JP2010183778A - Electric motor and method of controlling the same - Google Patents

Electric motor and method of controlling the same Download PDF

Info

Publication number
JP2010183778A
JP2010183778A JP2009026253A JP2009026253A JP2010183778A JP 2010183778 A JP2010183778 A JP 2010183778A JP 2009026253 A JP2009026253 A JP 2009026253A JP 2009026253 A JP2009026253 A JP 2009026253A JP 2010183778 A JP2010183778 A JP 2010183778A
Authority
JP
Japan
Prior art keywords
magnet
mover
electric motor
low
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009026253A
Other languages
Japanese (ja)
Other versions
JP5504637B2 (en
Inventor
Takashi Kato
崇 加藤
Takuya Hatakeyama
拓也 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009026253A priority Critical patent/JP5504637B2/en
Publication of JP2010183778A publication Critical patent/JP2010183778A/en
Application granted granted Critical
Publication of JP5504637B2 publication Critical patent/JP5504637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve both a torque in a low-speed area and high efficiency under weak magnetic flux control in a high-speed area. <P>SOLUTION: A moving member 1 and a stator (armature) 20 are disposed to be counter to each other across an air gap 15. The moving member 1 is formed by embedding an N pole 2 and an S pole 3 alternately in a moving member core 4. The N pole 2 has a high coercivity magnet 2a and a low coercivity magnet 2b. The low coercivity magnet 2b is placed on the front side in the direction of drive of the moving member 1, while the high coercivity magnet 2a is placed on the rear side in the direction of drive of the moving member 1. The S pole 3 has a high coercivity magnet 3a and a low coercivity magnet 3b. The low coercivity magnet 3b is placed on the front side in the direction of drive of the moving member 1, while the high coercivity magnet 3a is placed on the rear side in the direction of drive of the moving member 1. At high rotation operation, an angle of lead of the current phase of the stator 20 is advanced temporarily to demagnetize the low coercivity magnets 2b and 3b, and then the angle of lead is set back to the original to obtain weak magnetic flux. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、可動子に永久磁石を備えた電動機及びその制御方法に関する。   The present invention relates to an electric motor including a permanent magnet in a mover and a control method thereof.

永久磁石型可動子を備えた電動機において、電機子反作用の大きい減磁しやすい部位に保磁力が大きく起磁力の小さい磁石を配置し、電機子反作用の小さい部位に保磁力が小さく起磁力の大きい磁石を配置することで、減磁耐力を向上させ、電動機の最大トルク及び効率を高める技術が知られている(例えば、特許文献1,2)。   In an electric motor equipped with a permanent magnet type mover, a magnet having a large coercive force and a small magnetomotive force is arranged in a portion where the armature reaction is easy to demagnetize, and a coercive force is small and the magnetomotive force is large in a portion where the armature reaction is small. There are known techniques for improving the demagnetization resistance and increasing the maximum torque and efficiency of an electric motor by arranging magnets (for example, Patent Documents 1 and 2).

特開平10−112946号公報Japanese Patent Laid-Open No. 10-112946 WO2003/079516WO2003 / 079516

しかしながら、上記従来の永久磁石型可動子を備えた電動機では、低速トルクを大きく取るために磁石量を増やしたり、起磁力の大きい磁石を用いた場合に、高速回転域において誘起電圧が電源電圧を超えるレベルになると、弱め磁束制御を行って誘起電圧を低減させる必要があり、効率低下の要因となっていた。巻線界磁型の電動機では高速回転域で磁束を弱めることができるが、常に界磁電流が必要であり、効率を向上させるのが難しかった。   However, in an electric motor equipped with the conventional permanent magnet type mover described above, when the amount of magnets is increased in order to obtain a large amount of low-speed torque, or when a magnet having a large magnetomotive force is used, the induced voltage becomes the power supply voltage in the high-speed rotation region. When the level is exceeded, it is necessary to control the magnetic flux weakening to reduce the induced voltage, which causes a reduction in efficiency. In a wound field type motor, the magnetic flux can be weakened in a high-speed rotation range, but a field current is always required, and it is difficult to improve efficiency.

上記課題を解決するために、本発明は、永久磁石型可動子を備えた電動機において、可動子に設けられるそれぞれの磁極は、異なる保磁力を有する複数の永久磁石を可動子の駆動方向に並べ、且つ駆動方向前側に配置した磁石の保磁力を、駆動方向後側に配置した磁石の保磁力より低くしたことを特徴とする。   In order to solve the above-described problems, the present invention provides a motor including a permanent magnet type mover, wherein each of the magnetic poles provided on the mover includes a plurality of permanent magnets having different coercive forces arranged in the drive direction of the mover. And the coercive force of the magnet arrange | positioned at the drive direction front side was made lower than the coercive force of the magnet arrange | positioned at the drive direction rear side.

本発明によれば、d軸電流を流さない状態では低保磁力側の磁石の減磁は発生せず、大きな磁束を得られ、高回転域においてd軸電流を付与することで低保磁力側の磁石に減磁が発生するので結果的に磁束が弱まり、誘起電圧を下げることができるので可変速範囲が拡大するという効果がある。   According to the present invention, in the state where no d-axis current is passed, the demagnetization of the magnet on the low coercive force side does not occur, a large magnetic flux can be obtained, and by applying the d-axis current in the high rotation range, the low coercive force side As a result, the magnetic flux is weakened and the induced voltage can be lowered, so that the variable speed range is expanded.

また資源が限られる希土類を用いたNd−Fe−B系などの高保磁力磁石の使用量を低減できるので、大幅なコスト削減効果が得られる。   In addition, since the amount of high coercivity magnets such as Nd—Fe—B based on rare earths with limited resources can be reduced, a significant cost reduction effect can be obtained.

本発明に係る電動機の実施例1の構造を示す模式断面図である。It is a schematic cross section which shows the structure of Example 1 of the electric motor which concerns on this invention. (a)実施例1の減磁による磁束変化を説明する図、(b)実施例1の減磁による磁束成分の変化を説明する図である。(A) The figure explaining the magnetic flux change by the demagnetization of Example 1, (b) The figure explaining the change of the magnetic flux component by the demagnetization of Example 1. FIG. (a)実施例1の電動機におけるβ=0°の場合を説明する可動子模式断面図である。(b)実施例1の電動機におけるβ=45°の場合の減磁の様子を説明する可動子模式断面図である。(c)実施例1の電動機におけるβ=90°の場合の減磁の様子を説明する可動子模式断面図である。(A) It is a needle | mover schematic sectional drawing explaining the case where (beta) = 0 degrees in the electric motor of Example 1. FIG. (B) It is a needle | mover schematic sectional drawing explaining the mode of a demagnetization in the case of (beta) = 45 degrees in the electric motor of Example 1. FIG. (C) It is a needle | mover schematic sectional drawing explaining the mode of a demagnetization in the case of (beta) = 90 degrees in the electric motor of Example 1. FIG. (a)実施例2の電動機におけるβ=0°の場合を説明する可動子模式断面図である。(b)実施例2の電動機におけるβ=45°の場合の減磁の様子を説明する可動子模式断面図である。(c)実施例2の電動機におけるβ=90°の場合の減磁の様子を説明する可動子模式断面図である。(A) It is a needle | mover schematic sectional drawing explaining the case where (beta) = 0 degrees in the electric motor of Example 2. FIG. (B) It is a needle | mover schematic sectional drawing explaining the mode of a demagnetization in the case of (beta) = 45 degrees in the electric motor of Example 2. FIG. (C) It is a needle | mover schematic sectional drawing explaining the mode of a demagnetization in the case of (beta) = 90 degrees in the electric motor of Example 2. FIG. (a)実施例3の電動機における正転時のβ=0°の場合の減磁の様子を説明する可動子模式断面図である。(b)実施例3の電動機における正転時のβ=45°の場合の減磁の様子を説明する可動子模式断面図である。(A) It is a needle | mover schematic sectional drawing explaining the mode of a demagnetization in the case of (beta) = 0 degree at the time of forward rotation in the electric motor of Example 3. FIG. (B) It is a needle | mover schematic sectional drawing explaining the mode of a demagnetization in the case of (beta) = 45 degrees at the time of forward rotation in the electric motor of Example 3. FIG. (a)実施例3の電動機における反転時のβ=0°の場合の減磁の様子を説明する可動子模式断面図である。(b)実施例3の電動機における反転時のβ=45°の場合の減磁の様子を説明する可動子模式断面図である。(A) It is a needle | mover schematic sectional drawing explaining the mode of a demagnetization in the case of (beta) = 0 degree at the time of inversion in the electric motor of Example 3. FIG. (B) It is a needle | mover schematic sectional drawing explaining the mode of a demagnetization in the case of (beta) = 45 degrees at the time of inversion in the electric motor of Example 3. FIG.

以下、図面を参照して本発明の実施の形態を詳細に説明する。尚、以下に説明する各実施形態は、インナーロータ型電動機、アウターロータ型電動機やアキシャルギャップ型などの回転電動機に限らず、直線駆動型のリニアモータ装置にも適用される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, each embodiment described below is applied not only to rotary motors such as an inner rotor type electric motor, an outer rotor type electric motor, and an axial gap type, but also to a linear drive type linear motor device.

図1は、本発明に係る電動機の実施例1の模式断面図である。図1において、可動子1と固定子(電機子)20とがエアギャップ15を介して、対向して配置されている。可動子1は、N極2とS極3とが交互に可動子コア4に埋め込まれて形成されている。N極2は、比較的保磁力の高い高保磁力磁石2aと比較的保磁力の低い低保磁力磁石2bとを備える。低保磁力磁石2bは、可動子1の駆動方向前側に配置され、低保磁力磁石2bより保磁力の高い高保磁力磁石2aは、可動子1の駆動方向後側に配置されている。同様に、S極3は、比較的保磁力の高い高保磁力磁石3aと比較的保磁力の低い低保磁力磁石3bとを備える。低保磁力磁石3bは、可動子1の駆動方向前側に配置され、低保磁力磁石3bより保磁力の高い高保磁力磁石3aは、可動子1の駆動方向後側に配置されている。   FIG. 1 is a schematic cross-sectional view of a first embodiment of an electric motor according to the present invention. In FIG. 1, a mover 1 and a stator (armature) 20 are arranged to face each other with an air gap 15 interposed therebetween. The mover 1 is formed by alternately embedding the N pole 2 and the S pole 3 in the mover core 4. The N pole 2 includes a high coercivity magnet 2a having a relatively high coercivity and a low coercivity magnet 2b having a relatively low coercivity. The low coercivity magnet 2b is disposed on the front side in the driving direction of the mover 1, and the high coercivity magnet 2a having a higher coercivity than the low coercivity magnet 2b is disposed on the rear side in the driving direction of the mover 1. Similarly, the S pole 3 includes a high coercivity magnet 3a having a relatively high coercivity and a low coercivity magnet 3b having a relatively low coercivity. The low coercivity magnet 3 b is disposed on the front side in the driving direction of the mover 1, and the high coercivity magnet 3 a having a higher coercivity than the low coercivity magnet 3 b is disposed on the rear side in the driving direction of the mover 1.

高保磁力磁石2a、3aには、例えば、ネオジム磁石(Nd−Fe−B系磁石)を用いる。低保磁力磁石2b,3bには、ネオジム磁石より保磁力が低い、例えばフェライト磁石やアルニコ磁石などを用いる。   For the high coercive force magnets 2a and 3a, for example, neodymium magnets (Nd-Fe-B magnets) are used. As the low coercive force magnets 2b and 3b, for example, ferrite magnets or alnico magnets having a coercive force lower than those of neodymium magnets are used.

固定子20は、固定子コア21と、巻線24とを備える。電磁鋼板を互いに絶縁して積層した固定子コア21には、周期的にティース22及びスロット23が形成されている。スロット23には、巻線24が巻回されている。尚、図1は、本発明を回転電動機に適用した場合には、エアギャップ15が直線状となるように展開した図である。   The stator 20 includes a stator core 21 and a winding 24. Teeth 22 and slots 23 are periodically formed in a stator core 21 in which electromagnetic steel plates are insulated and laminated. A winding 24 is wound around the slot 23. FIG. 1 is a developed view in which the air gap 15 is linear when the present invention is applied to a rotary motor.

図2は、実施例1における減磁前と減磁後の磁束及び磁束成分スペクトルを示す図である。図2(a)に示すように、減磁前に磁束のピーク値が約±0.93[Wb]であったものが、減磁後に磁束のピーク値が約±0.82[Wb]へ低下している。   FIG. 2 is a diagram illustrating a magnetic flux and a magnetic flux component spectrum before and after demagnetization in the first embodiment. As shown in FIG. 2A, the peak value of the magnetic flux before demagnetization was about ± 0.93 [Wb], but the peak value of the magnetic flux after demagnetization is about ± 0.82 [Wb]. It is falling.

図3は、実施例1の可動子に対する電機子磁束密度分布による減磁作用を説明する模式断面図であり、可動子のみを図示し、固定子(電機子)の図示を省略している。尚、図1と同じ構成要素には、同じ符号を付与して、重複する説明を省略している。   FIG. 3 is a schematic cross-sectional view for explaining the demagnetizing action by the armature magnetic flux density distribution on the mover of the first embodiment, in which only the mover is illustrated and the stator (armature) is not illustrated. In addition, the same code | symbol is provided to the same component as FIG. 1, and the overlapping description is abbreviate | omitted.

また、以下の説明において、βは、可動子に配置された永久磁石により固定子に誘起される電圧位相と、固定子の電流位相との差を示す。図3(a)は、β=0°の場合を示し、図3(b)は、β=45°の場合を示し、図3(c)は、β=90°の場合を示す。   In the following description, β represents the difference between the voltage phase induced in the stator by the permanent magnet disposed on the mover and the current phase of the stator. 3A shows a case where β = 0 °, FIG. 3B shows a case where β = 45 °, and FIG. 3C shows a case where β = 90 °.

図3(a)において、図1のギャップ15における磁束密度分布5に対して、電気角で90°進角した位置に、電機子磁束密度分布6aが設定されている。このとき磁石が電機子反作用にさらされる部位を矢印7で示す。この電機子反作用は、高保磁力磁石2a及び3aに作用するが、低保磁力磁石2b及び3bは、電機子反作用による反磁界にさらされないので、減磁が生じない。   In FIG. 3A, the armature magnetic flux density distribution 6a is set at a position advanced by 90 ° in electrical angle with respect to the magnetic flux density distribution 5 in the gap 15 in FIG. A portion where the magnet is exposed to the armature reaction at this time is indicated by an arrow 7. Although this armature reaction acts on the high coercivity magnets 2a and 3a, the low coercivity magnets 2b and 3b are not exposed to the demagnetizing field due to the armature reaction, and therefore no demagnetization occurs.

図3(b)は、β=45°の状態を示す。電機子電流が進角されて電機子磁束密度分布6bとなると、矢印18で示す範囲の低保磁力磁石2b及び3bに電機子反作用が及ぶので減磁が生じ、結果的に磁石磁束が低下する。したがって通常の弱め磁束制御のように、高回転域においてトルクに寄与しないd軸電流が必要なくなり、効率が向上する。また低回転域では、通常の起磁力を有するので高トルクが得られる。   FIG. 3B shows a state where β = 45 °. When the armature current is advanced to an armature magnetic flux density distribution 6b, demagnetization occurs due to the armature reaction on the low coercivity magnets 2b and 3b in the range indicated by the arrow 18, resulting in a decrease in the magnetic flux of the magnet. . Therefore, unlike the normal flux-weakening control, d-axis current that does not contribute to torque is not required in the high rotation range, and the efficiency is improved. In the low rotation range, a high torque can be obtained because of the normal magnetomotive force.

図3(c)は、β=90°の状態を示す。さらに電機子電流が進角されて電機子磁束密度分布6cとなると、低保磁力磁石2b及び3bに電機子反作用が及ぶ範囲18が拡大し、減磁が生じる範囲が拡大する。   FIG. 3C shows a state where β = 90 °. Further, when the armature current is advanced to an armature magnetic flux density distribution 6c, the range 18 where the armature reaction reaches the low coercive force magnets 2b and 3b is expanded, and the range where demagnetization occurs is expanded.

図3に示したように、突極比を有する磁石埋込型(Interior Permanent Magnet,IPM)構造(またはインセット型SPM(Serface Permanent Magnet))においては、最大トルク制御時にβ≠0°となることが一般的であるが、本発明の構成によれば進角により低保磁力磁石2b及び3bに減磁が生じるので好ましくない。そこで高保磁力磁石2aと低保磁力磁石2bとの境界位置17を、その可動子の突極比から得られる最大トルク(直線駆動型の場合は最大推力)が発生するβであるβ0分だけ、あらかじめオフセットしておくことにより、最大トルク制御時の減磁を防止し、最大トルク低下を回避することができる。   As shown in FIG. 3, in an interior magnet type (Interior Permanent Magnet, IPM) structure having a salient pole ratio (or an inset type SPM (Surface Permanent Magnet)), β ≠ 0 ° during maximum torque control. However, according to the configuration of the present invention, demagnetization occurs in the low coercivity magnets 2b and 3b due to the advance angle, which is not preferable. Therefore, the boundary position 17 between the high coercive force magnet 2a and the low coercive force magnet 2b is set to β0, which is β at which the maximum torque obtained from the salient pole ratio of the mover (maximum thrust in the case of the linear drive type) is generated, By offsetting in advance, demagnetization at the time of maximum torque control can be prevented, and a decrease in maximum torque can be avoided.

以上説明した本実施例によれば、d軸電流を流さない状態では低保磁力側の磁石の減磁は発生せず、大きな磁束を得られ、高回転域においてd軸電流を付与することで低保磁力側の磁石に減磁が発生するので結果的に磁束が弱まり、誘起電圧を下げることができるので可変速範囲が拡大するという効果がある。   According to the present embodiment described above, the demagnetization of the magnet on the low coercive force side does not occur in the state where no d-axis current is passed, and a large magnetic flux can be obtained and the d-axis current is applied in the high rotation range. Since demagnetization occurs in the magnet on the low coercive force side, the magnetic flux is weakened as a result, and the induced voltage can be lowered, so that the variable speed range is expanded.

また資源が限られる希土類を用いたネオジム磁石などの高保磁力磁石の使用量を低減できるので、大幅にコスト削減することができるという効果がある。   In addition, since the amount of high coercivity magnets such as neodymium magnets using rare earths with limited resources can be reduced, there is an effect that the cost can be significantly reduced.

また本実施例によれば、最大トルクまたは最大推力動作点でのβに対して、高保磁力磁石と低保磁力磁石との境界位置の駆動方向位置を規定しているため、最大トルク状態で低保磁力磁石が減磁することを回避し、最大トルクまたは最大推力の低下を防止することができるという効果がある。   Further, according to the present embodiment, the driving direction position of the boundary position between the high coercivity magnet and the low coercivity magnet is defined with respect to β at the maximum torque or maximum thrust operating point, so that it is low in the maximum torque state. There is an effect that it is possible to avoid demagnetization of the coercive force magnet and to prevent a decrease in the maximum torque or the maximum thrust.

次に、本発明をSPM型電動機に適用した実施例2を説明する。図4(a)〜(c)は、実施例2の可動子に対する電機子磁束密度分布による減磁作用を説明する模式断面図である。図4は、可動子のみを図示し、図1と同様な固定子(電機子)の図示を省略している。図4において、可動子1の図示しない固定子に対向する表面には、高保磁力磁石9aと低保磁力磁石9bを備えたN極9と、高保磁力磁石10aと低保磁力磁石10bを備えたS極10とが交互に隙間無く形成されている。   Next, a second embodiment in which the present invention is applied to an SPM type electric motor will be described. FIGS. 4A to 4C are schematic cross-sectional views illustrating a demagnetizing action by the armature magnetic flux density distribution for the mover of the second embodiment. FIG. 4 shows only the mover, and the illustration of the stator (armature) similar to that in FIG. 1 is omitted. In FIG. 4, the surface of the mover 1 facing the stator (not shown) is provided with an N pole 9 having a high coercivity magnet 9a and a low coercivity magnet 9b, and a high coercivity magnet 10a and a low coercivity magnet 10b. The S poles 10 are alternately formed without gaps.

高保磁力磁石9a、10aには、例えば、ネオジム磁石(Nd−Fe−B系磁石)を用いる。低保磁力磁石9b,10bには、ネオジム磁石より保磁力が低い、例えばフェライト磁石やアルニコ磁石などを用いる。   For the high coercive force magnets 9a and 10a, for example, neodymium magnets (Nd-Fe-B magnets) are used. For the low coercive force magnets 9b and 10b, for example, ferrite magnets or alnico magnets having a lower coercive force than neodymium magnets are used.

図4(a)は、β=0°の場合を示し、図4(b)は、β=45°の場合を示し、図4(c)は、β=90°の場合を示す。図4(a)において、ギャップの磁束密度分布5に対して、電気角で90°進角した位置に、電機子磁束密度分布6aが設定されている。このとき磁石が電機子反作用にさらされる範囲を矢印7で示す。この電機子反作用は、高保磁力磁石9a及び10aに作用するが、低保磁力磁石9b及び10bは、電機子反作用による反磁界にさらされないので、減磁が生じない。   4A shows a case where β = 0 °, FIG. 4B shows a case where β = 45 °, and FIG. 4C shows a case where β = 90 °. In FIG. 4A, an armature magnetic flux density distribution 6a is set at a position advanced by 90 ° in electrical angle with respect to the magnetic flux density distribution 5 of the gap. The range in which the magnet is exposed to the armature reaction at this time is indicated by an arrow 7. Although this armature reaction acts on the high coercivity magnets 9a and 10a, the low coercivity magnets 9b and 10b are not exposed to the demagnetizing field due to the armature reaction, and therefore no demagnetization occurs.

図4(b)は、β=45°の状態を示す。電機子電流が進角されて電機子磁束密度分布6bとなると、磁石が電機子反作用にさらされる範囲7が拡大するとともに、矢印18で示す範囲の低保磁力磁石9b及び10bに電機子反作用が及ぶ。これにより低保磁力磁石9b及び10bの減磁が生じ、結果的に磁石磁束が低下する。したがって通常の弱め磁束制御のように、高回転域においてトルクに寄与しないd軸電流が必要なくなり、効率が向上する。また低回転域では、通常の起磁力を有するので高トルクが得られる。   FIG. 4B shows a state where β = 45 °. When the armature current is advanced to an armature magnetic flux density distribution 6b, the range 7 in which the magnet is exposed to the armature reaction is expanded, and the low coercivity magnets 9b and 10b in the range indicated by the arrow 18 have an armature reaction. It reaches. This causes demagnetization of the low coercivity magnets 9b and 10b, resulting in a decrease in the magnetic flux of the magnet. Therefore, unlike the normal flux-weakening control, d-axis current that does not contribute to torque is not required in the high rotation range, and the efficiency is improved. In the low rotation range, a high torque can be obtained because of the normal magnetomotive force.

図4(c)は、β=90°の状態を示す。さらに電機子電流が進角されて電機子磁束密度分布6cとなると、低保磁力磁石9b及び10bに電機子反作用が及ぶ範囲18が拡大るとともに電機子反作用が強くなるので、減磁が生じる範囲が拡大して、さらに磁石磁束が低下する。   FIG. 4C shows a state where β = 90 °. Further, when the armature current is advanced to become the armature magnetic flux density distribution 6c, the range 18 in which the armature reaction reaches the low coercive force magnets 9b and 10b is expanded and the armature reaction is strengthened. Expands and magnetic flux decreases further.

また本実施例では、高保磁力磁石9aと10aとの間に、低保磁力磁石9b及び10bが配置されている。このため、図4の状態から電機子電流進角により低保磁力磁石9b及び10bの極性を反転させることで、可動子1の駆動方向が反転した場合にも、各磁極の駆動方向前側に低保磁力磁石を配置し、駆動方向後側に高保磁力磁石を配置する構成が得られる。   In this embodiment, low coercivity magnets 9b and 10b are arranged between the high coercivity magnets 9a and 10a. Therefore, even if the driving direction of the mover 1 is reversed by reversing the polarity of the low coercive force magnets 9b and 10b by the armature current advance angle from the state of FIG. A configuration in which a coercive magnet is disposed and a high coercive magnet is disposed on the rear side in the driving direction is obtained.

このとき、低保磁力磁石の極性反転に伴い、磁極中心位置が低保磁力磁石の駆動方向長さである電気角で90°オフセットされるので、電機子の電流位相角の基準位置を磁極オフセットに追従させて、電気角で90°オフセットするように制御する。   At this time, as the polarity of the low coercivity magnet is reversed, the center position of the magnetic pole is offset by 90 ° by the electrical angle that is the driving direction length of the low coercivity magnet, so the reference position of the current phase angle of the armature is offset by the magnetic pole offset. And control so that the electrical angle is offset by 90 °.

以上説明した本実施例によれば、高保磁力磁石と低保磁力磁石が交互に配置される構成なので、低保磁力磁石の極性を反転させることにより、可動子回転方向が反転する場合にも、d軸電流を流さない状態では低保磁力側の磁石の減磁は発生せず、大きな磁束を得られ、高回転域においてd軸電流を付与することで低保磁力磁石に減磁が発生するので結果的に磁束が弱まり、誘起電圧を下げることができるので可変速範囲が拡大するという効果がある。   According to the present embodiment described above, since the high coercivity magnet and the low coercivity magnet are alternately arranged, by reversing the polarity of the low coercivity magnet, even when the mover rotation direction is reversed, In a state where no d-axis current flows, demagnetization of the magnet on the low coercivity side does not occur, a large magnetic flux can be obtained, and demagnetization occurs in the low coercivity magnet by applying the d-axis current in the high rotation range. As a result, the magnetic flux is weakened, and the induced voltage can be lowered, so that the variable speed range is expanded.

また本実施例によれば、資源が限られる希土類を用いたNd−Fe−B系などの高保磁力磁石の使用量を低減できるので、大幅にコスト削減することができるという効果がある。   In addition, according to the present embodiment, the amount of high coercivity magnets such as Nd—Fe—B system using rare earth, which is limited in resources, can be reduced, so that there is an effect that the cost can be greatly reduced.

また本実施例によれば、可動子の回転方向の反転に伴い、高保磁力磁石間に配置される低保磁力磁石の極性が反転されるので、磁極中心位置の位相が、可動子駆動方向に低保磁力磁石の長さ分だけオフセットする。これに追従して電流位相の基準位置を補正することで、駆動方向反転時にも各磁極の駆動方向前側に低保磁力磁石を配置し、駆動方向後側に高保磁力磁石を配置する構成が得られるという効果がある。   Further, according to the present embodiment, the polarity of the low coercivity magnet disposed between the high coercivity magnets is reversed with the reversal of the rotation direction of the mover, so that the phase of the magnetic pole center position is in the mover drive direction. Offset by the length of the low coercivity magnet. By following this and correcting the reference position of the current phase, a configuration in which a low coercivity magnet is arranged on the front side in the driving direction of each magnetic pole and a high coercivity magnet is arranged on the rear side in the driving direction even when the driving direction is reversed. There is an effect that it is.

次に、図5、図6を参照して、本発明に係る電動機の実施例3を説明する。本実施例は、各磁極を保磁力の異なる3つの磁石で構成し、各磁極の駆動方向中央部に高保磁力磁石を配置し、各磁極の駆動方向前後の端部にそれぞれ低保磁力磁石を配置した例である。図5は回転電機の正転時、或いは直線駆動型装置の図中右方向駆動時を示す。図6は回転電機の逆転時、或いは直線駆動型装置の図中左方向駆動時を示す。   Next, a third embodiment of the electric motor according to the present invention will be described with reference to FIGS. In this embodiment, each magnetic pole is composed of three magnets having different coercive forces, a high coercive magnet is arranged at the center in the driving direction of each magnetic pole, and low coercive magnets are arranged at the front and rear ends of each magnetic pole in the driving direction. This is an example of arrangement. FIG. 5 shows a state in which the rotating electrical machine is normally rotated or a linear drive type device is driven in the right direction in the drawing. FIG. 6 shows the time when the rotating electrical machine is rotated in the reverse direction or when the linear drive type device is driven in the left direction in the figure.

図5(a)、(b)において、可動子1の図示しない固定子に対向する表面には、N極11と、S極12とが形成されている。N極11は、高保磁力磁石11aと低保磁力磁石11b、11cを備える。高保磁力磁石11aは、N極11の駆動方向中央部に配置されている。低保磁力磁石11cはN極11の駆動方向前端部に配置され、低保磁力磁石11bはN極11の駆動方向後端部に配置されている。   5A and 5B, an N pole 11 and an S pole 12 are formed on the surface of the mover 1 that faces a stator (not shown). The N pole 11 includes a high coercivity magnet 11a and low coercivity magnets 11b and 11c. The high coercive force magnet 11 a is disposed in the central portion in the driving direction of the N pole 11. The low coercivity magnet 11 c is disposed at the front end of the N pole 11 in the driving direction, and the low coercivity magnet 11 b is disposed at the rear end of the N pole 11 in the driving direction.

同様に、S極12は、高保磁力磁石12aと低保磁力磁石12b、12cを備える。高保磁力磁石12aは、S極12の駆動方向中央部に配置されている。低保磁力磁石12cはS極12の駆動方向前端部に配置され、低保磁力磁石12bはS極12の駆動方向後端部に配置されている。   Similarly, the south pole 12 includes a high coercivity magnet 12a and low coercivity magnets 12b and 12c. The high coercive force magnet 12 a is disposed at the center in the driving direction of the S pole 12. The low coercivity magnet 12 c is disposed at the front end of the S pole 12 in the driving direction, and the low coercivity magnet 12 b is disposed at the rear end of the S pole 12 in the driving direction.

高保磁力磁石11a、12aには、例えば、ネオジム磁石(Nd−Fe−B系磁石)を用いる。低保磁力磁石11b,11c,12b,12cには、ネオジム磁石より保磁力が低い、例えばフェライト磁石やアルニコ磁石などを用いる。   As the high coercivity magnets 11a and 12a, for example, neodymium magnets (Nd-Fe-B magnets) are used. For the low coercivity magnets 11b, 11c, 12b, and 12c, for example, a ferrite magnet or an alnico magnet is used that has a lower coercivity than a neodymium magnet.

そして、N極11とS極12との間には、軟磁性体の可動子コア4が設けられ、インセットSPM構造またはIPM構造をなしている。   A mover core 4 made of a soft magnetic material is provided between the N pole 11 and the S pole 12 to form an inset SPM structure or an IPM structure.

図5(a)は、正転時かつβ=0°の場合を示す。図5(a)において、ギャップの磁束密度分布5に対して、電気角で90°進角した位置に、電機子磁束密度分布6aが設定されている。このとき磁石が電機子反作用にさらされる部位を矢印7で示す。この電機子反作用は、高保磁力磁石11a及び12a、低保磁力磁石11b及び12bに作用する。そして、矢印18で示す範囲の低保磁力磁石11b及び12bに電機子反作用が及ぶので減磁が生じ、結果的に磁石磁束が低下する。したがって通常の弱め磁束制御のように、高回転域においてトルクに寄与しないd軸電流が必要なくなり、効率が向上する。また低回転域では、通常の起磁力を有するので高トルクが得られる。   FIG. 5A shows the case of normal rotation and β = 0 °. In FIG. 5A, the armature magnetic flux density distribution 6a is set at a position advanced by 90 ° in electrical angle with respect to the magnetic flux density distribution 5 of the gap. A portion where the magnet is exposed to the armature reaction at this time is indicated by an arrow 7. This armature reaction acts on the high coercivity magnets 11a and 12a and the low coercivity magnets 11b and 12b. And since the armature reaction reaches the low coercive force magnets 11b and 12b in the range indicated by the arrow 18, demagnetization occurs, and as a result, the magnetic flux decreases. Therefore, unlike the normal flux-weakening control, d-axis current that does not contribute to torque is not required in the high rotation range, and the efficiency is improved. In the low rotation range, a high torque can be obtained because of the normal magnetomotive force.

図5(b)は、正転時かつβ=45°の場合を示す。電機子電流が進角されて電機子磁束密度分布6bとなると、低保磁力磁石11b及び12bに電機子反作用が及ぶ範囲18において、は変わらず、減磁も同様である。   FIG. 5B shows the case of forward rotation and β = 45 °. When the armature current is advanced to the armature magnetic flux density distribution 6b, the demagnetization is the same in the range 18 in which the armature reaction reaches the low coercivity magnets 11b and 12b.

図6(a)は、反転時かつβ=0°の場合を示し、図6(b)は、反転時かつβ=45°の場合を示す。N極11及びS極12の構造が可動子駆動方向とその逆方向に関して対称となっているので、電機子磁束分布6a、6bが低保磁力磁石に及ぼす作用は、11bと11cが入れ替わり、12bと12cが入れ替わるだけで、図5の正転時と同様である。   6A shows the case of inversion and β = 0 °, and FIG. 6B shows the case of inversion and β = 45 °. Since the structures of the N pole 11 and the S pole 12 are symmetric with respect to the mover driving direction and the opposite direction, the action of the armature magnetic flux distributions 6a and 6b on the low coercive force magnet is switched between 11b and 11c, and 12b And 12c are interchanged, which is the same as in the forward rotation of FIG.

本実施例によれば、突極比を有するIPM構造の電動機やインセットSPM構造の電動機の構成においても可動子の移動方向(または回転方向)の反転を可能としつつ、高回転域で電機子電流の位相進角により低保磁力磁石を減磁させた後、進角を戻してd軸電流を減少させることにより、トルクに寄与しないd軸電流を低減して効率を高めることができるという効果がある。   According to this embodiment, even in the configuration of an IPM structure electric motor having an salient pole ratio or an inset SPM structure electric motor, the armature can be reversed in the high rotation range while enabling the moving direction (or rotation direction) of the mover to be reversed. By demagnetizing the low coercivity magnet by the phase advance angle of the current and then returning the advance angle to decrease the d-axis current, the d-axis current that does not contribute to the torque can be reduced and the efficiency can be increased. There is.

また資源が限られる希土類を用いたNd−Fe−B系などの高保磁力磁石の使用量を低減できるので、大幅にコスト削減することができるという効果がある。   In addition, since the amount of high coercivity magnets such as Nd—Fe—B based on rare earth, which has limited resources, can be reduced, there is an effect that the cost can be greatly reduced.

1 可動子
2 N極
2a 高保磁力磁石
2b 低保磁力磁石
3 S極
3a 高保磁力磁石
3b 低保磁力磁石
4 可動子コア
20 固定子
21 固定子コア
22 ティース
23 スロット
24 巻線
DESCRIPTION OF SYMBOLS 1 Movator 2 N pole 2a High coercive force magnet 2b Low coercive force magnet 3 S pole 3a High coercive force magnet 3b Low coercive force magnet 4 Movable core 20 Stator 21 Stator core 22 Teeth 23 Slot 24 Winding

Claims (7)

固定子と永久磁石を備えた可動子とを備えた電動機において、
可動子に設けられるそれぞれの磁極は、異なる保磁力を有する複数の永久磁石を可動子の駆動方向に並べることにより構成され、且つ駆動方向前側に比較的保磁力の低い低保磁力磁石を配置し、駆動方向後側に比較的保磁力の高い高保磁力磁石を配置したことを特徴とする電動機。
In an electric motor having a stator and a mover having a permanent magnet,
Each magnetic pole provided on the mover is configured by arranging a plurality of permanent magnets having different coercive forces in the drive direction of the mover, and a low coercivity magnet having a relatively low coercivity is arranged on the front side in the drive direction. An electric motor comprising a high coercivity magnet having a relatively high coercivity on the rear side in the driving direction.
可動子に配置された永久磁石により固定子に誘起される電圧位相と、固定子の電流位相との差をβとし、最大推力または最大トルクが得られるβをβ0とした時に、前記高保磁力磁石と前記低保磁力磁石の境界位置を、各磁極の可動方向中央部から電気角でβ0程度、駆動方向前側に設けたことを特徴とする請求項1記載の電動機。   When the difference between the voltage phase induced in the stator by the permanent magnet arranged on the mover and the current phase of the stator is β, and β that provides the maximum thrust or maximum torque is β0, the high coercivity magnet 2. The electric motor according to claim 1, wherein a boundary position between the low coercive force magnet and the low coercive force magnet is provided on the front side in the driving direction by an electrical angle of about β0 from the center in the moving direction of each magnetic pole. 磁極の駆動方向中央部に比較的保磁力の高い高保磁力磁石を配置し、磁極の駆動方向前後の両端部に比較的起磁力の低い低起磁力磁石を配置し、且つN極とS極との間には軟磁性体の可動子コアを設けたことを特徴とする請求項1記載の電動機。   A high coercivity magnet having a relatively high coercive force is disposed at the center in the driving direction of the magnetic pole, a low magnetomotive force magnet having a relatively low coercivity is disposed at both ends of the magnetic pole in the driving direction, and an N pole and an S pole. 2. The electric motor according to claim 1, wherein a mover core made of soft magnetic material is provided between the two. 前記可動子は、N極とS極の境界に可動子コアを設けない表面磁石型構造としたことを特徴とする請求項1記載の電動機。   2. The electric motor according to claim 1, wherein the mover has a surface magnet type structure in which a mover core is not provided at a boundary between the N pole and the S pole. 請求項4に記載の電動機を制御する電動機の制御方法であって、
可動子の駆動方向を反転させる際に、極性の異なる高保磁力磁石間に配置される低保磁力磁石の極性を電機子反作用により反転させることを特徴とする電動機の制御方法。
An electric motor control method for controlling an electric motor according to claim 4,
A method for controlling an electric motor, comprising: reversing the polarity of low coercivity magnets arranged between high coercivity magnets having different polarities by armature reaction when reversing the drive direction of the mover.
可動子の駆動方向の反転に伴い、電流位相角の基準位置を、可動子駆動方向の低保磁力磁石の長さに相当する電気角分だけオフセットさせることを特徴とする請求項5記載の電動機の制御方法。   6. The electric motor according to claim 5, wherein the reference position of the current phase angle is offset by an electrical angle corresponding to the length of the low coercivity magnet in the mover driving direction as the moving direction of the mover is reversed. Control method. 請求項1乃至請求項4の何れか1項に記載の電動機を制御する電動機の制御方法であって、
可動子に配置された永久磁石により固定子に誘起される電圧位相と、固定子の電流位相との差をβとしたとき、電機子駆動電圧よりも誘起電圧が大きくなるような高回転速度領域において、一旦βを大きく進角制御して低保持磁石を減磁させた後、βを減じることを特徴とする電動機の制御方法。
An electric motor control method for controlling an electric motor according to any one of claims 1 to 4,
High rotational speed region where the induced voltage is larger than the armature drive voltage, where β is the difference between the voltage phase induced in the stator by the permanent magnet placed on the mover and the current phase of the stator The method of controlling an electric motor according to claim 1, wherein β is greatly advanced and the low holding magnet is demagnetized once, and then β is reduced.
JP2009026253A 2009-02-06 2009-02-06 Electric motor and control method thereof Active JP5504637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026253A JP5504637B2 (en) 2009-02-06 2009-02-06 Electric motor and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009026253A JP5504637B2 (en) 2009-02-06 2009-02-06 Electric motor and control method thereof

Publications (2)

Publication Number Publication Date
JP2010183778A true JP2010183778A (en) 2010-08-19
JP5504637B2 JP5504637B2 (en) 2014-05-28

Family

ID=42764847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026253A Active JP5504637B2 (en) 2009-02-06 2009-02-06 Electric motor and control method thereof

Country Status (1)

Country Link
JP (1) JP5504637B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064413A (en) * 2012-09-21 2014-04-10 Denso Corp Rotor and rotary electric machine
CN107124084A (en) * 2017-06-09 2017-09-01 浙江理工大学 A kind of permanent magnet linear synchronous motor non-uniform mixing permanent magnet excitation topological structure
CN117060607A (en) * 2023-09-01 2023-11-14 鲁东大学 Variable-speed permanent magnet linear generator for wave power generation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649732B (en) * 2019-10-28 2024-02-23 山东大学 Mixed excitation rotor and mixed excitation surface-mounted permanent magnet motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670520A (en) * 1992-08-19 1994-03-11 Toshiba Mach Co Ltd Synchronous motor
JPH0767274A (en) * 1993-08-20 1995-03-10 Seiko Epson Corp Permanent magnet rotor
JPH07336980A (en) * 1994-06-01 1995-12-22 Nippondenso Co Ltd Brushless dc motor
JP2000092763A (en) * 1998-09-18 2000-03-31 Toshiba Corp Permanent magnet type motor
JP2000278900A (en) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd Rotor of motor
JP2002335643A (en) * 2001-05-10 2002-11-22 Mitsubishi Electric Corp Electric motor
WO2003079516A1 (en) * 2002-03-20 2003-09-25 Daikin Industries, Ltd. Permanent magnet type motor and compressor comprising it
JP2006087296A (en) * 2004-09-17 2006-03-30 Lg Electronics Inc Permanent magnet motor
JP2007174885A (en) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd Rotor of synchronous motor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670520A (en) * 1992-08-19 1994-03-11 Toshiba Mach Co Ltd Synchronous motor
JPH0767274A (en) * 1993-08-20 1995-03-10 Seiko Epson Corp Permanent magnet rotor
JPH07336980A (en) * 1994-06-01 1995-12-22 Nippondenso Co Ltd Brushless dc motor
JP2000092763A (en) * 1998-09-18 2000-03-31 Toshiba Corp Permanent magnet type motor
JP2000278900A (en) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd Rotor of motor
JP2002335643A (en) * 2001-05-10 2002-11-22 Mitsubishi Electric Corp Electric motor
WO2003079516A1 (en) * 2002-03-20 2003-09-25 Daikin Industries, Ltd. Permanent magnet type motor and compressor comprising it
JP2006087296A (en) * 2004-09-17 2006-03-30 Lg Electronics Inc Permanent magnet motor
JP2007174885A (en) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd Rotor of synchronous motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064413A (en) * 2012-09-21 2014-04-10 Denso Corp Rotor and rotary electric machine
US9537361B2 (en) 2012-09-21 2017-01-03 Denso Corporation Rotor and electric rotating machine
CN107124084A (en) * 2017-06-09 2017-09-01 浙江理工大学 A kind of permanent magnet linear synchronous motor non-uniform mixing permanent magnet excitation topological structure
CN117060607A (en) * 2023-09-01 2023-11-14 鲁东大学 Variable-speed permanent magnet linear generator for wave power generation

Also Published As

Publication number Publication date
JP5504637B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5159171B2 (en) Permanent magnet rotating electric machine
WO2010058576A1 (en) Permanent magnet type rotating electric machine
JP5361260B2 (en) Permanent magnet rotary electric machine
JP5061207B2 (en) Permanent magnet synchronous machine
JP2006280195A (en) Permanent magnet type rotary electric machine
WO2008023413A1 (en) Permanent magnetic type electric motor
JP2009201300A (en) Permanent magnet type rotary electric machine, method for assembling permanent magnet type rotary electric machine, method for disassembling permanent magnet type rotary electric machine and drive system for permanent magnet type rotary electric machine
JP2008245368A (en) Permanent magnet type rotary electric machine and permanent magnet motor drive system
JP5787673B2 (en) Permanent magnet type rotating electric machine
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
US11289959B2 (en) Rotor and rotary electric machine
JP2009131070A (en) Magnet type synchronous machine
JP5198178B2 (en) Permanent magnet type rotating electric machine and permanent magnet motor drive system
JP5504637B2 (en) Electric motor and control method thereof
JP2012029563A (en) Permanent magnet type rotary electric machine
JP2006081377A (en) Rotor of rotary electric machine
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP5750987B2 (en) Permanent magnet rotating electric machine
US7388309B2 (en) Magnetic circuit structure for rotary electric machine
JP2009065803A (en) Magnet synchronous machine
JP2011172323A (en) Permanent magnet type rotary electric machine
JP5197551B2 (en) Permanent magnet rotating electric machine
JP2007288838A (en) Embedded magnet type motor
JP2022035612A (en) Permanent magnet synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R151 Written notification of patent or utility model registration

Ref document number: 5504637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151