cavities 5 are provided at the ends of the permanent magnets 3, 4 so that a magnetic flux passing through the inside of the rotor core 2 pass the permanent magnets 3, 4 in their thickness directions. When an interlinkage magnetic flux of the permanent magnet 3 is reduced, a magnetic field having a direction reverse to that of the magnetization direction of the permanent magnet 3 is allowed to act by a current of an armature winding. When the interlinkage magnetic flux of the permanent magnet 3 is increased, the magnetic flux of the direction which is identical to that of the magnet magnetization direction is made to act by the current of the armature winding. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁気的に直列に配置された2種類以上の永久磁石を使用し、そのうちの少なくとも1つの永久磁石の磁束量を不可逆的に変化させて、低速から高速までの広範囲での可変速運転を可能とした永久磁石式回転電機に関する。   The present invention uses two or more types of permanent magnets arranged in series magnetically, and irreversibly changes the amount of magnetic flux of at least one of the permanent magnets, so that the variable speed can be varied over a wide range from low speed to high speed. The present invention relates to a permanent magnet type rotating electrical machine that can be operated.

一般に、永久磁石式回転電機は大きく分けて2種類のタイプがある。回転子鉄心の外周に永久磁石を貼り付けた表面磁石型永久磁石式回転電機と、永久磁石を回転子鉄心の中に埋め込んだ埋め込み型永久磁石式回転電機である。可変速駆動用モータとしては、埋め込み型永久磁石式回転電機が適している。   Generally, permanent magnet type rotating electrical machines are roughly divided into two types. They are a surface magnet type permanent magnet type rotating electrical machine in which a permanent magnet is attached to the outer periphery of a rotor core, and an embedded type permanent magnet type rotating electrical machine in which a permanent magnet is embedded in a rotor core. As the variable speed drive motor, an embedded permanent magnet type rotating electrical machine is suitable.

永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定で発生しているので、永久磁石による誘導電圧は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。永久磁石による誘導電圧がインバータの電子部品に印加されてその耐電圧以上になると、電子部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、その場合には永久磁石式回転電機の低速域での出力及び効率が低下する。   In the permanent magnet type rotating electrical machine, the interlinkage magnetic flux of the permanent magnet is always generated at a constant value, so that the induced voltage by the permanent magnet increases in proportion to the rotational speed. Therefore, when variable speed operation is performed from low speed to high speed, the induced voltage (back electromotive voltage) by the permanent magnet becomes extremely high at high speed rotation. When the induced voltage by the permanent magnet is applied to the electronic component of the inverter and exceeds its withstand voltage, the electronic component breaks down. For this reason, it is conceivable to perform a design in which the amount of magnetic flux of the permanent magnet is reduced so as to be equal to or lower than the withstand voltage, but in that case, the output and efficiency in the low speed region of the permanent magnet type rotating electrical machine are reduced.

低速から高速まで定出力に近い可変速運転を行う場合、永久磁右の鎖交磁束は一定であるので、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速回転域では出力が大幅に低下し、さらには高速回転まで広範囲に可変速運転できなくなる。   When performing variable speed operation close to constant output from low speed to high speed, the interlinkage magnetic flux on the right of the permanent magnet is constant, so the rotating electrical machine voltage reaches the upper limit of the power supply voltage in the high-speed rotation range, and the current required for output flows. Disappear. As a result, the output is greatly reduced in the high-speed rotation region, and further, variable speed operation cannot be performed over a wide range up to high-speed rotation.

最近では、可変速範囲を拡大する方法として、非特許文献1に記載されているような弱め磁束制御が適用され始めている。電機子巻線の総鎖交磁束量はd軸電流による磁束と永久磁石による磁束とから成る。弱め磁束制御では、負のd軸電流による磁束を発生させることによって、この負のd軸電流による磁束で全鎖交磁束量を減少させる。また、弱め磁束制御においても高保磁力の永久磁石は磁気特性(B−H特性)の動作点が可逆の範囲で変化するようにする。このため、永久磁石は弱め磁束制御の滅磁界により不可逆的に滅磁しないように高保磁力のNdFeB磁石を適用する。   Recently, as a method for expanding the variable speed range, the flux-weakening control as described in Non-Patent Document 1 has begun to be applied. The total amount of interlinkage magnetic flux of the armature winding is composed of a magnetic flux caused by a d-axis current and a magnetic flux caused by a permanent magnet. In the flux weakening control, by generating a magnetic flux due to a negative d-axis current, the total flux linkage is reduced by the magnetic flux due to this negative d-axis current. Even in the flux-weakening control, the permanent magnet having a high coercive force changes the operating point of the magnetic characteristics (BH characteristics) within a reversible range. For this reason, the NdFeB magnet having a high coercive force is applied to the permanent magnet so that the permanent magnet is not irreversibly demagnetized by the demagnetizing field of the magnetic flux control.

弱め磁束制御を適用した運転では、負のd軸電流による磁束で鎖交磁束が減少するので、鎖交磁束の減少分が電圧上限値に対する電圧の余裕分を作る。そして、トルク成分となる電流を増加できるので高速域での出力が増加する。また、電圧余裕分だけ回転速度を上昇させることができ、可変速運転の範囲が拡大される。   In operation using the flux-weakening control, the linkage flux decreases due to the magnetic flux due to the negative d-axis current, and therefore the decrease in linkage flux creates a voltage margin with respect to the voltage upper limit value. And since the electric current which becomes a torque component can be increased, the output in a high speed region increases. Further, the rotational speed can be increased by the voltage margin, and the range of variable speed operation is expanded.

しかし、出力には寄与しない負のd軸電流を常時流し続けるため銅損が増加して効率は悪化する。さらに、負のd軸電流による滅磁界は高調波磁束を生じ、高調波磁束等で生じる電圧の増加は弱め磁束制御による電圧低減の限界を作る。これらより、埋め込み型永久磁石式回転電機に弱め磁束制御を適用しても基底速度の3倍以上の可変速運転は困難である。さらに、前述の高調波磁束により鉄損が増加し、中・高速域で大幅に効率が低下する問題がある。また、高調波磁東による電磁力で振動を発生する可能性もある。   However, since the negative d-axis current that does not contribute to the output is constantly flowing, the copper loss increases and the efficiency deteriorates. Further, the demagnetizing field due to the negative d-axis current generates a harmonic magnetic flux, and the increase in the voltage generated by the harmonic magnetic flux or the like is weakened to create a limit of voltage reduction by the magnetic flux control. Therefore, even if the flux-weakening control is applied to the embedded permanent magnet type rotating electrical machine, it is difficult to operate at a variable speed of more than 3 times the base speed. Furthermore, there is a problem that the iron loss increases due to the above-described harmonic magnetic flux, and the efficiency is greatly lowered in the middle and high speed ranges. In addition, there is a possibility that vibration is generated by electromagnetic force generated by harmonic magnetic east.

ハイブリッド自動車用駆動電動機に埋め込み型永久磁石電動機を適用した場合、エンジンのみで駆動される状態では電動機は連れ回される。中・高速回転では電動機の永久磁石による誘導電圧が上昇するので、電源電圧以内に抑制するため、弱め磁束制御で負のd軸電流を流し続ける。この状態では、電動機は損失のみを発生するので総合運転効率が悪化する。   When an embedded permanent magnet motor is applied to a drive motor for a hybrid vehicle, the motor is rotated when driven by an engine alone. In medium / high speed rotation, the induced voltage of the motor's permanent magnet rises. Therefore, in order to suppress it within the power supply voltage, the negative d-axis current is kept flowing by the flux weakening control. In this state, since the electric motor generates only a loss, the overall operation efficiency is deteriorated.

電車用駆動電動機に埋め込み型永久磁石電動機を適用した場合、電車は惰行運転する状態があり、上と同様に永久磁石による誘導電圧を電源電圧以下にするために弱め磁束制御で負のd軸電流を流し続ける。その場合、電動機は損失のみを発生するので総合運転効率が悪化する。   When an embedded permanent magnet motor is applied to a train drive motor, the train is in a coasting state, and in the same way as above, a negative d-axis current is controlled by a weak magnetic flux control so that the induced voltage by the permanent magnet is lower than the power supply voltage. Continue to flow. In that case, since the electric motor generates only a loss, the overall operation efficiency deteriorates.

このような問題点を解決する技術として、特許文献1や特許文献2には、固定子巻線の電流で作る磁界により不可逆的に磁束密度が変化する程度の低保磁力の永久磁石と、低保磁力の永久磁石の2倍以上の保磁力を有する高保磁力の永久磁石を配置し、電源電圧の最大電圧以上となる高速回転域では低保磁力の永久磁石と高保磁力の大久磁石による全鎖交磁束が減じるように、電流による磁界で低保磁力の未久磁石を磁化させて全鎖交磁束量を調整する技術が記載されている。   As techniques for solving such problems, Patent Document 1 and Patent Document 2 describe a permanent magnet having a low coercive force so that a magnetic flux density is irreversibly changed by a magnetic field generated by a current of a stator winding, A high coercivity permanent magnet with a coercive force more than twice that of the coercive permanent magnet is arranged, and in the high-speed rotation range where the power supply voltage exceeds the maximum voltage, all of the low coercivity permanent magnet and the high coercive force permanent magnet are used. A technique for adjusting the total amount of interlinkage magnetic flux by magnetizing a permanent magnet with a low coercive force with a magnetic field by current so that the interlinkage magnetic flux is reduced is described.

この特許文献1の永久磁石式回転電機は、図7に記載のような構成の回転子1を備えている。すなわち、回転子1は、回転子鉄心2、8個の低保磁力永久磁石3及び8個の高保磁力永久磁石4から構成されている。回転子鉄心2は珪素鋼板を積層して構成され、低保磁力永久磁石3はアルニコ磁石またはFeCrCo磁石であり、高保磁力磁石4はNdFeB磁石である。   The permanent magnet type rotating electrical machine of Patent Document 1 includes a rotor 1 having a configuration as shown in FIG. That is, the rotor 1 includes a rotor core 2, eight low coercivity permanent magnets 3, and eight high coercivity permanent magnets 4. The rotor core 2 is configured by laminating silicon steel plates, the low coercivity permanent magnet 3 is an alnico magnet or an FeCrCo magnet, and the high coercivity magnet 4 is an NdFeB magnet.

低保磁力永久磁石3は回転子鉄心2の中に埋め込まれ、低保磁力永久磁石3の両端部には第1の空洞5が設けられている。低保磁力永久磁石3は磁極間の中心軸になるq軸と一致する回転子の半径方向に沿って配置され、半径方向に対して直角方向に磁化される。高保磁力永久磁石4は回転子鉄心2内に埋め込まれ、高保磁力永久磁石4の両端部には第2の空洞6が設けられている。高保磁力永久磁石4は、2個の低保磁力永久磁石3により回転子1内周側で挟まれるように回転子1のほぼ周方向に配置されている。高保磁力永久磁石4は回転子1の周方向に対してほぼ直角方向に磁化されている。   The low coercivity permanent magnet 3 is embedded in the rotor core 2, and first cavities 5 are provided at both ends of the low coercivity permanent magnet 3. The low coercive force permanent magnet 3 is disposed along the radial direction of the rotor that coincides with the q axis serving as the central axis between the magnetic poles, and is magnetized in a direction perpendicular to the radial direction. The high coercivity permanent magnet 4 is embedded in the rotor core 2, and second cavities 6 are provided at both ends of the high coercivity permanent magnet 4. The high coercive force permanent magnet 4 is disposed substantially in the circumferential direction of the rotor 1 so as to be sandwiched between the two low coercive force permanent magnets 3 on the inner peripheral side of the rotor 1. The high coercive force permanent magnet 4 is magnetized in a direction substantially perpendicular to the circumferential direction of the rotor 1.

回転子鉄心2の磁極部7は2個の低保磁力永久磁石3と1個の高保磁力永久磁石4で取り囲まれるようにして形成されている。回転子鉄心2の磁極部7の中心軸方向がd軸、磁極間の中心軸方向がq軸となる。この回転子1を採用した特許文献1の永久磁石式回転電機では、固定子巻線に通電時間が極短時間(100μs〜1ms程度)となるパルス的な電流を流して磁界を形成し、低保磁力永久磁石3に磁界を作用させる。着磁磁界を250kA/mとすると、理想的には低保磁力永久磁石3には十分な着磁磁界が作用し、高保磁力永久磁石4には着磁による不可逆減磁はない。   The magnetic pole portion 7 of the rotor core 2 is formed so as to be surrounded by two low coercivity permanent magnets 3 and one high coercivity permanent magnet 4. The central axis direction of the magnetic pole part 7 of the rotor core 2 is the d axis, and the central axis direction between the magnetic poles is the q axis. In the permanent magnet type rotating electrical machine of Patent Document 1 adopting this rotor 1, a magnetic field is formed by passing a pulsed current whose energization time is extremely short (about 100 μs to 1 ms) through the stator windings, A magnetic field is applied to the coercive force permanent magnet 3. When the magnetizing magnetic field is 250 kA / m, ideally, a sufficient magnetizing magnetic field acts on the low coercive force permanent magnet 3, and the high coercive force permanent magnet 4 does not undergo irreversible demagnetization due to magnetization.

その結果、特許文献1の永久磁石式回転電機では、回転子1のd軸電流により低保磁力永久磁石3の鎖交磁束量を最大から0まで大きく変化でき、また磁化方向も正逆の両方向にできる。すなわち、高保磁力永久磁石4の鎖交磁束を正方向とすると、低保磁力永久磁石3の鎖交磁束を正方向の最大値から0、さらには逆方向の最大値まで広範囲に調整することができる。したがって、本実施の形態の回転子では、低保磁力永久磁石3をd軸電流で着磁することにより低保磁力永久磁石3と高保磁力永久磁石4を合わせた全鎖交磁束量を広範囲に調整することができる。   As a result, in the permanent magnet type rotating electrical machine disclosed in Patent Document 1, the amount of interlinkage magnetic flux of the low coercive force permanent magnet 3 can be greatly changed from the maximum to 0 by the d-axis current of the rotor 1, and the magnetization direction is both forward and reverse. Can be. That is, assuming that the linkage flux of the high coercivity permanent magnet 4 is the positive direction, the linkage flux of the low coercivity permanent magnet 3 can be adjusted over a wide range from the maximum value in the positive direction to 0, and further to the maximum value in the reverse direction. it can. Therefore, in the rotor of the present embodiment, the total amount of interlinkage magnetic flux combining the low coercivity permanent magnet 3 and the high coercivity permanent magnet 4 is widened by magnetizing the low coercivity permanent magnet 3 with the d-axis current. Can be adjusted.

例えば、低速域では低保磁力永久磁石3は高保磁力永久磁石4の鎖交磁束と同方向(初期状態)で最大値になるようにd軸電流で磁化することにより、永久磁石によるトルクは最大値になるので、回転電機のトルク及び出力は最大にすることができる。中・高速域では、低保磁力永久磁石3の磁束量を低下させ、全鎖交磁束量を下げることにより、回転電機の電圧は下がるので、電源電圧の上限値に対して余裕ができ、回転速度(周波数)をさらに高くすることが可能となる。
特開2006−280195号公報 特開2008−48514号公報
For example, in the low speed region, the low coercive force permanent magnet 3 is magnetized with the d-axis current so that the maximum value is obtained in the same direction (initial state) as the interlinkage magnetic flux of the high coercive force permanent magnet 4, so that the torque by the permanent magnet is maximized. Therefore, the torque and output of the rotating electrical machine can be maximized. In the middle and high speed range, the voltage of the rotating electrical machine is lowered by reducing the amount of magnetic flux of the low coercivity permanent magnet 3 and reducing the amount of interlinkage magnetic flux. The speed (frequency) can be further increased.
JP 2006-280195 A JP 2008-48514 A

前記のような構成を有する特許文献1の永久磁石式回転電機は、回転子1のd軸電流により、低保磁力永久磁石3の鎖交磁束量を最大から0まで大きく変化でき、また磁化方向も正逆の両方向にできるという優れた特性を有する。その反面、低保磁力永久磁石3を増磁させる場合に大きな磁化電流が必要となり、電動機を駆動するためのインバータの大型化を招くことになる。   In the permanent magnet type rotating electrical machine of Patent Document 1 having the above-described configuration, the amount of interlinkage magnetic flux of the low coercive force permanent magnet 3 can be greatly changed from the maximum to 0 by the d-axis current of the rotor 1, and the magnetization direction Also has an excellent characteristic that it can be made in both forward and reverse directions. On the other hand, when magnetizing the low coercive force permanent magnet 3, a large magnetizing current is required, leading to an increase in the size of the inverter for driving the electric motor.

特に、永久磁石の特性上、減磁の場合よりも増磁の場合に大きな磁化電流が要求されるが、特許文献1の永久磁石式回転電機は、2種類の磁石が磁気的に並列に配置された構成のため、高保磁力永久磁石4の鎖交磁束の影響で、低保磁力永久磁石3の増磁に大きな磁界が必要となる。   In particular, due to the characteristics of the permanent magnet, a large magnetizing current is required when the magnet is increased than when the magnet is demagnetized. However, in the permanent magnet type rotating electrical machine disclosed in Patent Document 1, two types of magnets are magnetically arranged in parallel. Due to the configuration, a large magnetic field is required for magnetizing the low coercivity permanent magnet 3 due to the influence of the linkage flux of the high coercivity permanent magnet 4.

図8(A)から(D)は、そのことを説明する模式図である。特許文献1の永久磁石式回転電機では、図8(A)のように、2つの低保磁力永久磁石3と1つの高保磁力永久磁石4とが、d軸を中心としてU字形に配置されている。電動機の通常の運転状態では、各永久磁石3,4の磁束の方向は、中心の磁極部7の方を向いている。この状態で、d軸電流をパルス的に流して、減磁用の磁界を発生すると、その磁束は図8(B)のように、回転子1の外周側から各永久磁石3,4を貫くように発生し、それによって、低保磁力永久磁石3は減磁される。このとき、高保磁力永久磁石4は、保磁力が高いため、減磁されることはない。   FIGS. 8A to 8D are schematic diagrams for explaining this. In the permanent magnet type rotating electric machine of Patent Document 1, as shown in FIG. 8A, two low coercive force permanent magnets 3 and one high coercive force permanent magnet 4 are arranged in a U shape with the d axis as the center. Yes. In the normal operation state of the electric motor, the direction of the magnetic flux of each permanent magnet 3, 4 is directed toward the central magnetic pole part 7. In this state, when a d-axis current is applied in a pulsed manner to generate a demagnetizing magnetic field, the magnetic flux penetrates the permanent magnets 3 and 4 from the outer peripheral side of the rotor 1 as shown in FIG. Thus, the low coercive force permanent magnet 3 is demagnetized. At this time, since the high coercive force permanent magnet 4 has a high coercive force, it is not demagnetized.

この減磁の場合、図8(C)のように、高保磁力永久磁石4の磁束は、d軸方向と共に低保磁力永久磁石3の内側から外側に向かって、低保磁力永久磁石3の当初の磁束の向きとは逆に流れるので、d軸電流の作る磁界による減磁作用を補助する。そのため、低保磁力永久磁石3の極性を反転させるまでの減磁が可能である。   In the case of this demagnetization, as shown in FIG. 8C, the magnetic flux of the high coercivity permanent magnet 4 is the initial value of the low coercivity permanent magnet 3 from the inside to the outside of the low coercivity permanent magnet 3 along with the d-axis direction. Flows in the direction opposite to the direction of the magnetic flux, so that the demagnetizing action by the magnetic field generated by the d-axis current is assisted. Therefore, demagnetization until the polarity of the low coercive force permanent magnet 3 is reversed is possible.

一方、増磁の場合には、d軸電流を再びパルス的に印加することで、前記とは逆方向の磁界を発生させ、その磁界を構成する逆方向の磁束によって、減磁した低保磁力永久磁石3の鎖交磁束を前記(A)の通常運転時の状態に戻す。しかし、本来、減磁に比較して増磁のためのエネルギーが大きく必要な上、図8(C)のように、低保磁力永久磁石3には高保磁力永久磁石4の磁束が減磁方向に加わっているため、これに打ち勝つだけの大きな磁界を生成することのできる磁化電流が必要となる。   On the other hand, in the case of magnetization, a low coercive force is generated by applying a d-axis current again in a pulsed manner to generate a magnetic field in the opposite direction to that described above and demagnetizing by the reverse magnetic flux constituting the magnetic field. The interlinkage magnetic flux of the permanent magnet 3 is returned to the state during normal operation of (A). However, originally, a larger energy is required for magnetizing than demagnetization, and the magnetic flux of the high coercivity permanent magnet 4 is demagnetized in the low coercivity permanent magnet 3 as shown in FIG. Therefore, a magnetizing current capable of generating a large magnetic field that can overcome this is required.

このように、特許文献1の永久磁石式回転電機は、2種類の磁石を磁気的に並列に配置したため、低保磁力永久磁石3の減磁量を大きくとることができ、磁力の変化幅を0〜100%のように大きくすることができる利点はあるものの、増磁時に必要とする磁化電流が大きいという問題があった。   Thus, since the permanent magnet type rotating electrical machine of Patent Document 1 has two kinds of magnets arranged in parallel magnetically, the amount of demagnetization of the low coercive force permanent magnet 3 can be increased, and the change width of the magnetic force can be increased. Although there is an advantage that it can be increased to 0 to 100%, there is a problem that a large magnetization current is required at the time of magnetization.

一方、特許文献1の永久磁石式回転電機のような大幅な鎖交磁束量の変化は要求されないが、インバータの大型化を極力避けたい用途にも、特許文献1のような技術を適用することが期待されている。例えば、鎖交磁束の変化幅が70〜100%の範囲で、インバータは現状の電動機に使用されているものをそのまま使用したい場合などである。   On the other hand, a change in the amount of interlinkage magnetic flux as in the permanent magnet type rotating electrical machine of Patent Document 1 is not required, but the technique as in Patent Document 1 should be applied to an application where it is desired to avoid increasing the size of the inverter as much as possible. Is expected. For example, when the change width of the linkage flux is in the range of 70 to 100%, the inverter is used as it is for the current electric motor.

本発明は、上述した課題を解決するためになされたものであり、低保磁力永久磁石の増磁時における磁化電流を減少させることで、インバータの大型化を必要とすることなく、低速から高速までの広範囲で可変速運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上可能とした永久磁石式回転電機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and reduces the magnetizing current at the time of magnetizing the low coercive force permanent magnet, thereby reducing the speed of the inverter without increasing the size of the inverter. It is an object of the present invention to provide a permanent magnet type rotating electrical machine that can be operated at a variable speed in a wide range up to a high torque in a low speed rotation region, a high output in a medium / high speed rotation region, and an efficiency improvement.

前記の目的を達成するため、本発明の永久磁石式回転電機は、保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石を、磁気的に直列となるように配置して磁極を形成し、これら磁極を回転子鉄心内に配置して回転子を構成し、この回転子の外周にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線の電流が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させて、永久磁石の磁束量を不可逆的に変化させることを特徴とする。   In order to achieve the above object, the permanent magnet type rotating electrical machine according to the present invention has two or more kinds of permanent magnets having a product of a coercive force and a magnetization direction thickness different from those of other permanent magnets so as to be magnetically in series. The magnetic poles are formed, and the magnetic poles are arranged in the rotor core to constitute the rotor, and the stator is arranged on the outer periphery of the rotor via an air gap, and the armature core and the electric machine are arranged on the stator. A coil is provided, and at least one of the permanent magnets constituting the magnetic pole of the rotor is magnetized by a magnetic field generated by the current of the armature coil, and the amount of magnetic flux of the permanent magnet is irreversibly changed. And

特に、永久磁石の鎖交磁束を減少させる場合は、他の永久磁石と比較して保磁力と磁化方向厚の積が小さい永久磁石に、電機子巻線の電流による前記永久磁石の磁化方向と逆方向の磁界を作用させて不可逆的に変化させ、永久磁石の鎖交磁束を増加させる場合は、保磁力と磁化方向厚の積が小さい永久磁石に、電機子巻線の電流による前記磁石磁化方向と同方向の磁界を作用させて不可逆的に変化させることが好ましい。   In particular, when reducing the flux linkage of the permanent magnet, the permanent magnet having a smaller product of the coercive force and the magnetization direction thickness than the other permanent magnets, When the magnetic flux in the reverse direction is applied to change the magnetic flux irreversibly to increase the flux linkage of the permanent magnet, the magnet magnetization caused by the armature winding current is applied to the permanent magnet having a small product of the coercive force and the magnetization direction thickness. It is preferable to change irreversibly by applying a magnetic field in the same direction as the direction.

このように、本発明では、保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石を、磁気的に直列となるように配置したので、永久磁石の鎖交磁束を増加させる場合に、保磁力と磁化方向厚の積が小さい永久磁石に、電機子巻線の電流による前記磁石磁化方向と同方向の磁界を作用させると共に、保磁力と磁化方向厚の積が大きい永久磁石の磁界も保磁力と磁化方向厚の積が小さい永久磁石の磁化方向に作用させることができ、これにより磁化電流の増加を抑止できる。   As described above, in the present invention, two or more kinds of permanent magnets having a product of coercive force and magnetization direction thickness different from those of other permanent magnets are arranged so as to be magnetically in series. When increasing, a magnetic field in the same direction as the magnet magnetization direction due to the current of the armature winding is applied to a permanent magnet having a small product of the coercive force and the magnetization direction thickness, and the product of the coercive force and the magnetization direction thickness is large. The magnetic field of the permanent magnet can also be applied to the magnetization direction of the permanent magnet having a small product of the coercive force and the magnetization direction thickness, thereby suppressing an increase in magnetization current.

また、磁気特性を不可逆変化させる永久磁石を他の永久磁石からバイアス的な磁界が作用するように配置すること、磁極を構成する2種類以上の永久磁石を重ねて配置すること、磁極を構成する2種類以上の永久磁石を磁化方向がほぼd軸方向になるように配置すること、磁極を構成する2種類以上の永久磁石をV字、またはU字状に配置すること、磁極を構成する2種類以上の永久磁石をq軸近傍に配置してその磁化方向をほぼ周方向とすることも、本発明の一態様である。   In addition, a permanent magnet for irreversibly changing the magnetic characteristics is arranged so that a biased magnetic field acts from another permanent magnet, two or more kinds of permanent magnets constituting the magnetic pole are arranged in an overlapping manner, and the magnetic pole is constituted. Arranging two or more kinds of permanent magnets so that the magnetization direction is substantially in the d-axis direction, arranging two or more kinds of permanent magnets constituting the magnetic pole in a V-shape or U-shape, and constituting the magnetic pole 2 It is also an aspect of the present invention to arrange more than one kind of permanent magnets in the vicinity of the q axis so that the magnetization direction is substantially the circumferential direction.

更に、磁極を構成する2種類以上の永久磁石を磁性部を間に挟んで配置すること、q軸方向の磁気抵抗を磁石部を除くq軸方向の磁気抵抗よりも大きくすること、q軸方向のエアギャップ長をd軸方向のエアギャップ長よりも大きくすることも、本発明の一態様である。   Further, two or more kinds of permanent magnets constituting the magnetic pole are arranged with the magnetic part sandwiched therebetween, the magnetic resistance in the q-axis direction is made larger than the magnetic resistance in the q-axis direction excluding the magnet part, q-axis direction It is also an embodiment of the present invention to make the air gap length larger than the air gap length in the d-axis direction.

以上のような構成を有する本発明によれば、増磁時の磁化電流の増加を抑止できるので、永久磁石式回転電機駆動用インバータの大型化を図ることなく、回転機の効率化を達成することができる。   According to the present invention having the above-described configuration, an increase in the magnetizing current at the time of magnetization can be suppressed, so that the efficiency of the rotating machine is achieved without increasing the size of the inverter for driving the permanent magnet type rotating electrical machine. be able to.

以下、本発明に係る永久磁石式回転電機の実施の形態について、図面を参照して説明する。本実施の形態の回転電機は4極の場合で説明しており、他の極数でも同様に適用できる。なお、前記図7に示した永久磁石式回転電機と同一の部分については、同一の符号を付し、重複する説明は省略する。   Hereinafter, embodiments of a permanent magnet type rotating electrical machine according to the present invention will be described with reference to the drawings. The rotating electrical machine of the present embodiment has been described in the case of four poles, and the same applies to other pole numbers. In addition, the same code | symbol is attached | subjected about the part same as the permanent magnet type rotary electric machine shown in the said FIG. 7, and the overlapping description is abbreviate | omitted.

(1.第1の実施の形態)
(1−1.構成)
本発明の第1の実施の形態について図1及び図2を用いて説明する。
(1. First embodiment)
(1-1. Configuration)
A first embodiment of the present invention will be described with reference to FIGS.

本発明の第1の実施の形態の回転子1は、図1に示すように回転子鉄心2、保磁力と磁化方向厚みの積が小となる永久磁石3、保磁力と磁化方向厚の積が大となる永久磁石4から構成される。回転子鉄心2は珪素鋼板を積層して構成し、前記の永久磁石3,4は回転子鉄心2内に埋め込まれる。この場合、回転子鉄心2内を通過する磁束が、これら永久磁石3,4の部分をその厚さ方向に通過するように、各永久磁石3,4の端部に空洞5を設ける。   As shown in FIG. 1, the rotor 1 according to the first embodiment of the present invention includes a rotor core 2, a permanent magnet 3 having a small product of coercive force and magnetization direction thickness, and a product of coercive force and magnetization direction thickness. Is made up of permanent magnets 4 that are large. The rotor core 2 is formed by laminating silicon steel plates, and the permanent magnets 3 and 4 are embedded in the rotor core 2. In this case, the cavity 5 is provided at the end of each of the permanent magnets 3 and 4 so that the magnetic flux passing through the rotor core 2 passes through these permanent magnets 3 and 4 in the thickness direction.

本実施の形態では、保磁力と磁化方向厚みの積が小となる永久磁石3はアルニコ磁石とし、保磁力と磁化方向厚の積が大となる永久磁石4は、NdFeB磁石とする。アルニコ磁石及びNdFeB磁石の磁化方向はほぼ半径方向とし、アルニコ磁石とNdFeB磁石を磁化方向に重ねて回転子鉄心2内に埋め込む。すなわち、本実施の形態では、2種類の永久磁石3,4が、その磁化方向を同じくして、磁気的に直列に配置されていることを特徴とする。   In the present embodiment, the permanent magnet 3 having a small product of the coercive force and the magnetization direction thickness is an alnico magnet, and the permanent magnet 4 having a large product of the coercive force and the magnetization direction thickness is an NdFeB magnet. The magnetization directions of the alnico magnet and the NdFeB magnet are substantially radial, and the alnico magnet and the NdFeB magnet are embedded in the rotor core 2 so as to overlap in the magnetization direction. That is, the present embodiment is characterized in that the two types of permanent magnets 3 and 4 are magnetically arranged in series with the same magnetization direction.

前記アルニコ磁石の保磁力は50kA/mとし、NdFeB磁石の保磁力は1000kA/mとする。アルニコ磁石の厚みはNdFeB磁石の厚みと同じとするが、厚みの比率を要求されるモータ特性に応じて変更してよい。   The coercive force of the alnico magnet is 50 kA / m, and the coercive force of the NdFeB magnet is 1000 kA / m. The thickness of the alnico magnet is the same as the thickness of the NdFeB magnet, but the thickness ratio may be changed according to the required motor characteristics.

また、このようにして構成される本実施の形態の回転子1を固定子に挿入して回転電機を組み立てる時は、保磁力と磁化方向厚の積が小さな永久磁石3を減磁した状態とすることが好ましい。すなわち、保磁力と磁化方向厚の積が小さな永久磁石(可変磁力用磁石3)を減磁、または極性を反転した状態とすると、保磁力と磁化方向厚の積が大きい永久磁石(固定磁力用磁石4)の磁力と可変磁力用磁石3の磁力の合計が回転子の発生する磁気吸引力となる。   Further, when the rotating electrical machine is assembled by inserting the rotor 1 of the present embodiment configured as described above into the stator, the permanent magnet 3 having a small product of coercive force and magnetization direction thickness is demagnetized. It is preferable to do. That is, if a permanent magnet (variable magnetic force magnet 3) having a small product of coercive force and magnetization direction thickness is demagnetized or having a reversed polarity, a permanent magnet having a large product of coercive force and magnetization direction thickness (for fixed magnetic force) The sum of the magnetic force of the magnet 4) and the magnetic force of the variable magnetic force magnet 3 is the magnetic attractive force generated by the rotor.

一方、可変磁力用磁石3を減磁すると全磁力は減少する。さらに可変磁力用磁石3の極性を反転させると、固定磁力用磁石4と可変磁力用磁石3は相殺することになるので合計磁力は僅かになってしまう。そのため、モータを組み立てる時にロータをステータに挿入する場合、ロータの磁石の磁力が強いと、ロータをステータに吸い込もうとする過大な磁気吸引力に耐えながら徐々に挿入する作業になる。しかし、前記のようにロータの磁力が弱いと、磁気吸引力が僅かであり組立が容易になる。   On the other hand, when the variable magnetic force magnet 3 is demagnetized, the total magnetic force decreases. Further, when the polarity of the variable magnetic force magnet 3 is reversed, the fixed magnetic force magnet 4 and the variable magnetic force magnet 3 cancel each other, so that the total magnetic force becomes small. Therefore, when the rotor is inserted into the stator when assembling the motor, if the magnetic force of the magnet of the rotor is strong, the rotor is gradually inserted while withstanding an excessive magnetic attraction force trying to suck into the stator. However, when the magnetic force of the rotor is weak as described above, the magnetic attraction force is small and the assembly becomes easy.

これらの永久磁石3,4に対しては、永久磁石式回転電機の運転時において、d軸電流による磁界で永久磁石3を磁化させて永久磁石3の磁束量を不可逆的に変化させる。その場合、永久磁石3を磁化するd軸電流を流すと同時にq軸電流により回転電機のトルクを制御する。   For these permanent magnets 3 and 4, during operation of the permanent magnet type rotating electric machine, the permanent magnet 3 is magnetized by a magnetic field generated by a d-axis current, and the amount of magnetic flux of the permanent magnet 3 is irreversibly changed. In that case, the d-axis current for magnetizing the permanent magnet 3 is supplied, and at the same time, the torque of the rotating electrical machine is controlled by the q-axis current.

また、d軸電流で生じる磁束により、電流(q軸電流とd軸電流とを合成した全電流)と永久磁石3,4とで生じる電機子巻線の鎖交磁束量、すなわち、回転電機の全電流によって電機子巻線に生じる磁束と、回転子側の2種類以上の永久磁石によって生じる磁束とから構成される電機子巻線全体の鎖交磁束量をほぼ可逆的に変化させる。   Further, the amount of interlinkage magnetic flux in the armature winding generated between the current (total current obtained by combining the q-axis current and the d-axis current) and the permanent magnets 3 and 4 due to the magnetic flux generated by the d-axis current, The amount of interlinkage magnetic flux of the entire armature winding composed of the magnetic flux generated in the armature winding by the total current and the magnetic flux generated by two or more kinds of permanent magnets on the rotor side is reversibly changed.

特に、本実施の形態では、瞬時の大きなd軸電流による磁界で可変磁力用永久磁石3を不可逆変化させる。この状態で不可逆減磁がほとんど生じないか、僅かの不可逆減磁が生じる範囲のd軸電流を連続的に流して運転する。このときのd軸電流は電流位相を進めて端子電圧を調整するように作用する。   In particular, in the present embodiment, the variable magnetic permanent magnet 3 is irreversibly changed by a magnetic field generated by an instantaneous large d-axis current. In this state, operation is carried out by continuously supplying a d-axis current in a range where little or no irreversible demagnetization occurs. The d-axis current at this time acts to adjust the terminal voltage by advancing the current phase.

また、大きなd軸電流で可変磁力用磁石3の極性を反転させ、電流位相を進める運転制御方法を行う。このようにd軸電流で可変磁力用磁石3の極性を反転させているので、端子電圧を低下させるような負のd軸電流を流しても、可変磁力用磁石3にとっては減磁界ではなく増磁界となる。すなわち、負のd軸電流で可変磁力用磁石3は減磁することなく、端子電圧の大きさを調整することができる。   Further, an operation control method is performed in which the polarity of the variable magnetic force magnet 3 is reversed with a large d-axis current to advance the current phase. Since the polarity of the variable magnetic force magnet 3 is reversed by the d-axis current in this way, even if a negative d-axis current that reduces the terminal voltage is supplied, the variable magnetic force magnet 3 is not demagnetized but increased. It becomes a magnetic field. That is, the magnitude of the terminal voltage can be adjusted without demagnetizing the variable magnetic force magnet 3 with a negative d-axis current.

一般の磁石モータでは磁石の極性は反転していないので電流位相を進めることによりd軸電流が増加すると、磁石が不可逆減磁する問題があるが、本実施の形態においては、可変磁力用磁石3の極性を反転させて位相を進めることが可能である。   In a general magnet motor, since the polarity of the magnet is not reversed, if the d-axis current increases by advancing the current phase, there is a problem that the magnet is irreversibly demagnetized. In the present embodiment, the variable magnetic force magnet 3 It is possible to advance the phase by reversing the polarity of.

(1−2.基本的な作用)
つぎに、本実施の形態の作用について説明する。
本実施の形態において、磁化に要する起磁力は、磁化に要する磁界と永久磁石の厚みの積で概算する。アルニコ8の永久磁石は250kA/mの磁界で100%近くまで着磁できる。着磁磁界と磁石の厚みの積は、250kA/m×3mm×10−3=750Aとなる。
(1-2. Basic action)
Next, the operation of the present embodiment will be described.
In the present embodiment, the magnetomotive force required for magnetization is approximated by the product of the magnetic field required for magnetization and the thickness of the permanent magnet. Alnico 8 permanent magnets can be magnetized to nearly 100% in a magnetic field of 250 kA / m. The product of the magnetizing magnetic field and the magnet thickness is 250 kA / m × 3 mm × 10 −3 = 750A.

一方、NdFeB磁石は1500kA/mの磁界で100%近くまで着磁できる。着磁磁界と磁石の厚みの積は、1500kA/m×2mm×10−3=3000Aとなる。つまり、アルニコ磁石3はNdFeB磁石4の約1/4の磁界で着磁できる。 On the other hand, the NdFeB magnet can be magnetized to nearly 100% with a magnetic field of 1500 kA / m. The product of the magnetizing magnetic field and the magnet thickness is 1500 kA / m × 2 mm × 10 −3 = 3000A. That is, the alnico magnet 3 can be magnetized with a magnetic field of about ¼ that of the NdFeB magnet 4.

本実施の形態では、固定子の電機子巻線に通電時間が極短時間(0.1ms〜100ms程度)となるパルス的な電流を流して磁界を形成し、アルニコ磁石3に磁界を作用させる。永久磁石を磁化するための磁界を形成するパルス電流は固定子の電機子巻線のd軸電流成分とする。   In the present embodiment, a magnetic field is formed by applying a pulsed current having a very short energization time (about 0.1 ms to 100 ms) to the armature winding of the stator, and the magnetic field is applied to the alnico magnet 3. . The pulse current that forms the magnetic field for magnetizing the permanent magnet is the d-axis current component of the armature winding of the stator.

磁石の厚みは同じにしたので、保磁力で作用磁界による影響を評価できる。初めに磁石の磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線にパルス的に通電させる。負のd軸電流によって変化した磁石内の磁界が50kA/mになったとすると、アルニコ磁石の保磁力が50kA/mなのでアルニコ磁石の磁力は不可逆的に大幅に低下する。一方、NdFeB磁石の保磁力が1000kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になるとアルニコ磁石のみが減磁した状態となり、全体の磁石による鎖交磁束量を減少することができる。   Since the magnets have the same thickness, the influence of the working magnetic field can be evaluated by the coercive force. First, a negative d-axis current that generates a magnetic field in a direction opposite to the magnetization direction of the magnet is applied to the armature winding in a pulsed manner. If the magnetic field in the magnet changed by the negative d-axis current is 50 kA / m, the magnetic force of the alnico magnet is irreversibly significantly reduced because the coercive force of the alnico magnet is 50 kA / m. On the other hand, since the coercive force of the NdFeB magnet is 1000 kA / m, the magnetic force does not decrease irreversibly. As a result, when the pulsed d-axis current becomes zero, only the alnico magnet is demagnetized, and the amount of flux linkage by the entire magnet can be reduced.

つぎに、永久磁石の磁化方向と同方向の磁界を発生する正のd軸電流を電機子巻線に通電する。アルニコ磁石が着磁するために必要な磁界を発生させる。100kA/mとすると、減磁していたアルニコ磁石は着磁されて最大に磁力を発生する。一方、NdFeB磁石の保磁力が1000kA/mなので磁力は不可逆的に変化しない。その結果、パルス的な正のd軸電流が0になるとアルニコ磁石のみが増磁した状態となり、全体の磁石による鎖交磁束量を増加することができる。これにより元の最大の鎖交磁束量に戻すことが可能となる。   Next, a positive d-axis current that generates a magnetic field in the same direction as the magnetization direction of the permanent magnet is applied to the armature winding. A magnetic field necessary for magnetizing the Alnico magnet is generated. Assuming 100 kA / m, the demagnetized Alnico magnet is magnetized to generate a maximum magnetic force. On the other hand, since the coercive force of the NdFeB magnet is 1000 kA / m, the magnetic force does not change irreversibly. As a result, when the pulsed positive d-axis current becomes 0, only the Alnico magnet is magnetized, and the amount of flux linkage by the entire magnet can be increased. This makes it possible to return to the original maximum flux linkage.

以上のようにd軸電流による瞬時的な磁界をアルニコ磁石とNdFeB磁石に作用させることにより、アルニコ磁石の磁力が不可逆的に変化させて、永久磁石の全鎖交磁束量を任意に変化させることが可能となる。   As described above, by applying an instantaneous magnetic field due to the d-axis current to the Alnico magnet and the NdFeB magnet, the magnetic force of the Alnico magnet is irreversibly changed, and the total interlinkage magnetic flux of the permanent magnet is arbitrarily changed. Is possible.

この場合、永久磁石式回転電機の最大トルク時には磁極の永久磁石の磁束が加え合わせになるように保磁力と磁化方向厚みの積が他よりも小さな永久磁石を磁化させ、トルクの小さな軽負荷時や、中速回転域と高速回転域では、前記の保磁力と磁化方向厚みの積が他よりも小さな永久磁石は、電流による磁界で磁化させて磁束を減少させる。   In this case, a permanent magnet whose product of coercive force and magnetization direction thickness is smaller than the others is magnetized so that the magnetic flux of the permanent magnet of the magnetic pole is added at the maximum torque of the permanent magnet type rotating electrical machine, and at a light load with a small torque In addition, in the medium-speed rotation region and the high-speed rotation region, the permanent magnet whose product of the coercive force and the magnetization direction thickness is smaller than the others is magnetized by a magnetic field caused by an electric current to reduce the magnetic flux.

また、磁極の磁石を不可逆変化させて鎖交磁束を最小にした状態で回転子が最高回転速度になったときに、永久磁石による誘導起電圧が、回転電機の電源であるインバータ電子部品の耐電圧以下とする。   In addition, when the rotor reaches the maximum rotational speed with the magnetic flux magnet minimized by irreversibly changing the magnetic pole magnet, the induced electromotive force generated by the permanent magnet is resistant to the inverter electronic components that are the power source of the rotating electrical machine. Below voltage.

(1−3.直列配置の作用)
特に、本実施の形態では、2種類の磁石を磁気的に直列に配置しているので、保磁力と磁化方向厚みの積が小となる永久磁石3の減磁及び増磁の際に、前記特許文献1の永久磁石式回転電機とは異なる作用を有する。この点を図2により説明する。
(1-3. Action of serial arrangement)
In particular, in the present embodiment, two types of magnets are magnetically arranged in series. Therefore, when the demagnetization and magnetization of the permanent magnet 3 in which the product of the coercive force and the magnetization direction thickness is small, This has an action different from that of the permanent magnet type rotating electric machine of Patent Document 1. This point will be described with reference to FIG.

図2(A)は、減磁前の最大の鎖交磁束量を得ている場合の図である。この場合、2種類の永久磁石3,4の磁化方向は同一であるため、両方の永久磁石の磁束が加え合わせになって、最大の磁束量が得られる。   FIG. 2A is a diagram in a case where the maximum amount of flux linkage before demagnetization is obtained. In this case, since the magnetization directions of the two types of permanent magnets 3 and 4 are the same, the magnetic fluxes of both permanent magnets are added together to obtain the maximum amount of magnetic flux.

図2(B)は、減磁時の状態を示すもので、d軸方向から両方の永久磁石3,4の磁化方向と反対方向の磁界が作用して、保磁力と磁化方向厚みの積が小となる永久磁石3を減磁している。この場合、保磁力と磁化方向厚みの積が小となる永久磁石3には、それに積層した保磁力と磁化方向厚の積が大となる永久磁石4からの磁界が加わっており、これが減磁のためのd軸方向から加わる磁界と打ち消し合うことになるため、その分大きな磁化電流が必要となるが、減磁のための磁化電流は増磁時に比較して少なくて済むので、磁化電流の増加は少ない。   FIG. 2B shows a state at the time of demagnetization. A magnetic field opposite to the magnetization direction of both permanent magnets 3 and 4 acts from the d-axis direction, and the product of the coercive force and the magnetization direction thickness is obtained. The small permanent magnet 3 is demagnetized. In this case, the permanent magnet 3 having a small product of the coercive force and the magnetization direction thickness is applied with a magnetic field from the permanent magnet 4 having a large product of the coercive force and the magnetization direction thickness laminated thereon. Therefore, a large magnetizing current is required for this purpose, but the magnetizing current for demagnetization is smaller than that at the time of magnetizing. There is little increase.

図2(C)は、減磁後の永久磁石3,4の磁束を示すもので、保磁力と磁化方向厚みの積が小となる永久磁石3は、0に近くまで減磁されているのに対して、保磁力と磁化方向厚の積が大となる永久磁石4は、磁化電流の作る磁界ではその保磁力は変化しない。従って、永久磁石3,4全体としてみれば、永久磁石3の保磁力を反転させるまでの変化が可能な特許文献1の発明ほどは、磁力の変化幅は少ない。   FIG. 2C shows the magnetic flux of the permanent magnets 3 and 4 after demagnetization. The permanent magnet 3 whose product of coercive force and magnetization direction thickness is small is demagnetized to near zero. On the other hand, the coercive force of the permanent magnet 4 having a large product of the coercive force and the magnetization direction thickness is not changed by the magnetic field generated by the magnetizing current. Therefore, when the permanent magnets 3 and 4 are viewed as a whole, the change width of the magnetic force is as small as the invention of Patent Document 1 that can change until the coercive force of the permanent magnet 3 is reversed.

図2(D)は、永久磁石3の増磁の状態を示すものである。この状態では、d軸電流による磁界が、減磁時とは逆方向に作用して、永久磁石3を増磁し、元の磁化方向に戻す。このとき、永久磁石3に積層されている保磁力と磁化方向厚の積が大となる永久磁石4からの磁界が磁化電流による磁界と加え合わせになる(永久磁石4からバイアス的な磁界が永久磁石3に作用する)ため、永久磁石3の増磁が容易に行われる。そのため、通常は大きな磁化電流を必要とする増磁時においても、保磁力と磁化方向厚の積が大となる永久磁石4の作用により、磁化電流の増大を抑止できる。   FIG. 2 (D) shows the state of magnetization increase of the permanent magnet 3. In this state, the magnetic field due to the d-axis current acts in the opposite direction to that at the time of demagnetization, magnetizes the permanent magnet 3 and returns it to the original magnetization direction. At this time, the magnetic field from the permanent magnet 4 having a large product of the coercive force and the magnetization direction thickness laminated on the permanent magnet 3 is added to the magnetic field due to the magnetization current (the biased magnetic field from the permanent magnet 4 is permanent). Therefore, the permanent magnet 3 can be easily magnetized. For this reason, even when magnetizing normally requiring a large magnetizing current, an increase in the magnetizing current can be suppressed by the action of the permanent magnet 4 in which the product of the coercive force and the magnetization direction thickness is large.

(1−4.効果)
以上のような構成並びに作用を有する本実施の形態においては、次の効果が得られる。
(1) 増磁時の磁化電流の増加を抑止できるので、永久磁石式回転電機を駆動するためのインバータの大型化を必要とせず、現状のインバータをそのまま使用して、運転の効率化が可能となる。
(2) d軸電流でアルニコ磁石を不可逆的に変化させることにより、アルニコ磁石とNdFeB磁石を合わせた全鎖交磁束量を広範囲に調整することができる。
(1-4. Effect)
In the present embodiment having the configuration and operation as described above, the following effects can be obtained.
(1) Since the increase in magnetizing current at the time of magnetizing can be suppressed, it is not necessary to increase the size of the inverter for driving the permanent magnet type rotating electrical machine, and the current inverter can be used as it is to improve the operation efficiency. It becomes.
(2) By changing the alnico magnet irreversibly with the d-axis current, the total amount of interlinkage magnetic flux combining the alnico magnet and the NdFeB magnet can be adjusted over a wide range.

(3) 永久磁石の全鎖交磁束量の調整は回転電機の電圧を広範囲に調整することを可能とし、また、着磁は極短時間のパルス的な電流で行うので常時弱め磁束電流を流し続ける必要もないので損失を大幅に低減できる。また、従来のように弱め磁束制御を行う必要がないので高調波磁束による高調波鉄損も発生しない。以上により、本実施の形態の回転電機は、高出力で低速から高速までの広範囲の可変速運転を可能とし、広い運転範囲において高効率も可能となる。 (3) The adjustment of the total flux linkage of the permanent magnet makes it possible to adjust the voltage of the rotating electrical machine over a wide range, and since magnetization is performed with a pulse-like current for a very short time, a weak flux current is always applied. Loss can be greatly reduced because there is no need to continue. Further, since it is not necessary to perform the flux-weakening control as in the prior art, harmonic iron loss due to the harmonic magnetic flux does not occur. As described above, the rotating electrical machine according to the present embodiment enables high-output, wide-range variable speed operation from low speed to high speed, and high efficiency in a wide operation range.

(4) 永久磁石による誘導電圧に関しては、アルニコ磁石3を負のd軸電流で着磁して永久磁石の全鎖交磁束量を小さくできるので、永久磁石の誘導電圧によるインバータ電子部品の破損がなくなり、信頼性が向上する。 (4) With regard to the induced voltage by the permanent magnet, the Alnico magnet 3 can be magnetized with a negative d-axis current to reduce the total flux linkage of the permanent magnet, so that the inverter electronic components can be damaged by the induced voltage of the permanent magnet. The reliability is improved.

(5) 回転電機が無負荷で連れ回される状態では、アルニコ磁石3を負のd軸電流で着磁して永久磁石の全鎖交磁束量を小さくできる。これより、誘導電圧は著しく低くなり、誘導電圧を下げるための弱め磁束電流を常時通電する必要がほとんどなくなり、総合効率が向上する。特に惰行運転時間が長くなる通勤電車に本発明の回転電機を搭載して駆動すると、総合運転効率は大幅に向上する。 (5) In a state where the rotating electrical machine is rotated with no load, the total flux linkage of the permanent magnet can be reduced by magnetizing the alnico magnet 3 with a negative d-axis current. As a result, the induced voltage is remarkably lowered, and there is almost no need to constantly apply a weak magnetic flux current for lowering the induced voltage, thereby improving the overall efficiency. In particular, when the rotary electric machine of the present invention is mounted on a commuter train that has a long coasting operation time, the overall driving efficiency is greatly improved.

(2.第2の実施の形態)
本発明の第2の実施の形態について、図3を用いて説明する。
(2. Second Embodiment)
A second embodiment of the present invention will be described with reference to FIG.

本実施の形態は、保磁力と磁化方向厚の積が異なる2種類の永久磁石3,4を磁化方向に貼り合せて、回転子鉄心2に設けられたV字状の穴に埋め込む。保磁力と磁化方向厚の積が小の永久磁石3はフェライト磁石かアルニコ磁石を使用する。保磁力と磁化方向厚の積が大の永久磁石4には、NdFeB磁石を適用する。貼り合せた2種類の磁石をV字状に配置したが、U字状に配置してもよい。   In the present embodiment, two types of permanent magnets 3 and 4 having different products of coercive force and magnetization direction thickness are bonded in the magnetization direction and embedded in a V-shaped hole provided in the rotor core 2. The permanent magnet 3 having a small product of the coercive force and the magnetization direction thickness uses a ferrite magnet or an alnico magnet. An NdFeB magnet is applied to the permanent magnet 4 having a large product of the coercive force and the magnetization direction thickness. The two types of bonded magnets are arranged in a V shape, but may be arranged in a U shape.

この場合、回転子鉄心2に対して、V字の谷の部分がd軸に、V字の両端部分がq軸に位置するように、積層した永久磁石3,4をV字状(またはU字状)に埋め込む。また、永久磁石3,4の両端の空洞5は、d軸またはq軸と一致する位置に設け、この方向から磁束が積層した永久磁石3,4に入り込まないようにする。すなわち、d軸方向からの磁束が積層した永久磁石3,4に対して垂直に入り込み、保磁力と磁化方向厚の積が小の永久磁石3の減磁及び増磁が効果的に行われるようにする。   In this case, the laminated permanent magnets 3 and 4 are V-shaped (or U-shaped) so that the V-shaped valley portion is positioned on the d-axis and the V-shaped end portions are positioned on the q-axis with respect to the rotor core 2. Embed it in a letter shape. The cavities 5 at both ends of the permanent magnets 3 and 4 are provided at positions that coincide with the d-axis or the q-axis so that magnetic flux does not enter the laminated permanent magnets 3 and 4 from this direction. That is, the magnetic flux from the d-axis direction enters perpendicularly to the laminated permanent magnets 3 and 4 so that the permanent magnet 3 having a small product of the coercive force and the magnetization direction thickness is effectively demagnetized and magnetized. To.

以上のような構成を有する本実施の形態では、前記の実施の形態と同様な作用効果に加えて、積層した2種類の永久磁石3,4をV字状に配置することにより、回転子鉄心2内で配置できる磁石の面積を直線状に配置したものより大きくできる。その結果、永久磁石3,4による磁束を増加できるので磁石によるトルクを大きくできる。さら、V字間にデルタ形状の鉄心が形成されるの、デルタ形状部分を通るq軸磁束が増加する。これによりリラクタンストルクが大きくなり、磁石によるトルクを合計した全モータトルクも大きくなる。   In the present embodiment having the above-described configuration, in addition to the same effects as the above-described embodiments, the rotor cores are arranged by arranging two kinds of laminated permanent magnets 3 and 4 in a V shape. The area of the magnet that can be arranged within 2 can be made larger than that of those arranged linearly. As a result, since the magnetic flux by the permanent magnets 3 and 4 can be increased, the torque by the magnet can be increased. Furthermore, since a delta-shaped iron core is formed between the V-shaped parts, the q-axis magnetic flux passing through the delta-shaped portion increases. As a result, the reluctance torque is increased, and the total motor torque obtained by adding the torques from the magnets is also increased.

(3.第3の実施の形態)
本発明の第3の実施の形態について、図4を用いて説明する。
(3. Third embodiment)
A third embodiment of the present invention will be described with reference to FIG.

本実施の形態は、保磁力と磁化方向厚の積が異なる2種類の永久磁石3,4を磁化方向に貼り合せて、d軸に直角に配置する点は、前記第1の実施の形態と同様である。それに加えて、本実施の形態では、回転子鉄心2のq軸近傍の位置に、同じく積層した2種類の永久磁石3a,4aをq軸と一致する方向に埋め込む。これにより、回転子1の磁極部7が、3個の積層体によって凹形に取り囲まれた構成となる。   This embodiment is different from the first embodiment in that two types of permanent magnets 3 and 4 having different products of coercive force and magnetization direction thickness are bonded in the magnetization direction and arranged perpendicular to the d-axis. It is the same. In addition, in the present embodiment, two types of permanent magnets 3a and 4a that are laminated in the same manner are embedded at a position near the q axis of the rotor core 2 in a direction that coincides with the q axis. Thereby, the magnetic pole part 7 of the rotor 1 becomes a structure enclosed by the concave shape by the three laminated bodies.

この場合、q軸近傍に配置する永久磁石3a,4aの磁化方向はほぼ周方向(q軸と直交する方向)とし、q軸側磁永久磁石3a,4a間に埋め込まれた磁極部7中央の永久磁石3,4はd軸方向を磁化方向とする。また、磁極部7中央の永久磁石3,4の両端、及びq軸近傍に配置する永久磁石3a,4aの鉄心中央側の端部には、空洞5を設けて、d軸方向から加わる減磁または増磁用の磁界が、積層した各磁石3,4または3a,4aに対してその表面と直交する方向から加わるようにする。   In this case, the magnetization directions of the permanent magnets 3a, 4a arranged in the vicinity of the q axis are substantially circumferential (directions orthogonal to the q axis), and the center of the magnetic pole portion 7 embedded between the q axis side permanent magnets 3a, 4a is arranged. The permanent magnets 3 and 4 have the d-axis direction as the magnetization direction. Further, a cavity 5 is provided at both ends of the permanent magnets 3 and 4 at the center of the magnetic pole portion 7 and at the center of the permanent magnets 3a and 4a disposed in the vicinity of the q-axis, and demagnetization applied from the d-axis direction. Alternatively, a magnetic field for magnetizing is applied to each of the laminated magnets 3, 4 or 3a, 4a from a direction perpendicular to the surface thereof.

このような構成を有する本実施形態においては、前記の実施の形態と同様な作用効果に加えて、q軸方向に配置され永久磁石3a,4aはトルクを発生させるq軸電流により生じる磁界の影響を受け難く、減磁し難い。したがって、q軸近傍に配置された永久磁石3a,4aは磁化方向厚みを薄くできる。または、保磁力と磁化方向厚の積が大きい磁石4の厚みを薄くして、保磁力と磁化方向厚の積が小さい磁石3の厚みを厚くできる。この場合の利点は、永久磁石の全鎖交磁束の変化幅を大きくできることである。   In the present embodiment having such a configuration, in addition to the same effects as those of the previous embodiment, the influence of the magnetic field generated by the q-axis current that is arranged in the q-axis direction and the permanent magnets 3a and 4a generate torque. Difficult to receive and difficult to demagnetize. Therefore, the permanent magnets 3a and 4a arranged in the vicinity of the q axis can be thinned in the magnetization direction. Alternatively, the thickness of the magnet 4 having a large product of the coercive force and the magnetization direction thickness can be reduced, and the thickness of the magnet 3 having a small product of the coercive force and the magnetization direction thickness can be increased. The advantage in this case is that the change width of the total flux linkage of the permanent magnet can be increased.

(4.第4の実施の形態)
本発明の第4の実施の形態について、図5(A)を用いて説明する。本実施の形態では、保磁力と磁化方向厚の積が異なる2種類の永久磁石3,4を磁化方向に積層して配置させるにあたり、前記2種類の永久磁石3,4間には鉄などの磁性層8を設ける。
(4. Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, when two types of permanent magnets 3 and 4 having different products of coercive force and magnetization direction thickness are stacked in the magnetization direction, iron or the like is interposed between the two types of permanent magnets 3 and 4. A magnetic layer 8 is provided.

前記各実施の形態のように、永久磁石3,4を積層した場合、互いの磁石が磁気抵抗になる。そのため、保磁力と磁化方向厚の積が大の永久磁石4による強い磁界が、その上に積層された保磁力と磁化方向厚の積が小の永久磁石3による磁気抵抗で弱められその磁束密度が低下する可能性がある。   When the permanent magnets 3 and 4 are laminated as in the above-described embodiments, the magnets become magnetic resistances. Therefore, the strong magnetic field generated by the permanent magnet 4 having a large product of the coercive force and the magnetization direction thickness is weakened by the magnetic resistance of the permanent magnet 3 laminated thereon, and the product of the coercive force and the magnetization direction thickness is small. May be reduced.

本実施の形態では、2種類の永久磁石3,4間に磁性層5があるので、磁気的に並列な磁気回路が構成される。すなわち、保磁力と磁化方向厚の積が大の永久磁石4からの磁束は、その上に積層された保磁力と磁化方向厚の積が小の永久磁石3を貫通する方向で作用するだけでなく、磁性層5の部分から永久磁石3の側方に漏れ出て、結果として、永久磁石3を貫通する磁束とその側方に漏れ出た磁束とが並列にd軸方向に作用する。このように並列に磁気回路が構成されることにより、磁気抵抗部分を回避して磁束が分布することになり、保磁力と磁化方向厚の積が大の磁石4の磁束密度を高くできる。   In the present embodiment, since the magnetic layer 5 is provided between the two types of permanent magnets 3 and 4, a magnetically parallel magnetic circuit is configured. That is, the magnetic flux from the permanent magnet 4 having a large product of the coercive force and the magnetization direction thickness only acts in a direction penetrating the permanent magnet 3 laminated thereon with a small product of the coercive force and the magnetization direction thickness. However, the magnetic layer 5 leaks to the side of the permanent magnet 3, and as a result, the magnetic flux penetrating the permanent magnet 3 and the magnetic flux leaking to the side act in parallel in the d-axis direction. By configuring the magnetic circuit in parallel as described above, the magnetic flux is distributed while avoiding the magnetoresistive portion, and the magnetic flux density of the magnet 4 having a large product of the coercive force and the magnetization direction thickness can be increased.

なお、図5(B)に示すように、2種類の永久磁石3,4間に磁性層5を設けるにあたり、外周側の永久磁石3は内周側の永久磁石4よりも周方向の幅を狭くすることもできる。このようにすると、永久磁石3,4の幅の差の部分には回転子鉄心が接することになるので、この鉄心部分から内周側の磁石の一部の磁束がエアギャップを貫くことになる。   As shown in FIG. 5B, when the magnetic layer 5 is provided between the two types of permanent magnets 3, 4, the outer peripheral permanent magnet 3 has a circumferential width wider than the inner peripheral permanent magnet 4. It can also be narrowed. If it does in this way, since a rotor iron core will contact the part of the difference of the width of permanent magnets 3 and 4, a part magnetic flux of the magnet of the inner circumference side will penetrate an air gap from this iron core part. .

(5.第5の実施の形態)
本発明の第5の実施の形態について、図6を用いて説明する。本実施の形態では、回転子鉄心2の形状を、永久磁石の磁束の中心軸となるd軸近傍のエアギャップ長L1が、磁極間部のq軸近傍のエアギャップ長L2よりも大きくする。
(5. Fifth embodiment)
A fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the rotor core 2 is shaped such that the air gap length L1 near the d-axis, which is the central axis of the magnetic flux of the permanent magnet, is larger than the air gap length L2 near the q-axis between the magnetic poles.

本実施の形態では、d軸電流による磁界は永久磁石3,4に作用させることを目的としているが、漏れ磁界も生じる。本実施の形態ではq軸近傍のエアギャップ長L2をd軸近傍のエアギャップ長L1よりも大きくしている。したがって、磁石を磁化させるためのd軸電流による磁界は、d軸部に配置された永久磁石3,4に効果的に作用させることができる。また、q軸方向の磁気抵抗を大きくするような非磁性部分を回転子鉄心内に設けてもよい。   In the present embodiment, the magnetic field generated by the d-axis current is intended to act on the permanent magnets 3 and 4, but a leakage magnetic field is also generated. In the present embodiment, the air gap length L2 near the q-axis is made larger than the air gap length L1 near the d-axis. Therefore, the magnetic field generated by the d-axis current for magnetizing the magnet can be effectively applied to the permanent magnets 3 and 4 disposed in the d-axis part. Further, a nonmagnetic portion that increases the magnetoresistance in the q-axis direction may be provided in the rotor core.

(6.他の実施の形態)
本発明は、前記の各実施の形態に限定されるものではなく、つぎのような他の実施の形態も包含する。
(6. Other embodiments)
The present invention is not limited to the above-described embodiments, and includes other embodiments as follows.

(1) 前記各実施の形態では4極の回転電機を示したが、8極等の多極の回転電機も本発明を適用できるのは当然である。極数に応じて永久磁石の配置位置、形状が幾分変ることはもちろんであり、作用と効果は同様に得られる。
また、磁極を形成する永久磁石において、保磁力と磁化方向の厚みの積をもって永久磁石を区別する定義をしている。したがって、磁極には同じ種類の永久磁石で形成し、磁化方向厚みを異なるように形成しても同様な作用と効果が得られる。
(1) Although the four-pole rotating electric machine is shown in each of the above embodiments, the present invention can naturally be applied to a multi-pole rotating electric machine such as eight-pole. Depending on the number of poles, the position and shape of the permanent magnets will of course change somewhat, and the action and effect can be obtained in the same way.
Moreover, in the permanent magnet which forms a magnetic pole, the definition which distinguishes a permanent magnet with the product of a coercive force and the thickness of a magnetization direction is made. Therefore, even if the magnetic poles are formed of the same type of permanent magnet and are formed so as to have different magnetization direction thicknesses, the same operation and effect can be obtained.

(2) 図3のように、q軸方向とd軸方向の両方に積層した永久磁石3,4を配置する代わりに、q軸方向にのみ、放射状に積層した永久磁石3,4を配置することも可能である。その場合、磁石の使用量が減るのみで、トルクも減ってしまうので、q軸方向の永久磁石3,4単独ではなく、q軸方向に積層した永久磁石3,4を配置し、d軸とほぼ直角の位置に積層していない固定磁力の磁石を配置することが考えられる。そのようにすれば、最大磁力は大きくなる。但し、磁力の可変幅は少し小さくなる。 (2) As shown in FIG. 3, instead of arranging the permanent magnets 3 and 4 laminated in both the q-axis direction and the d-axis direction, the radially laminated permanent magnets 3 and 4 are arranged only in the q-axis direction. It is also possible. In that case, since the torque is reduced only by reducing the amount of magnets used, the permanent magnets 3 and 4 stacked in the q-axis direction are arranged instead of the q-axis direction permanent magnets 3 and 4 alone. It is conceivable to arrange magnets having a fixed magnetic force that are not stacked at substantially right angles. By doing so, the maximum magnetic force is increased. However, the variable range of the magnetic force is slightly reduced.

(3) 運転時に極短時間のパルス的なd軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させ、かつ、全磁石の誘起電圧に対して位相を進めた電流を連続的に通電させて、電流と永久磁石で生じる電機子巻線の鎖交磁束量を変化させる。 (3) During operation, the permanent magnet was magnetized by a magnetic field generated by a pulsed d-axis current for a very short time, and the amount of magnetic flux of the permanent magnet was changed irreversibly, and the phase was advanced with respect to the induced voltage of all magnets. By continuously energizing the current, the amount of interlinkage magnetic flux of the armature winding generated by the current and the permanent magnet is changed.

すなわち、パルス電流で永久磁石の磁束量を減少させ、さらに電流位相を進めると、磁石磁束に対して逆方向の電流で生じる磁束が発生するので、これを相殺して、全鎖交磁束を減少でき、端子電圧を低下させることができる。なお、電流位相を進めることは負のd軸電流成分を流していることと等価である。   That is, if the amount of magnetic flux of the permanent magnet is reduced by the pulse current and the current phase is further advanced, magnetic flux generated by the current in the opposite direction to the magnetic flux is generated. Terminal voltage can be reduced. Note that advancing the current phase is equivalent to flowing a negative d-axis current component.

このような電流位相進み制御においては、電流位相を進めるとd軸電流が流れて磁石は減磁して幾分磁束量は減る。しかし、パルス電流で大きく減磁させているので、磁束量の低下は比率的には小さい利点がある。   In such current phase advance control, when the current phase is advanced, a d-axis current flows, the magnet is demagnetized, and the amount of magnetic flux is somewhat reduced. However, since the magnetic field is greatly demagnetized by the pulse current, there is an advantage that the reduction of the magnetic flux amount is small in proportion.

本発明の第1の実施の形態の回転子の断面図。Sectional drawing of the rotor of the 1st Embodiment of this invention. 第1の実施の形態の作用を示す模式図。The schematic diagram which shows the effect | action of 1st Embodiment. 本発明の第2の実施の形態の回転子の断面図。Sectional drawing of the rotor of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の回転子の断面図。Sectional drawing of the rotor of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の回転子の断面図。Sectional drawing of the rotor of the 4th Embodiment of this invention. 本発明の第5の実施の形態の回転子の断面図。Sectional drawing of the rotor of the 5th Embodiment of this invention. 特許文献1に記載の回転子の断面図。Sectional drawing of the rotor of patent document 1. FIG. 特許文献1に記載の回転子の作用を示す模式図。The schematic diagram which shows the effect | action of the rotor of patent document 1. FIG.

符号の説明Explanation of symbols

1…回転子
2…回転子鉄心
3…保磁力と磁化方向厚の積が小となる永久磁石
4…保磁力と磁化方向厚の積が大となる永久磁石
5,6…永久磁石端の空洞
7…磁極部
8…磁性層
DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Rotor core 3 ... Permanent magnet 4 in which product of coercive force and magnetization direction thickness becomes small Permanent magnet 5, 6 in which product of coercive force and magnetization direction thickness becomes large ... Cavity at end of permanent magnet 7 ... magnetic pole part 8 ... magnetic layer

Claims (18)

保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石を、磁気的に直列となるように配置して磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を構成し、この回転子の外周にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線の電流が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させて、永久磁石の磁束量を不可逆的に変化させることを特徴とする永久磁石式回転電機。   Two or more types of permanent magnets with a product of coercive force and magnetization direction thickness different from other permanent magnets are arranged magnetically in series to form magnetic poles, and a plurality of these magnetic poles are arranged in the rotor core. A rotor is formed, and a stator is disposed on the outer periphery of the rotor via an air gap. An armature core and an armature winding are provided on the stator, and a magnetic field generated by the current of the armature winding A permanent magnet type rotating electrical machine characterized in that at least one of the permanent magnets constituting the magnetic pole of the rotor is magnetized to irreversibly change the amount of magnetic flux of the permanent magnet. 請求項1に記載の永久磁石式回転電機において、
前記磁極を形成する2種類以上の永久磁石をその磁束が加え合わせになるように回転子鉄心内に配置し、電機子巻線の電流が作る磁界により前記少なくとも1個の永久磁石を磁化させて永久磁石による鎖交磁束を不可逆的に減少させ、かつ、減少後に電機子巻線の電流による磁界を前記減少時と逆方向に発生させて前記少なくとも1個の永久磁石を磁化させて永久磁石による鎖交磁束量を不可逆的に増加させることを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to claim 1,
Two or more kinds of permanent magnets forming the magnetic pole are arranged in the rotor core so that the magnetic fluxes are added together, and the at least one permanent magnet is magnetized by the magnetic field generated by the current of the armature winding. The interlinkage magnetic flux by the permanent magnet is irreversibly decreased, and after the decrease, a magnetic field due to the current of the armature winding is generated in the direction opposite to the decrease, thereby magnetizing the at least one permanent magnet. A permanent magnet type rotating electrical machine characterized by irreversibly increasing the amount of flux linkage.
請求項2に記載の永久磁石式回転電機において、
永久磁石の鎖交磁束を減少させる場合は、他の永久磁石と比較して保磁力と磁化方向厚の積が小さい永久磁石に、電機子巻線の電流による前記永久磁石の磁化方向と逆方向の磁界を作用させて不可逆的に変化させ、永久磁石の鎖交磁束を増加させる場合は、保磁力と磁化方向厚の積が小さい永久磁石に、電機子巻線の電流による前記磁石磁化方向と同方向の磁界を作用させて不可逆的に変化させることを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to claim 2,
When reducing the interlinkage magnetic flux of a permanent magnet, the permanent magnet has a smaller product of coercive force and magnetization direction thickness than other permanent magnets. When the magnetic flux of the permanent magnet is irreversibly changed to increase the flux linkage of the permanent magnet, the permanent magnet having a small product of the coercive force and the magnetization direction thickness, A permanent magnet type rotating electrical machine characterized by irreversibly changing a magnetic field in the same direction.
請求項1から請求項3のいずれか1項に記載の永久磁石式回転電機において、
d軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させ、永久磁石を磁化するd軸電流を流すと同時にq軸電流によりトルクを制御することを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to any one of claims 1 to 3,
The permanent magnet is magnetized by a magnetic field generated by a d-axis current to change the amount of magnetic flux of the permanent magnet irreversibly, and a torque is controlled by a q-axis current at the same time as a d-axis current for magnetizing the permanent magnet flows. Magnet rotating electric machine.
請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
運転時にd軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させ、かつ、d軸電流で生じる磁束により電流と永久磁石で生じる電機子巻線の鎖交磁束量をほぼ可逆的に変化させることを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to any one of claims 1 to 4,
During operation, the permanent magnet is magnetized by a magnetic field generated by the d-axis current to irreversibly change the amount of magnetic flux of the permanent magnet, and the flux linkage of the armature winding generated by the current and the permanent magnet is generated by the magnetic flux generated by the d-axis current. Permanent magnet type rotating electrical machine characterized in that is reversibly changed.
請求項1から請求項5のいずれか1項に記載の永久磁石式回転電機において、最大トルク時には磁極の永久磁石の磁束が加え合わせになるように保磁力と磁化方向厚みの積が他よりも小さな永久磁石を磁化させ、トルクの小さな軽負荷時および中速回転域と高速回転域では、前記の保磁力と磁化方向厚みの積が他よりも小さな永久磁石は、電流による磁界で磁化させて磁束を減少させることを特徴とする永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 5, wherein the product of the coercive force and the thickness in the magnetization direction is larger than the others so that the magnetic flux of the permanent magnet of the magnetic pole is added at the maximum torque. A small permanent magnet is magnetized, and at a light load with a small torque and at a medium speed rotation range and a high speed rotation range, the permanent magnet whose product of the coercive force and the magnetization direction thickness is smaller than the other is magnetized by a magnetic field generated by an electric current. A permanent magnet type rotating electrical machine characterized by reducing magnetic flux. 請求項1から請求項6のいずれか1項に記載の永久磁石式回転電機において、
磁気特性を不可逆変化させる永久磁石は、他の永久磁石からバイアス的な磁界が作用するように配置されることを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to any one of claims 1 to 6,
A permanent magnet type rotating electrical machine characterized in that a permanent magnet for irreversibly changing magnetic characteristics is arranged so that a biased magnetic field acts from another permanent magnet.
請求項1から請求項7のいずれか1項に記載の永久磁石式回転電機において、
磁極を構成する2種類以上の永久磁石は重ねて配置することを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 7,
A permanent magnet type rotating electric machine, wherein two or more kinds of permanent magnets constituting a magnetic pole are arranged in a stacked manner.
請求項1から請求項8のいずれか1項に記載の永久磁石式回転電機において、
磁極を構成する2種類以上の永久磁石は磁化方向がほぼd軸方向になるように配置されることを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 8,
A permanent magnet type rotating electrical machine characterized in that two or more types of permanent magnets constituting magnetic poles are arranged so that the magnetization direction is substantially in the d-axis direction.
請求項1から請求項9のいずれか1項に記載の永久磁石式回転電機において、磁極を構成する2種類以上の永久磁石はV字状、またはU字状に配置されることを特徴とする永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 9, wherein two or more kinds of permanent magnets constituting the magnetic pole are arranged in a V shape or a U shape. Permanent magnet type rotating electric machine. 請求項1から請求項10のいずれか1項に記載の永久磁石式回転電機において、
磁極を構成する2種類以上の永久磁石はq軸近傍に配置されて磁化方向はほぼ周方向とすることを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 10,
A permanent magnet type rotating electrical machine characterized in that two or more kinds of permanent magnets constituting a magnetic pole are arranged in the vicinity of the q-axis and the magnetization direction is substantially circumferential.
請求項1から請求項11のいずれか1項に記載の永久磁石式回転電機において、磁極を構成する2種類以上の永久磁石は磁極部を間に挟んで配置することを特徴とする永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 11, wherein two or more kinds of permanent magnets constituting the magnetic pole are arranged with a magnetic pole portion interposed therebetween. Rotating electric machine. 請求項1から請求項12のいずれか1項に記載の永久磁石式回転電機において、q軸方向の磁気抵抗を磁石部を除くd軸方向の磁気抵抗よりも大きくすることを特徴とする永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 12, wherein the magnetoresistance in the q-axis direction is made larger than the magnetoresistance in the d-axis direction excluding the magnet portion. Rotary electric machine. 請求項1から請求項13のいずれか1項に記載の永久磁石式回転電機において、
q軸方向のエアギャップ長はd軸方向のエアギャップ長よりも大きくすることを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 13,
An air gap length in the q-axis direction is made larger than an air gap length in the d-axis direction.
請求項1から請求項14のいずれか1項に記載の永久磁石式回転電機において、
磁極の磁石を不可逆変化させて鎖交磁束を最小にした状態で回転子が最高回転速度になったときに、永久磁石による誘導起電圧を、回転電機の電源であるインバータ電子部品の耐電圧以下とすることを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 14,
When the rotor reaches the maximum rotation speed with the magnetic flux linkage minimized by changing the magnetic pole magnet irreversibly, the induced electromotive force of the permanent magnet is less than the withstand voltage of the inverter electronic component that is the power supply for the rotating electrical machine. A permanent magnet type rotating electrical machine.
請求項1から請求項15のいずれか1項に記載の永久磁石式回転電機において、
回転子を固定子に挿入して組み立てる時は保磁力と磁化方向厚の積が小さな永久磁石を不可逆変化させて、永久磁石による鎖交磁束を減少させた状態とすることを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 15,
When a rotor is inserted into a stator and assembled, a permanent magnet having a small product of coercive force and magnetization direction thickness is irreversibly changed to reduce the interlinkage magnetic flux of the permanent magnet. Rotary electric machine.
請求項1から請求項16のいずれか1項に記載の永久磁石式回転電機において、
保磁力と磁化方向厚の積が小さな永久磁石をその極性が反転するまで減磁した状態において、電流位相を進める運転を行うことを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 16,
A permanent magnet type rotating electric machine characterized by performing an operation of advancing a current phase in a state where a permanent magnet having a small product of coercive force and magnetization direction thickness is demagnetized until its polarity is reversed.
請求項1から請求項17のいずれか1項に記載の永久磁石式回転電機において、
運転時に極短時間のパルス的なd軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させ、かつ、全磁石の誘起電圧に対して位相を進めた電流を連続的に通電させて、電流と永久磁石で生じる電機子巻線の鎖交磁束量を変化させることを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 17,
During operation, the permanent magnet is magnetized with a magnetic field generated by a pulsed d-axis current for a very short time to irreversibly change the amount of magnetic flux of the permanent magnet, and the current whose phase is advanced with respect to the induced voltage of all the magnets is continuous. The permanent magnet type rotating electrical machine is characterized by changing the amount of interlinkage magnetic flux of the armature winding generated by the current and the permanent magnet.
JP2008162201A 2008-06-20 2008-06-20 Permanent magnet rotary electric machine Active JP5361260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162201A JP5361260B2 (en) 2008-06-20 2008-06-20 Permanent magnet rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162201A JP5361260B2 (en) 2008-06-20 2008-06-20 Permanent magnet rotary electric machine

Publications (2)

Publication Number Publication Date
JP2010004671A true JP2010004671A (en) 2010-01-07
JP5361260B2 JP5361260B2 (en) 2013-12-04

Family

ID=41585898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162201A Active JP5361260B2 (en) 2008-06-20 2008-06-20 Permanent magnet rotary electric machine

Country Status (1)

Country Link
JP (1) JP5361260B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167055A (en) * 2010-01-14 2011-08-25 Yaskawa Electric Corp Rotor of permanent magnet type synchronous rotating electric machine, the permanent magnet type synchronous rotating electric machine, and vehicle, elevator, fluid machine or processing machine using the permanent magnet type synchronous rotating electric machine
WO2011122111A1 (en) * 2010-03-30 2011-10-06 アイシン・エィ・ダブリュ株式会社 Dynamo electric machine
WO2012014260A1 (en) * 2010-07-30 2012-02-02 株式会社 日立製作所 Rotating electrical machine, and electric vehicle using same
JP2013051761A (en) * 2011-08-30 2013-03-14 Toshiba Corp Permanent magnet type rotating electrical machine
WO2014208469A1 (en) * 2013-06-24 2014-12-31 ダイキン工業株式会社 Motor and compressor
EP3024122A3 (en) * 2014-11-18 2016-08-10 Steering Solutions IP Holding Corporation Injection molded buried permanent magnet motor for an electric power steering system
WO2016179841A1 (en) * 2015-05-14 2016-11-17 广东美芝制冷设备有限公司 Rotor of rotary motor, permanent magnet motor, compressor and air-conditioning system
EP2600499A4 (en) * 2010-07-28 2018-03-28 Nissan Motor Co., Ltd Rotating electric machine rotor
CN109067046A (en) * 2018-11-01 2018-12-21 珠海格力电器股份有限公司 Rotor and magneto
US10205359B2 (en) 2013-11-18 2019-02-12 Steering Solutions Ip Holding Corporation Low cost permanent magnet motor for an electric power steering system
CN111769667A (en) * 2020-06-30 2020-10-13 东南大学 Series-parallel magnetic circuit separated magnetic pole type memory motor
US11011965B2 (en) 2015-07-31 2021-05-18 Nissan Motor Co., Ltd. Permanent magnet synchronous motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284503B2 (en) * 2019-08-05 2023-05-31 国立大学法人 岡山大学 Variable magnetic force motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261433A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Compound magnet, method for manufacturing the same and motor
JP2006280195A (en) * 2005-03-01 2006-10-12 Toshiba Corp Permanent magnet type rotary electric machine
JP2008029148A (en) * 2006-07-24 2008-02-07 Toshiba Corp Variable magnetic flux drive system
JP2008048514A (en) * 2006-08-11 2008-02-28 Toshiba Corp Rotor of permanent magnet type rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280195A (en) * 2005-03-01 2006-10-12 Toshiba Corp Permanent magnet type rotary electric machine
JP2006261433A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Compound magnet, method for manufacturing the same and motor
JP2008029148A (en) * 2006-07-24 2008-02-07 Toshiba Corp Variable magnetic flux drive system
JP2008048514A (en) * 2006-08-11 2008-02-28 Toshiba Corp Rotor of permanent magnet type rotating electric machine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167055A (en) * 2010-01-14 2011-08-25 Yaskawa Electric Corp Rotor of permanent magnet type synchronous rotating electric machine, the permanent magnet type synchronous rotating electric machine, and vehicle, elevator, fluid machine or processing machine using the permanent magnet type synchronous rotating electric machine
WO2011122111A1 (en) * 2010-03-30 2011-10-06 アイシン・エィ・ダブリュ株式会社 Dynamo electric machine
JP2011211860A (en) * 2010-03-30 2011-10-20 Aisin Aw Co Ltd Rotary electric machine
CN102782990A (en) * 2010-03-30 2012-11-14 爱信艾达株式会社 Dynamo electric machine
US8618709B2 (en) 2010-03-30 2013-12-31 Aisin Aw Co., Ltd. Rotary electric machine with improved energy efficiency
CN102782990B (en) * 2010-03-30 2014-12-10 爱信艾达株式会社 Rotating electrical machine
EP2600499A4 (en) * 2010-07-28 2018-03-28 Nissan Motor Co., Ltd Rotating electric machine rotor
WO2012014260A1 (en) * 2010-07-30 2012-02-02 株式会社 日立製作所 Rotating electrical machine, and electric vehicle using same
CN103038981A (en) * 2010-07-30 2013-04-10 株式会社日立制作所 Rotating electrical machine, and electric vehicle using same
JPWO2012014260A1 (en) * 2010-07-30 2013-09-09 株式会社日立製作所 Rotating electric machine and electric vehicle using the same
JP2013051761A (en) * 2011-08-30 2013-03-14 Toshiba Corp Permanent magnet type rotating electrical machine
WO2014208469A1 (en) * 2013-06-24 2014-12-31 ダイキン工業株式会社 Motor and compressor
US10205359B2 (en) 2013-11-18 2019-02-12 Steering Solutions Ip Holding Corporation Low cost permanent magnet motor for an electric power steering system
EP3024122A3 (en) * 2014-11-18 2016-08-10 Steering Solutions IP Holding Corporation Injection molded buried permanent magnet motor for an electric power steering system
US9979243B2 (en) 2014-11-18 2018-05-22 Steering Solutions Ip Holding Corporation Low cost injection molded buried permanent magnet motor for an electric power steering system
WO2016179841A1 (en) * 2015-05-14 2016-11-17 广东美芝制冷设备有限公司 Rotor of rotary motor, permanent magnet motor, compressor and air-conditioning system
US11011965B2 (en) 2015-07-31 2021-05-18 Nissan Motor Co., Ltd. Permanent magnet synchronous motor
CN109067046A (en) * 2018-11-01 2018-12-21 珠海格力电器股份有限公司 Rotor and magneto
JP2022502988A (en) * 2018-11-01 2022-01-11 グリー エレクトリック アプライアンシーズ インク オブ ズーハイGree Electric Appliances, Inc. Of Zhuhai Rotor and permanent magnet motor
JP7230185B2 (en) 2018-11-01 2023-02-28 グリー エレクトリック アプライアンシーズ インク オブ ズーハイ rotor and permanent magnet motor
CN111769667A (en) * 2020-06-30 2020-10-13 东南大学 Series-parallel magnetic circuit separated magnetic pole type memory motor
CN111769667B (en) * 2020-06-30 2023-02-28 东南大学 Series-parallel magnetic circuit separated magnetic pole type memory motor

Also Published As

Publication number Publication date
JP5361260B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5361260B2 (en) Permanent magnet rotary electric machine
JP5159577B2 (en) Permanent magnet rotating electric machine
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5305753B2 (en) Permanent magnet rotating electric machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5305887B2 (en) Permanent magnet rotating electric machine
JP5398103B2 (en) Permanent magnet rotating electric machine
JP5159171B2 (en) Permanent magnet rotating electric machine
JP5787673B2 (en) Permanent magnet type rotating electric machine
JP5355055B2 (en) Permanent magnet rotating electric machine
WO2008023413A1 (en) Permanent magnetic type electric motor
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JP6539004B1 (en) Rotor and rotating electric machine
JP2002112513A (en) Dynamo-electric machine
JP5198178B2 (en) Permanent magnet type rotating electric machine and permanent magnet motor drive system
JP5178488B2 (en) Permanent magnet rotating electric machine
JP4735772B1 (en) Magnet excitation rotating electrical machine system
JP2012029563A (en) Permanent magnet type rotary electric machine
JP2010183778A (en) Electric motor and method of controlling the same
JP5544738B2 (en) Permanent magnet rotating electric machine
JP5390314B2 (en) Permanent magnet rotating electric machine
JP5197551B2 (en) Permanent magnet rotating electric machine
JP2011172432A (en) Rotor of embedded magnet synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R151 Written notification of patent or utility model registration

Ref document number: 5361260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151