JP5544738B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP5544738B2
JP5544738B2 JP2009079896A JP2009079896A JP5544738B2 JP 5544738 B2 JP5544738 B2 JP 5544738B2 JP 2009079896 A JP2009079896 A JP 2009079896A JP 2009079896 A JP2009079896 A JP 2009079896A JP 5544738 B2 JP5544738 B2 JP 5544738B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic
magnetic flux
rotor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009079896A
Other languages
Japanese (ja)
Other versions
JP2010233393A (en
Inventor
有満  稔
有ニ 成瀬
崇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009079896A priority Critical patent/JP5544738B2/en
Publication of JP2010233393A publication Critical patent/JP2010233393A/en
Application granted granted Critical
Publication of JP5544738B2 publication Critical patent/JP5544738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、ロータに永久磁石を備える永久磁石式回転電機に関する。   The present invention relates to a permanent magnet type rotating electric machine having a permanent magnet in a rotor.

ロータに永久磁石を備える永久磁石式回転電機では、高回転領域においてステータコイルに生じる誘起電圧が過剰となって電圧制限値を超えることを防止するために、ステータコイルに負のd軸電流を流して電機子反作用による減磁作用を発生させ、等価的な弱め磁界効果を得られるようにする、いわゆる弱め磁束制御が一般的に行われている。しかしながら、一般的な弱め磁束制御では、電機子反作用によって永久磁石自体に反磁界が直接加わることで永久磁石の減磁を招いて性能低下に繋がるといった問題や、減磁を避けるためには永久磁石としてレアメタルを多量に使用する高保磁力タイプのものを用いる必要がありコスト高になるといった問題、広い駆動範囲を実現できずに性能限界まで使用することができないといった問題などが指摘されており、従来、このような問題を回避するための改良技術が種々検討されている。例えば、下記特許文献1には、ステータスロットに高抵抗、高透磁率、高飽和磁束密度となる圧粉磁心により形成した磁性楔を取り付けた構造とすることで、高回転ほど磁性楔に磁束を多く通過させて短絡させ、ステータコイルに鎖交する主磁束を低減させる技術が記載されている。   In a permanent magnet type rotating electrical machine having a permanent magnet in the rotor, a negative d-axis current is passed through the stator coil in order to prevent the induced voltage generated in the stator coil from becoming excessive in the high rotation region and exceeding the voltage limit value. In general, so-called field-weakening control that generates a demagnetizing action by an armature reaction and obtains an equivalent field-weakening effect is generally performed. However, in general magnetic flux weakening control, the demagnetization of the permanent magnet is caused by the direct application of the demagnetizing field to the permanent magnet itself due to the armature reaction. It is necessary to use a high coercive force type that uses a large amount of rare metal as a high cost, and problems such as the fact that it cannot be used to the performance limit without realizing a wide driving range are pointed out. Various improvement techniques for avoiding such problems have been studied. For example, in Patent Document 1 below, a magnetic wedge formed of a dust core having a high resistance, high magnetic permeability, and high saturation magnetic flux density is attached to a status lot. A technique for reducing the main magnetic flux linked to the stator coil by passing a large number of the short circuit is described.

特開平8−172742号公報JP-A-8-172742

しかしながら、特許文献1に記載されている従来の技術は、圧粉磁心により形成した磁性楔に磁束を通過させて短絡させることにより主磁束を低減させる構成であるため、高回転領域だけでなく低回転領域においても磁束の短絡が生じやすく、低回転領域での性能が低下するといった問題があった。   However, the conventional technique described in Patent Document 1 is a configuration in which the main magnetic flux is reduced by passing the magnetic flux through a magnetic wedge formed by a dust core and short-circuiting it. There is a problem that magnetic flux is easily short-circuited even in the rotation region, and the performance in the low rotation region is degraded.

本発明は、以上のような従来技術の問題に鑑みて創案されたものであって、高回転領域にてステータコイルに生じる誘起電圧が過剰となることを有効に抑制しながら、低回転領域から高回転領域に亘る広範囲の動作領域において高効率の運転を可能とする永久磁石式回転電機を提供することを目的としている。   The present invention was devised in view of the problems of the prior art as described above, and effectively suppresses the induction voltage generated in the stator coil from becoming excessive in the high rotation region, and from the low rotation region. An object of the present invention is to provide a permanent magnet type rotating electrical machine that enables high-efficiency operation in a wide range of operation over a high rotation range.

本発明に係る永久磁石式回転電機は、主磁束とは異なる漏れ磁束の磁気回路に磁性体よりなる通電部材を設け、この通電部材に電流を通電することによって漏れ磁束の磁気回路の磁気抵抗を変化させて主磁束量を制御する構成とすることで、上述した課題を解決する。   The permanent magnet type rotating electrical machine according to the present invention is provided with a current-carrying member made of a magnetic material in a magnetic circuit having a leakage magnetic flux different from the main magnetic flux, and by supplying a current to the current-carrying member, the magnetic resistance of the magnetic circuit of the leakage magnetic flux The above-described problem is solved by changing the main magnetic flux amount to be changed.

本発明に係る永久磁石式回転電機によれば、漏れ磁束の磁気回路に設けた通電部材への通電電流を制御することでステータコイルに鎖交する主磁束量を減少または増加させることができるので、高回転領域にてステータコイルに生じる誘起電圧が過剰となることを有効に抑制しながら、低回転領域から高回転領域に亘る広範囲の動作領域において高効率の運転を実現することができる。   According to the permanent magnet type rotating electrical machine according to the present invention, the amount of main magnetic flux linked to the stator coil can be reduced or increased by controlling the energization current to the energization member provided in the magnetic circuit of the leakage magnetic flux. In addition, it is possible to achieve high-efficiency operation in a wide range of operation from the low rotation region to the high rotation region while effectively suppressing an excessive induction voltage generated in the stator coil in the high rotation region.

本発明の基本原理を説明するための簡易磁気回路モデルを示す図である。It is a figure which shows the simple magnetic circuit model for demonstrating the basic principle of this invention. コイルへの通電電流の向き及び大きさと主磁束量との関係を示すグラフ図である。It is a graph which shows the relationship between the direction and magnitude | size of the energization current to a coil, and the amount of main magnetic fluxes. コイルへの通電電流の向き及び大きさと主磁束量との関係をFEM解析により検証した結果を示す図である。It is a figure which shows the result of having verified the relationship between the direction and magnitude | size of the energization current to a coil, and the amount of main magnetic fluxes by FEM analysis. 第1の実施形態に係る永久磁石式回転電機の断面図である。It is sectional drawing of the permanent magnet type rotary electric machine which concerns on 1st Embodiment. ロータの永久磁石端部の周辺に飽和磁束密度の低い磁性体を配設した構造を示すロータの部分展開図である。FIG. 5 is a partial development view of the rotor showing a structure in which a magnetic body having a low saturation magnetic flux density is disposed around the end of the permanent magnet of the rotor. ロータの永久磁石端部の周辺にコア材の体積を減少させる開口部を設けた構造を示すモータの部分展開図である。FIG. 4 is a partial development view of a motor showing a structure in which an opening for reducing the volume of a core material is provided around the end of a permanent magnet of a rotor. 第2の実施形態に係る永久磁石式回転電機の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of permanent magnet type rotary electric machine which concerns on 2nd Embodiment.

以下、本発明の実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[原理説明]
まず、本発明の原理について説明する。本発明の適用対象となる永久磁石式回転電機は、高回転になるほどステータコイルに生じる誘起電圧が大きくなるので、端子電圧が電圧制限値を超えないようにするために、高回転領域ではステータコイルに鎖交する主磁束量を低減させる必要がある。その一方で、低回転で動作させる場合には、できるだけ主磁束量を多くすることが運転効率の向上に繋がるため、低回転領域では主磁束量を増加させることが求められる。本発明は、以上のような永久磁石式回転電機に求められる動作領域ごとの性能を、漏れ磁束の磁気回路における磁気抵抗を変化させて主磁束量を制御することによって実現することを基本とする。すなわち、漏れ磁束の磁気回路に磁性体よりなる通電部材を設け、この通電部材への通電を制御することにより、高回転時には漏れ磁束の磁気回路における磁気抵抗を小さくして漏れ磁束を増加させ、ステータコイルに鎖交する主磁束量を低減させる。一方、低回転時には漏れ磁束の磁気回路における磁気抵抗を大きくして漏れ磁束を減少させ、主磁束量を確保できるようにする。以下、このような基本原理を簡易な磁気回路モデルを用いて説明する。
[Principle explanation]
First, the principle of the present invention will be described. In the permanent magnet type rotating electrical machine to which the present invention is applied, the induced voltage generated in the stator coil increases as the rotation speed increases. Therefore, in order to prevent the terminal voltage from exceeding the voltage limit value, Therefore, it is necessary to reduce the amount of main magnetic flux interlinked. On the other hand, when operating at a low rotation, increasing the amount of main magnetic flux as much as possible leads to an improvement in operating efficiency. Therefore, it is required to increase the amount of main magnetic flux in the low rotation region. The present invention is basically realized by controlling the main magnetic flux amount by changing the magnetic resistance in the magnetic circuit of the leakage magnetic flux, for each operation region required for the permanent magnet type rotating electric machine as described above. . That is, by providing a current-carrying member made of a magnetic material in the magnetic circuit of the leakage magnetic flux, and controlling the current supply to this current-carrying member, the magnetic resistance in the magnetic circuit of the leakage magnetic flux is reduced and the leakage magnetic flux is increased during high rotation, The amount of main magnetic flux linked to the stator coil is reduced. On the other hand, at the time of low rotation, the magnetic resistance in the magnetic circuit of the leakage flux is increased to reduce the leakage flux so that the main magnetic flux amount can be secured. Hereinafter, such a basic principle will be described using a simple magnetic circuit model.

図1は、C型形状のコア100に永久磁石101を埋め込んで、その永久磁石101の左右両端に高透磁率の磁性材料よりなるコイル102を配置した構成の簡易磁気回路モデルを示す図である。この図1に示す簡易磁気回路モデルでは、永久磁石101が図中上向きの磁界を発生しており、C型形状のコア100を流れてギャップGを通過する磁束が主磁束、永久磁石101の端部で短絡する磁束が漏れ磁束である。   FIG. 1 is a diagram showing a simple magnetic circuit model having a configuration in which a permanent magnet 101 is embedded in a C-shaped core 100 and coils 102 made of a magnetic material having a high magnetic permeability are disposed on both left and right ends of the permanent magnet 101. . In the simple magnetic circuit model shown in FIG. 1, the permanent magnet 101 generates an upward magnetic field in the drawing, and the magnetic flux that flows through the C-shaped core 100 and passes through the gap G is the main magnetic flux, and the end of the permanent magnet 101. The magnetic flux short-circuited at the part is the leakage flux.

このような簡易磁気回路モデルにおいて、永久磁石101の左右両端に配置したコイル102に図1(a)に示す向きで電流を通電したとする。このとき、漏れ磁束の磁気回路となる永久磁石101左右の領域では、永久磁石101の短絡磁束とコイル102への通電により生じる磁束の向きが互いに逆向きとなって打ち消し合うため、通過している磁束が極めて少なく磁気抵抗が低い状態となっている。したがって、結果として磁束は少ない(飽和していない)状態であるが永久磁石101の短絡磁束が多く流れており、相対的に主磁束φ1が低減される。これを表したのが下記の式(1)である。

Figure 0005544738
In such a simple magnetic circuit model, it is assumed that a current is applied to the coils 102 arranged at the left and right ends of the permanent magnet 101 in the direction shown in FIG. At this time, in the regions on the left and right sides of the permanent magnet 101 serving as a magnetic circuit for leakage flux, the directions of the short-circuit magnetic flux of the permanent magnet 101 and the magnetic flux generated by energization of the coil 102 are opposite to each other and cancel each other. The magnetic flux is extremely small and the magnetic resistance is low. Therefore, as a result, although the magnetic flux is small (not saturated), the short-circuit magnetic flux of the permanent magnet 101 is large, and the main magnetic flux φ1 is relatively reduced. This is expressed by the following formula (1).
Figure 0005544738

なお、Rmcは主磁気回路を構成するコア100の磁気抵抗[Wb/A]、Rmc_leakは漏れ磁束の磁気回路における磁気抵抗[Wb/A]、Rmmは永久磁石101の磁気抵抗[Wb/A]、tは永久磁石101の厚さ[m]、Mは永久磁石101の磁化力[T]、Hはコア100内部の磁界強度[A/m]、Hは永久磁石101内部の磁界強度[A/m]、Bはコア100内部の磁束密度[T]、Bは永久磁石101内部の磁束密度[T]、μはコア100の透磁率[H/m]、μは真空透磁率[H/m]、Nはコイル102の巻数、Iはコイル102への通電電流[A]である。 R mc is the magnetic resistance [Wb / A] of the core 100 constituting the main magnetic circuit, R mc_leak is the magnetic resistance [Wb / A] in the magnetic circuit of leakage magnetic flux, and R mm is the magnetic resistance [Wb of the permanent magnet 101]. / a], t is the thickness of the permanent magnet 101 [m], M is the magnetizing force of the permanent magnet 101 [T], H c is the inner core 100 magnetic field intensity [a / m], H m is the internal permanent magnet 101 , B c is the magnetic flux density [T] inside the core 100, B m is the magnetic flux density [T] inside the permanent magnet 101, μ is the magnetic permeability [H / m] of the core 100, μ 0 is the vacuum permeability [H / m], N is the number of turns of the coil 102, and I is the energization current [A] to the coil 102.

一方、永久磁石101の左右両端に配置したコイル102に図1(b)に示す向きで電流を通電した場合には、漏れ磁束の磁気回路となる永久磁石101の左右両端では、コイル102への通電により生じる磁束の向きが永久磁石101の短絡磁束と同じ向きとなり、磁気抵抗が高い状態となる。したがって、永久磁石101の短絡磁束が小さくなり、相対的に主磁束φ2が増加する。これを表したのが下記の式(2)であり、漏れ磁束の磁気回路が磁気飽和した状態を示している。

Figure 0005544738
On the other hand, when a current is applied to the coils 102 arranged at the left and right ends of the permanent magnet 101 in the direction shown in FIG. 1B, the coils 102 are connected to the coils 102 at the left and right ends of the permanent magnet 101 serving as a magnetic circuit for leakage flux. The direction of the magnetic flux generated by energization is the same as the short-circuit magnetic flux of the permanent magnet 101, and the magnetic resistance is high. Therefore, the short-circuit magnetic flux of the permanent magnet 101 is reduced, and the main magnetic flux φ2 is relatively increased. This is expressed by the following equation (2), which shows a state where the magnetic circuit of the leakage magnetic flux is magnetically saturated.
Figure 0005544738

以上をまとめると、図2に示すようなコイル102への通電電流Iに対する主磁束φの関係が得られる。ここで、式(1)に示した漏れ磁束の磁気回路が磁気飽和していない状態での主磁束φ1と、式(2)に示した漏れ磁束の磁気回路が磁気飽和した状態での主磁束φ2との割合は、下記式(3)のようになる。

Figure 0005544738
In summary, the relationship of the main magnetic flux φ with respect to the energization current I to the coil 102 as shown in FIG. 2 is obtained. Here, the main magnetic flux φ1 in the state where the magnetic circuit of the leakage magnetic flux shown in the equation (1) is not magnetically saturated, and the main magnetic flux in the state where the magnetic circuit of the magnetic flux of leakage shown in the equation (2) is magnetically saturated. The ratio with φ2 is expressed by the following formula (3).
Figure 0005544738

また、コイル102への通電電流Iと主磁束φとの関係を有限要素法(FEM)解析により検証すると、図3に示すような関係が得られる。 Further, when the relationship between the energization current I to the coil 102 and the main magnetic flux φ is verified by a finite element method (FEM) analysis, the relationship shown in FIG. 3 is obtained.

以上の結果から、コイル102への通電電流Iに応じて主磁束φが変化し、特に通電電流Iが0の付近で主磁束φが大幅に変化することが分かる。つまり、磁界を発生させている永久磁石101の短絡磁束(漏れ磁束)の磁気回路中に、高透磁率の磁性材料よりなるコイル102を配置し、このコイル102への通電電流Iを制御することによって、主磁束φを適切に制御することが可能となる。このような機能(界磁調整機能)を永久磁石式回転電機に適用すれば、高回転領域にてステータコイルに生じる誘起電圧が過剰となることを有効に抑制しながら、低回転領域から高回転領域に亘る広範囲の動作領域において高効率の運転を実現することが可能となる。 From the above results, it can be seen that the main magnetic flux φ changes according to the energization current I to the coil 102, and the main magnetic flux φ changes significantly especially when the energization current I is near zero. That is, the coil 102 made of a magnetic material having a high magnetic permeability is disposed in the magnetic circuit of the short-circuit magnetic flux (leakage magnetic flux) of the permanent magnet 101 that generates a magnetic field, and the energization current I to the coil 102 is controlled. Thus, the main magnetic flux φ can be appropriately controlled. If such a function (field adjustment function) is applied to a permanent magnet type rotating electrical machine, it is possible to effectively suppress excessive induced voltage generated in the stator coil in the high rotation region, while effectively rotating from the low rotation region to high rotation. High-efficiency operation can be realized in a wide range of operation areas.

[第1の実施形態]
図4は、本発明を適用した永久磁石式回転電機の一例を示す図であり、同永久磁石式回転電機の回転軸方向に対して垂直な方向の断面図である。
[First Embodiment]
FIG. 4 is a view showing an example of a permanent magnet type rotating electrical machine to which the present invention is applied, and is a cross-sectional view in a direction perpendicular to the rotation axis direction of the permanent magnet type rotating electrical machine.

この図4に示す永久磁石式回転電機は、断面がリング状のステータ1と、このステータ1の内周側にエアギャップを介して配置されたロータ2とを備える。ステータ1は、例えば電磁鋼板を積層して形成されており、ロータ2側に突出する複数の突極部(ステータティース)を有する。このステータ1の突極部間の隙間はスロットと呼ばれ、このスロットにステータコイル3が巻かれている。一方、ロータ2は、例えば回転軸の周りに電磁鋼板を積層することで形成されており、その内部に、複数の永久磁石4が周方向に等間隔となるように埋め込まれている。なお、図4に示す永久磁石式回転電機は12極集中巻きモータとして構成されており、永久磁石4の数は12個である。また、各永久磁石4は、図中の矢印の方向に着磁されている。   The permanent magnet type rotating electric machine shown in FIG. 4 includes a stator 1 having a ring-shaped cross section and a rotor 2 disposed on the inner peripheral side of the stator 1 via an air gap. The stator 1 is formed by laminating electromagnetic steel plates, for example, and has a plurality of salient pole portions (stator teeth) protruding toward the rotor 2 side. The gap between the salient pole portions of the stator 1 is called a slot, and the stator coil 3 is wound around the slot. On the other hand, the rotor 2 is formed, for example, by laminating electromagnetic steel plates around a rotation axis, and a plurality of permanent magnets 4 are embedded therein at equal intervals in the circumferential direction. 4 is configured as a 12-pole concentrated winding motor, and the number of permanent magnets 4 is twelve. Each permanent magnet 4 is magnetized in the direction of the arrow in the figure.

このような永久磁石式回転電機では、ステータコイル3に交流を通電することで発生する回転磁界と、ロータ2の永久磁石4によって発生する磁石磁界との相互作用によりロータ2が回転し、トルクを発生させる。   In such a permanent magnet type rotating electrical machine, the rotor 2 rotates due to the interaction between the rotating magnetic field generated by energizing the stator coil 3 with an alternating current and the magnetic field generated by the permanent magnet 4 of the rotor 2, thereby generating torque. generate.

ここで、特に本実施形態の永久磁石式回転電機では、ロータ2の各永久磁石4の両端に隣接するようにして、高透磁率の磁性材料よりなるコイル5がそれぞれ配設されている。具体的には、この磁性材料よりなるコイル5は、ロータ2の各永久磁石4を取り囲むようにして、各永久磁石4の磁化方向に対して直交する面に各々巻回されており、図4の紙面に対して垂直な方向に電流が流れるようになっている。この永久磁石4両端に配設されるコイル5としては、例えば主材料としてAlやFeを使用した皮膜付のコイル等が考えられる。なお、コイル5を構成する磁性材料は特にAlやFeに限定されるものではなく、ロータ2のコアを構成する積層鋼板よりも透磁率の高い材料であればよい。   Here, in particular, in the permanent magnet type rotating electric machine according to the present embodiment, the coils 5 made of a magnetic material having a high magnetic permeability are provided so as to be adjacent to both ends of each permanent magnet 4 of the rotor 2. Specifically, the coil 5 made of this magnetic material is wound around a surface orthogonal to the magnetization direction of each permanent magnet 4 so as to surround each permanent magnet 4 of the rotor 2. The current flows in a direction perpendicular to the paper surface. As the coil 5 disposed at both ends of the permanent magnet 4, for example, a coil with a coating using Al or Fe as a main material can be considered. In addition, the magnetic material which comprises the coil 5 is not specifically limited to Al or Fe, What is necessary is just a material with a magnetic permeability higher than the laminated steel plate which comprises the core of the rotor 2. FIG.

以上のように構成される本実施形態の永久磁石式回転電機において、ロータ2の永久磁石4が発生する磁界は、ロータ2のコアからステータ1の突極部を通過してステータコイル3に鎖交する主磁束と、永久磁石4端部にて短絡して主磁束とはならない漏れ磁束(短絡磁束)とに分けられる。永久磁石4両端に配設されるコイル5は、この永久磁石4端部から短絡する漏れ磁束の磁気回路に設けられていることになる。ここで、このコイル5に対して、図1(b)のモデルを用いて説明したように漏れ磁束と同じ向きの磁束を発生させる方向で電流を流すと、その電流の大きさに応じて漏れ磁束の磁気回路の磁気抵抗を高くして漏れ磁束を低減させ、相対的に主磁束量を増加させることができる。一方、コイル5に対して、図1(a)のモデルを用いて説明したように漏れ磁束と逆向きの磁束を発生させる方向で電流を流すと、その電流の大きさに応じて漏れ磁束の磁気回路の磁気抵抗を低くして漏れ磁束を増加させ、相対的に主磁束量を低減させることができる。このように、本実施形態の永久磁石式回転電機においては、永久磁石4両端に配設したコイル5に通電する通電電流の向きや大きさを当該永久磁石式回転電機の動作点に応じて制御することによって、低回転領域から高回転領域に亘る広範囲の動作領域において高効率の運転を実現することが可能となる。   In the permanent magnet type rotating electrical machine of the present embodiment configured as described above, the magnetic field generated by the permanent magnet 4 of the rotor 2 passes through the salient pole part of the stator 1 from the core of the rotor 2 and is chained to the stator coil 3. The main magnetic flux to be exchanged and the leakage magnetic flux (short-circuit magnetic flux) that is short-circuited at the end of the permanent magnet 4 and does not become the main magnetic flux. The coils 5 disposed at both ends of the permanent magnet 4 are provided in a magnetic circuit of leakage magnetic flux that is short-circuited from the end of the permanent magnet 4. Here, if a current is supplied to the coil 5 in the direction in which a magnetic flux having the same direction as the leakage magnetic flux is generated as described with reference to the model of FIG. 1B, the leakage occurs according to the magnitude of the current. By increasing the magnetic resistance of the magnetic circuit of the magnetic flux, the leakage magnetic flux can be reduced, and the amount of the main magnetic flux can be relatively increased. On the other hand, when a current is passed through the coil 5 in a direction that generates a magnetic flux opposite to the leakage magnetic flux as described with reference to the model of FIG. The magnetic resistance of the magnetic circuit can be lowered to increase the leakage magnetic flux, and the amount of main magnetic flux can be relatively reduced. As described above, in the permanent magnet type rotating electrical machine of the present embodiment, the direction and magnitude of the energization current to be passed through the coils 5 arranged at both ends of the permanent magnet 4 are controlled according to the operating point of the permanent magnet type rotating electrical machine. By doing so, it is possible to realize high-efficiency operation in a wide range of operation from the low rotation range to the high rotation range.

また、本実施形態の永久磁石式回転電機では、高回転領域での動作時にステータコイル3に鎖交する主磁束量を低減させる場合に、永久磁石4に対して反磁界を直接印加させるのではなく、漏れ磁束を大きくすることで相対的に主磁束量を低減させるようにしているので、永久磁石4の減磁カーブ上の動作点は安定であり、減磁耐力が大幅に向上する。また、大幅に向上した減磁耐力を考慮すれば、コイル5への通電による主磁束の制御と併用するかたちで、従来の一般的な弱め磁束制御を実施することも可能となり、これらの制御を協調して実施することによって、さらに高効率の運転を実現することが可能となる。   In the permanent magnet type rotating electrical machine of the present embodiment, when the main magnetic flux amount interlinked with the stator coil 3 is reduced during operation in the high rotation region, the demagnetizing field is not directly applied to the permanent magnet 4. However, since the amount of main magnetic flux is relatively reduced by increasing the leakage magnetic flux, the operating point on the demagnetization curve of the permanent magnet 4 is stable, and the demagnetization resistance is greatly improved. In addition, if a significantly improved demagnetization resistance is taken into account, it becomes possible to perform conventional general flux-weakening control in combination with the main magnetic flux control by energizing the coil 5. By carrying out in cooperation, it becomes possible to realize more efficient driving.

ところで、以上のようなコイル5への通電による界磁調整の機能は、漏れ磁束の磁気回路が磁気飽和していないときと磁気飽和したときとで主磁束量が大きく変化するような特性が得られるように永久磁石4周辺の磁性体の構成を定めておくことにより、より効果的に作用することとなる。ここで、漏れ磁束の磁気回路が磁気飽和していないときと磁気飽和したときとの主磁束量の変化率は上記の式(3)で示されており、この式(3)から、コイル5に対して電流を通電していない状態において、漏れ磁束の磁気回路(永久磁石4の両端の短絡磁束が流れる磁気回路)の磁気抵抗Rmc_leakが、主磁束が流れる主磁気回路の磁気抵抗Rmc以下となるように(Rmc_leak≦Rmcの関係を満足するように)永久磁石4周辺の磁性体の構成を定めておくことで、コイル5への通電による界磁調整の機能をより効果的に作用させることが可能となる。 By the way, the field adjustment function by energizing the coil 5 as described above has such a characteristic that the amount of main magnetic flux greatly changes between when the magnetic circuit of the leakage magnetic flux is not magnetically saturated and when it is magnetically saturated. As described above, the structure of the magnetic body around the permanent magnet 4 is determined, so that it can operate more effectively. Here, the rate of change of the main magnetic flux amount between when the magnetic circuit of the leakage magnetic flux is not magnetically saturated and when it is magnetically saturated is expressed by the above equation (3). From this equation (3), the coil 5 In a state where no current is supplied to the magnetic field, the magnetic resistance R mc_leak of the magnetic circuit for leakage magnetic flux (the magnetic circuit through which the short-circuit magnetic flux at both ends of the permanent magnet 4 flows) is the magnetic resistance R mc of the main magnetic circuit through which the main magnetic flux flows. By determining the configuration of the magnetic body around the permanent magnet 4 so as to satisfy the following relationship (R mc_leak ≦ R mc ), the field adjustment function by energizing the coil 5 is more effective. It becomes possible to act on.

図5は、Rmc_leak≦Rmcの関係を満足させるための具体的な手法の一例を示す図であり、ロータ2の部分展開図である。この図5に示す例では、ロータ2の永久磁石4端部の周辺に、主磁気回路を構成するコア材(電磁鋼板)よりも飽和磁束密度の低い磁性体6を配設し、漏れ磁束の磁気回路(永久磁石4の両端の短絡磁束が流れる磁気回路)が、コイル5と磁性体6とで構成されるようにしている。これにより、コイル5に対して電流を通電していない状態でRmc_leak≦Rmcの関係を満足することとなり、コイル5への通電による界磁調整の機能をより効果的に作用させることが可能となる。 FIG. 5 is a diagram showing an example of a specific method for satisfying the relationship of R mc_leak ≦ R mc , and is a partial development view of the rotor 2. In the example shown in FIG. 5, a magnetic body 6 having a saturation magnetic flux density lower than that of the core material (magnetic steel plate) constituting the main magnetic circuit is arranged around the end of the permanent magnet 4 of the rotor 2, A magnetic circuit (a magnetic circuit through which a short-circuit magnetic flux at both ends of the permanent magnet 4 flows) is configured by the coil 5 and the magnetic body 6. As a result, the relationship of R mc_leak ≦ R mc is satisfied in a state where no current is supplied to the coil 5, and the field adjustment function by applying current to the coil 5 can be more effectively applied. It becomes.

図6は、Rmc_leak≦Rmcの関係を満足させるための具体的な手法の他の例を示す図であり、ロータ2の部分展開図である。この図6に示す例では、ロータ2の永久磁石4端部の周辺に開口部7を設けて、漏れ磁束の磁気回路(永久磁石4の両端の短絡磁束が流れる磁気回路)を構成するコア材の体積を減少させるようにしている。このように、漏れ磁束の磁気回路を構成するコア材の体積を減少させることによっても、コイル5に対して電流を通電していない状態でRmc_leak≦Rmcの関係を満足させることが可能となり、コイル5への通電による界磁調整の機能をより効果的に作用させることが可能となる。 FIG. 6 is a diagram showing another example of a specific method for satisfying the relationship of Rmc_leak ≦ Rmc, and is a partial development view of the rotor 2. In the example shown in FIG. 6, an opening 7 is provided around the end of the permanent magnet 4 of the rotor 2 to constitute a magnetic circuit for leakage magnetic flux (a magnetic circuit through which a short-circuit magnetic flux at both ends of the permanent magnet 4 flows). The volume of is reduced. Thus, by reducing the volume of the core material constituting the magnetic circuit of the leakage magnetic flux, it is possible to satisfy the relationship of Rmc_leak ≦ Rmc in a state where no current is supplied to the coil 5. It is possible to make the field adjustment function by energizing 5 more effective.

以上、具体的な例を挙げながら詳細に説明したように、本実施形態の永久磁石式回転電機によれば、ロータ2の永久磁石4端部に配置した高透磁率の磁性材料よりなるコイル5に対して通電する電流の向き及び大きさを制御し、洩れ磁束の磁気回路の磁気抵抗を変化させて主磁束量を制御することによって、低回転領域から高回転領域に亘る広範囲の動作領域において高効率の運転を実現することができる。また、ロータ2の永久磁石4に対して反磁界を直接印加させることなく、コイル5への通電制御により弱め磁束制御と同様の効果が得られるので、永久磁石4の減磁耐力を向上させて減磁による性能低下を有効に抑制することができる。   As described above in detail with specific examples, according to the permanent magnet type rotating electrical machine of the present embodiment, the coil 5 made of a magnetic material having a high magnetic permeability disposed at the end of the permanent magnet 4 of the rotor 2. By controlling the direction and magnitude of the current to be applied to the magnetic flux and changing the magnetic resistance of the magnetic circuit of the leakage magnetic flux to control the amount of main magnetic flux, it can be used in a wide range of operation from the low rotation range to the high rotation range. Highly efficient operation can be realized. In addition, since a demagnetizing field is not directly applied to the permanent magnet 4 of the rotor 2 and the same effect as the flux-weakening control can be obtained by controlling the energization of the coil 5, the demagnetization resistance of the permanent magnet 4 can be improved. Performance degradation due to demagnetization can be effectively suppressed.

また、本実施形態の永久磁石式回転電機によれば、コイル5に対して電流を通電していない状態において、漏れ磁束の磁気回路の磁気抵抗Rmc_leakと主磁束が流れる主磁気回路の磁気抵抗RmcとがRmc_leak≦Rmcの関係を満足するように、永久磁石4周辺の磁性体が構成されているので、コイル5への通電による界磁調整の機能を極めて効果的に作用させることができる。特に主磁束を大きくするときに必要なコイル5への通電電流を低減させることが可能となりコイル5へ電流を通電する為のスリップリング容量低減や、損失低減に有効である。 Further, according to the permanent magnet type rotating electrical machine of the present embodiment, the magnetic resistance R mc_leak of the magnetic circuit of leakage magnetic flux and the magnetic resistance of the main magnetic circuit through which the main magnetic flux flows in a state where no current is supplied to the coil 5. as the R mc satisfies the relationship R mc_leak ≦ R mc, since the magnetic material around the permanent magnet 4 is configured, thereby very effectively act the functions of the field adjustment by energization of the coil 5 Can do. In particular, the energization current to the coil 5 required when increasing the main magnetic flux can be reduced, which is effective for reducing the slip ring capacity and reducing the loss for energizing the coil 5.

[第2の実施形態]
次に、いわゆるV字配置構造の永久磁石式回転電機に本発明を適用した例について説明する。図7は、本実施形態の永久磁石式回転電機の一部を拡大して示す図であり、同永久磁石式回転電機の回転軸方向に対して垂直な方向の断面図である。
[Second Embodiment]
Next, an example in which the present invention is applied to a permanent magnet type rotating electrical machine having a so-called V-shaped arrangement structure will be described. FIG. 7 is an enlarged view showing a part of the permanent magnet type rotating electrical machine of the present embodiment, and is a cross-sectional view in a direction perpendicular to the rotation axis direction of the permanent magnet type rotating electrical machine.

この図7に示す永久磁石式回転電機において、ロータ2の永久磁石4は、同極を形成する2つの磁石4a,4bがV字型に配置された構成である。このようなV字配置構造の永久磁石式回転電機では、V字の底の部分におけるロータ2のコアの体積を大きくすると、強度は向上するが主磁束が低減し、逆に、V字の底の部分におけるロータ2のコアの体積を小さくすると、主磁束が増加するが強度が低下するというトレードオフがある。   In the permanent magnet type rotating electrical machine shown in FIG. 7, the permanent magnet 4 of the rotor 2 has a configuration in which two magnets 4a and 4b forming the same pole are arranged in a V shape. In the permanent magnet type rotating electric machine having such a V-shaped arrangement structure, when the volume of the core of the rotor 2 at the bottom portion of the V shape is increased, the strength is improved but the main magnetic flux is reduced. If the volume of the core of the rotor 2 in this part is reduced, there is a trade-off that the main magnetic flux increases but the strength decreases.

そこで、本実施形態では、V字型に配置された2つの磁石4a,4bのV字の底部側の端部間に、第1の実施形態と同様の高透磁率の磁性材料よりなるコイル5を巻回し、このコイル5へ通電する電流の向き及び方向を制御することによって、主磁束量を制御できるようにする。このような構成により、V字の底の部分におけるロータ2のコアの体積として機械的強度を確保できるだけの体積を確保しながら、永久磁石式回転電機の動作領域に応じて主磁束を調整することができる。   Therefore, in the present embodiment, the coil 5 made of a magnetic material having a high magnetic permeability similar to that of the first embodiment is provided between the V-shaped bottom side ends of the two magnets 4a and 4b arranged in a V shape. The amount of main magnetic flux can be controlled by controlling the direction and direction of the current supplied to the coil 5. With such a configuration, the main magnetic flux is adjusted according to the operating region of the permanent magnet type rotating electrical machine while ensuring a volume sufficient to ensure the mechanical strength as the volume of the core of the rotor 2 at the bottom portion of the V-shape. Can do.

以上のように、本実施形態の永久磁石式回転電機によれば、V字型に配置された同極の2つの磁石4a,4bのV字底部の端部間に高透磁率の磁性材料よりなるコイル5を巻回しているので、このコイル5への通電電流の向き及び大きさを制御することによって主磁束量を制御することができ、ロータ2のコア強度を確保しながら、低回転領域から高回転領域に亘る広範囲の動作領域において高効率の運転を実現することができる。   As described above, according to the permanent magnet type rotating electrical machine of the present embodiment, a magnetic material having a high magnetic permeability is used between the ends of the V-shaped bottom portions of two magnets 4a and 4b having the same polarity arranged in a V shape. Since the coil 5 is wound, the amount of main magnetic flux can be controlled by controlling the direction and magnitude of the current flowing through the coil 5, while ensuring the core strength of the rotor 2, and the low rotation region. High-efficiency operation can be realized in a wide range of operation from the high rotation range to the high rotation range.

なお、以上説明した実施形態は本発明の一適用例を例示的に示したものであり、本発明の技術的範囲が上記の実施形態として開示した内容に限定されることを意図するものではない。つまり、本発明の技術的範囲は、上記の実施形態で開示した具体的な技術事項に限らず、この開示から容易に導きうる様々な変形、変更、代替技術なども含むものである。例えば、上述した実施形態では、洩れ磁束の磁気回路に磁性材料よりなるコイル5を配設しているが、コイル5に代えて積層構造の磁性体を配設し、この積層構造の磁性体へ通電する電流の向き及び大きさを制御することで主磁束量を制御する構成としてもよい。   The embodiment described above is merely an example of application of the present invention, and the technical scope of the present invention is not intended to be limited to the contents disclosed as the above-described embodiment. . That is, the technical scope of the present invention is not limited to the specific technical matters disclosed in the above-described embodiments, but includes various modifications, changes, alternative techniques, and the like that can be easily derived from this disclosure. For example, in the embodiment described above, the coil 5 made of a magnetic material is provided in the magnetic circuit of the leakage magnetic flux. However, instead of the coil 5, a magnetic material having a laminated structure is provided, and the magnetic material having the laminated structure is provided. It is good also as a structure which controls the amount of main magnetic fluxes by controlling the direction and magnitude | size of the electric current to supply.

1 ステータ
2 ロータ
3 ステータコイル
4 永久磁石
5 コイル
6 磁性体
7 開口部
DESCRIPTION OF SYMBOLS 1 Stator 2 Rotor 3 Stator coil 4 Permanent magnet 5 Coil 6 Magnetic body 7 Opening part

Claims (7)

永久磁石を備えたロータと、
前記ロータと空隙を介して対向するように配置されたステータと、
前記ステータのスロットに巻かれたステータコイルと、
前記ステータコイルに鎖交する主磁束とは異なる漏れ磁束の磁気回路に設けられた磁性体よりなる通電部材とを備え、
前記永久磁石は、前記ロータ内に埋め込まれており、
前記通電部材は、前記永久磁石を取り囲むように当該永久磁石の磁化方向に対して直交する面に巻かれたコイルであり、
前記ロータが高回転で駆動する際には、漏れ磁束の磁気回路における磁気抵抗が小さくなるように前記コイルを通電し、ロータが低回転で駆動する際には、漏れ磁束の磁気回路における磁気抵抗が大きくなるように前記コイルを通電すること
を特徴とする永久磁石式回転電機。
A rotor with permanent magnets;
A stator arranged to face the rotor via a gap;
A stator coil wound in a slot of the stator;
A current-carrying member made of a magnetic material provided in a magnetic circuit of a leakage magnetic flux different from the main magnetic flux interlinking with the stator coil,
The permanent magnet is embedded in the rotor;
The energization member is a coil wound around a surface orthogonal to the magnetization direction of the permanent magnet so as to surround the permanent magnet,
When the rotor is driven at a high speed, the coil is energized so that the magnetic resistance in the magnetic circuit for leakage flux is small. When the rotor is driven at a low speed, the magnetic resistance in the magnetic circuit for leakage flux is The permanent magnet type rotating electrical machine is characterized in that the coil is energized so as to be large .
同極を形成する2つの磁石がV字型に配置されたV字配置の永久磁石を備えたロータと、
前記ロータと空隙を介して対向するように配置されたステータと、
前記ステータのスロットに巻かれたステータコイルと、
前記ステータコイルに鎖交する主磁束とは異なる漏れ磁束の磁気回路に設けられた磁性体よりなる通電部材とを備え、
前記永久磁石は、前記ロータ内に埋め込まれており、
前記通電部材は、V字型に配置された2つの磁石のV字底部となる端部間に巻かれたコイルであり、
前記ロータが高回転で駆動する際には、漏れ磁束の磁気回路における磁気抵抗が小さくなるように前記コイルを通電し、ロータが低回転で駆動する際には、漏れ磁束の磁気回路における磁気抵抗が大きくなるように前記コイルを通電すること
を特徴とする永久磁石式回転電機。
A rotor having a V-shaped permanent magnet in which two magnets forming the same pole are arranged in a V-shape;
A stator arranged to face the rotor via a gap;
A stator coil wound in a slot of the stator;
A current-carrying member made of a magnetic material provided in a magnetic circuit of a leakage magnetic flux different from the main magnetic flux interlinking with the stator coil,
The permanent magnet is embedded in the rotor;
The current-carrying member is a coil wound between ends that are V-shaped bottom portions of two magnets arranged in a V-shape,
When the rotor is driven at a high speed, the coil is energized so that the magnetic resistance in the magnetic circuit for leakage flux is small. When the rotor is driven at a low speed, the magnetic resistance in the magnetic circuit for leakage flux is Energize the coil so that the
Permanent magnet type rotating electrical machine characterized by
前記通電部材は、前記主磁束が流れる主磁気回路を構成する磁性体よりも透磁率の高い磁性体よりなることを特徴とする請求項1又は2に記載の永久磁石式回転電機。 3. The permanent magnet type rotating electrical machine according to claim 1 , wherein the energizing member is made of a magnetic body having a higher magnetic permeability than a magnetic body constituting the main magnetic circuit through which the main magnetic flux flows . 前記漏れ磁束は前記永久磁石の短絡磁束であることを特徴とする請求項1〜3のいずれか1項に記載の永久磁石式回転電機。 The permanent magnet type rotating electric machine according to any one of claims 1 to 3, wherein the leakage magnetic flux is a short-circuit magnetic flux of the permanent magnet. 前記永久磁石の短絡磁束が流れる磁気回路の磁気抵抗をRmc_leak、前記主磁束が流れる主磁気回路の磁気抵抗をRmcとしたときに、前記通電部材に通電していない状態で、Rmc_leak≦Rmcの関係を満足することを特徴とする請求項4に記載の永久磁石式回転電機。 When the magnetic resistance of the magnetic circuit through which the short-circuit magnetic flux of the permanent magnet flows is Rmc_leak and the magnetic resistance of the main magnetic circuit through which the main magnetic flux flows is Rmc, the relationship of Rmc_leak ≦ Rmc in a state where the energization member is not energized permanent magnet rotating electrical machine according to claim 4, characterized by satisfying the. 前記永久磁石の端部の周辺に、前記主磁気回路を構成する磁性体よりも飽和磁束密度の低い磁性体を配設して、Rmc_leak≦Rmcの関係を満足させたことを特徴とする請求項に記載の永久磁石式回転電機。 The magnetic material having a saturation magnetic flux density lower than that of the magnetic material constituting the main magnetic circuit is disposed around the end of the permanent magnet to satisfy the relationship of Rmc_leak ≦ Rmc. 5. The permanent magnet type rotating electric machine according to 5. 前記永久磁石の端部の周辺に、前記永久磁石の短絡磁束が流れる磁気回路を構成する磁性体の体積を減少させる開口部を設けて、Rmc_leak≦Rmcの関係を満足させたことを特徴とする請求項5に記載の永久磁石式回転電機。 An opening for reducing the volume of the magnetic material constituting the magnetic circuit through which the short-circuit magnetic flux of the permanent magnet flows is provided around the end of the permanent magnet to satisfy the relationship of Rmc_leak ≦ Rmc. The permanent magnet type rotating electrical machine according to claim 5 .
JP2009079896A 2009-03-27 2009-03-27 Permanent magnet rotating electric machine Active JP5544738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079896A JP5544738B2 (en) 2009-03-27 2009-03-27 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079896A JP5544738B2 (en) 2009-03-27 2009-03-27 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2010233393A JP2010233393A (en) 2010-10-14
JP5544738B2 true JP5544738B2 (en) 2014-07-09

Family

ID=43048685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079896A Active JP5544738B2 (en) 2009-03-27 2009-03-27 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP5544738B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3311480A4 (en) * 2015-06-16 2019-02-27 Axco-Motors OY Method and arrangement for adjusting the magnetization of a permanent magnet machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5750995B2 (en) * 2011-04-28 2015-07-22 マツダ株式会社 Synchronous motor
JP7022282B2 (en) * 2019-03-28 2022-02-18 ダイキン工業株式会社 Motor and motor system with it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304752A (en) * 1992-04-23 1993-11-16 Fuji Electric Co Ltd Ac motor for driving electric automobile
DE10124436A1 (en) * 2001-05-18 2002-11-28 Bosch Gmbh Robert Brushless d.c. drive e.g. for power steering in vehicle, has field stimulation winding in rotor supplied with current in event of fault to produce magnetic flux opposed to that of rotor's permanent magnet poles
JP2006288183A (en) * 2005-03-09 2006-10-19 Nissan Motor Co Ltd Dynamo-electric motor
JP2008067474A (en) * 2006-09-06 2008-03-21 Mitsui High Tec Inc Rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3311480A4 (en) * 2015-06-16 2019-02-27 Axco-Motors OY Method and arrangement for adjusting the magnetization of a permanent magnet machine
US10491066B2 (en) 2015-06-16 2019-11-26 Danfoss Editron Oy Method and arrangement for adjusting the magnetization of a permanent magnet machine

Also Published As

Publication number Publication date
JP2010233393A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5305753B2 (en) Permanent magnet rotating electric machine
JP5159577B2 (en) Permanent magnet rotating electric machine
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5305887B2 (en) Permanent magnet rotating electric machine
JP5159171B2 (en) Permanent magnet rotating electric machine
JP5361260B2 (en) Permanent magnet rotary electric machine
WO2008023413A1 (en) Permanent magnetic type electric motor
JP6139007B2 (en) Rotating electrical machine
JP5355055B2 (en) Permanent magnet rotating electric machine
JP5178488B2 (en) Permanent magnet rotating electric machine
JP5198178B2 (en) Permanent magnet type rotating electric machine and permanent magnet motor drive system
JP2010172046A (en) Magnetic flux amount variable rotating electric machine system excited by magnet
JP4735772B1 (en) Magnet excitation rotating electrical machine system
JP4574297B2 (en) Rotating electrical machine rotor
JP5544738B2 (en) Permanent magnet rotating electric machine
JP2012139068A (en) Rotor for embedded magnet type motor
JP5750987B2 (en) Permanent magnet rotating electric machine
JP2013051760A (en) Permanent magnet type rotating electrical machine
JP5197551B2 (en) Permanent magnet rotating electric machine
JP2010093929A (en) Axial gap-type motor
JP6962226B2 (en) motor
JP2022098964A (en) Rotor, rotary electric machine, and vehicle
JP6450588B2 (en) Rotating electrical machine
JP2022098962A (en) Rotor, rotary electric machine, and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R151 Written notification of patent or utility model registration

Ref document number: 5544738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151