JP2010172046A - Magnetic flux amount variable rotating electric machine system excited by magnet - Google Patents

Magnetic flux amount variable rotating electric machine system excited by magnet Download PDF

Info

Publication number
JP2010172046A
JP2010172046A JP2009000617A JP2009000617A JP2010172046A JP 2010172046 A JP2010172046 A JP 2010172046A JP 2009000617 A JP2009000617 A JP 2009000617A JP 2009000617 A JP2009000617 A JP 2009000617A JP 2010172046 A JP2010172046 A JP 2010172046A
Authority
JP
Japan
Prior art keywords
magnetic
field magnet
magnetization
magnet
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009000617A
Other languages
Japanese (ja)
Other versions
JP4337989B1 (en
Inventor
Yoshikazu Ichiyama
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Original Assignee
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURA GIJUTSU KENKYUSHO KK, Kura Gijutsu Kenkyusho KK filed Critical KURA GIJUTSU KENKYUSHO KK
Priority to JP2009000617A priority Critical patent/JP4337989B1/en
Application granted granted Critical
Publication of JP4337989B1 publication Critical patent/JP4337989B1/en
Publication of JP2010172046A publication Critical patent/JP2010172046A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic flux amount variable rotating electric machine system having good energy efficiency in a magnet excitation rotating electric machine. <P>SOLUTION: The magnetic flux amount variable rotating electric machine system excited by a magnet has a parallel connection structure having an exciting portion for integrally exciting magnetic body salient poles to be magnetized in the same type of polarity and field magnets in the excitation portion being magnetic elements having different easiness of magnetization, wherein the magnetization state is optionally irreversibly changed by an excitation coil. The magnetization state of the field magnet is changed during operation of the rotating electric machine to achieve operation under optimum conditions and suppress unwanted eddy current loss, and the variable speed rotating electric machine system having high energy efficiency can be achieved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,永久磁石界磁を持つ発電機,電動機を含む回転電機システムに関する。   The present invention relates to a rotating electrical machine system including a generator and a motor having a permanent magnet field.

永久磁石界磁と電機子との相対的回転によって電磁的に生ずる電力を取り出す発電機,或いは電機子に供給する電流によって生ずる磁界と永久磁石界磁との相互作用により永久磁石界磁と電機子との相対的回転を生ずる電動機等の回転電機装置はエネルギー効率に優れ,永久磁石の技術的進歩に伴い日常的に広く使われている。しかしそのような回転電機は、界磁磁石からの磁束が一定であるので電動機として用いられるにしても発電機として用いられるにしても広い回転速度範囲で常に最適の出力が得られる訳ではない。   A generator for extracting electric power generated electromagnetically by the relative rotation of the permanent magnet field and the armature, or the permanent magnet field and the armature by the interaction between the magnetic field generated by the current supplied to the armature and the permanent magnet field Rotating electrical machines such as motors that produce relative rotation with the motor are energy efficient and are widely used on a daily basis with the technological advance of permanent magnets. However, since such a rotating electric machine has a constant magnetic flux from the field magnet, an optimum output is not always obtained in a wide rotational speed range regardless of whether it is used as an electric motor or a generator.

すなわち,電動機の場合は高速回転域では逆起電力(発電電圧)が高すぎる結果となって制御が困難となり,弱め界磁制御として界磁強度を弱める種々の手段が提案されている。また発電機の場合,広い回転速度範囲に於いて発電電圧を所定のレベルとする為に専ら界磁電流制御による定電圧発電機或いは半導体による発電電圧の定電圧化回路が用いられている。   In other words, in the case of an electric motor, the back electromotive force (generated voltage) is too high in the high-speed rotation range, making control difficult, and various means for weakening field strength have been proposed as field weakening control. Further, in the case of a generator, a constant voltage generator based on field current control or a constant voltage generation circuit using a semiconductor is used exclusively to bring the generated voltage to a predetermined level in a wide rotational speed range.

電動機では進み位相電流による弱め界磁制御が広く採用されているが,回転に直接寄与しない電流を流す為にエネルギー損失を大とする。永久磁石励磁に制御用電流励磁を併用する場合は回転電機の構造を複雑にし,その上にエネルギー損失を伴う。このような環境下で磁石励磁のエネルギー効率の高さを犠牲にすることなく,界磁制御を可能として広い回転速度範囲で使用可能とする為に機械的な偏倚により界磁制御を行う回転電機の試みがある(例えば特許第4150765号,特許第4150779号)。これは界磁条件を機械的な偏倚として保持できるので界磁制御に伴うエネルギー損失を最小限に留めて高エネルギー効率の回転電機を実現出来る。   In electric motors, field-weakening control based on lead phase current is widely adopted, but energy loss is increased because a current that does not directly contribute to rotation flows. When the control current excitation is used in combination with the permanent magnet excitation, the structure of the rotating electrical machine is complicated, and energy loss is additionally caused. In such an environment, there is an attempt of a rotating electric machine that performs field control by mechanical bias in order to enable field control and use in a wide rotation speed range without sacrificing high energy efficiency of magnet excitation. (For example, patent 4150765, patent 4150777). Since the field condition can be maintained as a mechanical bias, a high energy efficient rotating electric machine can be realized while minimizing the energy loss associated with field control.

さらに界磁条件を保存して間歇的に界磁強度を変える事でエネルギー損失を最小限に留める他の界磁制御方法は回転電機の運転中に界磁磁石の磁化状態を不可逆的に変更することであり,特開平7−336980,米国特許6800977,特開2005−304204,特開2006−280195,特開2008−048514,特開2008−125201等の技術提案がある。特開平7−336980,米国特許6800977,特開2005−304204,特開2006−280195,特開2008−048514は電機子と対向する磁極内に配置した界磁磁石の磁化状態を電機子コイルにより変更しようとし,米国特許6800977,特開2008−125201は界磁磁石個々に配置した励磁コイルを有して磁化状態を変更しようとし,さらに特開2008−289300は電機子側に配置した励磁コイルにより回転子内の界磁磁石の磁化状態を変更しようとする。   Another field control method that minimizes energy loss by preserving field conditions and intermittently changing field strength is to irreversibly change the magnetization state of the field magnet during operation of the rotating electrical machine. There are technical proposals such as JP-A-7-336980, U.S. Pat. No. 6,800,777, JP-A-2005-304204, JP-A-2006-280195, JP-A-2008-048514, and JP-A-2008-125201. JP-A-7-336980, US Pat. No. 6,800,077, JP-A-2005-304204, JP-A-2006-280195, and JP-A-2008-048514 change the magnetization state of a field magnet disposed in a magnetic pole facing the armature by an armature coil. U.S. Pat. No. 6,800,077 and JP-A-2008-125201 have excitation coils arranged in individual field magnets to change the magnetization state, and JP-A-2008-289300 is rotated by an excitation coil arranged on the armature side. An attempt is made to change the magnetization state of the field magnet in the child.

しかしながら,特開2005−304204,特開2006−280195,特開2008−048514,特開2008−125201等では電機子コイル或いは励磁コイルによる磁束を界磁磁石に集中させる構成の記述は無く,磁化変更の確実性は期待できない。界磁磁石を電機子に対向する磁極部に配置するので界磁磁石に加える磁界強度は通常の運転中と界磁磁石の磁化変更時とで十分な余裕を持って分離設定される必要があり,電子回路への負担を大にし,さらに界磁磁石周辺の磁性体選定を困難にしている。通常の運転中或いは障害発生時に電機子コイルが発生する磁界に対して界磁磁石の磁化状態保全が不十分となり,回転電機システムの安定性及び安全性が脅かされる重大な懸念がある。   However, Japanese Patent Application Laid-Open No. 2005-304204, Japanese Patent Application Laid-Open No. 2006-280195, Japanese Patent Application Laid-Open No. 2008-048514, Japanese Patent Application Laid-Open No. 2008-125201, etc. do not describe a configuration for concentrating the magnetic flux generated by the armature coil or the excitation coil on the field magnet. I cannot expect certainty. Since the field magnet is arranged in the magnetic pole part facing the armature, the magnetic field strength applied to the field magnet must be set with sufficient margin during normal operation and when changing the magnetization of the field magnet. This increases the burden on electronic circuits and makes it difficult to select magnetic materials around field magnets. There is a serious concern that the maintenance and safety of the rotating electrical machine system may be threatened due to insufficient maintenance of the magnetization state of the field magnet against the magnetic field generated by the armature coil during normal operation or when a failure occurs.

また,特開2008−289300に於いて,励磁コイルにより発生させられる磁束は電機子コイルに高い誘起電圧を発生させて電子回路への負担を大とし,回転子から磁束は常に漏れているので無負荷で連れ回り回転する場合に電機子に鉄損発生は避けられない。   In Japanese Patent Laid-Open No. 2008-289300, the magnetic flux generated by the exciting coil generates a high induced voltage in the armature coil, increasing the burden on the electronic circuit, and the magnetic flux is always leaking from the rotor. Iron loss is unavoidable in the armature when rotating with the load.

特開平7−336980「ブラシレスDCモータ」Japanese Patent Application Laid-Open No. 7-336980 “Brushless DC Motor” 米国特許6800977「Field control in permanent magnet machine」US Patent No. 6,800,907 "Field control in permanent magnet machine" 特開2005−304204「 永久磁石型同期モータおよび駆動装置」Japanese Patent Application Laid-Open No. 2005-304204 "Permanent Magnet Type Synchronous Motor and Driving Device" 特開2006−280195「永久磁石式回転電機」Japanese Patent Application Laid-Open No. 2006-280195 “Permanent Magnet Type Rotating Electric Machine” 特開2008−048514「永久磁石式回転電機の回転子」JP2008-048514 "Rotor of Permanent Magnet Type Rotating Electric Machine" 特開2008−125201「可変磁束モータドライブシステム」JP2008-125201 “Variable Magnetic Flux Motor Drive System” 特開2008−289300「永久磁石式回転電機」JP2008-289300 “Permanent magnet type rotating electric machine” 特許第4150765号「磁束分流制御回転電機システム」Patent No. 4150765 “Magnetic flux shunt control rotating electrical machine system” 特許第4150779号「磁束分流制御回転電機システム」Patent No. 41507779 “Magnetic flux shunt control rotating electrical machine system”

したがって,本発明が解決しようとする課題は,界磁磁石の磁化を安定的に保持しながら界磁磁石の磁化状態を変える事が出来る回転電機システム,磁束量制御方法を提供する事である。   Therefore, the problem to be solved by the present invention is to provide a rotating electrical machine system and a magnetic flux amount control method capable of changing the magnetization state of the field magnet while stably maintaining the magnetization of the field magnet.

請求項1の発明による回転電機システムは,電機子コイルを有する電機子と,電機子と対向して周方向に配置された複数の磁性体突極を有する表面磁極部と,同種の極性に磁化されるべき磁性体突極グループ毎に一括して磁化する励磁部とを有し,表面磁極部と電機子とは軸を中心に相対的に回転可能である回転電機装置であって,励磁部は界磁磁石及び界磁磁石の磁化を変更する励磁コイルを有し,前記界磁磁石のN極或いはS極の何れか一方の磁極から流れる磁束が磁性体突極及び電機子を介して界磁磁石の他方の磁極に環流する主磁路と,前記界磁磁石の一方の磁極から出た磁束が主として励磁部内で界磁磁石の他方の磁極に環流する励磁磁路とが並列に界磁磁石に接続され,励磁コイルは励磁磁路に加えて界磁磁石を含む磁路に磁束を誘起するよう配置され,回転電機装置の出力を最適化するように前記出力に応じて励磁コイルに磁化電流を供給して界磁磁石の磁化状態を不可逆的に変え,電機子に流れる磁束量が制御される事を特徴とする。   A rotating electrical machine system according to a first aspect of the present invention includes an armature having an armature coil, a surface magnetic pole portion having a plurality of magnetic salient poles arranged in the circumferential direction facing the armature, and magnetized to the same kind of polarity. Each of the magnetic salient pole groups to be magnetized together, and the surface magnetic pole part and the armature are rotatable relative to each other about the axis, Has a field magnet and an exciting coil for changing the magnetization of the field magnet, and the magnetic flux flowing from either the N pole or the S pole of the field magnet passes through the magnetic salient pole and the armature. The main magnetic path that circulates to the other magnetic pole of the magnet and the exciting magnetic path in which the magnetic flux emitted from one of the magnetic poles of the field magnet circulates mainly to the other magnetic pole of the field magnet in the exciting part are arranged in parallel. The magnet is connected to the magnet, and the exciting coil has a magnetic flux in the magnetic path including the field magnet in addition to the exciting magnetic path. In order to optimize the output of the rotating electrical machine device, the magnetizing current is supplied to the exciting coil according to the output so as to irreversibly change the magnetization state of the field magnet, and the amount of magnetic flux flowing through the armature is It is characterized by being controlled.

同種の極性に磁化されるべき磁性体突極グループ毎に一括して磁化する励磁部を有し,励磁部は界磁磁石及び界磁磁石を磁化する励磁コイルを有し,回転電機の運転中或いは静止時に界磁磁石の磁化状態を不可逆的に変えて電機子に流れる磁束量を変更する。励磁部は回転子に配置された表面磁極部と磁気的な結合部を有して静止側に配置,或いは回転子内に配置,或いは更に回転子側及び静止側に分割配置等の柔軟な構成が可能である。電機子を流れる磁束量を変更する時のみ励磁コイルに磁化電流を供給するのでエネルギー効率の高い回転電機システムである。   Each magnetic salient pole group to be magnetized to the same kind of polarity has an exciting part that is magnetized in a lump. The exciting part has a field magnet and an exciting coil that magnetizes the field magnet. Alternatively, the amount of magnetic flux flowing through the armature is changed by irreversibly changing the magnetization state of the field magnet when stationary. Excitation part has a surface magnetic pole part arranged on the rotor and a magnetic coupling part and is arranged on the stationary side, or arranged in the rotor, or further divided on the rotor side and stationary side. Is possible. Since the magnetizing current is supplied to the exciting coil only when the amount of magnetic flux flowing through the armature is changed, the rotating electrical machine system has high energy efficiency.

界磁磁石に励磁磁路及び主磁路を並列に接続し,励磁コイルは励磁磁路と界磁磁石とで構成する閉磁路に配置され,界磁磁石の着磁変更に際して電機子コイルへの影響を軽減できる構成としている。また,励磁部は電機子と対向する磁性体突極より離れ,十分なスペースを有する位置に配置されるので,励磁磁路は交流磁束が流れやすく構成され,界磁磁石の構成及び界磁磁石の磁化変更に最適な磁路構成を実現できる。すなわち,励磁コイルが誘起する磁束は界磁磁石に集中されて界磁磁石の磁化状態は確実に変更される。   An exciting magnetic path and a main magnetic path are connected in parallel to the field magnet, and the exciting coil is disposed in a closed magnetic path composed of the exciting magnetic path and the field magnet. When the magnetization of the field magnet is changed, The configuration can reduce the impact. In addition, since the excitation unit is arranged at a position having a sufficient space away from the magnetic salient pole facing the armature, the excitation magnetic path is configured so that AC magnetic flux easily flows, and the configuration of the field magnet and the field magnet It is possible to realize an optimum magnetic path configuration for changing the magnetization of the magnetic field. That is, the magnetic flux induced by the exciting coil is concentrated on the field magnet, so that the magnetization state of the field magnet is reliably changed.

界磁磁石には単独の磁石或いは磁化容易さの異なる磁石要素が並列に接続されて磁性体突極及び電機子を含む主磁路に磁束を供給する。更に具体的に界磁磁石は主磁路と繋がる断面内で抗磁力が異なるよう傾斜的に含有成分が変えられて構成され,或いは長さの異なる磁石素材を並列に接続して構成される。励磁コイルによって界磁磁石に加えられる磁気ポテンシャル差(起磁力)を前記磁石素材の長さで除した値に相当する磁界強度が抗磁力より大である磁石要素の磁化が選択的に変えられ,主磁路を流れる磁束量が変えられる。   The field magnet is connected with a single magnet or a magnet element having different ease of magnetization in parallel to supply magnetic flux to the main magnetic path including the magnetic salient pole and the armature. More specifically, the field magnet is configured by changing the contained components in an inclined manner so that the coercive force is different in the cross section connected to the main magnetic path, or is configured by connecting magnet materials having different lengths in parallel. Magnetization of a magnet element whose magnetic field intensity corresponding to a value obtained by dividing the magnetic potential difference (magnetomotive force) applied to the field magnet by the exciting coil by the length of the magnet material is larger than the coercive force is selectively changed. The amount of magnetic flux flowing through the main magnetic path can be changed.

本発明に於いて,磁性体突極から電機子側に流れる磁束量制御を容易とするよう磁性体突極とは軟磁性体で構成された磁極を指す。電機子と対向する表面磁極部の構成には磁性体突極と磁気空隙部が周方向に交互に並ぶ磁極構成,磁性体突極と略周方向磁化を有する永久磁石が交互に並ぶ磁極構成,さらに磁性体側面に永久磁石板を配置した集合永久磁石と磁性体突極とが周方向に交互に並ぶ磁極構成等,種々存在するが,本発明はそれら何れの磁極構成を有する回転電機にも適用できる。   In the present invention, the magnetic salient pole refers to a magnetic pole made of a soft magnetic material so as to facilitate control of the amount of magnetic flux flowing from the magnetic salient pole to the armature side. The structure of the surface magnetic pole part facing the armature is a magnetic pole structure in which magnetic salient poles and magnetic gaps are alternately arranged in the circumferential direction, magnetic pole structure in which magnetic salient poles and permanent magnets having substantially circumferential magnetization are alternately arranged, Further, there are various magnetic pole configurations in which a permanent magnet plate having a permanent magnet plate disposed on the side surface of a magnetic material and magnetic salient poles are alternately arranged in the circumferential direction. However, the present invention is applicable to a rotating electrical machine having any of these magnetic pole configurations. Applicable.

また,回転電機には表面磁極部が回転し電機子が静止する構造及びその逆の構造,さらに円筒状の電機子と表面磁極部が径方向に空隙を介して対向する構造,或いは略円盤状の電機子と表面磁極部が軸方向に空隙を介して対向する構造等のいずれの構造も存在する。本発明は永久磁石励磁の界磁部を持つ上記何れの構造の回転電機システムにも適用される。   In addition, a rotating electrical machine has a structure in which the surface magnetic pole part rotates and the armature stops, and vice versa, and a cylindrical armature and the surface magnetic pole part face each other with a gap in the radial direction, or a substantially disk shape. Any structure such as a structure in which the armature and the surface magnetic pole portion face each other in the axial direction through a gap exists. The present invention can be applied to any of the above-described rotating electrical machine systems having a permanent magnet-excited field portion.

また,回転電機は電機子コイルへの電流を入力として回転力を出力とすれば電動機であり,回転力を入力として電機子コイルから電流を出力すれば発電機である。電動機或いは発電機に於いて最適の磁極構成は存在するが,可逆的であり,上記の回転電機システムは電動機,発電機の何れにも適用される。   A rotating electric machine is an electric motor if a current to the armature coil is input and a rotational force is output, and a rotating electric machine is a generator if a current is output from the armature coil using the rotational force as an input. There is an optimum magnetic pole configuration in the electric motor or the generator, but it is reversible, and the rotating electrical machine system described above is applied to both the electric motor and the generator.

請求項2の発明は,請求項1記載の回転電機システムに於いて,磁性体間に磁化方向長さと抗磁力の積が異なる磁石要素が並列に接続されて界磁磁石が構成されていることを特徴とする。界磁磁石は磁化容易さの異なる一以上の磁石要素が並列に接続される構成,或いは断面内で磁化容易さ,すなわち,磁化方向長さと抗磁力の積が連続的に変わる磁石であって,励磁コイルによる起磁力はほぼ均等に界磁磁石を構成する磁石要素に加えられ,起磁力を磁化方向長さで除した値が各磁石要素に加わる磁界強度となるので磁化方向長さと抗磁力の積の小さな磁石要素が磁化されやすく,励磁コイルに加えられる電流により並列接続された磁石要素の磁化状態は選択的に制御される。   According to a second aspect of the present invention, in the rotating electrical machine system according to the first aspect of the invention, a field magnet is configured by connecting magnet elements having different products of magnetization direction length and coercive force in parallel between magnetic bodies. It is characterized by. A field magnet is a magnet in which one or more magnet elements having different easiness of magnetization are connected in parallel, or a magnet in which the product of the magnetization direction length and the coercive force changes continuously in the cross section, The magnetomotive force generated by the exciting coil is almost evenly applied to the magnet elements constituting the field magnet, and the value obtained by dividing the magnetomotive force by the magnetization direction length is the magnetic field strength applied to each magnet element. Magnet elements having a small product are easily magnetized, and the magnetization state of the magnet elements connected in parallel is selectively controlled by a current applied to the exciting coil.

請求項3の発明は,請求項1記載の回転電機システムに於いて,励磁コイルに供給される磁化電流による磁界の磁界強度が抗磁力より大とされる界磁磁石の磁石要素が磁化電流の極性により定められた方向に選択的に磁化されることを特徴とする。界磁磁石は磁化の容易さが異なる磁石要素が並列に接続されているので励磁コイルに供給する磁化電流振幅により磁化する領域を限定でき,磁化電流の極性により磁化の方向を変える事が出来る。界磁磁石内には消磁状態及び互いに逆方向の磁化が存在し得るが,それぞれの磁化の磁極表面積に比例した磁束が発生されるので前記磁極表面積の差に比例した磁束が界磁磁石から流れる。   According to a third aspect of the present invention, in the rotating electrical machine system according to the first aspect, the magnet element of the field magnet whose magnetic field strength by the magnetizing current supplied to the exciting coil is greater than the coercive force is the magnetizing current. It is characterized by being selectively magnetized in the direction determined by the polarity. In the field magnet, magnet elements having different eases of magnetization are connected in parallel. Therefore, the magnetized area can be limited by the amplitude of the magnetizing current supplied to the exciting coil, and the magnetization direction can be changed by the polarity of the magnetizing current. A demagnetized state and magnetizations in opposite directions may exist in the field magnet. However, since a magnetic flux proportional to the magnetic pole surface area of each magnetization is generated, the magnetic flux proportional to the difference in the magnetic pole surface area flows from the field magnet. .

請求項4の発明は,請求項1記載の回転電機システムに於いて,界磁磁石は磁性体突極を予め定めた方向に磁化する第一磁化の磁石要素,第一磁化と逆方向の磁化である第二磁化の磁石要素を有している事を特徴とする。界磁磁石は互いに逆方向に磁化された要素を有し,磁性体突極を予め定めた方向に磁化する界磁磁石内の磁化を第一磁化とする。磁性体突極間に略周方向磁化を持つ永久磁石或いは集合磁石を配置する場合には永久磁石或いは集合磁石が磁性体突極を磁化する極性と同じに磁化する界磁磁石内の要素を第一磁化と設定する。   According to a fourth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the field magnet is a magnet element having a first magnetization that magnetizes the magnetic salient pole in a predetermined direction, and a magnetization in a direction opposite to the first magnetization. It has the magnet element of the 2nd magnetization which is. The field magnet has elements magnetized in opposite directions, and the magnetization in the field magnet that magnetizes the magnetic salient pole in a predetermined direction is defined as the first magnetization. When permanent magnets or collective magnets having substantially circumferential magnetization are arranged between magnetic salient poles, the elements in the field magnet that magnetize the permanent magnets or collective magnets in the same polarity as the magnetic salient poles are magnetized. One magnetization is set.

請求項5の発明は,請求項1記載の回転電機システムに於いて,表面磁極部は周方向に隣接する磁性体突極を互いに異極に磁化する永久磁石を有し,界磁磁石の第一磁化と永久磁石とが磁性体突極を同種の極性に磁化するよう永久磁石の磁化方向が設定され,界磁磁石全体が第一磁化とされて電機子を流れる磁束量が最大にされ,電機子内に於いて前記永久磁石からの磁束と界磁磁石からの磁束とが相殺されるように界磁磁石は第二磁化の磁極面積が第一磁化の磁極面積より大とされて電機子を流れる磁束量を最小であるゼロとするよう構成されている事を特徴とする。   According to a fifth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the surface magnetic pole portion has a permanent magnet that magnetizes the magnetic salient poles adjacent in the circumferential direction in different polarities. The magnetization direction of the permanent magnet is set so that one magnetization and the permanent magnet magnetize the magnetic salient pole to the same kind of polarity, the entire field magnet is made the first magnetization, and the amount of magnetic flux flowing through the armature is maximized, In the armature, the magnetic field of the field magnet is set to be larger than the magnetic pole area of the first magnetization so that the magnetic flux from the permanent magnet and the magnetic flux from the field magnet are offset in the armature. The amount of the magnetic flux flowing through is configured to be the minimum zero.

本発明では界磁磁石の磁化状態を変えて電機子を流れる磁束量をゼロから最大値まで制御できる。更に表面磁極部の磁性体突極間に永久磁石を有して磁性体突極に磁束を供給する構成の回転電機に於いても電機子を流れる磁束量をゼロから最大値まで制御できる。すなわち,前記永久磁石の磁束を励磁部側に引き込む方向に界磁磁石を磁化して電機子側に流れる磁束量をゼロにする。これが電機子側に流れる磁束量の最小値である。前記永久磁石からの電機子に流入する磁束に加算されるように界磁磁石を最大限に磁化した場合が電機子側に流れる磁束量を最大値とする。このように磁性体突極間に永久磁石が配置される回転電機でも界磁磁石の磁化方向及び磁化領域を制御して電機子側に流れる磁束量を自由に制御できる。   In the present invention, the amount of magnetic flux flowing through the armature can be controlled from zero to the maximum value by changing the magnetization state of the field magnet. Further, even in a rotating electric machine having a permanent magnet between the magnetic salient poles of the surface magnetic pole portion and supplying magnetic flux to the magnetic salient poles, the amount of magnetic flux flowing through the armature can be controlled from zero to the maximum value. That is, the field magnet is magnetized in the direction in which the magnetic flux of the permanent magnet is drawn to the exciting part side, and the amount of magnetic flux flowing to the armature side is made zero. This is the minimum value of the amount of magnetic flux flowing on the armature side. When the field magnet is magnetized to the maximum so as to be added to the magnetic flux flowing into the armature from the permanent magnet, the amount of magnetic flux flowing to the armature side is set to the maximum value. Thus, even in a rotating electrical machine in which a permanent magnet is disposed between magnetic salient poles, the amount of magnetic flux flowing on the armature side can be freely controlled by controlling the magnetization direction and magnetization region of the field magnet.

請求項6の発明は,請求項1記載の回転電機システムに於いて,界磁磁石は磁化容易さが互いに異なる第一界磁磁石及び第二界磁磁石の並列接続で構成され,励磁コイルは第一界磁磁石及び第二界磁磁石が直列となる閉磁路に磁束を発生させ,第一界磁磁石及び第二界磁磁石は互いに他を励磁磁路の一部とするよう配置されていることを特徴とする。並列接続された第一界磁磁石及び第二界磁磁石は同時に直列接続として閉磁路を構成している。励磁コイルはその閉磁路に磁束を発生させるよう配置されるので第一界磁磁石及び第二界磁磁石は常に逆方向に励磁される。したがって,第一界磁磁石,第二界磁磁石の何れか磁化変更容易な界磁磁石の磁化方向をさらに反転させて界磁磁石全体の磁束量を調整する場合がある。   According to a sixth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the field magnet is constituted by a parallel connection of a first field magnet and a second field magnet having different eases of magnetization. Magnetic flux is generated in a closed magnetic path in which the first field magnet and the second field magnet are in series, and the first field magnet and the second field magnet are arranged so that each other is part of the exciting magnetic path. It is characterized by being. The first field magnet and the second field magnet connected in parallel form a closed magnetic circuit as a series connection at the same time. Since the exciting coil is arranged to generate a magnetic flux in its closed magnetic path, the first field magnet and the second field magnet are always excited in the opposite directions. Accordingly, there is a case where the magnetic flux amount of the entire field magnet is adjusted by further reversing the magnetization direction of either the first field magnet or the second field magnet whose magnetization can be easily changed.

請求項7の発明は,請求項6記載の回転電機システムに於いて,磁化容易さが互いに異なる第一界磁磁石及び第二界磁磁石は磁化変更に必要な磁界強度が互いに異なる磁石によりそれぞれ構成されることを特徴とする。励磁コイルに磁化電流が供給された場合,直列に接続された各磁石内の磁界強度はほぼ等しいので第一界磁磁石及び第二界磁磁石それぞれで磁化反転に必要な磁界強度が異なるよう構成して界磁磁石の磁化状態を独立に制御する。磁化反転に必要な磁界強度を異ならせるには磁石素材の種類を変える,或いは同種の素材に於いて構成元素の組成比を変える等の手段で実現出来る。さらにそれぞれの界磁磁石を磁化容易さの異なる磁石の並列接続とする構成も可能である。   A seventh aspect of the present invention is the rotating electrical machine system according to the sixth aspect of the present invention, wherein the first field magnet and the second field magnet having different easiness of magnetization are respectively composed of magnets having different magnetic field strengths necessary for magnetization change. It is characterized by being configured. When magnetizing current is supplied to the exciting coil, the magnetic field strength in each of the magnets connected in series is almost the same, so the first and second field magnets have different magnetic field strengths required for magnetization reversal. Thus, the magnetization state of the field magnet is controlled independently. Different magnetic field strengths necessary for magnetization reversal can be realized by changing the type of magnet material or changing the composition ratio of constituent elements in the same type of material. Further, a configuration in which each field magnet is connected in parallel with magnets having different ease of magnetization is also possible.

請求項8の発明は,請求項1記載の回転電機システムに於いて,可動磁性体片を偏倚させて界磁磁石,主磁路,励磁磁路間の接続状態を変える磁路スイッチを有し,通常の運転中に界磁磁石は主磁路に接続されて励磁磁路は切り離され,励磁コイルにより界磁磁石の磁化状態を変更する際に界磁磁石は主磁路から切り離されて励磁磁路と接続されることを特徴とする。磁路スイッチは可動磁性体片を偏倚させて磁路の接続状態を変える構成として界磁磁石と主磁路或いは励磁磁路との接続を二者択一的に切り替え,励磁コイルに供給される磁化電流が電機子コイルに及ぼす影響を小とする。   According to an eighth aspect of the present invention, there is provided the rotating electrical machine system according to the first aspect, further comprising a magnetic path switch for changing the connection state among the field magnet, the main magnetic path, and the exciting magnetic path by biasing the movable magnetic piece. During normal operation, the field magnet is connected to the main magnetic path and the excitation magnetic path is disconnected. When the magnetization state of the field magnet is changed by the excitation coil, the field magnet is disconnected from the main magnetic path and excited. It is connected to a magnetic path. The magnetic path switch is configured to change the connection state of the magnetic path by displacing the movable magnetic piece, and alternatively switches the connection between the field magnet and the main magnetic path or the excitation magnetic path and is supplied to the excitation coil. The influence of the magnetizing current on the armature coil is reduced.

主磁路と励磁磁路の磁気抵抗に差があると,可動磁性体片には磁気抵抗が小さい側へ偏倚させる磁気力が働いて可動磁性体片による接続変更は妨げられる。前記磁気力を抑制するには主磁路と励磁磁路の磁気抵抗をほぼ等しく設定する。さらに磁路スイッチにより励磁磁路を界磁磁石に接続する際には励磁磁路の磁気抵抗を実効的に小とし,励磁磁路を界磁磁石から切断する際には励磁磁路の磁気抵抗を実効的に大として可動磁性体片の偏倚を妨げる磁気力を小にする,或いは磁気力の方向を前記偏倚をアシストする方向とする事が出来る。   If there is a difference in the magnetic resistance between the main magnetic path and the excitation magnetic path, the magnetic force acting on the movable magnetic piece is biased toward the smaller magnetic resistance and the connection change by the movable magnetic piece is prevented. In order to suppress the magnetic force, the magnetic resistances of the main magnetic path and the exciting magnetic path are set substantially equal. Furthermore, when the excitation magnetic path is connected to the field magnet by a magnetic path switch, the magnetic resistance of the excitation magnetic path is effectively reduced, and when the excitation magnetic path is disconnected from the field magnet, the magnetic resistance of the excitation magnetic path is reduced. Can be effectively increased to reduce the magnetic force that prevents the displacement of the movable magnetic piece, or the direction of the magnetic force can be set to assist the displacement.

請求項9の発明は,請求項1記載の回転電機システムに於いて,可動磁性体片を偏倚させて励磁磁路の構成を変える磁路スイッチを有し,通常の運転中に励磁磁路の磁気抵抗は大となるよう励磁磁路中の磁気的な間隙が大とされ,励磁コイルにより界磁磁石の磁化状態を変更する際に励磁磁路の磁気抵抗が小となるよう励磁磁路中の磁気的な間隙が小とされることを特徴とする。界磁磁石の磁化状態を変更する際に励磁磁路の磁気抵抗を小として界磁磁石の磁化状態変更を容易にする。   The invention according to claim 9 is the rotating electrical machine system according to claim 1, further comprising a magnetic path switch for changing the configuration of the excitation magnetic path by biasing the movable magnetic piece, The magnetic gap in the exciting magnetic path is made large so that the magnetic resistance becomes large, and the magnetic resistance of the exciting magnetic path is made small when the magnetization state of the field magnet is changed by the exciting coil. The magnetic gap is made small. When changing the magnetization state of the field magnet, the magnetic resistance of the exciting magnetic path is made small to easily change the magnetization state of the field magnet.

請求項10の発明は,請求項1記載の回転電機システムに於いて,主磁路の磁気抵抗より励磁磁路の磁気抵抗が大に設定されていることを特徴とする。主磁路の磁気抵抗は磁性体突極と磁性体歯との相対位置により変動するが,本発明で主磁路の磁気抵抗は磁性体突極と磁性体歯間の各相対位置に関して平均化された値としている。界磁磁石からの磁束は主磁路及び励磁磁路に供給されるが,励磁磁路側の磁気抵抗を大として主磁路に多くの磁束が分流される構成とする。励磁磁路内に磁路の狭隘部分或いは磁気的な空隙からなる磁気抵抗調整部分を有して磁気抵抗を設定する。   According to a tenth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the magnetic resistance of the exciting magnetic path is set larger than the magnetic resistance of the main magnetic path. The magnetic resistance of the main magnetic path varies depending on the relative position between the magnetic salient pole and the magnetic tooth, but in the present invention, the magnetic resistance of the main magnetic path is averaged for each relative position between the magnetic salient pole and the magnetic tooth. Value. The magnetic flux from the field magnet is supplied to the main magnetic path and the exciting magnetic path, but the magnetic resistance on the exciting magnetic path side is made large so that a large amount of magnetic flux is shunted to the main magnetic path. A magnetic resistance is set by having a magnetoresistive adjustment portion including a narrow portion of the magnetic path or a magnetic gap in the exciting magnetic path.

請求項11の発明は,請求項1記載の回転電機システムに於いて,界磁磁石から磁性体突極に至る磁路は界磁磁石に接する磁性体より渦電流損を大とする構成を有して交流磁束が通り難いよう構成される事を特徴とする。励磁磁路は交流磁束が流れやすい構成として界磁磁石の着磁変更を容易にさせる一方で磁性体突極を含む表面磁極部と励磁磁路との間は渦電流損を生じやすい構成として交流磁束が通り難くする。界磁磁石を励磁する際に誘起される磁束パルスが磁性体突極に到達し難い構成として電機子コイル周辺の電子回路に及ぼす不具合を軽減させる。   According to an eleventh aspect of the present invention, in the rotating electrical machine system according to the first aspect, the magnetic path from the field magnet to the magnetic salient pole has a larger eddy current loss than the magnetic material in contact with the field magnet. And the AC magnetic flux is difficult to pass. The exciting magnetic path has a configuration in which an alternating magnetic flux easily flows, and it is easy to change the magnetization of the field magnet, while an eddy current loss is easily generated between the surface magnetic pole portion including the magnetic salient pole and the exciting magnetic path. Makes it difficult for magnetic flux to pass. As a configuration in which the magnetic flux pulse induced when the field magnet is excited does not easily reach the magnetic salient pole, the problem on the electronic circuit around the armature coil is reduced.

交流磁束を通り難くする構成は,渦電流損を大とする比抵抗の小さい軟鉄ブロックを有する構成,磁性体表面を導電性の良い材料で被覆した構成,磁性体表面を導体板で周回した構成,界磁磁石から磁性体突極に至る磁路を構成するバルク状磁性体表面に磁束の流れる方向とほぼ直交する凹凸を形成した構成等が有効である。渦電流が流れる磁性体に於いて交流磁束は磁性体表面に集中して伝搬する特性を利用し,交流磁束の磁路長を実効的に長くして交流磁束を通り難くする。凹凸の振幅及び四分の一の周期を交流磁束の表皮深さ以上に設定すると効果が大きい。   The configuration that makes it difficult for AC magnetic flux to pass through is a configuration with a soft iron block with low specific resistance that increases eddy current loss, a configuration in which the magnetic surface is covered with a material with good conductivity, and a configuration in which the magnetic surface is wrapped with a conductor plate It is effective to have a configuration in which irregularities substantially perpendicular to the direction of flow of magnetic flux are formed on the surface of the bulk magnetic material constituting the magnetic path from the field magnet to the magnetic salient pole. In the magnetic material through which eddy current flows, the AC magnetic flux is concentrated and propagates on the surface of the magnetic material, and the magnetic path length of the AC magnetic flux is effectively increased to make it difficult to pass through the AC magnetic flux. The effect is great when the amplitude of the unevenness and the quarter period are set to be greater than the skin depth of the AC magnetic flux.

請求項12の発明は,請求項1記載の回転電機システムに於いて,励磁コイルには界磁磁石の磁化状態変更の為の磁化電流を供給する回路に加えて磁束調整回路が接続され,磁束調整回路は界磁磁石に不可逆的な磁化変化を生ぜしめない程度の磁束調整電流を励磁コイルに供給し,誘起された磁束を界磁磁石からの磁束に重畳して電機子を流れる磁束量を調整する事を特徴とする。   According to a twelfth aspect of the present invention, in the rotating electrical machine system according to the first aspect, a magnetic flux adjusting circuit is connected to the exciting coil in addition to a circuit that supplies a magnetizing current for changing the magnetization state of the field magnet. The adjustment circuit supplies a magnetic flux adjustment current to the exciting coil that does not cause irreversible magnetization changes in the field magnet, and superimposes the induced magnetic flux on the magnetic flux from the field magnet to determine the amount of magnetic flux flowing through the armature. It is characterized by adjusting.

界磁磁石からの磁束に励磁電流による磁束を重畳させて磁束量を制御する複合励磁である。界磁磁石の磁化変更は離散的に為される場合があり,また磁化の大きさを連続的に変更が可能であっても,界磁磁石の磁化変更は殆どの場合は間歇的に実施され,結果として電機子を流れる磁束量は離散的に制御される事が多い。本発明では界磁磁石の各磁化状態に於いて界磁磁石に不可逆的な磁化変化を生ぜしめない程度の磁束調整電流を励磁コイルに供給して磁束を発生させ,界磁磁石からの磁束に重畳させて電機子を流れる磁束量を精密に制御する。   This is composite excitation in which the amount of magnetic flux is controlled by superimposing the magnetic flux generated by the exciting current on the magnetic flux from the field magnet. The field magnets may be changed in a discrete manner, and even if the magnitude of the magnetization can be changed continuously, the field magnets are almost always changed intermittently. As a result, the amount of magnetic flux flowing through the armature is often controlled discretely. In the present invention, in each magnetization state of the field magnet, a magnetic flux adjustment current that does not cause an irreversible magnetization change in the field magnet is supplied to the exciting coil to generate a magnetic flux. The amount of magnetic flux flowing through the armature is precisely controlled by superimposing.

請求項13の発明は,請求項1記載の回転電機システムに於いて,回転子側に配置された表面磁極部が電機子と径方向に対向して配置され,隣接する磁性体突極は互いに軸と平行の異なる方向に延伸されて延長部分は延長方向により第一延長部,第二延長部とされ,励磁部は回転子内に配置され,第一延長部,第二延長部を介して隣接する磁性体突極が互いに異極に磁化するよう構成される事を特徴とする。励磁コイル及び界磁磁石は回転子内に配置し,励磁コイルはスリップリングを介して外部の制御部と結合させる。回転子内のスペースを有効に利用でき,界磁磁石から磁性体突極への磁路の長さを短くできる利点がある。表面磁極部が電機子とが軸方向に対向する場合には上記趣旨に沿って第一延長部,第二延長部は径方向に磁性体突極を延長させる。   According to a thirteenth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the surface magnetic pole portion disposed on the rotor side is disposed to face the armature in the radial direction, and adjacent magnetic salient poles are mutually connected. Extending in different directions parallel to the axis, the extension part is made into a first extension part and a second extension part according to the extension direction, and the excitation part is arranged in the rotor via the first extension part and the second extension part. The magnetic salient poles adjacent to each other are magnetized differently from each other. An exciting coil and a field magnet are disposed in the rotor, and the exciting coil is coupled to an external control unit via a slip ring. The space in the rotor can be used effectively, and the length of the magnetic path from the field magnet to the magnetic salient pole can be shortened. When the surface magnetic pole portion is opposed to the armature in the axial direction, the first extension portion and the second extension portion extend the magnetic salient pole in the radial direction in accordance with the above-described purpose.

請求項14の発明は,請求項1記載の回転電機システムに於いて,回転子側に配置された表面磁極部が電機子と径方向に対向して配置され,電機子はさらに磁気ヨークを有し,隣接する磁性体突極は互いに軸と平行の異なる方向に延伸されて延長部分は延長方向により第一延長部,第二延長部とされ,回転子両端の静止側に配置された二つの励磁部は第一延長部と磁気ヨーク間,第二延長部と磁気ヨーク間にそれぞれ磁束を供給し,隣接する磁性体突極が互いに異極に磁化すよう構成される事を特徴とする。励磁部が静止側に配置されるのでブラシは不要であり,回転子はシンプルに構成される。   According to a fourteenth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the surface magnetic pole portion disposed on the rotor side is disposed to face the armature in the radial direction, and the armature further includes a magnetic yoke. The adjacent magnetic salient poles are stretched in different directions parallel to the axis, and the extension portions are defined as first and second extension portions according to the extension direction. The exciting part is configured to supply magnetic flux between the first extension part and the magnetic yoke, and between the second extension part and the magnetic yoke, respectively, and adjacent magnetic salient poles are magnetized differently from each other. Since the excitation part is arranged on the stationary side, no brush is required and the rotor is simply configured.

請求項15の発明は,請求項1記載の回転電機システムに於いて,回転子側に配置された表面磁極部が電機子と径方向に対向して配置され,隣接する磁性体突極は互いに軸と平行の一方向,内径方向にそれぞれ延伸されて延長部分は延長方向により第一延長部,第二延長部とされ,回転子端の静止側に配置された励磁部は第一延長部と第二延長部間に磁束を供給し,隣接する磁性体突極が互いに異極に磁化するよう構成される事を特徴とする。励磁部が静止側に配置されるのでブラシは不要であり,回転子はシンプルに構成される。   According to a fifteenth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the surface magnetic pole portion disposed on the rotor side is disposed to face the armature in the radial direction, and adjacent magnetic salient poles are mutually connected. Extending in one direction parallel to the axis and in the inner diameter direction, the extension part is defined as the first extension part and the second extension part according to the extension direction, and the excitation part arranged on the stationary side of the rotor end is the first extension part. A magnetic flux is supplied between the second extensions, and adjacent magnetic salient poles are magnetized differently from each other. Since the excitation part is arranged on the stationary side, no brush is required and the rotor is simply configured.

請求項16の発明は,請求項1記載の回転電機システムに於いて,回転子側に配置された表面磁極部が電機子と径方向に対向して電機子の外周側に配置され,隣接する磁性体突極は互いに軸と平行の異なる方向に延伸されて延長部分は延長方向により第一延長部,第二延長部とされ,励磁部は電機子の内周領域に配置され,第一延長部,第二延長部に微小間隙を介して磁気的に結合され,隣接する磁性体突極が互いに異極に磁化するよう構成される事を特徴とする。第一延長部,第二延長部はそれぞれ内径方向への延長部を以て励磁部と磁気的に結合する構成とする。回転電機の主要部を磁気的にも物理的にもシールド容易な構成としてインホイールモータに適する構成である。   According to a sixteenth aspect of the present invention, in the rotating electrical machine system according to the first aspect, the surface magnetic pole portion disposed on the rotor side is disposed on the outer peripheral side of the armature so as to face the armature in the radial direction and is adjacent to the armature. The magnetic salient poles are extended in different directions parallel to the axis, the extension part is made the first extension part and the second extension part according to the extension direction, and the excitation part is arranged in the inner peripheral region of the armature, and the first extension And the second extension portion are magnetically coupled to each other through a minute gap, and adjacent magnetic salient poles are magnetized differently from each other. Each of the first extension portion and the second extension portion is configured to be magnetically coupled to the excitation portion by an extension portion in the inner diameter direction. This configuration is suitable for an in-wheel motor because the main part of the rotating electrical machine can be easily shielded magnetically and physically.

請求項17の発明は,請求項1から請求項16記載の何れかの回転電機システムに於いて,さらに制御装置を有し,回転力を入力とし,発電電力を出力とする回転電機システムであって,電機子コイルに誘起される発電電圧が所定の値より大の時は制御装置により界磁磁石内の第一磁化の磁極面積を減じるよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて第一磁化の磁極面積を減じて電機子を流れる磁束量が小とされ,電機子コイルに誘起される発電電圧が所定の値より小の時は制御装置により界磁磁石内の第一磁化の磁極面積を増すよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて第一磁化の磁極面積を増して電機子を流れる磁束量が大とされ,発電電圧が所定の値に制御される事を特徴とする回転電機システムである。   The invention of claim 17 is the rotating electrical machine system according to any one of claims 1 to 16, further comprising a control device, wherein the rotating power is input and the generated power is output. When the generated voltage induced in the armature coil is larger than a predetermined value, the magnetizing current of the polarity magnetizing the field magnet is reduced by the control device so as to reduce the magnetic pole area of the first magnetization in the field magnet. The magnetic flux flowing through the armature is reduced by reducing the magnetic pole area of the first magnetization, and when the generated voltage induced in the armature coil is smaller than a predetermined value, the controller A magnetizing current having a polarity for magnetizing the field magnet is supplied to the exciting coil so as to increase the magnetic pole area of the first magnetization, the magnetic pole area of the first magnetization is increased, the amount of magnetic flux flowing through the armature is increased, and the generated voltage is predetermined. Rotating electric machine characterized by being controlled by the value of It is a stem.

界磁磁石内には磁性体突極を予め定めた方向に磁化する第一磁化,第一磁化と逆方向の磁化或いは消磁状態が存在する。磁化状態を変更して第一磁化に属する磁極面積を増せば,第一磁化以外の領域の磁極面積は減少する関係にある。   In the field magnet, there are a first magnetization for magnetizing the magnetic salient pole in a predetermined direction, a magnetization in the opposite direction to the first magnetization, or a demagnetized state. If the magnetic pole area belonging to the first magnetization is increased by changing the magnetization state, the magnetic pole area in the region other than the first magnetization is reduced.

請求項18の発明は,請求項1から請求項16記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,回転速度が所定の値より大で電機子を流れる磁束量を減少させる時には制御装置により界磁磁石内の第一磁化の磁極面積を減じるよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて第一磁化の磁極面積を減じて電機子を流れる磁束量が小とされ,回転速度が所定の値より小で電機子を流れる磁束量を増大させる時には制御装置により界磁磁石内の第一磁化の磁極面積を増すよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて第一磁化の磁極面積を増して電機子を流れる磁束量が大とされ,回転力が最適に制御される事を特徴とする回転電機システムである。駆動電流の進み位相制御を併用する場合には,電機子を流れる磁束量変更に際して界磁磁石の磁化状態を変更する他に駆動電流の進み位相制御を行う事も出来る。   The eighteenth aspect of the present invention is the rotating electrical machine system according to any one of the first to sixteenth aspects, further comprising a control device, wherein the supply current to the armature coil is input and the rotational force is output. In a rotating electrical machine system, when the rotational speed is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the polarity of magnetizing the field magnet by the controller to reduce the magnetic pole area of the first magnetization in the field magnet When the magnetizing current is supplied to the exciting coil, the magnetic flux area flowing through the armature is reduced by reducing the magnetic pole area of the first magnetization, and the amount of magnetic flux flowing through the armature is increased when the rotational speed is smaller than a predetermined value. A magnetizing current that polarizes the field magnet is supplied to the exciting coil so that the magnetic pole area of the first magnetization in the field magnet is increased by the device, and the magnetic flux amount flowing through the armature is increased by increasing the magnetic pole area of the first magnetization. And the rotational force is optimally controlled. A rotary electric machine system, characterized in that the. When the drive current advance phase control is used together, the drive current advance phase control can be performed in addition to changing the magnetization state of the field magnet when changing the amount of magnetic flux flowing through the armature.

請求項19の発明は,請求項1から請求項16記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,回転速度を減少させる場合には制御装置により界磁磁石内の第一磁化の磁極面積を増すよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて第一磁化の磁極面積を増して電機子を流れる磁束量が大とされ,回転エネルギーが発電電力として取り出される事を特徴とする回転電機システムである。   The nineteenth aspect of the present invention is the rotating electrical machine system according to any one of the first to sixteenth aspects, further comprising a control device, wherein the supply current to the armature coil is input and the rotational force is output. In the rotating electrical machine system, when the rotational speed is decreased, a magnetizing current having a polarity for magnetizing the field magnet is supplied to the exciting coil by the control device so as to increase the magnetic pole area of the first magnetization in the field magnet. The rotating electrical machine system is characterized in that the amount of magnetic flux flowing through the armature is increased by increasing the magnetic pole area of one magnetization, and rotational energy is extracted as generated power.

請求項20の発明は,電機子コイルを有する電機子と,電機子と対向して周方向に配置された複数の磁性体突極を有する表面磁極部と,同種の極性に磁化されるべき磁性体突極グループ毎に一括して磁化する励磁部とを有し,表面磁極部と電機子とは軸を中心に相対的に回転可能である回転電機装置の磁束量制御方法であって,励磁部は界磁磁石及び界磁磁石の磁化を変更する励磁コイルを有し,前記界磁磁石のN極或いはS極の何れか一方の磁極から流れる磁束が磁性体突極及び電機子を介して界磁磁石の他方の磁極に環流する主磁路と,励磁コイルを流れる電流により生起された磁束が界磁磁石を含んで主として励磁部内で環流する励磁磁路とを界磁磁石に並列に接続し,励磁コイルに磁化電流を供給して界磁磁石の磁化状態を不可逆的に変えて電機子を流れる磁束量を制御する磁束量制御方法である。   According to a twentieth aspect of the invention, an armature having an armature coil, a surface magnetic pole portion having a plurality of magnetic salient poles arranged in a circumferential direction facing the armature, and a magnetic material to be magnetized to the same kind of polarity A magnetic flux amount control method for a rotating electrical machine apparatus having a magnetizing portion for each body salient pole group, the surface magnetic pole portion and the armature being relatively rotatable about an axis. The unit has a field magnet and an exciting coil for changing the magnetization of the field magnet, and the magnetic flux flowing from either the N pole or the S pole of the field magnet is passed through the magnetic salient pole and the armature. The main magnetic path circulating in the other magnetic pole of the field magnet and the exciting magnetic path in which the magnetic flux generated by the current flowing through the excitation coil circulates mainly in the excitation section including the field magnet are connected in parallel to the field magnet. The magnetizing current is supplied to the exciting coil to irreversibly change the magnetization state of the field magnet. A magnetic flux amount control method for controlling a magnetic flux amount flowing in the armature by changing.

同種の極性に磁化されるべき磁性体突極グループ毎に一括して磁化する励磁部を有し,励磁部内には界磁磁石及び界磁磁石を磁化する励磁コイルとを有し,回転電機の運転中或いは静止時に界磁磁石の磁化状態を変え電機子に流れる磁束量を変更する。励磁コイルが発生させる磁束が流れる励磁磁路を界磁磁石に並列に接続し,界磁磁石の着磁変更に際して電機子コイルへの影響を軽減できる構成とすると共に電機子コイルが発生する駆動磁束の影響が界磁磁石に及び難い構成としている。   Each magnetic salient pole group to be magnetized to the same kind of polarity has an exciting part that is magnetized in a lump. The exciting part has a field magnet and an exciting coil that magnetizes the field magnet. The amount of magnetic flux flowing through the armature is changed by changing the magnetization state of the field magnet during operation or at rest. The excitation magnetic path through which the magnetic flux generated by the excitation coil flows is connected in parallel to the field magnet so that the influence on the armature coil can be reduced when the magnetization of the field magnet is changed, and the driving magnetic flux generated by the armature coil It is difficult to affect the field magnet.

界磁磁石には単独の磁石或いは磁化容易さの異なる磁石要素が並列に接続された構成として磁化する磁石要素の領域を制御して電機子を含む主磁路に供給する磁束量を制御する事が出来る。励磁コイルに供給する磁化電流を変えて界磁磁石を部分的に磁化し,或いは消磁する事により界磁磁石が主磁路の供給する磁束量を変える。   For field magnets, a single magnet or a magnet element having different ease of magnetization is connected in parallel to control the magnet element region to control the amount of magnetic flux supplied to the main magnetic path including the armature. I can do it. By changing the magnetization current supplied to the exciting coil to partially magnetize or demagnetize the field magnet, the field magnet changes the amount of magnetic flux supplied to the main magnetic path.

請求項21の発明は,請求項20記載の磁束量制御方法に於いて,界磁磁石は磁化の容易さが異なる磁石要素を並列に接続して構成する磁束量制御方法である。磁化の容易さが異なる磁石要素を並列に接続された界磁磁石は,磁化方向長さと抗磁力の積が異なる一以上の磁石が並列に接続された構成,磁化方向長さが徐々に変わる磁石,傾斜的に含有成分が異なって抗磁力が異なる磁石として構成される。   A twenty-first aspect of the invention is the magnetic flux amount control method according to the twentieth aspect, wherein the field magnet is configured by connecting in parallel magnet elements having different easiness of magnetization. Field magnets connected in parallel with magnet elements with different ease of magnetization are composed of one or more magnets with different products of magnetization direction length and coercive force connected in parallel, and the magnetization direction length gradually changes , It is configured as a magnet having different coercive force and different components contained in a gradient.

請求項22の発明は,請求項20記載の磁束量制御方法に於いて,界磁磁石の磁化状態を変更しない程度の磁束調整電流を励磁コイルに供給し,生起された磁束を界磁磁石からの磁束に重畳して電機子を流れる磁束量を調整する磁束量制御方法である。界磁磁石の磁化変更は離散的に為される場合があり,また磁化の大きさを連続的に変更が可能であっても,界磁磁石の磁化変更は殆どの場合は間歇的に実施され,結果として電機子を流れる磁束量は離散的に制御される事が多い。本発明では界磁磁石の各磁化状態に於いて界磁磁石に不可逆的な磁化変化を生ぜしめない程度の磁束調整電流を励磁コイルに供給して磁束を発生させ,界磁磁石からの磁束に重畳させて電機子を流れる磁束量を精密に制御する。   According to a twenty-second aspect of the present invention, in the magnetic flux amount control method according to the twenty-second aspect, a magnetic flux adjustment current that does not change the magnetization state of the field magnet is supplied to the exciting coil, and the generated magnetic flux is supplied from the field magnet. This is a magnetic flux amount control method for adjusting the amount of magnetic flux flowing through the armature while being superimposed on the magnetic flux. The field magnets may be changed in a discrete manner, and even if the magnitude of the magnetization can be changed continuously, the field magnets are almost always changed intermittently. As a result, the amount of magnetic flux flowing through the armature is often controlled discretely. In the present invention, in each magnetization state of the field magnet, a magnetic flux adjustment current that does not cause an irreversible magnetization change in the field magnet is supplied to the exciting coil to generate a magnetic flux. The amount of magnetic flux flowing through the armature is precisely controlled by superimposing.

請求項23の発明は,請求項20記載の磁束量制御方法に於いて,界磁磁石を磁化変更に必要な磁界強度が互いに異なる第一界磁磁石及び第二界磁磁石の並列接続で構成し,励磁コイルは第一界磁磁石及び第二界磁磁石が直列となる閉磁路に磁束を発生させる磁束量制御方法である。第一界磁磁石及び第二界磁磁石の磁極面積が等しい場合,直列に接続された各磁石内の磁界強度はほぼ等しいので第一界磁磁石及び第二界磁磁石それぞれで磁化反転に必要な磁界強度が異なるよう構成して界磁磁石の磁化状態を独立に制御する事を可能にする。磁化反転に必要な磁界強度を異ならせるには磁石素材の種類を変える,或いは同種の素材に於いて構成元素の組成比を変える等の手段で実現出来る。それぞれの界磁磁石を更に磁化容易さの異なる磁石の並列接続とする構成も可能である。   The invention according to claim 23 is the magnetic flux amount control method according to claim 20, wherein the field magnet is constituted by parallel connection of a first field magnet and a second field magnet having different magnetic field strengths necessary for magnetization change. The exciting coil is a magnetic flux amount control method for generating a magnetic flux in a closed magnetic path in which a first field magnet and a second field magnet are in series. When the magnetic field areas of the first field magnet and the second field magnet are equal, the magnetic field strength in each of the magnets connected in series is almost equal, so it is necessary to reverse the magnetization of the first field magnet and the second field magnet. Thus, it is possible to control the magnetization state of the field magnet independently. Different magnetic field strengths necessary for magnetization reversal can be realized by changing the type of magnet material or changing the composition ratio of constituent elements in the same type of material. A configuration in which each field magnet is further connected in parallel with magnets having different easiness of magnetization is also possible.

請求項24の発明は,請求項20記載の磁束量制御方法に於いて,界磁磁石から磁性体突極に至る磁路は渦電流損を大として交流磁束が通り難い構成を有する磁束量制御方法である。界磁磁石を励磁する際に誘起される磁束パルスが磁性体突極に到達し難い構成として電機子コイル周辺の電子回路に及ぼす不具合を軽減させる。交流磁束が通り難い構成には種々の方法があり,比抵抗の小さい軟鉄ブロックで渦電流損を大にする,或いは磁性体表面を導電性の良い材料で被覆する,磁路の表面に磁束の流れる方向と略直交する凹凸を形成した構成等が有効である。   According to a twenty-fourth aspect of the present invention, there is provided the magnetic flux amount control method according to the twentieth aspect, wherein the magnetic path from the field magnet to the magnetic salient pole has a configuration in which an eddy current loss is large and an alternating magnetic flux is difficult to pass. Is the method. As a configuration in which the magnetic flux pulse induced when the field magnet is excited does not easily reach the magnetic salient pole, the problem on the electronic circuit around the armature coil is reduced. There are various ways to make it difficult for AC magnetic flux to pass through. The soft iron block with low specific resistance increases eddy current loss, or the magnetic surface is coated with a material with good conductivity. A configuration in which irregularities substantially orthogonal to the flowing direction are formed is effective.

界磁磁石及び界磁磁石を磁化する励磁コイルを含む励磁部を回転子内或いは静止側に配置する構成として,界磁磁石の磁化状態を変えて電機子を流れる磁束量を制御する。磁化状態を変える時のみ励磁コイルに磁化電流を供給するので高エネルギー効率で出力を最適に制御する回転電機システムを実現出来る。また,励磁部を電機子から離れた位置に配置できるので低保持力の界磁磁石としても電機子コイルの影響を回避出来,界磁磁石を磁化する磁気回路,界磁磁石の形状寸法等を最適に出来て確実に界磁磁石の磁化状態を制御できる。   As an arrangement in which the field magnet and the exciting part including the exciting coil for magnetizing the field magnet are arranged in the rotor or on the stationary side, the amount of magnetic flux flowing through the armature is controlled by changing the magnetization state of the field magnet. Since the magnetizing current is supplied to the exciting coil only when the magnetization state is changed, a rotating electrical machine system that can optimally control the output with high energy efficiency can be realized. In addition, since the exciting part can be arranged at a position away from the armature, the influence of the armature coil can be avoided even as a field magnet with low coercive force, and the magnetic circuit for magnetizing the field magnet, the shape dimensions of the field magnet, etc. Optimal and reliable control of field magnet magnetization.

第一の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 1st Example. 図1に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図1に示された回転電機の回転子構成と励磁部を示す分解斜視図である。It is a disassembled perspective view which shows the rotor structure and excitation part of the rotary electric machine shown by FIG. 図1に示された回転電機の励磁部を回転子側から見た平面図である。It is the top view which looked at the excitation part of the rotary electric machine shown by FIG. 1 from the rotor side. 図1に示された回転電機の励磁部を右側から見た平面図である。It is the top view which looked at the excitation part of the rotary electric machine shown by FIG. 1 from the right side. 励磁コイルに供給する電流波形の例を示す図である。It is a figure which shows the example of the electric current waveform supplied to an exciting coil. 磁束量制御を行う回転電機システムのブロック図である。It is a block diagram of the rotary electric machine system which performs magnetic flux amount control. 第二の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 2nd Example. 第三の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 3rd Example. 図9に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図9に示された回転電機の回転子構成を示す分解斜視図である。It is a disassembled perspective view which shows the rotor structure of the rotary electric machine shown by FIG. 図9に示された回転電機の回転子の拡大された縦断面図である。FIG. 10 is an enlarged longitudinal sectional view of the rotor of the rotating electrical machine shown in FIG. 9. 図9に示された回転電機の励磁部の縦断面図である。It is a longitudinal cross-sectional view of the excitation part of the rotary electric machine shown by FIG. 磁束量制御を行う回転電機システムのブロック図である。It is a block diagram of the rotary electric machine system which performs magnetic flux amount control. 第四の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 4th Example. 図15に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine which were shown by FIG. 第五の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by the 5th Example. 図17に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図17に示された回転電機の回転子構成と励磁部を示す分解斜視図である。It is a disassembled perspective view which shows the rotor structure and excitation part of the rotary electric machine shown by FIG. 図17に示された回転電機の励磁部の拡大された縦断面図である。FIG. 18 is an enlarged longitudinal sectional view of an excitation unit of the rotating electrical machine shown in FIG. 17. 第六の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by the 6th Example. 図21に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 図21に示された回転電機の励磁部の拡大された縦断面図である。FIG. 22 is an enlarged longitudinal sectional view of an excitation part of the rotating electrical machine shown in FIG. 21. 第七の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 7th Example. (a)は図24に示された回転電機の第一表面磁極部を電機子側から見た平面図であり,(b)は図24に示された回転電機の電機子を第一表面磁極部側から見た平面図であり,(c)は図24に示された回転電機の第二表面磁極部を電機子側から見た平面図である。FIG. 25A is a plan view of the first surface magnetic pole portion of the rotating electric machine shown in FIG. 24 as viewed from the armature side, and FIG. 25B shows the armature of the rotating electric machine shown in FIG. It is the top view seen from the section side, (c) is the top view which looked at the 2nd surface magnetic pole part of the rotary electric machine shown by FIG. 24 from the armature side. 図24に示された回転電機の第一表面磁極部,電機子,第二表面磁極部の周方向磁極構成及び磁束の流れを示す。FIG. 25 shows a circumferential magnetic pole configuration of the first surface magnetic pole portion, armature, and second surface magnetic pole portion of the rotating electric machine shown in FIG. 24 and the flow of magnetic flux. 図24に示された回転電機の第一表面磁極部,電機子,第二表面磁極部の周方向磁極構成及び磁束の流れを示す。FIG. 25 shows a circumferential magnetic pole configuration of the first surface magnetic pole portion, armature, and second surface magnetic pole portion of the rotating electric machine shown in FIG. 24 and the flow of magnetic flux. 図24に示された回転電機の励磁部の縦断面図である。It is a longitudinal cross-sectional view of the excitation part of the rotary electric machine shown by FIG. 第八の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by the 8th Example. 図29に示された回転電機の電機子と回転子とを示す断面図である。FIG. 30 is a cross-sectional view showing an armature and a rotor of the rotating electric machine shown in FIG. 29. 図29に示された回転電機の回転子構成を示す分解斜視図である。FIG. 30 is an exploded perspective view showing a rotor configuration of the rotating electrical machine shown in FIG. 29. 図29に示された回転電機の励磁部の縦断面図である。FIG. 30 is a longitudinal sectional view of an excitation part of the rotating electrical machine shown in FIG. 29. 第九の実施例による回転電機の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine by a 9th Example. 図33に示された回転電機の電機子と回転子とを示す断面図である。It is sectional drawing which shows the armature and rotor of a rotary electric machine shown by FIG. 第十の実施例による回転電機システムのブロック図である。It is a block diagram of the rotary electric machine system by a 10th Example.

以下に本発明による回転電機システムについて,その実施例及び原理作用等を図面を参照しながら説明する。   In the following, a rotating electrical machine system according to the present invention will be described with reference to the drawings, with regard to embodiments, principles and actions.

本発明による回転電機システムの第一実施例を図1から図7までを用いて説明する。第一実施例は,ラジアルギャップ構造の回転電機システムであり,励磁部は回転子の一方の端部に隣接するハウジング側に配置されている。図1は回転電機の縦断面図,図2は電機子と回転子とを示す断面図,図3は回転子構成と励磁部の配置を示す分解斜視図,図4は励磁部を回転子側から見た平面図,図5は励磁部を軸方向の右側から見た平面図,図6は励磁コイルに供給する電流波形例を示す図,図7は磁束量制御を行う回転電機システムのブロック図である。   A first embodiment of a rotating electrical machine system according to the present invention will be described with reference to FIGS. The first embodiment is a rotating electrical machine system having a radial gap structure, and the excitation unit is disposed on the housing side adjacent to one end of the rotor. FIG. 1 is a longitudinal sectional view of a rotating electrical machine, FIG. 2 is a sectional view showing an armature and a rotor, FIG. 3 is an exploded perspective view showing a rotor configuration and an arrangement of an exciting part, and FIG. FIG. 5 is a plan view of the excitation unit viewed from the right side in the axial direction, FIG. 6 is a diagram showing an example of a current waveform supplied to the excitation coil, and FIG. 7 is a block diagram of a rotating electrical machine system that controls the amount of magnetic flux FIG.

図1はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子はハウジング12に固定された円筒状磁気ヨーク15と,磁性体歯14と,電機子コイル16とを有している。回転子の磁極部は磁性体突極と磁気空隙部とが周方向に交互に並ぶ表面磁極部17,隣り合う磁性体突極を交互に内径方向及び軸と平行の右方向へ延長させた第一延長部18,第二延長部19とを有している。回転子右側のハウジング側に励磁部が配置されて第一延長部18,第二延長部19と空隙を介して対向し,第一延長部18,第二延長部19に磁束を一括して供給し,隣り合う磁性体突極を互いに異極に磁化している。   FIG. 1 shows an embodiment in which the present invention is applied to a rotating electrical machine having a radial gap structure, and a rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. The armature includes a cylindrical magnetic yoke 15 fixed to the housing 12, magnetic body teeth 14, and an armature coil 16. The magnetic pole portion of the rotor has a surface magnetic pole portion 17 in which magnetic body salient poles and magnetic gap portions are alternately arranged in the circumferential direction, and adjacent magnetic body salient poles are alternately extended in the inner diameter direction and the right direction parallel to the axis. One extension 18 and second extension 19 are provided. An excitation part is arranged on the housing side on the right side of the rotor, and faces the first extension part 18 and the second extension part 19 via a gap, and magnetic flux is supplied to the first extension part 18 and the second extension part 19 in a lump. However, adjacent magnetic salient poles are magnetized differently from each other.

同図に於いて,励磁部の主要部は内側磁極1b,外側磁極1d,円環状磁極1c,界磁磁石1j,励磁磁極1f,励磁コイル1g,可動磁極1h,間隙1nから構成されている。界磁磁石1j内の矢印は磁化方向を示している。可動磁極1hは周方向に摺動可能としてアクチュエータ1mに制御棒1kを介して接続されている。番号1e及び番号1aは非磁性体部,番号1pは回転子に固定された冷却ファンをそれぞれ示している。   In the figure, the main part of the exciting part is composed of an inner magnetic pole 1b, an outer magnetic pole 1d, an annular magnetic pole 1c, a field magnet 1j, an exciting magnetic pole 1f, an exciting coil 1g, a movable magnetic pole 1h, and a gap 1n. An arrow in the field magnet 1j indicates the magnetization direction. The movable magnetic pole 1h is slidable in the circumferential direction and is connected to the actuator 1m via a control rod 1k. Reference numerals 1e and 1a denote nonmagnetic parts, and reference numeral 1p denotes a cooling fan fixed to the rotor.

図2は図1のA−A’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子はハウジング12に固定された円筒状磁気ヨーク15と,円筒状磁気ヨーク15から径方向に延び,周方向に磁気空隙を有する複数の磁性体歯14と,磁性体歯14に巻回された電機子コイル16とから構成されている。本実施例では9個の電機子コイル16を有し,それらは三相に結線されている。電機子の磁性体歯14先端には径方向に短い可飽和磁性体結合部27を隣接する磁性体歯14先端部間に設けてある。磁性体歯14及び可飽和磁性体結合部27はケイ素鋼板を型で打ち抜いて積層され,電機子コイル16を巻回された後,円筒状磁気ヨーク15と組み合わせて電機子とされている。   FIG. 2 is a cross-sectional view of the armature and the rotor along A-A ′ in FIG. 1, and some of the components are numbered for explaining the mutual relationship. The armature is wound around the cylindrical magnetic yoke 15 fixed to the housing 12, a plurality of magnetic teeth 14 extending radially from the cylindrical magnetic yoke 15 and having a magnetic gap in the circumferential direction, and the magnetic teeth 14. Armature coil 16. In this embodiment, nine armature coils 16 are provided and are connected in three phases. A saturable magnetic coupling portion 27 that is short in the radial direction is provided between adjacent magnetic teeth 14 at the tips of the magnetic teeth 14 of the armature. The magnetic material teeth 14 and the saturable magnetic material coupling portion 27 are laminated by punching a silicon steel plate with a mold, wound with the armature coil 16, and then combined with the cylindrical magnetic yoke 15 to form an armature.

可飽和磁性体結合部27は隣接する磁性体歯14同士を機械的に連結させて磁性体歯14の支持強度を向上させ,磁性体歯14の不要な振動を抑制させる。可飽和磁性体結合部27の径方向の長さは短く設定して容易に磁気的に飽和する形状としたので電機子コイル16が発生させる磁束或いは界磁磁石からの磁束によって容易に飽和し,その場合に電機子コイル16が発生させる磁束及び磁束の短絡を僅かな量とする。電機子コイル16に電流が供給されると,時間と共に可飽和磁性体結合部27は磁気的に飽和させられて周辺に磁束を漏洩させるが,磁気飽和した可飽和磁性体結合部27に現れる実効的な磁気空隙の境界はクリアではないので漏洩する磁束の分布は緩やかとなり,可飽和磁性体結合部27はこの点でも磁性体歯14に加わる力の時間変化を緩やかにして振動抑制に寄与する。   The saturable magnetic material coupling portion 27 mechanically connects adjacent magnetic material teeth 14 to improve the support strength of the magnetic material teeth 14 and suppress unnecessary vibration of the magnetic material teeth 14. Since the length of the saturable magnetic material coupling portion 27 in the radial direction is set to be short and is easily magnetically saturated, it is easily saturated by the magnetic flux generated by the armature coil 16 or the magnetic flux from the field magnet. In this case, the magnetic flux generated by the armature coil 16 and the short circuit of the magnetic flux are set to a small amount. When a current is supplied to the armature coil 16, the saturable magnetic body coupling portion 27 is magnetically saturated with time and leaks magnetic flux to the periphery, but the effective magnetic field appears in the magnetically saturated saturable magnetic body coupling portion 27. Since the boundary of the magnetic gap is not clear, the distribution of the magnetic flux that leaks becomes gentle, and the saturable magnetic material coupling part 27 also contributes to vibration suppression by slowing the time change of the force applied to the magnetic material teeth 14 in this respect as well. .

図2に於いて,回転子の表面磁極部17は周方向に交互に配置された磁性体突極及び磁気空隙部で構成され,隣接する磁性体突極を代表して磁性体突極21,22とし,磁気空隙部23として番号を付している。隣接する磁性体突極21,22は内径方向,軸と平行の右方向に交互に延長されてそれぞれ第一延長部18,第二延長部19とされている。番号28は短絡環を示し,磁性体突極21から内径方向に延長された磁路25に周回するよう配置された導体板で構成されている。番号26は可飽和磁性体部を示す。   In FIG. 2, the surface magnetic pole portion 17 of the rotor is composed of magnetic salient poles and magnetic gap portions alternately arranged in the circumferential direction, and represents the magnetic salient poles 21 representing the adjacent magnetic salient poles. 22 and numbered as the magnetic gap 23. The adjacent magnetic salient poles 21 and 22 are alternately extended in the inner diameter direction and in the right direction parallel to the axis to be a first extension 18 and a second extension 19, respectively. Reference numeral 28 denotes a short-circuited ring, which is composed of a conductor plate arranged to circulate around a magnetic path 25 extending in the inner diameter direction from the magnetic salient pole 21. Reference numeral 26 denotes a saturable magnetic part.

番号24は磁束チャネル部である。磁性体突極21,22は幅の狭い可飽和磁性体部26で連結された構成として所定の型でケイ素鋼板を打ち抜き,積層して構成され,磁束チャネル部24には断面積を同じくするスロットに軟鉄のブロックを挿入している。非磁性体部分23,1aは非磁性のステンレススチールで構成している。   Reference numeral 24 denotes a magnetic flux channel portion. The magnetic salient poles 21 and 22 are formed by punching and laminating silicon steel plates with a predetermined type as a configuration connected by a narrow saturable magnetic portion 26, and the magnetic flux channel portion 24 has a slot having the same cross-sectional area. A soft iron block is inserted in The nonmagnetic parts 23 and 1a are made of nonmagnetic stainless steel.

磁性体突極21,22はケイ素鋼板を積層されているので積層方向である軸方向の磁気抵抗は大きいが,飽和磁束密度の大きな軟鉄ブロックで構成された磁束チャネル部24は軸方向に磁気抵抗が小であり,回転子の空きスペースを利用して電機子より遠い側の磁性体突極22に配置された磁束チャネル部24は十分な量の界磁磁束を回転軸11と平行な方向に伝搬させる事が出来る。   Since the magnetic salient poles 21 and 22 are laminated with silicon steel plates, the magnetic resistance in the axial direction, which is the stacking direction, is large, but the magnetic flux channel portion 24 composed of a soft iron block with a large saturation magnetic flux density has a magnetic resistance in the axial direction. The magnetic flux channel portion 24 disposed on the magnetic salient pole 22 on the side farther than the armature by utilizing the vacant space of the rotor allows a sufficient amount of field magnetic flux to be transmitted in a direction parallel to the rotating shaft 11. It can be propagated.

図3は回転子の構成及び励磁部の配置を示す分解斜視図である。理解を容易にする為に磁性体突極21,22等を有する中心部と磁性体突極の第二延長部19とを離して示し,第二延長部19に間隙を介して対向しハウジング12側に配置されている励磁部35を示している。第二延長部19は軟鉄をプレス成形して磁性体突極22の延長部分となる磁性体突部31を有して構成され,非磁性体部34は磁性を持たないステンレススチールで形成されている。磁性体突部31と一体の環状磁気コア部分32は微小空隙を介して励磁部35の円環状磁極1cに,第一延長部18と結合されている円筒状磁気コア33は微小空隙を介して内側磁極1bとそれぞれ対向して磁気的に結合している。   FIG. 3 is an exploded perspective view showing the configuration of the rotor and the arrangement of the excitation parts. For ease of understanding, the central portion having the magnetic salient poles 21, 22 and the like and the second extension portion 19 of the magnetic salient pole are shown apart from each other, and the housing 12 The excitation part 35 arrange | positioned at the side is shown. The second extension 19 is formed by pressing a soft iron and having a magnetic projection 31 that is an extension of the magnetic salient pole 22, and the non-magnetic portion 34 is made of stainless steel having no magnetism. Yes. The annular magnetic core portion 32 integral with the magnetic protrusion 31 is connected to the annular magnetic pole 1c of the exciting portion 35 via a minute gap, and the cylindrical magnetic core 33 coupled to the first extension 18 is interposed via the minute gap. The inner magnetic pole 1b is opposed and magnetically coupled.

励磁部の構成は図1,図3,図4,図5を用いて説明される。図4は励磁部35を回転子側から見た平面図を示し,界磁磁石1jは外径方向に磁化されている界磁磁石領域41,内径方向に磁化されている界磁磁石領域42に区分されて示され,内側磁極1b及び外側磁極1dの間に配置されている。内側磁極1b及び外側磁極1d間の径方向間隙は周方向に徐々に変わり,界磁磁石領域41,42は径方向の長さが周方向に変えられている。界磁磁石領域41,42内の矢印は磁化方向を示し,磁性体突極21,22をそれぞれN極,S極に磁化する界磁磁石領域42を第一磁化,逆方向の界磁磁石領域41を第二磁化としている。   The configuration of the excitation unit will be described with reference to FIGS. FIG. 4 is a plan view of the exciting unit 35 as viewed from the rotor side. The field magnet 1j is divided into a field magnet region 41 magnetized in the outer diameter direction and a field magnet region 42 magnetized in the inner diameter direction. It is shown in section, and is arranged between the inner magnetic pole 1b and the outer magnetic pole 1d. The radial gap between the inner magnetic pole 1b and the outer magnetic pole 1d gradually changes in the circumferential direction, and the field magnet regions 41 and 42 have the radial length changed in the circumferential direction. The arrows in the field magnet regions 41 and 42 indicate the magnetization direction, the field magnet region 42 that magnetizes the magnetic salient poles 21 and 22 to the N pole and the S pole, respectively, and the field magnet region in the reverse direction. 41 is the second magnetization.

第二磁化である界磁磁石領域41と第一磁化である界磁磁石領域42の磁極面積を比較すると,界磁磁石領域42の周方向角度長が大きいので界磁磁石1j全体としては界磁磁石領域42の磁化方向で両者の磁極面積差に比例した磁束量が内側磁極1bに流入する。界磁磁石領域42から内側磁極1bに流入した磁束は円筒状磁気コア33,第一延長部18,磁性体突極21,磁性体歯14,磁性体突極22,第二延長部19,磁性体突部31,環状磁気コア部分32,円環状磁極1c,可動磁極1h,外側磁極1dを介して界磁磁石領域42に環流する主磁路を形成している。   Comparing the magnetic pole areas of the field magnet region 41, which is the second magnetization, and the field magnet region 42, which is the first magnetization, the circumferential angle length of the field magnet region 42 is large. A magnetic flux amount proportional to the difference between the magnetic pole areas in the magnetization direction of the magnet region 42 flows into the inner magnetic pole 1b. The magnetic flux that flows from the field magnet region 42 into the inner magnetic pole 1b is the cylindrical magnetic core 33, the first extension 18, the magnetic salient pole 21, the magnetic teeth 14, the magnetic salient pole 22, the second extension 19, and the magnetism. A main magnetic path that circulates in the field magnet region 42 through the body protrusion 31, the annular magnetic core portion 32, the annular magnetic pole 1c, the movable magnetic pole 1h, and the outer magnetic pole 1d is formed.

図5は励磁部35を軸方向の右側から見た平面図を示す。図1,3,5に示されるように界磁磁石領域41,42に並列に接続される励磁磁路が示され,図5には可動磁性体片より構成された可動磁極1hの偏倚位置が異なる場合が示されている。内側磁極1bに励磁磁極1fが接続され,可動磁極1hが外側磁極1dに微小間隙を介して配置され,さらに偏倚に応じて円環状磁極1c或いは励磁磁極1fに微小間隙を介して対向するよう構成されている。図3に示されるように円環状磁極1cは3カ所の軸方向突部を持ち,励磁磁極1fも3カ所の径方向突部を持ち,それぞれの突部は周方向に交互となるよう配置され,周方向に3個の可動磁極1hが配置されている。   FIG. 5 is a plan view of the excitation unit 35 viewed from the right side in the axial direction. As shown in FIGS. 1, 3, and 5, an exciting magnetic path connected in parallel to the field magnet regions 41 and 42 is shown. FIG. 5 shows the displacement position of the movable magnetic pole 1 h composed of the movable magnetic piece. Different cases are shown. An excitation magnetic pole 1f is connected to the inner magnetic pole 1b, a movable magnetic pole 1h is arranged with a small gap on the outer magnetic pole 1d, and is further configured to face the annular magnetic pole 1c or the excitation magnetic pole 1f with a small gap depending on the deviation. Has been. As shown in FIG. 3, the annular magnetic pole 1c has three axial protrusions, the excitation magnetic pole 1f also has three radial protrusions, and the protrusions are alternately arranged in the circumferential direction. , Three movable magnetic poles 1h are arranged in the circumferential direction.

図5(a)では可動磁極1hが微小間隙を介して励磁磁極1fと外側磁極1dに磁気的に結合され,図5(b)では可動磁極1hが微小間隙を介して円環状磁極1cと外側磁極1dに磁気的に結合され,可動磁極1hと励磁磁極1fと円環状磁極1cは磁路スイッチを構成している。励磁コイル1gは励磁磁極1f及び回転軸11を周回するよう巻回して構成され,図5(a)の状態で励磁コイル1gに供給された磁化電流により励磁磁極1f,可動磁極1h,外側磁極1d,界磁磁石領域41,42,内側磁極1bで構成される励磁磁路に磁束が誘起される。励磁磁極1f,可動磁極1h,内側磁極1b,外側磁極1dは鉄粉を押し固めた比抵抗の大きな圧粉鉄心で構成されている。その他に比抵抗が大きいフェライト系の磁性体,或いはケイ素鋼板の積層体等を回転電機仕様に合わせて採用する事が出来る。   In FIG. 5A, the movable magnetic pole 1h is magnetically coupled to the excitation magnetic pole 1f and the outer magnetic pole 1d through a minute gap, and in FIG. 5B, the movable magnetic pole 1h is moved to the outer side of the annular magnetic pole 1c via the minute gap. The movable magnetic pole 1h, the exciting magnetic pole 1f, and the annular magnetic pole 1c are magnetically coupled to the magnetic pole 1d and constitute a magnetic path switch. The exciting coil 1g is wound around the exciting magnetic pole 1f and the rotating shaft 11, and the exciting magnetic pole 1f, the movable magnetic pole 1h, and the outer magnetic pole 1d by the magnetizing current supplied to the exciting coil 1g in the state of FIG. , A magnetic flux is induced in the exciting magnetic path formed by the field magnet regions 41 and 42 and the inner magnetic pole 1b. The exciting magnetic pole 1f, the movable magnetic pole 1h, the inner magnetic pole 1b, and the outer magnetic pole 1d are composed of a dust core having a large specific resistance obtained by pressing iron powder. In addition, a ferrite-based magnetic body having a large specific resistance or a laminated body of silicon steel sheets can be used in accordance with the rotating electrical machine specifications.

3個の可動磁極1hは一体としてアクチュエータ1mに制御棒1kを介して接続されて周方向に偏倚可能に構成され,図5(a)の状態で励磁コイル1gに磁化電流を供給して界磁磁石領域41,42を磁化し,或いは消磁する。図5(b)の状態で界磁磁石領域41,42からの磁束は主磁路に流れる。   The three movable magnetic poles 1h are integrally connected to the actuator 1m via the control rod 1k so as to be biased in the circumferential direction. In the state shown in FIG. Magnet areas 41 and 42 are magnetized or demagnetized. In the state of FIG. 5B, the magnetic flux from the field magnet regions 41 and 42 flows in the main magnetic path.

図4に示されるように界磁磁石領域41,42は径方向の長さが周方向に変わり,同一の永久磁石要素が径方向長さを変えて並列に接続された状態である。図5(a)に示される場合に於いて,励磁コイル1gに磁化電流が供給されると,界磁磁石領域41,42に接する内側磁極1bと外側磁極1d間の磁気ポテンシャル差(起磁力)はほぼ同じとして各磁石要素内では磁気ポテンシャル差を径方向長さで除した値に相当する磁界強度の磁界が加えられる。   As shown in FIG. 4, the field magnet regions 41 and 42 are in a state where the radial length is changed in the circumferential direction, and the same permanent magnet elements are connected in parallel while changing the radial length. In the case shown in FIG. 5A, when a magnetizing current is supplied to the exciting coil 1g, the magnetic potential difference (magnetomotive force) between the inner magnetic pole 1b and the outer magnetic pole 1d in contact with the field magnet regions 41 and 42 is obtained. Are substantially the same, and a magnetic field having a magnetic field intensity corresponding to a value obtained by dividing the magnetic potential difference by the radial length is applied in each magnet element.

したがって,径方向に短い磁石要素が磁化されやすく,径方向に長い磁石要素は磁化され難い。励磁コイル1gに供給する磁化電流により界磁磁石領域41,42を一括して励磁すると,磁束は磁界強度が大となる径方向に短い側である界磁磁石領域41に磁束が集中し,磁界強度が抗磁力より大となる領域が磁化される。励磁コイル1gに供給する磁化電流を増やすと磁化される界磁磁石領域41の領域は広がって磁化される領域を制御できる。   Therefore, a magnet element short in the radial direction is easily magnetized, and a magnet element long in the radial direction is hardly magnetized. When the field magnet regions 41 and 42 are excited together by the magnetizing current supplied to the exciting coil 1g, the magnetic flux concentrates on the field magnet region 41 on the short side in the radial direction where the magnetic field strength increases, and the magnetic field The region whose strength is greater than the coercive force is magnetized. When the magnetizing current supplied to the exciting coil 1g is increased, the magnetized field magnet region 41 can be expanded to control the magnetized region.

励磁コイル1gに供給する電流波形は図6に示されている。番号64,65は時間を示す。図6(a)は時間64と共に振幅が徐々に小となる交流電流である消磁電流61の波形を示し,界磁磁石領域41,42は電流極性に応じて磁化の方向を変えられ,徐々にその程度を小さくされて消磁される。同図では交流電流波形を示しているが,交互に向きを変え,振幅を小にするパルス電流列でも同様の効果を得る事が出来る。界磁磁石領域41,42を消磁する場合には上記に説明したように磁化領域の制御と同様に消磁電流61の最大の振幅で消磁される領域を変える事が出来る。   The current waveform supplied to the exciting coil 1g is shown in FIG. Numbers 64 and 65 indicate time. FIG. 6A shows the waveform of the demagnetizing current 61, which is an alternating current whose amplitude gradually decreases with time 64, and the field magnet regions 41 and 42 are gradually changed in magnetization direction according to the current polarity. The degree is reduced to demagnetize. In the figure, an alternating current waveform is shown, but the same effect can be obtained with a pulse current train that alternately changes direction and reduces the amplitude. When the field magnet regions 41 and 42 are demagnetized, the region to be demagnetized can be changed with the maximum amplitude of the demagnetizing current 61 as described above.

図6(b)は界磁磁石領域41,42を磁化する為に加えるパルス電流62を示している。界磁磁石領域41,42を磁化するには仕様に応じて数十マイクロ秒から1ミリ秒程度の時間幅のパルス電流62を励磁コイル1gに加える。消磁電流61及びパルス電流62は界磁磁石領域41,42の磁化状態を変更する磁化電流である。   FIG. 6B shows a pulse current 62 applied to magnetize the field magnet regions 41 and 42. In order to magnetize the field magnet regions 41 and 42, a pulse current 62 having a time width of several tens of microseconds to about 1 millisecond is applied to the exciting coil 1g according to specifications. The demagnetizing current 61 and the pulse current 62 are magnetization currents that change the magnetization state of the field magnet regions 41 and 42.

制御電流63は可動磁極1hの偏倚を妨げる磁気力を抑制する場合に加える時間幅の広い電流波形を示している。磁路スイッチの可動部である可動磁極1hには一般に界磁磁石からの磁束量を大とする方向に偏倚させようとする磁気力が現れ,前記可動磁極1hの偏倚は影響を受ける。本発明では励磁磁極1f,可動磁極1h間の間隙1nを磁気抵抗調整部分として励磁磁路の磁気抵抗を主磁路の磁気抵抗とほぼ同じく設定している。可動磁極1hを偏倚させても界磁磁石領域41,42に繋がる磁気抵抗の変動は小さく抑制されるので可動磁極1hの偏倚に際して現れる磁気力は抑制される。   The control current 63 shows a current waveform having a wide time width when the magnetic force that prevents the displacement of the movable magnetic pole 1h is suppressed. In general, a magnetic force that tends to deviate in the direction of increasing the amount of magnetic flux from the field magnet appears in the movable magnetic pole 1h, which is a movable part of the magnetic path switch, and the deviation of the movable magnetic pole 1h is affected. In the present invention, the magnetic resistance of the exciting magnetic path is set to be substantially the same as the magnetic resistance of the main magnetic path with the gap 1n between the exciting magnetic pole 1f and the movable magnetic pole 1h as a magnetic resistance adjusting portion. Even if the movable magnetic pole 1h is biased, fluctuations in the magnetic resistance connected to the field magnet regions 41 and 42 are suppressed to be small, so that the magnetic force that appears when the movable magnetic pole 1h is biased is suppressed.

励磁磁路の磁気抵抗と主磁路の磁気抵抗を等しくする条件が磁気力を最小にする条件であるが,アクチュエータ1mの出力は摩擦力も考慮して余裕を持って設定するとして,前記磁気力がアクチュエータ1mの出力以下となる程度に両磁路の磁気抵抗を等しく設定する。主磁路の磁気抵抗は磁性体突極と磁性体歯との相対位置により変動するが,本発明で主磁路の磁気抵抗は磁性体突極と磁性体歯間の各相対位置に関して平均化された値としている。   The condition for making the magnetic resistance of the exciting magnetic path equal to the magnetic resistance of the main magnetic path is a condition for minimizing the magnetic force. The output of the actuator 1m is set with a margin in consideration of the frictional force. Is set equal to the magnetic resistance of both magnetic paths to the extent that becomes less than the output of the actuator 1m. The magnetic resistance of the main magnetic path varies depending on the relative position between the magnetic salient pole and the magnetic tooth, but in the present invention, the magnetic resistance of the main magnetic path is averaged for each relative position between the magnetic salient pole and the magnetic tooth. Value.

上記説明のように界磁磁石領域41,42は内側磁極1b及び外側磁極1d間に磁化容易さの異なる磁石要素が並列接続された構成である。励磁コイル1gに加えられるパルス電流62の大きさにより磁化される領域の広さを変え,さらにパルス電流62の極性により磁化される方向が変えられる。図4に示したように外径方向の磁化を有する界磁磁石領域41,内径方向の磁化を有する界磁磁石領域42が共存し,界磁磁石領域41,42の互いの領域の周方向角度長の大きさを変える事により電機子側に流れる磁束量が変わる。また,界磁磁石領域41,42の一方を消磁状態とする状態も可能である。   As described above, the field magnet regions 41 and 42 have a configuration in which magnet elements having different easiness of magnetization are connected in parallel between the inner magnetic pole 1b and the outer magnetic pole 1d. The size of the magnetized region is changed depending on the magnitude of the pulse current 62 applied to the exciting coil 1g, and the magnetized direction is changed depending on the polarity of the pulse current 62. As shown in FIG. 4, the field magnet region 41 having magnetization in the outer diameter direction and the field magnet region 42 having magnetization in the inner diameter direction coexist, and the circumferential angle of each region of the field magnet regions 41 and 42. By changing the length, the amount of magnetic flux flowing on the armature side changes. Further, a state in which one of the field magnet regions 41 and 42 is in a demagnetized state is possible.

永久磁石には材料,製法等多様な素材が使用可能であり,飽和磁束密度,抗磁力,或いはBHカーブ形状等にそれらの特徴が現れている。BHカーブ形状に於いて矩形性に優れる素材は一般に抗磁力も大であって界磁磁石領域41,42に於ける磁化方向を互いに逆となるよう磁化する場合に適し,逆の場合は一方向の磁化と消磁部分を共存させるように用いる事に適している。   Various materials such as materials and manufacturing methods can be used for permanent magnets, and their characteristics appear in saturation magnetic flux density, coercive force, or BH curve shape. In the BH curve shape, a material excellent in rectangularity generally has a large coercive force, and is suitable for magnetization so that the magnetization directions in the field magnet regions 41 and 42 are opposite to each other. It is suitable to use so that the magnetization and demagnetization part of the coexist.

界磁磁石領域41,42の磁化状態変更の方法を更に図4を用いて説明する。励磁コイル1gに供給されたパルス電流62が界磁磁石内に加える磁界強度より小の抗磁力を持つ界磁磁石要素は全て同じ方向に磁化されるので界磁磁石の磁化状態変更は以下のように実施される。   A method of changing the magnetization state of the field magnet regions 41 and 42 will be further described with reference to FIG. Since all field magnet elements having a coercive force smaller than the magnetic field strength applied to the field magnet by the pulse current 62 supplied to the exciting coil 1g are magnetized in the same direction, the magnetization state change of the field magnet is as follows. To be implemented.

第一磁化である界磁磁石領域42の磁化領域を減じると第二磁化である界磁磁石領域41の磁化領域が拡大される。界磁磁石領域41は界磁磁石領域42より径方向の長さが短いので第一磁化である界磁磁石領域42の磁化領域を減じるには界磁磁石領域41の領域を増すよう磁化する振幅及び極性のパルス電流62を励磁コイルに加える。   When the magnetization region of the field magnet region 42 that is the first magnetization is reduced, the magnetization region of the field magnet region 41 that is the second magnetization is expanded. The field magnet region 41 is shorter in the radial direction than the field magnet region 42, so that the magnetization of the field magnet region 41 is increased to reduce the magnetization region of the field magnet region 42, which is the first magnetization. And a pulse current 62 of polarity is applied to the exciting coil.

図4の状態から第一磁化である界磁磁石領域42の磁化領域を増すには,界磁磁石の径方向長さの最も短い領域に於いて界磁磁石領域41の縮小される差分相当を第一磁化の方向に磁化する振幅及び極性のパルス電流62を励磁コイルに加える。また,第一磁化である界磁磁石領域42の磁化領域を減少させるには,界磁磁石の径方向長さの最も短い領域に於いて界磁磁石領域41が増大された領域相当を第一磁化の方向に磁化する振幅及び極性のパルス電流62を励磁コイルに加える。   In order to increase the magnetization region of the field magnet region 42 which is the first magnetization from the state of FIG. 4, the difference corresponding to the reduction of the field magnet region 41 in the region where the radial length of the field magnet is the shortest. A pulse current 62 of amplitude and polarity that is magnetized in the direction of the first magnetization is applied to the exciting coil. Further, in order to reduce the magnetization region of the field magnet region 42 which is the first magnetization, the region corresponding to the region where the field magnet region 41 is increased in the region where the radial length of the field magnet is the shortest is used. A pulse current 62 of amplitude and polarity that magnetizes in the direction of magnetization is applied to the exciting coil.

電機子を流れる磁束量はこのように励磁コイル1gに供給するパルス電流62の振幅及び極性を変えて界磁磁石領域41,42の磁化方向及び磁化範囲を変える事で制御される。電機子を流れる磁束量と励磁コイル1gに供給するパルス電流62との関係は設計段階でマップデータとして設定する。しかし,回転電機の量産段階では部材の寸法が公差範囲内でバラツキ,磁性体の磁気特性のバラツキも存在して電機子を流れる磁束量の精密な制御が困難になる場合がある。そのような場合には回転電機を組み立て後に回転電機個々に電機子を流れる磁束量と励磁コイル1gに供給するパルス電流62との関係を検査し,前記マップデータを修正する。   Thus, the amount of magnetic flux flowing through the armature is controlled by changing the magnetization direction and magnetization range of the field magnet regions 41 and 42 by changing the amplitude and polarity of the pulse current 62 supplied to the exciting coil 1g. The relationship between the amount of magnetic flux flowing through the armature and the pulse current 62 supplied to the exciting coil 1g is set as map data at the design stage. However, at the stage of mass production of rotating electrical machines, there are cases where the dimensions of the members vary within the tolerance range, and there are also variations in the magnetic characteristics of the magnetic material, making it difficult to precisely control the amount of magnetic flux flowing through the armature. In such a case, after assembling the rotating electric machine, the relationship between the amount of magnetic flux flowing through the armature of each rotating electric machine and the pulse current 62 supplied to the exciting coil 1g is inspected, and the map data is corrected.

さらに磁性体の特性は温度による影響を受けやすく,経時変化による影響も懸念される場合には運転中に加えられるパルス電流62とその結果としての界磁磁石の磁化状態を監視し,回転電機の運転中に前記マップデータを修正する情報を学習的に取得する事も出来る。電機子を流れる磁束量を直接に把握する事は難しいが,電機子コイル16に現れる誘起電圧を参照して電機子を流れる磁束量を推定できる。   Further, the characteristics of the magnetic material are easily influenced by temperature, and when there is a concern about the influence of change over time, the pulse current 62 applied during operation and the resulting magnetization state of the field magnet are monitored to Information for correcting the map data during driving can be acquired in a learning manner. Although it is difficult to directly grasp the amount of magnetic flux flowing through the armature, the amount of magnetic flux flowing through the armature can be estimated with reference to the induced voltage appearing in the armature coil 16.

本実施例では界磁磁石領域41,42の磁化状態を変えて電機子を流れる磁束量を制御する。図5(a)の状態で界磁磁石領域41,42にバイパス磁路のみが接続され,バイパス磁路には励磁コイル1gが巻回されているので励磁コイル1gによる磁束は確実に界磁磁石領域41,42に加えられて磁化状態を変更できる。図5(b)の状態で界磁磁石領域41,42には主磁路のみが接続されるので界磁磁石領域41,42からの磁束は電機子側に供給される。   In this embodiment, the amount of magnetic flux flowing through the armature is controlled by changing the magnetization state of the field magnet regions 41 and 42. In the state of FIG. 5A, only the bypass magnetic path is connected to the field magnet regions 41 and 42, and the exciting coil 1g is wound around the bypass magnetic path, so that the magnetic flux generated by the exciting coil 1g is surely the field magnet. In addition to the regions 41 and 42, the magnetization state can be changed. Since only the main magnetic path is connected to the field magnet regions 41 and 42 in the state of FIG. 5B, the magnetic flux from the field magnet regions 41 and 42 is supplied to the armature side.

また,界磁磁石領域41,42から磁性体突極21,22に至る第二延長部19及び磁束チャネル24は軟鉄ブロックで構成して電機子コイル16が誘起する交流磁束を通り難い構成とし,さらに短絡環28を配置したので短絡環28を流れる渦電流により交流磁束が通り難く構成されている。電機子コイル16が誘起する交流磁束が界磁磁石領域41,42に及ぼす影響が抑制されるので界磁磁石1jを低保持力磁石で構成する事が出来る。さらに界磁磁石領域41,42を磁化する際に励磁コイル1gが生成する磁束パルスが電機子コイル16に及ぼす影響が軽減される構成である。   Further, the second extension 19 and the magnetic flux channel 24 extending from the field magnet regions 41 and 42 to the magnetic salient poles 21 and 22 are made of soft iron blocks so that the AC magnetic flux induced by the armature coil 16 is difficult to pass through. Further, since the short-circuit ring 28 is arranged, the AC magnetic flux is difficult to pass by the eddy current flowing through the short-circuit ring 28. Since the influence of the AC magnetic flux induced by the armature coil 16 on the field magnet regions 41 and 42 is suppressed, the field magnet 1j can be formed of a low holding force magnet. Further, the magnetic flux pulses generated by the exciting coil 1g when the field magnet regions 41 and 42 are magnetized are reduced in influence on the armature coil 16.

このように本実施例では界磁磁石領域41,42の磁化状態を回転時或いは静止時の如何なる場合に於いても変更或いは設定できる。したがって,不測の事態により界磁磁石領域41,42の磁化が消失される事があっても直ちに界磁磁石領域41,42に磁化を復元し,回転電機システムの運転を継続でき,安定的に機能する回転電機を提供する。   As described above, in the present embodiment, the magnetization state of the field magnet regions 41 and 42 can be changed or set in any case during rotation or stationary. Therefore, even if the magnetization of the field magnet regions 41 and 42 is lost due to an unexpected situation, the magnetization is immediately restored to the field magnet regions 41 and 42, and the operation of the rotating electrical machine system can be continued stably. Provide a functioning rotating electrical machine.

本発明では同種の極性に励磁される磁性体突極グループ毎に一括して励磁する励磁部を有して励磁部内に界磁磁石及び着磁用の励磁コイルを含む構成である。励磁部を電機子から離れた位置に配置できる特徴があり,電機子コイルの発生する磁界の影響を直接には受けない事,スペースに余裕がある事から電機子近傍の表面或いは磁極内に配置する従来の回転電機に比して本発明で採用する界磁磁石素材及び形状寸法には選択の自由度がある。   In the present invention, the magnetic salient pole group excited to the same kind of polarity has an exciting part that excites all at once, and the exciting part includes a field magnet and an exciting coil for magnetization. It has the feature that the exciter can be placed at a position away from the armature, and it is not directly affected by the magnetic field generated by the armature coil, and there is room in the space, so it is placed on the surface near the armature or in the magnetic pole. As compared with the conventional rotating electric machine, the field magnet material and the shape and dimensions adopted in the present invention have a degree of freedom of selection.

電機子に対向する回転子表面或いは磁極内には電機子コイルの作る磁界によって容易に非可逆減磁を生じないネオジウム磁石(NdFeB)が望ましいが,上記説明のように励磁部には電機子コイル16が誘起する交流磁束は到達し難いので界磁磁石として低保持力の磁石,例えばアルニコ磁石(AlNiCo)を使用する事が出来る。ネオジウム磁石(NdFeB)では着磁に必要な磁界強度が2400kA/m(キロアンペア/メートル)程度であり,アルニコ磁石(AlNiCo)の着磁に必要な磁界強度は240kA/m程度である。これにより界磁磁石1jの磁化変更が容易となる。   A neodymium magnet (NdFeB) that does not easily cause irreversible demagnetization due to the magnetic field generated by the armature coil is desirable on the rotor surface or magnetic pole facing the armature. Since the AC magnetic flux induced by 16 is difficult to reach, a magnet having a low coercive force, such as an Alnico magnet (AlNiCo), can be used as the field magnet. In the neodymium magnet (NdFeB), the magnetic field strength required for magnetization is about 2400 kA / m (kiloampere / meter), and the magnetic field strength required for magnetization of the alnico magnet (AlNiCo) is about 240 kA / m. Thereby, the magnetization change of the field magnet 1j becomes easy.

本発明では回転電機の運転中に励磁コイル1gにより任意に界磁磁石1jの磁化状態を変更して電機子に流れる磁束量を変更する事が目的である。磁石素材の特性はバラツキが多いので同一の素材を用いて寸法を変え,磁化の容易さに関して傾斜を持たせる方が制御しやすい。ネオジウム磁石(NdFeB)の微小な厚みを変えるよりアルニコ磁石(AlNiCo)で数ミリメートルの範囲で寸法を変える方が磁化容易さの程度を制御しやすい。   The object of the present invention is to change the amount of magnetic flux flowing through the armature by arbitrarily changing the magnetization state of the field magnet 1j by the exciting coil 1g during operation of the rotating electric machine. Since there are many variations in the characteristics of the magnet material, it is easier to control by changing the dimensions using the same material and providing an inclination for the ease of magnetization. It is easier to control the degree of magnetization by changing the size within a few millimeters with an alnico magnet (AlNiCo) than changing the minute thickness of a neodymium magnet (NdFeB).

さらに磁石素材を着磁させるに際しては十分な磁界強度の磁界を確実に磁石素材に加える磁気回路が必要であるが,本発明による回転電機では励磁部を独立に設けたので表面磁極部に於ける磁極構成に係わらず励磁コイル及び界磁磁石周辺の磁気回路を最適に構成出来る。界磁磁石近傍にヒータを配置し,界磁磁石の磁化を変更する際に界磁磁石のキュリー温度近傍にまで加熱して磁化変更を容易にする構成も可能である。   Furthermore, when magnetizing a magnet material, a magnetic circuit that reliably applies a magnetic field having a sufficient magnetic field strength to the magnet material is required. Regardless of the magnetic pole configuration, the magnetic circuit around the exciting coil and field magnet can be optimally configured. A configuration is also possible in which a heater is disposed in the vicinity of the field magnet, and when changing the magnetization of the field magnet, the magnetization is easily changed by heating to the vicinity of the Curie temperature of the field magnet.

以上,図1から図6に示した回転電機に於いて,界磁磁石1jの磁化領域を変える事で電機子に流れる磁束量を制御できることを説明した。本実施例は磁束量を制御して出力を最適化するシステムであり,図7を用いて回転電機システムとしての制御を説明する。図7は磁束量制御を行う回転電機システムのブロック図を示している。図7に於いて,回転電機71は入力72,出力73を有するとし,制御装置75は回転電機71の出力73及び回転子の位置,温度等を含む状態信号74を入力として制御信号76を介して磁束量を制御する。番号77は電機子コイル16に駆動電流を供給する駆動回路を示す。回転電機71が発電機として用いられるのであれば,入力72は回転力であり,出力73は発電電力となる。回転電機71が電動機として用いられるのであれば,入力72は駆動回路77から電機子コイル16に供給される駆動電流であり,出力73は回転トルク,回転速度となる。   As described above, in the rotating electrical machine shown in FIGS. 1 to 6, it has been explained that the amount of magnetic flux flowing through the armature can be controlled by changing the magnetization region of the field magnet 1j. This embodiment is a system that controls the amount of magnetic flux to optimize the output, and the control as a rotating electrical machine system will be described with reference to FIG. FIG. 7 shows a block diagram of a rotating electrical machine system that performs magnetic flux amount control. In FIG. 7, it is assumed that the rotating electrical machine 71 has an input 72 and an output 73, and the control device 75 receives the output signal 73 of the rotating electrical machine 71 and the status signal 74 including the position, temperature, etc. of the rotor and receives a control signal 76. The amount of magnetic flux is controlled via Reference numeral 77 denotes a drive circuit for supplying a drive current to the armature coil 16. If the rotating electrical machine 71 is used as a generator, the input 72 is a rotational force and the output 73 is generated power. If the rotating electric machine 71 is used as an electric motor, the input 72 is a driving current supplied from the driving circuit 77 to the armature coil 16, and the output 73 is a rotating torque and a rotating speed.

回転電機が電動機として用いられる場合において,磁束量制御を行って回転力を最適に制御する電動機システムを説明する。制御装置75は出力73である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時にはアクチュエータ1mにより可動磁極1hを偏倚させて界磁磁石を主磁路から励磁磁路への接続に切換え,第二磁化である界磁磁石領域41の磁極面積を増す方向のパルス電流62を励磁コイル1gに供給して第一磁化である界磁磁石領域42の磁極面積を減ずると共に界磁磁石領域41の磁極面積を増大させて電機子に流れる磁束量を小とさせ,アクチュエータ1mにより可動磁極1hを偏倚させて界磁磁石を励磁磁路から主磁路への接続に切り替える。   In the case where the rotating electrical machine is used as an electric motor, an electric motor system that optimally controls the rotational force by controlling the amount of magnetic flux will be described. When the rotational speed of the output 73 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 75 biases the movable magnetic pole 1h by the actuator 1m to move the field magnet from the main magnetic path to the exciting magnetic path. The pulse current 62 in the direction to increase the magnetic pole area of the field magnet region 41 that is the second magnetization is supplied to the exciting coil 1g to reduce the magnetic pole area of the field magnet region 42 that is the first magnetization and the field. The magnetic pole area of the magnet magnet region 41 is increased to reduce the amount of magnetic flux flowing through the armature, and the movable magnetic pole 1h is biased by the actuator 1m to switch the field magnet from connection to the main magnetic path.

制御装置75は出力73である回転速度が所定の値より小となり電機子に流れる磁束量を大とする時にはアクチュエータ1mにより可動磁極1hを偏倚させて界磁磁石を主磁路から励磁磁路への接続に切換え,第一磁化である界磁磁石領域42の磁極面積を増す方向のパルス電流62を励磁コイル1gに供給して第二磁化である界磁磁石領域41の磁極面積を減ずると共に界磁磁石領域42の磁極面積を増大させて電機子に流れる磁束量を大とさせ,アクチュエータ1mにより可動磁極1hを偏倚させて界磁磁石を励磁磁路から主磁路への接続に切り替える。   When the rotational speed as the output 73 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the control device 75 biases the movable magnetic pole 1h by the actuator 1m to move the field magnet from the main magnetic path to the exciting magnetic path. The pulse current 62 in a direction to increase the magnetic pole area of the field magnet region 42 that is the first magnetization is supplied to the exciting coil 1g to reduce the magnetic pole area of the field magnet region 41 that is the second magnetization and the field. The magnetic pole area of the magnetic magnet region 42 is increased to increase the amount of magnetic flux flowing through the armature, and the movable magnetic pole 1h is biased by the actuator 1m to switch the field magnet from connection to the main magnetic path.

回転電機が発電機として用いられる場合において,磁束量制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。制御装置75は出力73である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時にはアクチュエータ1mにより可動磁極1hを偏倚させて界磁磁石を主磁路から励磁磁路への接続に切換え,第二磁化である界磁磁石領域41の磁極面積を増す方向のパルス電流62を励磁コイル1gに供給して第一磁化である界磁磁石領域42の磁極面積を減ずると共に界磁磁石領域41の磁極面積を増大させて電機子に流れる磁束量を小とさせ,アクチュエータ1mにより可動磁極1hを偏倚させて界磁磁石を励磁磁路から主磁路への接続に切り替える。   A constant voltage power generation system that controls the amount of magnetic flux to be a predetermined voltage by controlling the amount of magnetic flux when a rotating electrical machine is used as a generator will be described. When the generated voltage, which is the output 73, is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 75 biases the movable magnetic pole 1h by the actuator 1m to move the field magnet from the main magnetic path to the exciting magnetic path. The pulse current 62 in the direction to increase the magnetic pole area of the field magnet region 41 that is the second magnetization is supplied to the exciting coil 1g to reduce the magnetic pole area of the field magnet region 42 that is the first magnetization and the field. The magnetic pole area of the magnet magnet region 41 is increased to reduce the amount of magnetic flux flowing through the armature, and the movable magnetic pole 1h is biased by the actuator 1m to switch the field magnet from connection to the main magnetic path.

制御装置75は出力73である発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時にはアクチュエータ1mにより可動磁極1hを偏倚させて界磁磁石を主磁路から励磁磁路への接続に切換え,第一磁化である界磁磁石領域42の磁極面積を増す方向のパルス電流62を励磁コイル1gに供給して第二磁化である界磁磁石領域41の磁極面積を減ずると共に界磁磁石領域42の磁極面積を増大させて電機子に流れる磁束量を大とさせ,アクチュエータ1mにより可動磁極1hを偏倚させて界磁磁石を励磁磁路から主磁路への接続に切り替える。   When the generated voltage as the output 73 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the control device 75 biases the movable magnetic pole 1h by the actuator 1m to move the field magnet from the main magnetic path to the exciting magnetic path. The pulse current 62 in a direction to increase the magnetic pole area of the field magnet region 42 that is the first magnetization is supplied to the exciting coil 1g to reduce the magnetic pole area of the field magnet region 41 that is the second magnetization and the field. The magnetic pole area of the magnetic magnet region 42 is increased to increase the amount of magnetic flux flowing through the armature, and the movable magnetic pole 1h is biased by the actuator 1m to switch the field magnet from connection to the main magnetic path.

上記実施例に於いて,励磁磁路の磁気抵抗は主磁路の磁気抵抗にほぼ等しくなるよう設定されているので可動磁極1hの偏倚を妨げる磁気力は小さく,磁路の切換は容易に行われる。さらにアクチュエータ1mにより可動磁極1hを偏倚させる際に界磁磁石に非可逆減磁を生じさせない程度の予め定めた振幅の制御電流63を供給して前記偏倚を妨げる磁気力を抑制し,或いは偏倚をアシストする方向の磁気力を発生してさらに偏倚を容易にする事も可能である。   In the above embodiment, since the magnetic resistance of the exciting magnetic path is set to be substantially equal to the magnetic resistance of the main magnetic path, the magnetic force that prevents the displacement of the movable magnetic pole 1h is small, and the magnetic path can be easily switched. Is called. Further, when the movable magnetic pole 1h is biased by the actuator 1m, a control current 63 having a predetermined amplitude that does not cause irreversible demagnetization is supplied to the field magnet to suppress the magnetic force that prevents the bias or It is also possible to make the bias easier by generating a magnetic force in the assisting direction.

界磁磁石1j(界磁磁石領域41,42)の磁化状態変更に際しては一般に励磁コイルにパルス状の磁化電流を流すが,その際に電機子コイル16に高電圧が現れ,電機子コイル16に接続される電子回路に不具合を生じさせる可能性がある。本実施例では界磁磁石1jの磁化状態を変更する際に可動磁極1hにより界磁磁石1jを主磁路から切り離して励磁磁路に接続する事で前記不具合を回避させる。更に主磁路には高い周波数の交流磁束が通り難いよう界磁磁石1jから磁性体突極21,22に至る磁路は渦電流損を大とするよう構成されている。したがって,電機子コイル16周辺の電子回路には耐電圧特性の比較的低い低コストの半導体素子を使用する事が出来る。   When changing the magnetization state of the field magnet 1j (field magnet regions 41, 42), a pulsed magnetization current is generally applied to the exciting coil. At that time, a high voltage appears in the armature coil 16, and the armature coil 16 There is a possibility of causing problems in the connected electronic circuit. In this embodiment, when the magnetization state of the field magnet 1j is changed, the above-mentioned problem is avoided by separating the field magnet 1j from the main magnetic path by the movable magnetic pole 1h and connecting it to the excitation magnetic path. Furthermore, the magnetic path from the field magnet 1j to the magnetic salient poles 21 and 22 is configured to increase the eddy current loss so that high-frequency AC magnetic flux does not easily pass through the main magnetic path. Therefore, a low-cost semiconductor element having a relatively low withstand voltage characteristic can be used for the electronic circuit around the armature coil 16.

本発明による回転電機システムの第二実施例を図8を用いて説明する。第二実施例は,第一実施例に於いて,磁路スイッチの構成を変えた例であり,図8は回転電機の縦断面図である。図3,図5に於いて,円環状磁極1c及び励磁磁極1fは3カ所の突部を持ち,可動磁極1hの周方向偏倚に伴って主磁路,励磁磁路の接続が変更されるよう構成されているが,図8に於いて外側磁極1d,円環状磁極1cは一体の外側磁極82として常に可動磁極1hに対向し,3カ所の突部を持つ励磁磁極81と可動磁極1hとが可動磁極1hの周方向位置により対向する状態が変わる構成である。   A second embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIG. The second embodiment is an example in which the configuration of the magnetic path switch is changed in the first embodiment, and FIG. 8 is a longitudinal sectional view of the rotating electrical machine. 3 and 5, the annular magnetic pole 1c and the excitation magnetic pole 1f have three protrusions, and the connection of the main magnetic path and the excitation magnetic path is changed in accordance with the circumferential deviation of the movable magnetic pole 1h. In FIG. 8, the outer magnetic pole 1d and the annular magnetic pole 1c are always opposed to the movable magnetic pole 1h as an integral outer magnetic pole 82, and an excitation magnetic pole 81 having three protrusions and a movable magnetic pole 1h are provided. The facing state changes depending on the circumferential position of the movable magnetic pole 1h.

この構成により,通常の運転時には励磁磁路の磁気抵抗は大とされ,界磁磁石1jの磁化を変更する際にのみ励磁磁路の磁気抵抗が小とされ,界磁磁石1jの磁化変更が可能とされる。励磁磁極81と可動磁極1hとの間隙は微小として励磁磁路の磁気抵抗を極力小となるように構成されている。すなわち,可動磁極1hの偏倚位置により界磁磁石1jへの励磁磁路の接続がオン,オフされる。また,可動磁極1hの偏倚に際して偏倚を妨げる磁気力を抑制する為の制御電流を励磁コイル1gに供給する構成である。その他の構成及び動作原理等は第一の実施例と同じであるので更なる説明は省略する。   With this configuration, the magnetic resistance of the excitation magnetic path is increased during normal operation, the magnetic resistance of the excitation magnetic path is decreased only when the magnetization of the field magnet 1j is changed, and the magnetization change of the field magnet 1j is changed. It is possible. The gap between the exciting magnetic pole 81 and the movable magnetic pole 1h is very small, and the magnetic resistance of the exciting magnetic path is made as small as possible. In other words, the connection of the excitation magnetic path to the field magnet 1j is turned on / off depending on the biased position of the movable magnetic pole 1h. In addition, a control current is supplied to the exciting coil 1g for suppressing the magnetic force that prevents the deflection of the movable magnetic pole 1h. Other configurations and operating principles are the same as those of the first embodiment, and further description thereof is omitted.

磁路スイッチの可動磁性体片である可動磁極1hの偏倚に際しては一般に磁気力が現れ,出力の大きなアクチュエータ1mを前記偏倚の為に配置する必要がある。磁気力の方向は支配的な磁化方向である界磁磁石領域42からの磁束量を大とするよう可動磁極1hを偏倚させようとする方向である。   When the movable magnetic pole 1h, which is the movable magnetic piece of the magnetic path switch, is biased, generally a magnetic force appears, and it is necessary to arrange the actuator 1m having a large output for the bias. The direction of the magnetic force is a direction in which the movable magnetic pole 1h is biased so as to increase the amount of magnetic flux from the field magnet region 42, which is the dominant magnetization direction.

本実施例に於いて,制御電流63は界磁磁石領域41,42の磁化状態を変更しない程度に設定し,励磁磁路を界磁磁石1jに接続する際には界磁磁石領域41,42で支配的となっている磁化状態,この場合は界磁磁石領域42の磁極面積を増大させる極性の制御電流63を励磁コイル1gに供給して励磁磁路の磁気抵抗は実効的に小とすると共にアクチュエータ1mにより可動磁極1hを偏倚させて励磁磁路を接続する。励磁磁路を界磁磁石1jから切り離す際には界磁磁石領域42の磁化領域を減少させる極性の制御電流63を励磁コイル1gに供給して励磁磁路の磁気抵抗は実効的に大とすると共にアクチュエータ1mにより可動磁極1hを偏倚させて励磁磁路を切り離す。これにより可動磁極1hに作用する磁気力は小に抑圧されるか,或いは偏倚をアシストする方向となり,前記偏倚は円滑に実行される。   In the present embodiment, the control current 63 is set to such an extent that the magnetization state of the field magnet regions 41 and 42 is not changed, and when the excitation magnetic path is connected to the field magnet 1j, the field magnet regions 41 and 42 are set. In this case, a control current 63 having a polarity that increases the magnetic pole area of the field magnet region 42 is supplied to the exciting coil 1g to effectively reduce the magnetic resistance of the exciting magnetic path. At the same time, the exciting magnetic path is connected by biasing the movable magnetic pole 1h by the actuator 1m. When the excitation magnetic path is separated from the field magnet 1j, a control current 63 having a polarity that reduces the magnetization region of the field magnet region 42 is supplied to the excitation coil 1g, thereby effectively increasing the magnetic resistance of the excitation magnetic path. At the same time, the movable magnetic pole 1h is biased by the actuator 1m to disconnect the exciting magnetic path. As a result, the magnetic force acting on the movable magnetic pole 1h is suppressed to a small level or is in a direction to assist the bias, and the bias is smoothly executed.

第二実施例の回転電機に於いて,磁束量を制御して出力を最適化するシステムの制御を説明する。回転電機が電動機として用いられる場合において,磁束量制御を行って回転力を最適に制御する。制御装置75は出力73である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には界磁磁石領域41,42に於いて支配的である界磁磁石領域42の磁極面積を増す極性の予め定めた振幅の制御電流63を励磁コイル1gに供給すると共にアクチュエータ1mにより可動磁極1hを偏倚させて励磁磁路を界磁磁石1jに接続し,第二磁化である界磁磁石領域41の磁極面積を増す極性のパルス電流62を励磁コイル1gに供給して第一磁化である界磁磁石領域42の磁極面積を減ずると共に界磁磁石領域41の磁極面積を増大させて電機子に流れる磁束量を小とさせる。その後,界磁磁石領域41,42に於いて支配的となった界磁磁石の磁極面積を減らす極性の予め定めた振幅の制御電流63を励磁コイル1gに供給すると共にアクチュエータ1mにより可動磁極1hを偏倚させて励磁磁路を界磁磁石1jから切り離す。   In the rotating electrical machine of the second embodiment, control of a system that controls the amount of magnetic flux to optimize the output will be described. When the rotating electrical machine is used as an electric motor, the amount of magnetic flux is controlled to optimally control the rotational force. The control device 75 controls the magnetic pole area of the field magnet region 42 that is dominant in the field magnet regions 41 and 42 when the rotational speed of the output 73 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced. A control current 63 having a predetermined amplitude with increasing polarity is supplied to the exciting coil 1g, and the movable magnetic pole 1h is biased by the actuator 1m to connect the exciting magnetic path to the field magnet 1j. A pulse current 62 having a polarity that increases the magnetic pole area of the region 41 is supplied to the exciting coil 1g to reduce the magnetic pole area of the field magnet region 42, which is the first magnetization, and to increase the magnetic pole area of the field magnet region 41, thereby increasing the armature. The amount of magnetic flux flowing through is made small. Thereafter, a control current 63 having a predetermined amplitude that reduces the magnetic pole area of the field magnet that becomes dominant in the field magnet regions 41 and 42 is supplied to the exciting coil 1g, and the movable magnetic pole 1h is moved by the actuator 1m. The excitation magnetic path is separated from the field magnet 1j by biasing.

制御装置75は出力73である回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には界磁磁石領域41,42に於いて支配的である界磁磁石領域42の磁極面積を増す極性の予め定めた振幅の制御電流63を励磁コイル1gに供給すると共にアクチュエータ1mにより可動磁極1hを偏倚させて励磁磁路を界磁磁石1jに接続し,第一磁化である界磁磁石領域42の磁極面積を増す極性のパルス電流62を励磁コイル1gに供給して第二磁化である界磁磁石領域41の磁極面積を減ずると共に界磁磁石領域42の磁極面積を増大させて電機子に流れる磁束量を大とさせる。その後,界磁磁石領域41,42に於いて支配的である界磁磁石領域42の磁極面積を減らす極性の予め定めた振幅の制御電流63を励磁コイル1gに供給すると共にアクチュエータ1mにより可動磁極1hを偏倚させて励磁磁路を界磁磁石1jから切り離す。   The control device 75 controls the magnetic pole area of the field magnet region 42 that is dominant in the field magnet regions 41 and 42 when the rotational speed of the output 73 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased. A control current 63 having a predetermined amplitude with increasing polarity is supplied to the exciting coil 1g, and the movable magnetic pole 1h is biased by the actuator 1m to connect the exciting magnetic path to the field magnet 1j. A pulse current 62 having a polarity that increases the magnetic pole area of the region 42 is supplied to the exciting coil 1g to reduce the magnetic pole area of the field magnet region 41, which is the second magnetization, and increase the magnetic pole area of the field magnet region 42, thereby increasing the armature. The amount of magnetic flux flowing through the Thereafter, a control current 63 having a predetermined amplitude that reduces the magnetic pole area of the field magnet region 42 that is dominant in the field magnet regions 41 and 42 is supplied to the exciting coil 1g and the movable magnetic pole 1h is supplied by the actuator 1m. And the excitation magnetic path is separated from the field magnet 1j.

回転電機が発電機として用いられる場合において,磁束量制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。制御装置75は出力73である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には界磁磁石領域41,42に於いて支配的である界磁磁石領域42の磁極面積を増す極性の予め定めた振幅の制御電流63を励磁コイル1gに供給すると共にアクチュエータ1mにより可動磁極1hを偏倚させて励磁磁路を界磁磁石1jに接続し,第二磁化である界磁磁石領域41の磁極面積を増す極性のパルス電流62を励磁コイル1gに供給して第一磁化である界磁磁石領域42の磁極面積を減ずると共に界磁磁石領域41の磁極面積を増大させて電機子に流れる磁束量を小とさせる。その後,界磁磁石領域41,42に於いて支配的となった界磁磁石の磁極面積を減らす極性の予め定めた振幅の制御電流63を励磁コイル1gに供給すると共にアクチュエータ1mにより可動磁極1hを偏倚させて励磁磁路を界磁磁石1jから切り離す。   A constant voltage power generation system that controls the amount of magnetic flux to be a predetermined voltage by controlling the amount of magnetic flux when a rotating electrical machine is used as a generator will be described. The control device 75 controls the magnetic pole area of the field magnet region 42 that is dominant in the field magnet regions 41 and 42 when the generated voltage as the output 73 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced. A control current 63 having a predetermined amplitude with increasing polarity is supplied to the exciting coil 1g, and the movable magnetic pole 1h is biased by the actuator 1m to connect the exciting magnetic path to the field magnet 1j. A pulse current 62 having a polarity that increases the magnetic pole area of the region 41 is supplied to the exciting coil 1g to reduce the magnetic pole area of the field magnet region 42, which is the first magnetization, and to increase the magnetic pole area of the field magnet region 41, thereby increasing the armature. The amount of magnetic flux flowing through is made small. Thereafter, a control current 63 having a predetermined amplitude that reduces the magnetic pole area of the field magnet that becomes dominant in the field magnet regions 41 and 42 is supplied to the exciting coil 1g, and the movable magnetic pole 1h is moved by the actuator 1m. The excitation magnetic path is separated from the field magnet 1j by biasing.

制御装置75は出力73である発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には界磁磁石領域41,42に於いて支配的である界磁磁石領域42の磁極面積を増す極性の予め定めた振幅の制御電流63を励磁コイル1gに供給すると共にアクチュエータ1mにより可動磁極1hを偏倚させて励磁磁路を界磁磁石1jに接続し,第一磁化である界磁磁石領域42の磁極面積を増す極性のパルス電流62を励磁コイル1gに供給して第二磁化である界磁磁石領域41の磁極面積を減ずると共に界磁磁石領域42の磁極面積を増大させて電機子に流れる磁束量を大とさせる。その後,界磁磁石領域41,42に於いて支配的である界磁磁石領域42の磁極面積を減らす極性の予め定めた振幅の制御電流63を励磁コイル1gに供給すると共にアクチュエータ1mにより可動磁極1hを偏倚させて励磁磁路を界磁磁石1jから切り離す。   The control device 75 controls the magnetic pole area of the field magnet region 42 which is dominant in the field magnet regions 41 and 42 when the generated voltage as the output 73 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased. A control current 63 having a predetermined amplitude with increasing polarity is supplied to the exciting coil 1g, and the movable magnetic pole 1h is biased by the actuator 1m to connect the exciting magnetic path to the field magnet 1j. A pulse current 62 having a polarity that increases the magnetic pole area of the region 42 is supplied to the exciting coil 1g to reduce the magnetic pole area of the field magnet region 41, which is the second magnetization, and increase the magnetic pole area of the field magnet region 42, thereby increasing the armature. The amount of magnetic flux flowing through the Thereafter, a control current 63 having a predetermined amplitude that reduces the magnetic pole area of the field magnet region 42 that is dominant in the field magnet regions 41 and 42 is supplied to the exciting coil 1g and the movable magnetic pole 1h is supplied by the actuator 1m. And the excitation magnetic path is separated from the field magnet 1j.

上記実施例に於いて,通常の運転時に励磁磁路は界磁磁石1jから実効的に切り離されるので界磁磁石からの磁束は殆どが主磁路に供給され,界磁磁石1jの磁化変更の際に励磁磁路は界磁磁石1jに接続されるので励磁コイル1gからの磁束は有効に界磁磁石1jに供給される。   In the above embodiment, the excitation magnetic path is effectively disconnected from the field magnet 1j during normal operation, so that most of the magnetic flux from the field magnet is supplied to the main magnetic path, and the magnetization of the field magnet 1j is changed. At this time, since the exciting magnetic path is connected to the field magnet 1j, the magnetic flux from the exciting coil 1g is effectively supplied to the field magnet 1j.

本発明の第三実施例による回転電機システムを図9から図14を用いて説明する。第三実施例は,表面磁極部内に磁性体突極と永久磁石を周方向に交互に持つ回転電機システムであり,励磁部を回転子内に配置した回転電機システムである。図9は回転電機の縦断面図,図10は電機子と回転子とを示す断面図,図11は回転子の構成を示す分解斜視図,図12は回転子の拡大された縦断面図,図13は励磁部の拡大された縦断面図,図14は回転電機システムのブロック図である。   A rotating electrical machine system according to a third embodiment of the present invention will be described with reference to FIGS. The third embodiment is a rotating electrical machine system having magnetic salient poles and permanent magnets alternately in the circumferential direction in the surface magnetic pole part, and is a rotating electrical machine system in which the excitation part is arranged in the rotor. 9 is a longitudinal sectional view of the rotating electrical machine, FIG. 10 is a sectional view showing the armature and the rotor, FIG. 11 is an exploded perspective view showing the configuration of the rotor, and FIG. 12 is an enlarged longitudinal sectional view of the rotor. FIG. 13 is an enlarged longitudinal sectional view of the excitation unit, and FIG. 14 is a block diagram of the rotating electrical machine system.

図9はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子の構成は第一実施例と同じであるので説明は省略する。回転子は磁性体突極と永久磁石とが周方向に交互に並ぶ表面磁極部91,隣り合う磁性体突極を回転軸11と平行の互いに異なる方向に延長させた第一延長部92,第二延長部93とを有する。   FIG. 9 shows an embodiment in which the present invention is applied to a rotary electric machine having a radial gap structure. A rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. Since the structure of the armature is the same as that of the first embodiment, description thereof is omitted. The rotor includes a surface magnetic pole portion 91 in which magnetic body salient poles and permanent magnets are alternately arranged in the circumferential direction, a first extension portion 92 in which adjacent magnetic body salient poles are extended in different directions parallel to the rotating shaft 11, And two extending portions 93.

回転子の表面磁極部91の内側には励磁部が配置されて第一延長部92,第二延長部93に結合し,隣接する磁性体突極を互いに異極に磁化するよう配置されている。励磁部は界磁極95,96,界磁磁石97,励磁コイル98を主要部として構成されている。励磁コイル98にはブラシ9a,スリップリング9bを介して図示していない制御部に接続され,番号94は回転軸11を周回するよう配置された導体層を,番号99は非磁性体部を示している。   An excitation portion is disposed inside the surface magnetic pole portion 91 of the rotor and is coupled to the first extension portion 92 and the second extension portion 93 so as to magnetize adjacent magnetic salient poles different from each other. . The exciting part is composed mainly of field poles 95 and 96, a field magnet 97, and an exciting coil 98. The exciting coil 98 is connected to a control unit (not shown) via a brush 9a and a slip ring 9b. Reference numeral 94 denotes a conductor layer arranged around the rotating shaft 11, and reference numeral 99 denotes a non-magnetic body portion. ing.

図10は図9のB−B’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示されている。電機子の構成は第一の実施例と同じであるので説明は省略する。   FIG. 10 is a cross-sectional view of the armature and the rotor along B-B ′ in FIG. 9, and in order to explain the mutual relationship, some of the components are numbered. Since the structure of the armature is the same as that of the first embodiment, description thereof is omitted.

図10に於いて,表面磁極部91は磁性体突極と略周方向磁化を持つ永久磁石とを周方向に交互に有する構造とし,隣接する磁性体突極を番号101,102で,永久磁石を番号103で代表させて示している。隣接する磁性体突極101,102は軸と平行の異なる方向に交互に延長されてそれぞれ第一延長部92,第二延長部93とされている。さらに隣接する磁性体突極101,102は互いに異なる方向に磁化されるよう隣接する永久磁石103の周方向磁化は互いに反転されている。永久磁石103に付された矢印は磁化方向を示している。永久磁石103は磁束を磁性体突極101,102に供給すると共に周方向に磁気抵抗が大の領域を形成する磁束バリアの役割を果たしている。   In FIG. 10, the surface magnetic pole portion 91 has a structure in which magnetic salient poles and permanent magnets having substantially circumferential magnetization are alternately arranged in the circumferential direction. Adjacent magnetic salient poles are denoted by reference numerals 101 and 102 and permanent magnets. Is represented by reference numeral 103. Adjacent magnetic salient poles 101 and 102 are alternately extended in different directions parallel to the axis to form a first extension 92 and a second extension 93, respectively. Further, the circumferential magnetizations of the adjacent permanent magnets 103 are reversed so that the adjacent magnetic salient poles 101 and 102 are magnetized in different directions. The arrow attached to the permanent magnet 103 indicates the magnetization direction. The permanent magnet 103 serves as a magnetic flux barrier that supplies a magnetic flux to the magnetic salient poles 101 and 102 and forms a region having a large magnetic resistance in the circumferential direction.

番号104は第一実施例に於いて番号24に対応する磁束チャネル部であり,軸方向に界磁磁束の伝搬供給を容易にする構成としている。磁性体突極101,102は幅の狭い可飽和磁性体部105で連結された構成として所定の型でケイ素鋼板を打ち抜き,積層して構成され,磁束チャネル部104には断面積を同じくするスロットに軟鉄のブロックを挿入し,永久磁石103には断面積を同じくするスロットに永久磁石のブロックを挿入している。磁気空隙部106には非磁性で且つ比抵抗の大きい材料,レジン,樹脂等を充填して構成している。また,非磁性体部分99は非磁性のステンレススチールで構成されている。   Reference numeral 104 denotes a magnetic flux channel portion corresponding to the reference numeral 24 in the first embodiment, which is configured to facilitate propagation and supply of field magnetic flux in the axial direction. The magnetic salient poles 101 and 102 are formed by punching and laminating silicon steel plates with a predetermined type as a structure connected by a narrow saturable magnetic part 105, and the magnetic flux channel part 104 has a slot having the same cross-sectional area. A soft iron block is inserted into the slot, and a permanent magnet block is inserted into a slot having the same cross-sectional area in the permanent magnet 103. The magnetic gap 106 is filled with a material, resin, resin or the like that is nonmagnetic and has a large specific resistance. The nonmagnetic portion 99 is made of nonmagnetic stainless steel.

図11は回転子の構成を示す分解斜視図である。理解を容易にする為に磁性体突極101,102等を有する中心部と磁性体突極の第一延長部92,第二延長部93とを離して示してある。番号11’は回転軸11を通す穴を示す。第一延長部92は軟鉄をプレス成形して磁性体突極101の延長部分となる磁性体突部111を有して構成され,非磁性体部113は磁性を持たないステンレススチールで形成されている。第二延長部93は軟鉄をプレス成形して磁性体突極102の延長部分となる磁性体突部112を有して構成され,非磁性体部114は磁性を持たないステンレススチールで形成されている。番号115は励磁部の一部を示す。   FIG. 11 is an exploded perspective view showing the configuration of the rotor. In order to facilitate understanding, the center portion having the magnetic salient poles 101 and 102 and the first extension portion 92 and the second extension portion 93 are separated from each other. Reference numeral 11 ′ denotes a hole through which the rotary shaft 11 passes. The first extension 92 has a magnetic projection 111 that is an extension of the magnetic salient pole 101 by press molding soft iron, and the non-magnetic portion 113 is made of stainless steel without magnetism. Yes. The second extension portion 93 has a magnetic protrusion 112 that is an extension of the magnetic salient pole 102 by press-molding soft iron, and the nonmagnetic portion 114 is made of stainless steel having no magnetism. Yes. Reference numeral 115 denotes a part of the excitation unit.

図12は図9に示した回転子の上半分を拡大して示した縦断面図であり,励磁部の構成,磁束量制御の動作原理を説明する。図12に於いて,第一延長部92に結合された界磁極95と第二延長部93に結合された界磁極96間は軸方向の間隙が径方向に異なる構成として界磁磁石97は長さの異なる磁石要素121,122,123,124が並列に接続されて構成されている。磁性体突極101,102それぞれは永久磁石103によりN極,S極に磁化されているので永久磁石103と同様に磁性体突極101,102それぞれをN極,S極に磁化する左方向の磁化を第一磁化,右方向の磁化を第二磁化とする。同図に於いて,磁石要素121,122,123は第一磁化に,磁石要素124は第二磁化に属する。   FIG. 12 is an enlarged vertical sectional view showing the upper half of the rotor shown in FIG. 9, and the configuration of the excitation unit and the operating principle of the magnetic flux amount control will be described. In FIG. 12, the field magnet 97 has a long configuration in which the axial gap between the field pole 95 coupled to the first extension 92 and the field pole 96 coupled to the second extension 93 is different in the radial direction. Magnet elements 121, 122, 123, and 124 having different sizes are connected in parallel. Since each of the magnetic salient poles 101 and 102 is magnetized to the N and S poles by the permanent magnet 103, the magnetic salient poles 101 and 102 are magnetized to the N and S poles in the left direction, respectively. The magnetization is the first magnetization, and the rightward magnetization is the second magnetization. In the figure, the magnet elements 121, 122, 123 belong to the first magnetization, and the magnet element 124 belongs to the second magnetization.

電機子側には永久磁石103からの磁束,磁石要素121,122,123,124それぞれからの磁束が流れる事になるが,永久磁石103から電機子側に流れる磁束量を基準として1.0とした場合,磁石要素121,122,123,124それぞれからの磁束量が0.25となるように寸法が設定されている。   On the armature side, the magnetic flux from the permanent magnet 103 and the magnetic flux from the magnet elements 121, 122, 123, and 124 flow, respectively, but 1.0 as a reference based on the amount of magnetic flux flowing from the permanent magnet 103 to the armature side. In this case, the dimensions are set so that the amount of magnetic flux from each of the magnet elements 121, 122, 123, and 124 is 0.25.

図9,図12に於いて,第一磁化である磁石要素121,122,123の磁極表面積が第二磁化である磁石要素124の磁極表面積より大であるので両者を差し引いた磁極表面積に比例する磁束量が界磁極95に流入し,第一延長部92,磁性体突極101,磁性体歯14,磁性体突極102,第二延長部93,界磁極96を介して界磁磁石97に環流し,主磁路を形成している。同図の場合,電機子を流れる磁束量は永久磁石103から電機子側に流れる磁束量を基準として1.5である。   9 and 12, since the magnetic pole surface area of the magnet elements 121, 122, and 123 that are the first magnetization is larger than the magnetic pole surface area of the magnet element 124 that is the second magnetization, it is proportional to the magnetic pole surface area obtained by subtracting both. The amount of magnetic flux flows into the field pole 95 and enters the field magnet 97 via the first extension 92, the magnetic salient pole 101, the magnetic teeth 14, the magnetic salient pole 102, the second extension 93, and the field pole 96. It circulates and forms the main magnetic path. In the case of the figure, the amount of magnetic flux flowing through the armature is 1.5 based on the amount of magnetic flux flowing from the permanent magnet 103 to the armature side.

さらに界磁極95,96の一部は間隙125を介して対向し,励磁コイル98は磁石要素121,122,123,124及び回転軸11に周回するよう巻回されている。励磁コイル98により誘起される磁束は磁石要素121,122,123,124,界磁極95,間隙125,界磁極96を流れ,励磁磁路を形成している。   Further, part of the field poles 95 and 96 are opposed to each other through the gap 125, and the exciting coil 98 is wound around the magnet elements 121, 122, 123 and 124 and the rotating shaft 11. The magnetic flux induced by the exciting coil 98 flows through the magnet elements 121, 122, 123, 124, the field magnetic pole 95, the gap 125, and the field magnetic pole 96 to form an exciting magnetic path.

磁石要素121,122,123,124からの磁束は主磁路及び励磁磁路を流れるが,間隙125に於ける対向面積及び間隙長さを磁気抵抗調整部分として励磁磁路の磁気抵抗を主磁路の磁気抵抗より大となるように設定している。主磁路の磁気抵抗は磁性体突極と磁性体歯との相対位置により変動するが,本発明で主磁路の磁気抵抗は磁性体突極と磁性体歯間の各相対位置に関して平均化された値としている。   The magnetic flux from the magnet elements 121, 122, 123, and 124 flows through the main magnetic path and the excitation magnetic path, but the magnetic resistance of the excitation magnetic path is set to the main magnetic path by using the opposing area and the gap length in the gap 125 as the magnetic resistance adjustment portion. It is set to be larger than the magnetic resistance of the road. The magnetic resistance of the main magnetic path varies depending on the relative position between the magnetic salient pole and the magnetic tooth, but in the present invention, the magnetic resistance of the main magnetic path is averaged for each relative position between the magnetic salient pole and the magnetic tooth. Value.

一方では,励磁コイル98の作る磁束は磁石要素121,122,123,124,界磁極95,間隙125,界磁極96を流れ,同時に主磁路側にも流れようとする。主磁路の一部である第一延長部92,第二延長部93は交流磁束が流れ難いように軟鉄で構成されているので間隙125部分に於ける磁気抵抗は主磁路の交流磁束に対する磁気抵抗より小に設定されている。   On the other hand, the magnetic flux generated by the exciting coil 98 flows through the magnet elements 121, 122, 123, and 124, the field pole 95, the gap 125, and the field pole 96, and simultaneously flows to the main magnetic path side. Since the first extension portion 92 and the second extension portion 93 which are part of the main magnetic path are made of soft iron so that the alternating magnetic flux does not flow easily, the magnetic resistance in the gap 125 portion is relative to the alternating magnetic flux of the main magnetic path. It is set smaller than the magnetic resistance.

導体層94は回転軸11外周に配置された銅板で構成され,励磁コイル98の作る磁束を磁石要素121,122,123,124に集中させ,励磁コイル98のインダクタンスを実効的に減少させてパルス状の磁化電流を流れやすくする役割を持つ。励磁コイル98にパルス状の磁化電流が供給されると,導体層94には鎖交する磁束の変化を妨げる方向の電流が誘起され,これにより励磁コイル98のインダクタンスを実効的に減少する。さらに誘起された電流により導体層94内に励磁コイル98の作る磁束が流れ難くなり,磁石要素121,122,123,124側に励磁コイル98の作る磁束が集中させられる。   The conductor layer 94 is composed of a copper plate disposed on the outer periphery of the rotating shaft 11, and concentrates the magnetic flux generated by the exciting coil 98 on the magnet elements 121, 122, 123, and 124, effectively reducing the inductance of the exciting coil 98 to generate pulses. It has the role of facilitating the flow of a magnetized current. When a pulsed magnetizing current is supplied to the exciting coil 98, a current in a direction that prevents a change in interlinkage magnetic flux is induced in the conductor layer 94, thereby effectively reducing the inductance of the exciting coil 98. Further, the induced current makes it difficult for the magnetic flux generated by the exciting coil 98 to flow in the conductor layer 94, and the magnetic flux generated by the exciting coil 98 is concentrated on the magnet elements 121, 122, 123, and 124 side.

上記励磁部を構成する部材,磁石要素121,122,123,124,界磁極95,96,励磁コイル98等は回転軸11を周回する円環状,円筒状の形状であり,構成はシンプルに出来る。励磁部を構成する磁性体部材である界磁極95,96には比抵抗が大である圧粉鉄心で構成し,励磁コイル98によるパルス電流,交流電流による磁束が通りやすい構成としている。他に渦電流損を生じがたい比抵抗の大きなバルク状磁性体を用いる事も出来る。   The members constituting the exciter, the magnet elements 121, 122, 123, 124, the field poles 95, 96, the exciting coil 98, and the like have an annular or cylindrical shape that circulates around the rotating shaft 11, and the configuration can be simplified. . The field poles 95 and 96, which are magnetic members constituting the exciter, are made of a dust core having a large specific resistance so that a pulse current by the exciting coil 98 and a magnetic flux by an alternating current can easily pass therethrough. In addition, it is possible to use a bulk magnetic material having a large specific resistance that hardly causes eddy current loss.

図12に示されるように磁石要素121,122,123,124は軸方向の長さが変わり,長さの異なる永久磁石要素が並列に接続された状態である。励磁コイル98に磁化電流が供給されると,磁石要素121,122,123,124に接する界磁極95,96間の磁気ポテンシャル差(起磁力)はほぼ同じとして各磁石要素内では磁気ポテンシャル差を軸方向長さで除した値に相当する磁界強度の磁界が加えられる。したがって,短い磁石要素が磁化されやすく,長い磁石要素は磁化され難い。   As shown in FIG. 12, the magnet elements 121, 122, 123, and 124 have different axial lengths, and are in a state where permanent magnet elements having different lengths are connected in parallel. When a magnetizing current is supplied to the exciting coil 98, the magnetic potential difference (magnetomotive force) between the field poles 95 and 96 in contact with the magnet elements 121, 122, 123, and 124 is substantially the same, and the magnetic potential difference is set in each magnet element. A magnetic field having a magnetic field intensity corresponding to the value divided by the axial length is applied. Therefore, short magnet elements are easily magnetized, and long magnet elements are not easily magnetized.

図1及び図4に示した第一の実施例で界磁磁石は連続体であり,径方向の長さを連続的に周方向に変えて磁化の容易さが異なる構成であった。その場合,磁化方向の異なる界磁磁石領域41と界磁磁石領域42間の境界では徐々に磁化が遷移する領域が存在し,B−H曲線で矩形性の悪い磁石では外乱により不安定となる可能性がある。本実施例では図9,図12に示すように界磁磁石を複数の磁石要素で構成したのでそれぞれの磁化要素は各方向に飽和磁化され,磁束量は離散的に制御されるが,界磁磁石の磁化状態は安定となる利点がある。   In the first embodiment shown in FIG. 1 and FIG. 4, the field magnet is a continuous body, and the ease of magnetization is different by continuously changing the length in the radial direction to the circumferential direction. In that case, there is a region where the magnetization gradually transitions at the boundary between the field magnet region 41 and the field magnet region 42 having different magnetization directions, and a magnet with poor rectangularity on the BH curve becomes unstable due to disturbance. there is a possibility. In this embodiment, the field magnet is composed of a plurality of magnet elements as shown in FIGS. 9 and 12, so that each magnetization element is saturated and magnetized in each direction, and the amount of magnetic flux is discretely controlled. There is an advantage that the magnetized state of the magnet becomes stable.

当初,磁石要素121,122,123,124が第一磁化である左方向に磁化されているとして,励磁コイル98に供給する磁化電流により磁石要素121,122,123,124を一括して第二磁化の方向である右方向に励磁すると,磁束は磁界強度が大となる短い磁石要素124に磁束が集中して磁石要素124が磁化される。この状態が図12の状態であり,励磁コイル98に供給される磁化電流の振幅がさらに大であれば磁石要素123,122,121の順に第二磁化の方向に磁化される。   Initially, assuming that the magnet elements 121, 122, 123, and 124 are magnetized in the left direction, which is the first magnetization, the magnet elements 121, 122, 123, and 124 are collectively collected by the magnetizing current supplied to the exciting coil 98. When excited in the right direction, which is the direction of magnetization, the magnetic flux concentrates on the short magnet element 124 whose magnetic field strength is large, and the magnet element 124 is magnetized. This state is the state shown in FIG. 12, and if the amplitude of the magnetizing current supplied to the exciting coil 98 is even larger, the magnet elements 123, 122, 121 are magnetized in the second magnetization direction in this order.

磁石要素121,122,123,124の磁化状態変更の方法を更に図13を用いて説明する。図13は図9及び図12に示された界磁磁石を拡大して示している。図13(a),図13(b),図13(c)は磁石要素121,122,123,124の磁化方向が異なる状態を示しており,界磁磁石の磁化状態変更は以下のように実施される。   A method of changing the magnetization state of the magnet elements 121, 122, 123, and 124 will be further described with reference to FIG. FIG. 13 is an enlarged view of the field magnet shown in FIGS. FIGS. 13 (a), 13 (b), and 13 (c) show states in which the magnetization directions of the magnet elements 121, 122, 123, and 124 are different. The magnetization state change of the field magnet is as follows. To be implemented.

図12に於いて第二磁化の磁石数を減じるには第二磁化の磁石要素124を左方向に磁化する振幅及び極性を持つパルス電流62を励磁コイルに加える。この結果が図13(a)の磁化状態となる。電機子を流れる磁束量は永久磁石103から電機子側に流れる磁束量を基準として2.0である。   In FIG. 12, a pulse current 62 having an amplitude and a polarity for magnetizing the second magnetized magnet element 124 in the left direction is applied to the exciting coil in order to reduce the number of the second magnetized magnets. This result is the magnetized state of FIG. The amount of magnetic flux flowing through the armature is 2.0 on the basis of the amount of magnetic flux flowing from the permanent magnet 103 to the armature side.

図12の磁化状態に於いて,第一磁化の磁石数を減じるには第一磁化の磁石要素121,122,123に於いて最も長さの短い磁石要素123を右方向に磁化し,且つ磁石要素122に影響を与えない程度の振幅及び極性を持つパルス電流62を励磁コイルに加える。この結果が図13(b)の磁化状態となる。電機子を流れる磁束量は永久磁石103から電機子側に流れる磁束量を基準として1.0である。   In the magnetization state of FIG. 12, in order to reduce the number of magnets of the first magnetization, the magnet element 123 having the shortest length is magnetized rightward in the magnet elements 121, 122, 123 of the first magnetization, and the magnets are magnetized. A pulse current 62 having an amplitude and polarity that does not affect the element 122 is applied to the exciting coil. This result is the magnetization state shown in FIG. The amount of magnetic flux flowing through the armature is 1.0 based on the amount of magnetic flux flowing from the permanent magnet 103 to the armature side.

本実施例に於いて,電機子を流れる磁束量の最小値は永久磁石103から電機子側に流れる磁束量を基準として0.0としている。図12,図13(a),図13(b)において,磁石要素121,122,123,124全てを右方向に磁化する振幅及び極性を持つパルス電流62を励磁コイルに加える。この結果が図13(c)の磁化状態であり,永久磁石103から電機子側に流れる磁束量を基準として電機子側に流れる磁束量が0.0となる。   In the present embodiment, the minimum value of the amount of magnetic flux flowing through the armature is 0.0 based on the amount of magnetic flux flowing from the permanent magnet 103 to the armature side. In FIG. 12, FIG. 13 (a), and FIG. 13 (b), a pulse current 62 having an amplitude and polarity that magnetizes all the magnet elements 121, 122, 123, and 124 in the right direction is applied to the exciting coil. This result is the magnetized state of FIG. 13C, and the amount of magnetic flux flowing to the armature side is 0.0 with the amount of magnetic flux flowing from the permanent magnet 103 to the armature side as a reference.

このようにして界磁磁石の磁化状態は変更されるが,上記ステップに従って,界磁磁石の磁化状態を変更するには各磁石要素121,122,123,124の磁化状態を常に把握する必要がある。各磁石要素121,122,123,124の磁化状態に関する情報が乱れた場合には変更後に於いて電機子を流れる磁束量が期待に反する事になるが,この場合には界磁磁石の全てを一方向,例えば左方向に磁化し,必要な磁石数のみを右方向に磁化させる。   In this way, the magnetization state of the field magnet is changed. However, in order to change the magnetization state of the field magnet according to the above steps, it is necessary to always grasp the magnetization state of each of the magnet elements 121, 122, 123, and 124. is there. If the information about the magnetization state of each of the magnet elements 121, 122, 123, 124 is disturbed, the amount of magnetic flux flowing through the armature after the change is contrary to expectation. In this case, all the field magnets are Magnetize in one direction, for example, in the left direction, and magnetize only the required number of magnets in the right direction.

磁石要素121,122,123,124にはネオジウム磁石(NdFeB),アルニコ磁石(AlNiCo)等の種々の磁石素材を使用する事が出来るが,本実施例では長さを変えて磁化容易さが制御容易なアルニコ磁石(AlNiCo)で構成している。   Various magnet materials such as neodymium magnets (NdFeB) and alnico magnets (AlNiCo) can be used for the magnet elements 121, 122, 123, and 124. In this embodiment, the length is changed to control the ease of magnetization. It is composed of an easy alnico magnet (AlNiCo).

電機子を流れる磁束量はこのように励磁コイル98に供給する磁化電流を変えて第一磁化,第二磁化にそれぞれ対応する磁石数を変える事で制御される。電機子を流れる磁束量と励磁コイル98に供給するパルス電流62との関係は設計段階でマップデータとして設定する。しかし,回転電機の量産段階では部材の寸法が公差範囲内でバラツキ,磁性体の磁気特性のバラツキも存在して電機子を流れる磁束量の精密な制御が困難になる場合がある。そのような場合には回転電機を組み立て後に回転電機個々に電機子を流れる磁束量と励磁コイル98に供給するパルス電流62との関係を検査し,前記マップデータを修正する。さらに磁性体の特性は温度による影響を受けやすく,経時変化による影響も懸念される場合には回転電機の運転中に前記マップデータを修正する情報を学習的に取得する事も出来る。電機子を流れる磁束量を直接に把握する事は難しいが,電機子コイル16に現れる誘起電圧を参照して電機子を流れる磁束量を推定する。   The amount of magnetic flux flowing through the armature is controlled by changing the number of magnets corresponding to the first magnetization and the second magnetization by changing the magnetization current supplied to the exciting coil 98 in this way. The relationship between the amount of magnetic flux flowing through the armature and the pulse current 62 supplied to the exciting coil 98 is set as map data at the design stage. However, at the stage of mass production of rotating electrical machines, there are cases where the dimensions of the members vary within the tolerance range, and there are also variations in the magnetic characteristics of the magnetic material, making it difficult to precisely control the amount of magnetic flux flowing through the armature. In such a case, after assembling the rotating electrical machine, the relationship between the amount of magnetic flux flowing through the armature of each rotating electrical machine and the pulse current 62 supplied to the exciting coil 98 is inspected, and the map data is corrected. Further, when the characteristics of the magnetic material are easily affected by temperature and there is a concern about the influence of changes over time, information for correcting the map data can be acquired by learning during operation of the rotating electrical machine. Although it is difficult to directly grasp the amount of magnetic flux flowing through the armature, the amount of magnetic flux flowing through the armature is estimated with reference to the induced voltage appearing in the armature coil 16.

磁石要素121,122,123,124の磁化状態は離散的にしか変えられないが,本実施例ではさらに磁石要素121,122,123,124の磁化状態を変更させない程度の磁束調整電流を励磁コイル98に供給して磁束を発生させ,磁石要素121,122,123,124及び永久磁石103による磁束に重畳させて電機子を流れる磁束量を制御する。図14は磁束量制御の為のブロック図を示し,図7に於けるブロック図に切換スイッチ141,磁化制御回路143,磁束調整回路142が追加されている。   Although the magnetization states of the magnet elements 121, 122, 123, and 124 can be changed only discretely, in this embodiment, a magnetic flux adjustment current that does not change the magnetization states of the magnet elements 121, 122, 123, and 124 is applied to the exciting coil. 98 is supplied to generate magnetic flux, and the amount of magnetic flux flowing through the armature is controlled by being superposed on the magnetic flux generated by the magnet elements 121, 122, 123, 124 and the permanent magnet 103. FIG. 14 is a block diagram for controlling the amount of magnetic flux. A changeover switch 141, a magnetization control circuit 143, and a magnetic flux adjusting circuit 142 are added to the block diagram in FIG.

制御信号76は切換スイッチ141,磁化制御回路143,磁束調整回路142を制御し,磁石要素121,122,123,124の磁化状態を変更させる場合には切換スイッチ141により磁化制御回路143を接続して励磁コイル98に磁化状態変更の為のパルス状電流62を供給する。電機子を流れる磁束量の微調整を行う場合には切換スイッチ141により磁束調整回路142を接続して励磁コイル98に磁束調整電流を供給して磁束を発生させる。磁束調整電流は磁石要素121,122,123,124の磁化状態を非可逆的に変更させない程度の大きさであり,磁束量の調整方向に応じて極性が変えられる。   The control signal 76 controls the changeover switch 141, the magnetization control circuit 143, and the magnetic flux adjustment circuit 142. When changing the magnetization state of the magnet elements 121, 122, 123, 124, the changeover switch 141 connects the magnetization control circuit 143. Then, a pulsed current 62 for changing the magnetization state is supplied to the exciting coil 98. When fine adjustment of the amount of magnetic flux flowing through the armature is performed, the magnetic flux adjusting circuit 142 is connected by the changeover switch 141 and the magnetic flux adjusting current is supplied to the exciting coil 98 to generate the magnetic flux. The magnetic flux adjustment current has a magnitude that does not irreversibly change the magnetization state of the magnet elements 121, 122, 123, and 124, and the polarity can be changed according to the adjustment direction of the magnetic flux amount.

本実施例では磁石要素121,122,123,124の磁化状態を変えて電機子を流れる磁束量を制御する。界磁磁石からの磁束は主磁路及び励磁磁路に流れるが,励磁磁路の磁気抵抗を主磁路の磁気抵抗より大に設定して主磁路に流れる磁束量を大としている。励磁磁路の磁気抵抗を大にする事で励磁コイル98が磁石要素121,122,123,124を磁化する効率を低下させる事になるので励磁磁路の磁気抵抗設定は電機子側に流す磁束量範囲,励磁コイル98への電流供給能力等回転電機システムの仕様により設定する。   In this embodiment, the amount of magnetic flux flowing through the armature is controlled by changing the magnetization state of the magnet elements 121, 122, 123, and 124. The magnetic flux from the field magnet flows in the main magnetic path and the exciting magnetic path, but the magnetic resistance of the exciting magnetic path is set larger than the magnetic resistance of the main magnetic path to increase the amount of magnetic flux flowing in the main magnetic path. Increasing the magnetic resistance of the exciting magnetic path decreases the efficiency with which the exciting coil 98 magnetizes the magnet elements 121, 122, 123, and 124. Therefore, the magnetic resistance of the exciting magnetic path is set to the magnetic flux flowing to the armature side. It is set according to the specifications of the rotating electrical machine system such as the quantity range and the current supply capacity to the exciting coil 98.

また,磁石要素121,122,123,124から磁性体突極101,102に至る第一,第二延長部92,93及び磁束チャネル部104は軟鉄ブロックで構成して交流磁束が通り難くしている。したがって,磁石要素121,122,123,124に低保持力の磁石素材を採用しても電機子コイル16がそれらの磁化状態に不可逆的な影響を与える事はない。また磁石要素121,122,123,124を磁化する際の励磁コイル98による磁束パルスが電機子コイル16に及ぼす影響は軽減される。主磁路に於いて励磁コイル98による磁束パルスに対する磁気抵抗が励磁磁路の磁気抵抗より大となるよう設定して励磁コイル98による磁束を界磁磁石に集中させると共に電機子コイル16に及ぼす影響を抑制する。   Further, the first and second extension portions 92 and 93 and the magnetic flux channel portion 104 extending from the magnet elements 121, 122, 123, and 124 to the magnetic salient poles 101 and 102 are composed of soft iron blocks so that the alternating magnetic flux is difficult to pass through. Yes. Therefore, even if a magnet material having a low holding force is used for the magnet elements 121, 122, 123, 124, the armature coil 16 does not irreversibly affect the magnetization state thereof. Further, the influence of the magnetic flux pulse by the exciting coil 98 on the armature coil 16 when magnetizing the magnet elements 121, 122, 123, and 124 is reduced. In the main magnetic path, the magnetic resistance to the magnetic flux pulse by the exciting coil 98 is set to be larger than the magnetic resistance of the exciting magnetic path so that the magnetic flux by the exciting coil 98 is concentrated on the field magnet and has an effect on the armature coil 16. Suppress.

さらに励磁コイル98は界磁極95,96によって電機子コイル16から完全に遮蔽されているので励磁コイル98と電機子コイル16との結合は小で励磁コイル98に供給されるパルス電流62の電機子コイル16に及ぼす影響はさらに軽減されている。   Further, since the exciting coil 98 is completely shielded from the armature coil 16 by the field poles 95 and 96, the coupling between the exciting coil 98 and the armature coil 16 is small and the armature of the pulse current 62 supplied to the exciting coil 98 is small. The influence on the coil 16 is further reduced.

以上,図9から図14に示した回転電機に於いて,界磁磁石97(磁石要素121,122,123,124)の磁化状態を変える事で電機子に流れる磁束量を制御できることを説明した。本実施例は磁束量を制御して出力を最適化するシステムであり,図6,図14を用いて回転電機システムとしての制御を説明する。   As described above, in the rotating electrical machine shown in FIGS. 9 to 14, it has been explained that the amount of magnetic flux flowing through the armature can be controlled by changing the magnetization state of the field magnet 97 (magnet elements 121, 122, 123, 124). . The present embodiment is a system that controls the amount of magnetic flux to optimize the output, and the control as a rotating electrical machine system will be described with reference to FIGS.

回転電機が電動機として用いられる場合において,磁束量制御を行って回転力を最適に制御する。但し,電機子を流れる磁束量を増やす極性の磁束調整電流を正としている。制御装置75は出力73である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には磁束調整回路142により励磁コイル98に供給する磁束調整電流を減じて電機子に流れる磁束量を小とし,磁束調整電流が予め定めた値より小である場合には第二磁化の磁石数を増す方向のパルス電流62が磁化制御回路143から励磁コイル98に供給されて第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とする。   When the rotating electrical machine is used as an electric motor, the amount of magnetic flux is controlled to optimally control the rotational force. However, a magnetic flux adjustment current having a polarity that increases the amount of magnetic flux flowing through the armature is positive. The control device 75 reduces the magnetic flux adjustment current supplied to the exciting coil 98 by the magnetic flux adjustment circuit 142 when the rotational speed of the output 73 is greater than a predetermined value and reduces the amount of magnetic flux flowing through the armature. When the amount is small and the magnetic flux adjustment current is smaller than a predetermined value, a pulse current 62 in the direction of increasing the number of magnets of the second magnetization is supplied from the magnetization control circuit 143 to the exciting coil 98 and the first magnetization is changed. The number of magnets is decreased and the number of magnets of the second magnetization is increased to reduce the amount of magnetic flux flowing through the armature.

出力73である回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には磁束調整回路142により励磁コイル98に供給する磁束調整電流を増して電機子に流れる磁束量を大とし,磁束調整電流が予め定めた値より大である場合には第一磁化の磁石数を増す方向のパルス電流62を磁化制御回路143から励磁コイル98に供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   When the rotational speed of the output 73 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the magnetic flux adjusting circuit 142 increases the magnetic flux adjustment current supplied to the exciting coil 98 to increase the amount of magnetic flux flowing through the armature. When the magnetic flux adjustment current is larger than a predetermined value, a pulse current 62 in a direction to increase the number of first magnetization magnets is supplied from the magnetization control circuit 143 to the excitation coil 98 to increase the number of first magnetization magnets. At the same time, the number of magnets of the second magnetization is reduced to increase the amount of magnetic flux flowing through the armature.

回転電機が発電機として用いられる場合において,磁束量制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。但し,電機子を流れる磁束量を増やす極性の磁束調整電流を正としている。制御装置75は出力73である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には磁束調整回路142により励磁コイル98に供給する磁束調整電流を減じて電機子に流れる磁束量を小とし,磁束調整電流が予め定めた値より小である場合には第二磁化の磁石数を増す方向のパルス電流62が磁化制御回路143から励磁コイル98に供給されて第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とする。   A constant voltage power generation system that controls the amount of magnetic flux to be a predetermined voltage by controlling the amount of magnetic flux when a rotating electrical machine is used as a generator will be described. However, a magnetic flux adjustment current having a polarity that increases the amount of magnetic flux flowing through the armature is positive. The control device 75 reduces the magnetic flux adjustment current supplied to the exciting coil 98 by the magnetic flux adjustment circuit 142 when the generated voltage as the output 73 becomes larger than a predetermined value and the magnetic flux flowing through the armature becomes small. When the amount is small and the magnetic flux adjustment current is smaller than a predetermined value, a pulse current 62 in the direction of increasing the number of magnets of the second magnetization is supplied from the magnetization control circuit 143 to the exciting coil 98 and the first magnetization is changed. The number of magnets is decreased and the number of magnets of the second magnetization is increased to reduce the amount of magnetic flux flowing through the armature.

制御装置75は出力73である発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には磁束調整回路142により励磁コイル98に供給する磁束調整電流を増して電機子に流れる磁束量を大とし,磁束調整電流が予め定めた値より大である場合には第一磁化の磁石数を増す方向のパルス電流62を磁化制御回路143から励磁コイル98に供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   The control device 75 increases the magnetic flux adjustment current supplied to the exciting coil 98 by the magnetic flux adjustment circuit 142 and increases the magnetic flux flowing through the armature when the generated voltage as the output 73 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased. When the amount is large and the magnetic flux adjustment current is larger than a predetermined value, a pulse current 62 in a direction to increase the number of magnets of the first magnetization is supplied from the magnetization control circuit 143 to the exciting coil 98 to generate the first magnetization. The amount of magnetic flux flowing through the armature is increased by increasing the number of magnets and decreasing the number of magnets of the second magnetization.

本発明の第四実施例による回転電機システムを図15,図16を用いて説明する。第四実施例は第三実施例の回転電機システムに於いて,励磁部を二分して界磁磁石を回転子側に,励磁コイルをハウジング側に配置した構成である。図15は回転電機の縦断面図,図16は電機子と回転子とを示す断面図である。   A rotating electrical machine system according to a fourth embodiment of the present invention will be described with reference to FIGS. In the rotating electrical machine system of the third embodiment, the fourth embodiment has a configuration in which the exciting portion is divided into two, the field magnet is arranged on the rotor side, and the exciting coil is arranged on the housing side. FIG. 15 is a longitudinal sectional view of the rotating electric machine, and FIG. 16 is a sectional view showing the armature and the rotor.

図15はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子の構成は第一実施例と同じであり,回転子の磁極部構成は第三実施例と同じであるので説明は省略する。励磁部は二つに分割して,界磁極152及び界磁極153により励磁部の回転子側磁路が構成され,環状磁気コア155により励磁部のハウジング側磁路が構成されている。   FIG. 15 shows an embodiment in which the present invention is applied to a rotary electric machine having a radial gap structure, and a rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. The configuration of the armature is the same as that of the first embodiment, and the configuration of the magnetic pole portion of the rotor is the same as that of the third embodiment, so that the description is omitted. The excitation part is divided into two parts, and the rotor side magnetic path of the excitation part is constituted by the field pole 152 and the field pole 153, and the housing side magnetic path of the excitation part is constituted by the annular magnetic core 155.

第一延長部92に接続された界磁極153及び第二延長部93に接続された界磁極152間に界磁磁石151は配置されている。ハウジング12側には断面がC字状の環状磁気コア155が回転軸11を周回するよう配置され,その内周側端面は界磁極153と,外周側端面は界磁極152と間隙156を介して対向し,励磁コイル154がC字状の環状磁気コア155に回転軸11を周回するよう巻回されている。   The field magnet 151 is disposed between the field pole 153 connected to the first extension 92 and the field pole 152 connected to the second extension 93. An annular magnetic core 155 having a C-shaped cross section is arranged on the housing 12 side so as to circulate around the rotary shaft 11, and the inner peripheral side end face thereof is a field pole 153, and the outer peripheral side end face is interposed via a field pole 152 and a gap 156. The exciting coil 154 is wound around the rotary shaft 11 around the C-shaped annular magnetic core 155.

図16は図15のC−C’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子の構成は第一の実施例と同じであり,回転子の磁極部構成は第三実施例と同じであるので説明は省略する。図に於いて,励磁部の部材は界磁極153のみが示されている。   FIG. 16 is a cross-sectional view of the armature and the rotor along C-C ′ in FIG. 15, and in order to explain the mutual relationship, some of the components are numbered. The configuration of the armature is the same as that of the first embodiment, and the magnetic pole part configuration of the rotor is the same as that of the third embodiment, so that the description thereof is omitted. In the figure, only the field pole 153 is shown as a member of the excitation part.

図15に於いて,界磁磁石151に接続される磁路である界磁極153,第一延長部92,磁性体突極101,磁性体歯14,磁性体突極102,第二延長部93,界磁極152は主磁路を構成している。界磁磁石151には更に励磁磁路が並列に接続されている。すなわち,界磁極153,間隙156,C字状の環状磁気コア155,間隙156,界磁極152で構成される励磁磁路である。上記構成に於いて,界磁磁石151は図9に於ける界磁磁石97と同じ構成であり,図12に示した間隙125は図15に於いて間隙156に対応している。本実施例に於いては間隙156の対向面積及び間隙長を磁気抵抗調整部分として励磁磁路の磁気抵抗が主磁路の磁気抵抗より大となるよう設定する。   In FIG. 15, a field magnetic pole 153, which is a magnetic path connected to the field magnet 151, a first extension 92, a magnetic salient pole 101, a magnetic substance tooth 14, a magnetic salient pole 102, and a second extension 93. The field pole 152 constitutes the main magnetic path. An excitation magnetic path is further connected in parallel to the field magnet 151. That is, the exciting magnetic path is composed of the field pole 153, the gap 156, the C-shaped annular magnetic core 155, the gap 156, and the field pole 152. In the above configuration, the field magnet 151 has the same configuration as the field magnet 97 in FIG. 9, and the gap 125 shown in FIG. 12 corresponds to the gap 156 in FIG. In this embodiment, the opposing area and the gap length of the gap 156 are set so that the magnetic resistance of the exciting magnetic path is larger than the magnetic resistance of the main magnetic path with the magnetic resistance adjustment portion.

上記説明のように図15,16に示した第四実施例は励磁部を二分して回転子側及びハウジング側に配置したのみで励磁部の原理的な構成は同じであり,動作原理等の説明は省略する。第三実施例に比して励磁コイル154がハウジング12側に配置されてブラシ9a,スリップリング9bを不要とする特徴がある。   As described above, in the fourth embodiment shown in FIGS. 15 and 16, the excitation unit is divided in two and arranged on the rotor side and the housing side, and the principle configuration of the excitation unit is the same. Description is omitted. Compared with the third embodiment, the exciting coil 154 is disposed on the housing 12 side, and the brush 9a and the slip ring 9b are not required.

間隙156は励磁磁路の磁気抵抗調整部分として励磁磁路の磁気抵抗が主磁路の磁気抵抗より大となるよう設定されているが,この間隙長を可変として磁路スイッチとする構造も可能である。すなわち,環状磁気コア155を軸方向に可動に構成して界磁磁石151の磁化状態を変更する時に間隙156の間隙長を微小とし,通常の運転時には十分に大とする。これにより通常の運転時には界磁磁石151からの磁束は磁性体突極101,磁性体歯14,磁性体突極102を含む主磁路に殆どが流れ,界磁磁石151の磁化状態を変更する時は励磁磁路の磁気抵抗が小となるので界磁磁石151の磁化変更が容易となる。   The gap 156 is set so that the magnetic resistance of the exciting magnetic path is larger than the magnetic resistance of the main magnetic path as a magnetic resistance adjusting portion of the exciting magnetic path. It is. That is, when the annular magnetic core 155 is configured to be movable in the axial direction and the magnetization state of the field magnet 151 is changed, the gap length of the gap 156 is made small and sufficiently large during normal operation. As a result, during normal operation, most of the magnetic flux from the field magnet 151 flows in the main magnetic path including the magnetic salient pole 101, the magnetic teeth 14, and the magnetic salient pole 102, thereby changing the magnetization state of the field magnet 151. At that time, since the magnetic resistance of the exciting magnetic path is small, it is easy to change the magnetization of the field magnet 151.

本発明の第五実施例による回転電機システムを図17から図20を用いて説明する。第五実施例は表面磁極部に磁性体突極と集合磁石が周方向に交互に配置され,励磁部がハウジング側に配置された回転電機システムである。図17は回転電機の縦断面図,図18は電機子と回転子とを示す断面図,図19は回転子と励磁部を示す分解斜視図,図20は励磁部の拡大された縦断面図である。   A rotating electrical machine system according to a fifth embodiment of the present invention will be described with reference to FIGS. The fifth embodiment is a rotating electrical machine system in which magnetic salient poles and collective magnets are alternately arranged in the circumferential direction on the surface magnetic pole part, and the excitation part is arranged on the housing side. 17 is a longitudinal sectional view of the rotating electrical machine, FIG. 18 is a sectional view showing the armature and the rotor, FIG. 19 is an exploded perspective view showing the rotor and the exciting part, and FIG. 20 is an enlarged longitudinal sectional view of the exciting part. It is.

図17はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子の構成は第一実施例と同じであるので説明は省略する。回転子の磁極部は磁性体突極と集合磁石とが周方向に交互に並ぶ表面磁極部171,隣り合う磁性体突極を互いに回転軸11と平行の異なる方向に延長させた第一延長部172,第二延長部173とから構成されている。第一延長部172,第二延長部173と空隙を介して対向するよう静止側に二つの励磁部が配置され,第一延長部172,第二延長部173と円筒状磁気ヨーク15間にそれぞれ界磁磁束を一括して供給し,隣り合う磁性体突極を互いに異極に磁化するよう構成されている。番号174は回転子支持体であり,非磁性のステンレススチールで構成されている。   FIG. 17 shows an embodiment in which the present invention is applied to a rotating electrical machine having a radial gap structure, and a rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. Since the structure of the armature is the same as that of the first embodiment, description thereof is omitted. The magnetic pole part of the rotor is a first extension part in which magnetic salient poles and collective magnets are alternately arranged in the circumferential direction, and the adjacent magnetic substance salient poles are extended in different directions parallel to the rotation axis 11. 172 and the second extension 173. Two exciting parts are arranged on the stationary side so as to face the first extension part 172 and the second extension part 173 with a gap between them, and between the first extension part 172, the second extension part 173 and the cylindrical magnetic yoke 15, respectively. A field magnetic flux is supplied in a lump so that adjacent magnetic salient poles are magnetized to different polarities. Reference numeral 174 is a rotor support, which is made of nonmagnetic stainless steel.

同図に於いて,第二延長部173と対向する励磁部は界磁極175,界磁極176,界磁磁石177,励磁コイル178を含み,ハウジング12に配置されている。第一延長部172側の励磁部の構成部材に番号を付していないが,同じ構成であり,同種の部材には同じ番号を用いるとする。ただ,第一延長部172,第二延長部173側の励磁部に於いてはそれぞれの界磁磁石177の磁化方向は矢印で示されるように第一延長部172,第二延長部173を互いに逆方向に磁化するよう設定されている。   In the drawing, the exciting part facing the second extension part 173 includes a field magnetic pole 175, a field magnetic pole 176, a field magnet 177 and an exciting coil 178, and is arranged in the housing 12. Although the number is not attached to the constituent member of the exciting part on the first extension part 172 side, it is the same structure and the same number is used for the same kind of member. However, in the excitation part on the first extension part 172 and the second extension part 173 side, the magnetization direction of each field magnet 177 is indicated by an arrow so that the first extension part 172 and the second extension part 173 are mutually connected. It is set to magnetize in the reverse direction.

図18は図17のD−D’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子の構成は第一の実施例と同じであるので説明は省略する。   FIG. 18 is a cross-sectional view of the armature and the rotor along the line D-D ′ in FIG. 17, and some of the components are numbered for explaining the mutual relationship. Since the structure of the armature is the same as that of the first embodiment, description thereof is omitted.

図18に於いて,表面磁極部171には磁性体突極と集合磁石とが周方向に交互に配置されている。中間磁性体突極183の両側面にほぼ同じ磁化方向の磁石板184,185が配置された組み合わせは磁気的には磁石と等価な集合磁石として,回転子の表面磁極部171は一様な磁性体を周方向に等間隔に配置された集合磁石によって区分された磁性体突極181,182及び集合磁石とから構成されている。さらに隣接する磁性体突極181,182は互いに異なる方向に磁化されるよう隣接する集合磁石の磁化方向は互いに反転して構成されている。磁性体突極181,182それぞれの周方向両側面に配置された磁石板はV字状の配置であり,磁石板の交差角度は磁束バリアに好適な角度に設定する。磁石板184,185に付された矢印は磁石板184,185の板面にほぼ直交する磁化方向を示す。番号187は発生トルクを大にする為に設けた径方向のスリットを示している。   In FIG. 18, magnetic salient poles and collective magnets are alternately arranged in the circumferential direction on the surface magnetic pole portion 171. A combination in which magnet plates 184 and 185 having substantially the same magnetization direction are arranged on both side surfaces of the intermediate magnetic salient pole 183 is a magnetically equivalent collective magnet, and the surface magnetic pole portion 171 of the rotor has uniform magnetic properties. The body is composed of magnetic salient poles 181 and 182 separated by collective magnets arranged at equal intervals in the circumferential direction, and collective magnets. Further, adjacent magnet salient poles 181 and 182 are configured such that the magnetizing directions of adjacent collective magnets are reversed so that they are magnetized in different directions. The magnet plates arranged on both sides in the circumferential direction of each of the magnetic salient poles 181 and 182 are V-shaped, and the crossing angle of the magnet plates is set to an angle suitable for the magnetic flux barrier. Arrows attached to the magnet plates 184 and 185 indicate the magnetization directions substantially orthogonal to the plate surfaces of the magnet plates 184 and 185. Reference numeral 187 indicates a radial slit provided to increase the generated torque.

番号186は第一実施例に於ける磁束チャネル部24に相当する磁束チャネル部であり,軸方向に磁束の伝搬供給を容易にする構成としている。ケイ素鋼板から磁石板184,185及び磁束チャネル部186に相当する部分を打ち抜いて積層した後,磁石板184,185を挿入し,磁束チャネル部186には軟鉄ブロックを挿入して回転子の磁極部を構成する。   Reference numeral 186 denotes a magnetic flux channel portion corresponding to the magnetic flux channel portion 24 in the first embodiment, and is configured to facilitate propagation and supply of magnetic flux in the axial direction. After punching and stacking portions corresponding to the magnet plates 184 and 185 and the magnetic flux channel portion 186 from the silicon steel plate, the magnetic plates 184 and 185 are inserted, and a soft iron block is inserted into the magnetic flux channel portion 186 and the magnetic pole portion of the rotor. Configure.

図19は回転子の構成及び励磁部の配置を示す分解斜視図である。理解を容易にする為に磁性体突極181,182等を有する中心部と磁性体突極の第一,第二延長部172,173とを離して示してある。第一延長部172は軟鉄をプレス成形して磁性体突極181の延長部分となる磁性体突部193を有して構成され,非磁性体部195は磁性を持たないステンレススチールで形成されている。第二延長部173は軟鉄をプレス成形して磁性体突極182の延長部分となる磁性体突部194を有して構成され,非磁性体部196は磁性を持たないステンレススチールで形成されている。   FIG. 19 is an exploded perspective view showing the configuration of the rotor and the arrangement of the excitation unit. In order to facilitate understanding, the center portion having the magnetic salient poles 181 and 182 and the first and second extension portions 172 and 173 of the magnetic salient pole are shown apart. The first extension 172 has a magnetic protrusion 193 that is an extension of the magnetic salient pole 181 by press-molding soft iron, and the non-magnetic part 195 is made of stainless steel without magnetism. Yes. The second extension portion 173 has a magnetic projection 194 that is an extension of the magnetic salient pole 182 by press molding soft iron, and the non-magnetic portion 196 is made of stainless steel without magnetism. Yes.

第一延長部172,第二延長部173にはそれぞれ励磁部191,192が空隙を介して対向し,励磁部191,192の界磁極175は第一延長部172,第二延長部173それぞれの磁性体突部193,194と空隙を介して磁気的に結合し,励磁部191,192の界磁極176は図17に示すように円筒状磁気ヨーク15の両端に結合されている。   Excitation parts 191 and 192 are opposed to the first extension part 172 and the second extension part 173 through a gap, respectively, and the field poles 175 of the excitation parts 191 and 192 are respectively in the first extension part 172 and the second extension part 173. Magnetic field projections 193 and 194 are magnetically coupled to each other through a gap, and field poles 176 of excitation units 191 and 192 are coupled to both ends of cylindrical magnetic yoke 15 as shown in FIG.

図20は励磁部192の上半分の縦断面図を拡大して示している。図20に於いて,第二延長部173に界磁極175が間隙を介して対向し,界磁極176は円筒状磁気ヨーク15に結合され,界磁極175と界磁極176間は軸方向の間隙が径方向に異なる構成として円環状の界磁磁石177が配置されている。同図に於いては界磁磁石177は軸方向の長さが異なる円環状の磁石要素が非磁性体を挟んで同心状に径方向に並んで配置される構成である。界磁磁石177の一部である磁石要素201は軸と平行の左方向に磁化され,磁石要素202,203,204は軸と平行の右方向に磁化されている状態を示している。   FIG. 20 is an enlarged vertical sectional view of the upper half of the excitation unit 192. In FIG. 20, a field pole 175 is opposed to the second extension 173 via a gap, the field pole 176 is coupled to the cylindrical magnetic yoke 15, and there is an axial gap between the field pole 175 and the field pole 176. An annular field magnet 177 is arranged as a different configuration in the radial direction. In the figure, the field magnet 177 has a configuration in which annular magnet elements having different axial lengths are concentrically arranged in a radial direction with a non-magnetic material interposed therebetween. The magnet element 201 which is a part of the field magnet 177 is magnetized in the left direction parallel to the axis, and the magnet elements 202, 203 and 204 are magnetized in the right direction parallel to the axis.

磁性体突極182は集合磁石によりS極に磁化されているので磁性体突極182をS極に励磁する磁石要素202,203,204は第一磁化に属し,磁石要素201は第二磁化に属する。この構成により,第一磁化の磁極表面積が第二磁化の磁極表面積より大であるので両者を差し引いた磁極表面積に比例する磁束量が界磁磁石177の一方の磁極から界磁極176に流入する。界磁極176に流入した磁束は更に円筒状磁気ヨーク15,磁性体歯14,磁性体突極182,第二延長部173,界磁極175を介して界磁磁石177の他方の磁極に環流し,主磁路を形成している。この場合に磁性体突極182はS極に磁化されている。同様に励磁部191により磁性体突極181はN極に磁化される。   Since the magnetic salient pole 182 is magnetized to the S pole by the collective magnet, the magnet elements 202, 203, 204 that excite the magnetic salient pole 182 to the S pole belong to the first magnetization, and the magnet element 201 becomes the second magnetization. Belongs. With this configuration, since the magnetic surface area of the first magnetization is larger than the magnetic pole surface area of the second magnetization, a magnetic flux amount proportional to the magnetic pole surface area obtained by subtracting both flows into the field magnetic pole 176 from one magnetic pole of the field magnet 177. The magnetic flux flowing into the field pole 176 is further circulated to the other magnetic pole of the field magnet 177 via the cylindrical magnetic yoke 15, the magnetic teeth 14, the magnetic salient pole 182, the second extension 173, and the field pole 175, A main magnetic path is formed. In this case, the magnetic salient pole 182 is magnetized to the S pole. Similarly, the magnetic salient pole 181 is magnetized to the N pole by the excitation unit 191.

界磁極175と界磁極176はさらに間隙205を介して対向し,励磁コイル178が界磁極175と回転軸11を周回するよう配置されている。界磁極175,間隙205,界磁極176が磁石要素201,202,203,204に並列に接続される励磁磁路を形成し,間隙205を磁気抵抗調整部分として対向面積及び間隙の長さを調整して励磁磁路の磁気抵抗が主磁路の磁気抵抗より大となるよう設定されている。   The field magnetic pole 175 and the field magnetic pole 176 are further opposed to each other through the gap 205, and the exciting coil 178 is arranged so as to go around the field magnetic pole 175 and the rotating shaft 11. The field pole 175, the gap 205, and the field pole 176 form an exciting magnetic path connected in parallel to the magnet elements 201, 202, 203, and 204, and the opposing area and gap length are adjusted using the gap 205 as a magnetic resistance adjustment portion. Thus, the magnetic resistance of the exciting magnetic path is set to be larger than the magnetic resistance of the main magnetic path.

上記励磁部を構成する部材,磁石要素201,202,203,204,界磁極175,界磁極176,励磁コイル178等は回転軸11を周回する円環状,円筒状の形状であり,構成はシンプルに出来る。励磁部を構成する磁性体部材である界磁極175,176には比抵抗が大である圧粉鉄心で構成し,励磁コイル178によるパルス電流,交流電流による磁束が通りやすい構成としている。他に渦電流損を生じ難い比抵抗の大きなバルク状磁性体を用いる事も出来る。   The members constituting the exciting part, the magnet elements 201, 202, 203, 204, the field magnetic pole 175, the field magnetic pole 176, the exciting coil 178 and the like have an annular and cylindrical shape that circulates around the rotating shaft 11, and the structure is simple. I can do it. The field poles 175 and 176, which are magnetic members constituting the excitation unit, are formed of a dust core having a large specific resistance, and the magnetic flux generated by the pulse current and the alternating current from the excitation coil 178 is easily passed. In addition, it is also possible to use a bulk magnetic material having a large specific resistance that hardly causes eddy current loss.

本実施例で円筒状磁気ヨーク15はケイ素鋼板の積層体で構成されている。しかし,励磁部191,192からの磁束は円筒状磁気ヨーク15内を軸方向に流れるので円筒状磁気ヨーク15の断面積を十分に大に出来ない時は磁束チャネル部186と同様に軸方向に延びる軟鉄ブロックを円筒状磁気ヨーク15内或いは外周部に配置する事で磁束の軸方向伝搬を容易に出来る。また,円筒状磁気ヨーク15は比抵抗の大きいバルク状磁性体で構成しても良い。   In this embodiment, the cylindrical magnetic yoke 15 is composed of a laminated body of silicon steel plates. However, since the magnetic flux from the excitation portions 191 and 192 flows in the cylindrical magnetic yoke 15 in the axial direction, when the cross-sectional area of the cylindrical magnetic yoke 15 cannot be made sufficiently large, the magnetic flux channel portion 186 similarly to the axial direction. By arranging the extending soft iron block in the cylindrical magnetic yoke 15 or on the outer periphery, the magnetic flux can be easily propagated in the axial direction. The cylindrical magnetic yoke 15 may be made of a bulk magnetic material having a large specific resistance.

図20に示されるように磁石要素201,202,203,204は軸方向の長さが径方向に変わり,同一素材の永久磁石要素が軸方向長さを変えて並列に接続された状態である。励磁コイル178に磁化電流が供給されると,磁石要素201,202,203,204に接する界磁極175と界磁極176間の磁気ポテンシャル差(起磁力)はほぼ同じとして各磁石要素内では磁気ポテンシャル差を軸方向長さで除した値に相当する磁界強度の磁界が加えられる。したがって,軸方向に短い磁石要素が磁化されやすく,軸方向に長い磁石要素は磁化され難い。   As shown in FIG. 20, the magnet elements 201, 202, 203, and 204 are in a state in which the axial length is changed to the radial direction, and permanent magnet elements of the same material are connected in parallel with the axial length changed. . When a magnetizing current is supplied to the exciting coil 178, the magnetic potential difference (magnetomotive force) between the field pole 175 and the field pole 176 in contact with the magnet elements 201, 202, 203, and 204 is substantially the same, and the magnetic potential in each magnet element. A magnetic field having a magnetic field intensity corresponding to a value obtained by dividing the difference by the axial length is applied. Therefore, a magnet element that is short in the axial direction is easily magnetized, and a magnet element that is long in the axial direction is difficult to be magnetized.

当初,磁石要素201,202,203,204全体が第一磁化と同様に右方向に磁化されているとして,励磁コイル178に供給する磁化電流により磁石要素201,202,203,204を一括して左方向に励磁すると,磁束は磁界強度が大となる軸方向に短い側である磁石要素に磁束が集中して磁化される。その結果,左方向の磁化である第二磁化に含まれる磁石数は励磁コイル178に供給される磁化電流の振幅によって定められる。磁石要素201,202,203,204を構成する各磁石要素は同一素材で飽和磁束密度は同じであるので主磁路の供給される磁束量は第一磁化の磁極表面積,第二磁化の磁極表面積の差し引きで決まり,図20では第一磁化の磁束が流れる。磁石要素201,202,203,204を構成する磁石の磁極表面積は径方向の厚さと径位置により変わるのでそれぞれの磁極表面積を等しくする為に径方向の厚さ,或いは周方向長さを変える。   Initially, assuming that the entire magnet elements 201, 202, 203, and 204 are magnetized in the right direction in the same manner as the first magnetization, the magnet elements 201, 202, 203, and 204 are collectively collected by the magnetization current supplied to the exciting coil 178. When excited in the left direction, the magnetic flux is magnetized by concentrating the magnetic flux on the magnet element on the short side in the axial direction where the magnetic field strength is large. As a result, the number of magnets included in the second magnetization, which is the magnetization in the left direction, is determined by the amplitude of the magnetization current supplied to the exciting coil 178. Since the magnet elements constituting the magnet elements 201, 202, 203, and 204 are the same material and have the same saturation magnetic flux density, the amount of magnetic flux supplied to the main magnetic path is the magnetic pole surface area of the first magnetization and the magnetic pole surface area of the second magnetization. In FIG. 20, the magnetic flux of the first magnetization flows. Since the magnetic pole surface area of the magnets constituting the magnet elements 201, 202, 203, and 204 varies depending on the radial thickness and radial position, the radial thickness or circumferential length is changed in order to make each magnetic pole surface area equal.

図20を用いて励磁部192の構成及び界磁磁石を励磁する説明をしたが,第一延長部172と対向する励磁部191の構成は励磁部192と全く同じである。ただ,磁石要素201,202,203,204が界磁極175,176に対向する磁化方向は励磁部191と逆になるよう励磁コイル178に供給する磁化電流の極性を変える。   Although the configuration of the excitation unit 192 and the excitation of the field magnet have been described with reference to FIG. 20, the configuration of the excitation unit 191 facing the first extension 172 is exactly the same as that of the excitation unit 192. However, the polarity of the magnetization current supplied to the exciting coil 178 is changed so that the magnetization direction in which the magnet elements 201, 202, 203, 204 are opposed to the field poles 175, 176 is opposite to that of the exciting unit 191.

本実施例では磁性体突極181,182間に集合磁石を有し,周方向に隣接する集合磁石は互いに略周方向磁化を反転させて隣接する磁性体突極181,182を互いに異極に磁化し,図18に示す例では磁性体突極181はN極に,磁性体突極182はS極に磁化されている。図20に示されている励磁部192は磁石要素201,202,203,204の磁化状態では磁性体突極182をS極に励磁し,励磁部191は磁性体突極181を逆のN極に励磁している。したがって,磁性体歯14を含む電機子側には集合磁石からの磁束及び励磁部からの磁束が合算されて供給されている。   In this embodiment, there are aggregate magnets between the magnetic salient poles 181 and 182, and the aggregate magnets adjacent to each other in the circumferential direction reverse the substantially circumferential magnetization to make the adjacent magnetic salient poles 181 and 182 different from each other. In the example shown in FIG. 18, the magnetic salient pole 181 is magnetized to the N pole and the magnetic salient pole 182 is magnetized to the S pole. 20 excites the magnetic salient pole 182 to the S pole in the magnetized state of the magnet elements 201, 202, 203, and 204, and the exciter 191 causes the magnetic salient pole 181 to be the opposite N pole. Excited. Accordingly, the armature side including the magnetic teeth 14 is supplied with the magnetic flux from the collective magnet and the magnetic flux from the excitation unit added together.

第三実施例と同様に,磁石板184,185から電機子側に流れる磁束量を基準として1.0とした場合,磁石要素201,202,203,204それぞれからの磁束量が0.25となるように寸法が設定されている。この構成により図20では電機子を流れる磁束量は磁石板184,185から電機子側に流れる磁束量を基準として1.5である。   As in the third embodiment, when the amount of magnetic flux flowing from the magnet plates 184 and 185 to the armature side is 1.0, the amount of magnetic flux from each of the magnet elements 201, 202, 203, and 204 is 0.25. The dimensions are set so that With this configuration, in FIG. 20, the amount of magnetic flux flowing through the armature is 1.5 based on the amount of magnetic flux flowing from the magnet plates 184 and 185 toward the armature.

磁石要素201,202,203,204全てが第一磁化に属する状態で電機子を流れる磁束量が最大となる。電機子を流れる磁束量の最小値はゼロであり,磁石要素201,202,203,204全てが第二磁化に属する状態で電機子内に於いて磁石板184,185から電機子に流れる磁束が励磁部からの磁束により相殺される場合である。   The amount of magnetic flux flowing through the armature is maximized when all of the magnet elements 201, 202, 203, and 204 belong to the first magnetization. The minimum value of the magnetic flux flowing through the armature is zero, and the magnetic flux flowing from the magnet plates 184 and 185 to the armature in the armature with all the magnet elements 201, 202, 203, and 204 belonging to the second magnetization. This is a case where the magnetic flux is canceled by the magnetic flux from the excitation unit.

本実施例では界磁磁石177(磁石要素201,202,203,204)を磁化方向長さの異なる磁石要素を並列に接続し,励磁コイル178に供給する磁化電流62の大きさにより界磁磁石の磁化状態を変えて磁性体突極181,182及び電機子に流れる磁束量を変える。その際に励磁コイル178は界磁磁石177に並列に接続される励磁磁路に巻回している。この構成により,界磁磁石177からの磁束は主磁路及び励磁磁路に流れるが,励磁磁路の磁気抵抗を主磁路の磁気抵抗より大に設定して主磁路に流れる磁束量を大としている。励磁磁路の磁気抵抗を大にする事で励磁コイル178が界磁磁石177を磁化する効率を低下させる事になるので励磁磁路の磁気抵抗設定は電機子側に流す磁束量範囲,励磁コイル178への電流供給能力等,回転電機システムの仕様により設定する。   In this embodiment, a field magnet 177 (magnet elements 201, 202, 203, 204) is connected in parallel with magnet elements having different lengths in the magnetization direction, and the field magnet is determined depending on the magnitude of the magnetizing current 62 supplied to the exciting coil 178. The amount of magnetic flux flowing through the magnetic salient poles 181 and 182 and the armature is changed by changing the magnetization state of. At that time, the exciting coil 178 is wound around an exciting magnetic path connected in parallel to the field magnet 177. With this configuration, the magnetic flux from the field magnet 177 flows in the main magnetic path and the excitation magnetic path, but the magnetic resistance of the excitation magnetic path is set to be larger than the magnetic resistance of the main magnetic path so that the amount of magnetic flux flowing in the main magnetic path is reduced. It ’s big. Increasing the magnetic resistance of the exciting magnetic path reduces the efficiency with which the exciting coil 178 magnetizes the field magnet 177. Therefore, the magnetic resistance setting of the exciting magnetic path depends on the amount of magnetic flux flowing to the armature side, the exciting coil It is set according to the specifications of the rotating electrical machine system, such as the current supply capacity to 178.

また,界磁磁石177から磁性体突極181,182に至る第一延長部172,第二延長部173及び磁束チャネル部186は軟鉄ブロックで構成して電機子コイル16が誘起する交流磁束が界磁磁石177に及ぼす影響を軽減し,また界磁磁石177を磁化する際の励磁コイル178による磁束パルスが電機子コイル16に及ぼす影響を軽減する構成としている。   The first extension 172, the second extension 173, and the magnetic flux channel 186 from the field magnet 177 to the magnetic salient poles 181 and 182 are composed of soft iron blocks, and the AC magnetic flux induced by the armature coil 16 is subjected to the field. The influence on the magnet magnet 177 is reduced, and the influence on the armature coil 16 by the magnetic flux pulse generated by the exciting coil 178 when the field magnet 177 is magnetized is reduced.

本実施例の表面磁極部171の磁極構成は図18に示されるように磁石板184,185により周方向に磁気抵抗の大きい領域及び小さい領域が交互に配置され,磁石トルク及びリラクタンストルクを利用できる構成である。したがって,磁石トルク及びリラクタンストルクを利用する電動機駆動の為の回路及びソフトウエアはそのまま流用する事も可能である。すなわち,回転電機を電動機として用いる場合に界磁磁石177の磁化変更による磁束量制御は離散的に実施し,各段階に於いて細部の磁束量制御は従来と同様に電流の進み位相制御を用いるよう構成できる。   As shown in FIG. 18, the magnetic pole configuration of the surface magnetic pole portion 171 of this embodiment is such that magnet plates 184 and 185 alternately arrange regions with large and small magnetic resistance in the circumferential direction so that magnet torque and reluctance torque can be used. It is a configuration. Therefore, the circuit and software for driving the motor using the magnet torque and the reluctance torque can be used as they are. That is, when the rotating electrical machine is used as an electric motor, the magnetic flux amount control by changing the magnetization of the field magnet 177 is discretely performed, and the detailed magnetic flux amount control at each stage uses the current lead phase control as in the conventional case. It can be configured as follows.

回転電機を発電機として用いる場合に電流の進み位相制御による弱め界磁は用い難いので界磁磁石177の磁化変更による磁束量制御は離散的に実施し,各段階に於いて細部の磁束量制御は磁石要素201,202,203,204の磁化状態を変更させない程度の磁束調整電流を励磁コイル178に供給して磁束を発生させ,磁石要素201,202,203,204及び磁石板184,185による磁束に重畳させて電機子を流れる磁束量を制御する。   When a rotating electric machine is used as a generator, it is difficult to use a field weakening by current advance phase control. Therefore, the magnetic flux amount control by changing the magnetization of the field magnet 177 is performed discretely, and the detailed magnetic flux amount control at each stage. Supplies a magnetic flux adjustment current that does not change the magnetization state of the magnet elements 201, 202, 203, 204 to the exciting coil 178 to generate a magnetic flux, which is generated by the magnet elements 201, 202, 203, 204 and the magnet plates 184, 185. The amount of magnetic flux flowing through the armature is controlled by being superimposed on the magnetic flux.

以上,図17から図20に示した回転電機に於いて,界磁磁石177の磁化状態を変える事で電機子に流れる磁束量を制御できることを説明した。本実施例は電機子を流れる磁束量を制御して出力を最適化するシステムであり,図6,図14を用いて回転電機システムとしての制御を説明する。   As described above, in the rotating electric machine shown in FIGS. 17 to 20, it has been explained that the amount of magnetic flux flowing through the armature can be controlled by changing the magnetization state of the field magnet 177. The present embodiment is a system for optimizing the output by controlling the amount of magnetic flux flowing through the armature, and the control as the rotating electrical machine system will be described with reference to FIGS.

回転電機が電動機として用いられる場合において,磁束量制御を行って回転力を最適に制御する。制御装置75は出力73である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には第二磁化の磁石数を増す方向のパルス電流62を磁化制御回路143により励磁コイル178に供給して第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とし,制御装置75は出力73である回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には第一磁化の磁石数を増す方向のパルス電流62を磁化制御回路143により励磁コイル178に供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   When the rotating electrical machine is used as an electric motor, the amount of magnetic flux is controlled to optimally control the rotational force. When the rotational speed, which is the output 73, is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 75 generates a pulse current 62 in the direction of increasing the number of magnets of the second magnetization by the magnetization control circuit 143 by the excitation coil 178. To reduce the number of magnets of the first magnetization and increase the number of magnets of the second magnetization to reduce the amount of magnetic flux flowing through the armature, and the control device 75 reduces the rotational speed, which is the output 73, to a value lower than a predetermined value. When the amount of magnetic flux flowing through the child is increased, a pulse current 62 in a direction to increase the number of first magnetization magnets is supplied to the excitation coil 178 by the magnetization control circuit 143 to increase the number of first magnetization magnets and to increase the number of first magnetization magnets. Reduce the number to increase the amount of magnetic flux flowing through the armature.

回転電機が電動機として用いられる上の例において,磁束調整電流を供給しての磁束量調整を行っていないが,電動機の起動時に可能な限り大きな磁束調整電流を供給し,電機子コイルと鎖交する磁束量を大として出力トルクを大にする事が出来る。この場合に磁束調整電流が界磁磁石の磁化状態を変更するに十分な大きさであっても全ての界磁磁石要素が第一磁化の磁化方向であるので磁化状態を変更する事には成らない。   In the above example in which the rotating electric machine is used as an electric motor, the magnetic flux amount is not adjusted by supplying the magnetic flux adjusting current. However, when the electric motor is started, the magnetic flux adjusting current is supplied as much as possible and the armature coil is linked. The output torque can be increased by increasing the amount of magnetic flux to be generated. In this case, even if the magnetic flux adjustment current is large enough to change the magnetization state of the field magnet, it is not possible to change the magnetization state because all the field magnet elements are in the magnetization direction of the first magnetization. Absent.

回転電機が発電機として用いられる場合において,磁束量制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。本実施例は界磁磁石の磁化状態を不可逆的に変更して電機子を流れる磁束量を離散的に制御し,界磁磁石の各磁化状態では磁束調整電流を励磁コイル178に供給して磁束を発生させて電機子を流れる磁束量を制御する。但し,電機子を流れる磁束量を増やす極性の磁束調整電流を正としている。   A constant voltage power generation system that controls the amount of magnetic flux to be a predetermined voltage by controlling the amount of magnetic flux when a rotating electrical machine is used as a generator will be described. In this embodiment, the magnetization state of the field magnet is irreversibly changed to discretely control the amount of magnetic flux flowing through the armature, and in each magnetization state of the field magnet, a magnetic flux adjustment current is supplied to the exciting coil 178 so that the magnetic flux To control the amount of magnetic flux flowing through the armature. However, a magnetic flux adjustment current having a polarity that increases the amount of magnetic flux flowing through the armature is positive.

制御装置75は出力73である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には磁束調整回路142により励磁コイル178に供給する磁束調整電流を減じて電機子に流れる磁束量を小とし,磁束調整電流が予め定めた値より小である場合には第二磁化の磁石数を増す方向のパルス電流62を磁化制御回路143により励磁コイル178に供給して第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とする。   The control device 75 reduces the magnetic flux adjustment current supplied to the excitation coil 178 by the magnetic flux adjustment circuit 142 when the generated voltage, which is the output 73, is larger than a predetermined value and reduces the amount of magnetic flux flowing through the armature. When the amount is small and the magnetic flux adjustment current is smaller than a predetermined value, a pulse current 62 in a direction to increase the number of magnets of the second magnetization is supplied to the exciting coil 178 by the magnetization control circuit 143 to generate the first magnetization. The number of magnets is decreased and the number of magnets of the second magnetization is increased to reduce the amount of magnetic flux flowing through the armature.

制御装置75は出力73である発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には磁束調整回路142により励磁コイル178に供給する磁束調整電流を増して電機子に流れる磁束量を大とし,磁束調整電流が予め定めた値より大である場合には第一磁化の磁石数を増す方向のパルス電流62を磁化制御回路143により励磁コイル178に供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   The control device 75 increases the magnetic flux adjustment current supplied to the exciting coil 178 by the magnetic flux adjustment circuit 142 when the generated voltage as the output 73 is smaller than a predetermined value and increases the amount of magnetic flux flowing through the armature. When the magnetic flux adjustment current is larger than a predetermined value, a pulse current 62 in a direction to increase the number of magnets of the first magnetization is supplied to the excitation coil 178 by the magnetization control circuit 143 to increase the amount of the first magnetization. The amount of magnetic flux flowing through the armature is increased by increasing the number of magnets and decreasing the number of magnets of the second magnetization.

本発明の第六実施例による回転電機システムを図21から図23を用いて説明する。第六実施例は,ラジアルギャップ構造の単極回転子を持つ回転電機システムであり,励磁部は回転電機の静止側に配置されている。図21は回転電機の縦断面図,図22は電機子と回転子とを示す断面図,図23は励磁部構成を示す拡大された縦断面図である。   A rotating electrical machine system according to a sixth embodiment of the present invention will be described with reference to FIGS. The sixth embodiment is a rotating electrical machine system having a single-pole rotor having a radial gap structure, and the excitation unit is disposed on the stationary side of the rotating electrical machine. FIG. 21 is a longitudinal sectional view of the rotating electrical machine, FIG. 22 is a sectional view showing the armature and the rotor, and FIG. 23 is an enlarged longitudinal sectional view showing the configuration of the excitation unit.

図21はアウターロータ構造の回転電機に本発明を適用した実施例を示している。基板218に固定軸211が固定され,固定軸211に電機子が固定され,固定軸211にベアリング213を介して回動可能に支持されたロータハウジング212に磁性体突極217が配置されている。ロータハウジング212は軟鉄を主体とする磁性体で構成されている。   FIG. 21 shows an embodiment in which the present invention is applied to a rotating electrical machine having an outer rotor structure. A fixed shaft 211 is fixed to the substrate 218, an armature is fixed to the fixed shaft 211, and a magnetic salient pole 217 is disposed on a rotor housing 212 that is rotatably supported on the fixed shaft 211 via a bearing 213. . The rotor housing 212 is made of a magnetic material mainly composed of soft iron.

電機子は固定軸211に固定された円筒状磁気ヨーク215と,円筒状磁気ヨーク215から径方向に延びる複数の磁性体歯214と,磁性体歯214に巻回された電機子コイル216とから構成されている。ロータハウジング212は外部機器と回転力の伝達の為のプーリー部219を持ち,ロータハウジング212には磁性体歯214に対向して磁性体突極217と磁気空隙部とが周方向に交互に配置されている。   The armature includes a cylindrical magnetic yoke 215 fixed to the fixed shaft 211, a plurality of magnetic teeth 214 extending radially from the cylindrical magnetic yoke 215, and an armature coil 216 wound around the magnetic teeth 214. It is configured. The rotor housing 212 has a pulley portion 219 for transmitting rotational force to an external device. The rotor housing 212 has magnetic salient poles 217 and magnetic gap portions alternately arranged in the circumferential direction so as to face the magnetic teeth 214. Has been.

磁性体突極217を磁石励磁する励磁部は,固定軸211を周回する形状で静止側に配置され,主要部を第一界磁磁石21a,第二界磁磁石21b,励磁コイル21c,界磁極21d,円盤状磁極21eとから構成され,励磁部はロータハウジング212と円筒状磁気ヨーク215それぞれと磁気的に結合するよう円筒状磁気ヨーク215に固定されている。番号21fは固定軸211を周回するよう配置された導体層であり,励磁コイル21cのインダクタンスを減少し且つ磁束を第一界磁磁石21aに集中させる為に設けられている。番号21gはロータハウジング212表面に形成した同心円状の凹凸を示し,交流磁束を通り難くする為に形成されている。   The exciting part that magnetizes the magnetic salient pole 217 is arranged on the stationary side so as to circulate around the fixed shaft 211, and the main parts are the first field magnet 21a, the second field magnet 21b, the exciting coil 21c, and the field pole. 21d and the disk-shaped magnetic pole 21e, and the exciting part is fixed to the cylindrical magnetic yoke 215 so as to be magnetically coupled to the rotor housing 212 and the cylindrical magnetic yoke 215, respectively. Reference numeral 21f denotes a conductor layer arranged so as to go around the fixed shaft 211, and is provided to reduce the inductance of the exciting coil 21c and concentrate the magnetic flux on the first field magnet 21a. Reference numeral 21g denotes concentric concavities and convexities formed on the surface of the rotor housing 212, and is formed to make it difficult for AC magnetic flux to pass.

図22は図21のE−E’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示している。電機子は固定軸211に固定された円筒状磁気ヨーク215と,円筒状磁気ヨーク215から径方向に延び,周方向に磁気空隙を有する複数の磁性体歯214と,磁性体歯214に巻回された電機子コイル216とから構成されている。本実施例では24個の電機子コイル216より構成され,それらは三相に結線されている。磁性体歯214と円筒状磁気ヨーク215はケイ素鋼板から所定の型で打ち抜かれた後,積層して構成され,電機子コイル216が巻回されている。   FIG. 22 is a cross-sectional view of the armature and the rotor along E-E ′ in FIG. 21, and some of the components are numbered for explaining the mutual relationship. The armature is a cylindrical magnetic yoke 215 fixed to a fixed shaft 211, a plurality of magnetic teeth 214 extending in a radial direction from the cylindrical magnetic yoke 215 and having a magnetic gap in the circumferential direction, and wound around the magnetic teeth 214 Armature coil 216. In this embodiment, the armature coil 216 is composed of 24 armature coils 216, which are wired in three phases. The magnetic body teeth 214 and the cylindrical magnetic yoke 215 are formed by punching out a silicon steel plate with a predetermined mold and then stacked, and an armature coil 216 is wound around the magnetic teeth 214 and the cylindrical magnetic yoke 215.

図22に於いて,ロータハウジング212の内側に磁性体歯214に対向してケイ素鋼板を積層された磁性体突極217が周方向に等間隔に8個配置されている。磁性体突極217間は磁気空隙部221であり,単に空隙としているが,高速回転で風損がエネルギー効率或いは音響発生で支障となる時には比抵抗が大で非磁性の樹脂,レジン等を配置する事が出来る。回転子に界磁磁石は配置されていないが,励磁部により磁性体突極217はロータハウジング212を介して界磁磁石21aの一方の磁極に,磁性体歯214は界磁磁石21aの他方の磁極に磁気的に結合されて磁化されている。このような構成は単極の回転電機であって,電動機として或いは発電機として使いにくい点はあるが,構成がシンプルであるメリットがある。   In FIG. 22, eight magnetic salient poles 217 in which silicon steel plates are laminated facing the magnetic substance teeth 214 inside the rotor housing 212 are arranged at equal intervals in the circumferential direction. Between the magnetic salient poles 217 is a magnetic gap portion 221, which is merely a gap, but when high-speed rotation causes windage loss to interfere with energy efficiency or sound generation, a specific resistance is large and non-magnetic resin, resin, etc. are arranged. I can do it. Although the field magnet is not arranged on the rotor, the magnetic salient pole 217 is placed on one magnetic pole of the field magnet 21a via the rotor housing 212 and the magnetic teeth 214 are placed on the other side of the field magnet 21a. Magnetized magnetically coupled to the magnetic pole. Such a configuration is a single-pole rotating electric machine, and although it is difficult to use as a motor or a generator, there is an advantage that the configuration is simple.

図23は図21に示した励磁部の構成及び磁束量制御の原理を説明する為に励磁部の縦断面図を拡大して示している。図23に於いて,界磁極21dと円筒状磁気ヨーク215間は軸方向の間隙長さが径方向に変わり,円筒状の磁石要素231,232,233,234が配置されて第一界磁磁石21aを構成している。磁石要素234は右方向に磁化され,磁石要素231,232,233は左方向に磁化されている状態を示している。さらに第二界磁磁石21bは互いに逆方向の磁化を持つ磁石要素235,236の並列接続で構成されている。   FIG. 23 is an enlarged longitudinal sectional view of the excitation unit for explaining the configuration of the excitation unit shown in FIG. 21 and the principle of magnetic flux amount control. In FIG. 23, the axial gap length between the field pole 21d and the cylindrical magnetic yoke 215 changes in the radial direction, and cylindrical magnet elements 231, 232, 233, and 234 are arranged to form the first field magnet. 21a is constituted. The magnet element 234 is magnetized in the right direction, and the magnet elements 231, 232, and 233 are magnetized in the left direction. Furthermore, the second field magnet 21b is configured by parallel connection of magnet elements 235 and 236 having magnetizations in opposite directions.

軸と平行に左方向の磁化は磁性体突極217をN極に磁化して第一磁化であり,逆方向の磁化は第二磁化とする。磁石要素231,232,233は第一磁化に属し,第二磁化には磁石要素234が属している。第一界磁磁石21aの一方の磁極から磁束が界磁極21dに流入し,円盤状磁極21e,ロータハウジング212,磁性体突極217,磁性体歯214,円筒状磁気ヨーク215を介して第一界磁磁石21aの他方の磁極に環流する磁路は主磁路を形成している。   The magnetization in the left direction parallel to the axis is the first magnetization by magnetizing the magnetic salient pole 217 to the N pole, and the magnetization in the opposite direction is the second magnetization. The magnet elements 231, 232 and 233 belong to the first magnetization, and the magnet element 234 belongs to the second magnetization. Magnetic flux flows from one magnetic pole of the first field magnet 21a into the field magnetic pole 21d, and passes through the disk-shaped magnetic pole 21e, the rotor housing 212, the magnetic material salient pole 217, the magnetic material teeth 214, and the cylindrical magnetic yoke 215. The magnetic path circulating in the other magnetic pole of the field magnet 21a forms a main magnetic path.

第二界磁磁石21bを構成する磁石要素235,236の磁化を変更するに必要な磁界強度は第一界磁磁石21aを構成する磁石要素231,232,233,234より十分に大の磁界強度を有するよう構成され,磁石要素235,236は磁石要素231,232,233,234を励磁する場合に励磁用磁束が流れる励磁磁路となる。磁石要素231,232,233,234は磁石要素235,236より磁化変更が容易とし,励磁コイル21cに供給される磁化電流は磁石要素235,236の磁化状態を変更しない程度に設定されている。   The magnetic field strength required to change the magnetization of the magnet elements 235 and 236 constituting the second field magnet 21b is sufficiently larger than the magnetic elements 231, 232, 233 and 234 constituting the first field magnet 21a. The magnet elements 235 and 236 serve as excitation magnetic paths through which excitation magnetic flux flows when the magnet elements 231, 232, 233 and 234 are excited. The magnet elements 231, 232, 233, and 234 are easier to change the magnetization than the magnet elements 235 and 236, and the magnetization current supplied to the exciting coil 21 c is set to such an extent that the magnetization state of the magnet elements 235 and 236 is not changed.

また,磁石要素235,236の磁極面積は等しく設定してそれぞれの飽和磁束量を同じくし,さらに磁石要素231,232,233,234の各飽和磁束量の総和と磁石要素235,236それぞれの飽和磁束量をほぼ等しくするよう磁石要素231,232,233,234,及び磁石要素235,236の諸元が設定されている。   Further, the magnetic pole areas of the magnet elements 235 and 236 are set to be equal to each other, and the respective saturation magnetic flux amounts are set to be the same. Further, the sum of the saturation magnetic flux amounts of the magnet elements 231, 232, 233 and 234 and The specifications of the magnet elements 231, 232, 233, 234, and the magnet elements 235, 236 are set so that the amount of magnetic flux is substantially equal.

通常の運転状態で,磁石要素235,236からの磁束は互いに相殺されて電機子側へ流れる磁束量には寄与しない。励磁コイル21cにより磁石要素231,232,233,234を磁化するほどの大きな磁界強度が加えられるとその磁界強度に沿う方向である磁石要素235,236の何れかを励磁コイル21cが誘起した磁束が流れ,励磁磁路の磁気抵抗を実効的に小とする。このように磁石要素235,236は大きな磁界強度で作用する一種の磁路スイッチである。   Under normal operating conditions, the magnetic fluxes from the magnet elements 235 and 236 cancel each other and do not contribute to the amount of magnetic flux flowing to the armature side. When a magnetic field strength large enough to magnetize the magnet elements 231, 232, 233, and 234 is applied by the exciting coil 21c, the magnetic flux induced by the exciting coil 21c in any one of the magnet elements 235 and 236 in the direction along the magnetic field strength. The magnetic resistance of the flow and excitation magnetic path is effectively reduced. Thus, the magnet elements 235 and 236 are a kind of magnetic path switch that operates with a large magnetic field strength.

上記励磁部を構成する部材,磁石要素231,232,233,234,235,236,界磁極21d,円盤状磁極21e,励磁コイル21c等は固定軸211を周回する形状であり,構成はシンプルに出来る。励磁部を構成する磁性体部材である界磁極21d,円盤状磁極21eには比抵抗が大である圧粉鉄心で構成し,励磁コイル21cに供給されるパルス電流,消磁電流による磁束が通りやすい構成としている。他に渦電流損を生じ難い比抵抗の大きなバルク状磁性体を用いる事も出来る。   The members constituting the exciter, the magnet elements 231, 232, 233, 234, 235, 236, the field magnetic pole 21d, the disc-shaped magnetic pole 21e, the exciting coil 21c, etc. are shaped around the fixed shaft 211, and the configuration is simple. I can do it. The field magnetic pole 21d and the disk-shaped magnetic pole 21e, which are magnetic members constituting the exciter, are composed of a dust core having a large specific resistance, and a magnetic flux due to a pulse current and a demagnetizing current supplied to the exciting coil 21c can easily pass therethrough. It is configured. In addition, it is also possible to use a bulk magnetic material having a large specific resistance that hardly causes eddy current loss.

導体層21fは磁石要素231,232,233,234と固定軸211間に配置されている。励磁コイル21bにパルス状の磁化電流が供給されて磁束が誘起されると,導体層21fには導体層21fが囲む領域の磁束の変化を妨げる方向の電流が流れるので導体層21f内周領域を磁束が流れ難くなって励磁コイル21cと導体層21f間に配置されている磁石要素231,232,233,234に磁束が集中される結果となる。さらに励磁コイル21cに誘起される磁束の流れる磁路の磁気抵抗は大となるので励磁コイル21cのインダクタンスは減少する。   The conductor layer 21 f is disposed between the magnet elements 231, 232, 233, 234 and the fixed shaft 211. When a pulsed magnetizing current is supplied to the exciting coil 21b to induce a magnetic flux, a current in a direction that prevents a change in the magnetic flux in the region surrounded by the conductor layer 21f flows through the conductor layer 21f. It becomes difficult for the magnetic flux to flow, resulting in the magnetic flux being concentrated on the magnet elements 231, 232, 233 and 234 arranged between the exciting coil 21 c and the conductor layer 21 f. Furthermore, since the magnetic resistance of the magnetic path through which the magnetic flux induced in the exciting coil 21c flows increases, the inductance of the exciting coil 21c decreases.

図23に示されるように磁石要素231,232,233,234は軸方向の長さが径方向に変わり,同一磁石素材が軸方向長さを変えて並列に接続された状態である。この励磁部構成は図9に示した第三実施例に於ける励磁部と同じであり,更なる構成及び動作原理の説明は省略する。   As shown in FIG. 23, the magnet elements 231, 232, 233, and 234 are in a state in which the axial length is changed in the radial direction, and the same magnet material is connected in parallel while changing the axial length. The configuration of the excitation unit is the same as that of the excitation unit in the third embodiment shown in FIG. 9, and further description of the configuration and operation principle will be omitted.

本実施例では磁石要素231,232,233,234を磁化方向長さの異なる磁石要素を並列に接続して第一界磁磁石21aを構成し,励磁コイル21cに供給する磁化電流の大きさにより第一界磁磁石21aの磁化状態を変えて磁性体突極217及び電機子に流れる磁束量を変える。その際に励磁コイル21cは主磁路及び励磁磁路に巻回されている。主磁路に交流磁束が流れ難く構成されているので第一界磁磁石21aを磁化する為に加えられるパルス状磁束は励磁磁路に集中して第一界磁磁石21aを磁化する。また,この構成により第一界磁磁石21aからの磁束は主磁路及び励磁磁路に流れるようとするが,励磁磁路に一種の磁路スイッチとして機能する第二界磁磁石21bを配置して第一界磁磁石21aからの磁束を流れ難くしている。   In this embodiment, the magnet elements 231, 232, 233, and 234 are connected in parallel to magnet elements having different magnetization direction lengths to constitute the first field magnet 21 a, and depending on the magnitude of the magnetizing current supplied to the exciting coil 21 c. The amount of magnetic flux flowing through the magnetic salient pole 217 and the armature is changed by changing the magnetization state of the first field magnet 21a. At that time, the exciting coil 21c is wound around the main magnetic path and the exciting magnetic path. Since the AC magnetic flux is difficult to flow in the main magnetic path, the pulsed magnetic flux applied to magnetize the first field magnet 21a is concentrated in the exciting magnetic path and magnetizes the first field magnet 21a. In addition, this configuration causes the magnetic flux from the first field magnet 21a to flow in the main magnetic path and the excitation magnetic path, but a second field magnet 21b that functions as a kind of magnetic path switch is disposed in the excitation magnetic path. This makes it difficult for the magnetic flux from the first field magnet 21a to flow.

また,第一界磁磁石21aから磁性体突極217に至る磁路であるロータハウジング212は軟鉄を主体として構成して電機子コイル216が誘起する交流磁束が通り難く構成して第一界磁磁石21aの磁化に及ぼす影響を軽減し,また第一界磁磁石21aを磁化する際の励磁コイル21cによるパルス状磁束が電機子コイル216に及ぼす影響を軽減する構成としている。さらに本実施例では同心円状の凹凸21gをロータハウジング212表面に形成して交流磁束を通り難い構成としている。   The rotor housing 212, which is a magnetic path from the first field magnet 21a to the magnetic salient pole 217, is composed mainly of soft iron so that the AC magnetic flux induced by the armature coil 216 is difficult to pass through, so that the first field magnet is formed. The influence on the magnetization of the magnet 21a is reduced, and the influence of the pulsed magnetic flux generated by the exciting coil 21c on the armature coil 216 when the first field magnet 21a is magnetized is reduced. Further, in this embodiment, concentric irregularities 21g are formed on the surface of the rotor housing 212 so that the AC magnetic flux does not easily pass through.

一般に渦電流が存在する場合,交流磁束は磁性体の表面に沿って伝搬する。交流磁束が伝搬する領域は表面から一定の深さまでに集中し,その深さは交流磁束の角周波数ω,磁性体の導電率σ,透磁率μ等に反比例する表皮深さ(skin depth),すなわち2/ωσμの平方根として知られている。同心円状の凹凸21gの振幅及び四分の一周期を表皮深さより大となるよう設定する事が望ましい。本実施例で回転電機の回転速度は毎分数千回転程度と想定すれば,ロータハウジング212を鉄をベースとするバルク状磁性体で構成しているので上記寸法を1ミリメートル程度以上に設定する事で本実施例で関連する交流磁束の伝搬する磁路長さを大にして交流磁束を通り難く出来る。   In general, when eddy current is present, AC magnetic flux propagates along the surface of the magnetic material. The region where AC magnetic flux propagates is concentrated from the surface to a certain depth, and the depth is the skin depth that is inversely proportional to the angular frequency ω of the AC magnetic flux, the magnetic conductivity σ, the magnetic permeability μ, etc. That is, it is known as the square root of 2 / ωσμ. It is desirable to set the amplitude and quarter cycle of the concentric irregularities 21g to be greater than the skin depth. Assuming that the rotational speed of the rotating electrical machine is about several thousand revolutions per minute in this embodiment, the rotor housing 212 is made of a bulk-like magnetic body based on iron, so the above dimension is set to about 1 millimeter or more. Therefore, it is possible to increase the length of the magnetic path through which the AC magnetic flux related in the present embodiment propagates and to make it difficult to pass the AC magnetic flux.

以上,図21から図23に示した回転電機に於いて,界磁磁石の磁化状態を変える事で電機子に流れる磁束量を制御できることを説明した。本実施例は磁束量を制御して出力を最適化するシステムであり,図7を用いて回転電機システムとしての制御を説明する。   As described above, in the rotating electric machine shown in FIGS. 21 to 23, it has been explained that the amount of magnetic flux flowing through the armature can be controlled by changing the magnetization state of the field magnet. This embodiment is a system that controls the amount of magnetic flux to optimize the output, and the control as a rotating electrical machine system will be described with reference to FIG.

回転電機が電動機として用いられる場合において,磁束量制御を行って回転力を最適に制御する。制御装置75は出力73である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には第二磁化の磁石数を増す方向のパルス電流62を励磁コイル21cに供給して第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とし,制御装置75は出力73である回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には第一磁化の磁石数を増す方向のパルス電流62を励磁コイル21cに供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   When the rotating electrical machine is used as an electric motor, the amount of magnetic flux is controlled to optimally control the rotational force. When the rotational speed of the output 73 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 75 supplies the excitation coil 21c with a pulse current 62 in a direction increasing the number of magnets of the second magnetization. The number of magnets with one magnetization is decreased and the number of magnets with second magnetization is increased to reduce the amount of magnetic flux flowing through the armature, and the control device 75 causes the rotational speed of the output 73 to be smaller than a predetermined value and the amount of magnetic flux flowing through the armature. Is increased, the pulse current 62 in the direction of increasing the number of magnets of the first magnetization is supplied to the exciting coil 21c to increase the number of magnets of the first magnetization and reduce the number of magnets of the second magnetization to flow through the armature. Is large.

回転電機が発電機として用いられる場合において,磁束量制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。制御装置75は出力73である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には第二磁化の磁石数を増す方向のパルス電流62を励磁コイル21cに供給して第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とする。制御装置75は出力73である発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には第一磁化の磁石数を増す方向のパルス電流62を励磁コイル21cに供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   A constant voltage power generation system that controls the amount of magnetic flux to be a predetermined voltage by controlling the amount of magnetic flux when a rotating electrical machine is used as a generator will be described. The control device 75 supplies a pulse current 62 in the direction of increasing the number of magnets of the second magnetization to the exciting coil 21c when the generated voltage as the output 73 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced. The number of magnets with one magnetization is reduced and the number of magnets with second magnetization is increased to reduce the amount of magnetic flux flowing through the armature. The control device 75 supplies the exciting coil 21c with a pulse current 62 in the direction of increasing the number of magnets of the first magnetization when the generated voltage as the output 73 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased. The number of magnets with one magnetization is increased and the number of magnets with second magnetization is decreased to increase the amount of magnetic flux flowing through the armature.

本発明による回転電機システムの第七実施例を図24から図28を用いて説明する。第七実施例は,アキシャルギャップ・ダブルロータ構造の回転電機システムであり,励磁部は回転電機の静止側に配置されている。図24は回転電機の縦断面図,図25(a)は電機子側から見た第一表面磁極部を示す平面図,図25(b)は第一表面磁極部側から見た電機子を示す平面図,図25(c)は電機子側から見た第二表面磁極部を示す平面図,図26及び図27は第一表面磁極部,電機子,第二表面磁極部の周方向に沿う断面図,図28は励磁部の拡大された縦断面図である。   A seventh embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIGS. The seventh embodiment is a rotating electrical machine system having an axial gap / double rotor structure, and the exciting part is arranged on the stationary side of the rotating electrical machine. FIG. 24 is a longitudinal sectional view of the rotating electric machine, FIG. 25A is a plan view showing the first surface magnetic pole portion viewed from the armature side, and FIG. 25B is an armature viewed from the first surface magnetic pole portion side. FIG. 25C is a plan view showing the second surface magnetic pole portion viewed from the armature side, and FIGS. 26 and 27 are views in the circumferential direction of the first surface magnetic pole portion, the armature, and the second surface magnetic pole portion. FIG. 28 is an enlarged longitudinal sectional view of the excitation part.

図24はアキシャルギャップ・ダブルロータ構造の回転電機に本発明を適用した実施例を示している。電機子はハウジング242に固定された円環状磁気ヨーク245から軸と平行に左側に延びる磁性体歯244,軸と平行に右側に延びる磁性体歯247が配置され,磁性体歯244及び磁性体歯247にはそれぞれ電機子コイル246,248が巻回されて構成されている。電機子コイル246,248は一方の極性の電流により磁性体歯244,磁性体歯247それぞれから磁束を円環状磁気ヨーク245に流入させ,逆極性の電流により磁性体歯244,磁性体歯247それぞれへ磁束を環状磁気ヨーク245から流出させるよう直列接続されている。   FIG. 24 shows an embodiment in which the present invention is applied to a rotating electrical machine having an axial gap double rotor structure. The armature is provided with magnetic teeth 244 extending to the left parallel to the axis from the annular magnetic yoke 245 fixed to the housing 242, and magnetic teeth 247 extending to the right parallel to the axis. The magnetic teeth 244 and the magnetic teeth The armature coils 246 and 248 are wound around the 247, respectively. The armature coils 246 and 248 cause magnetic fluxes from the magnetic teeth 244 and magnetic teeth 247 to flow into the annular magnetic yoke 245 by current of one polarity, and the magnetic teeth 244 and magnetic teeth 247 respectively by current of opposite polarity. Are connected in series so that the magnetic flux flows out of the annular magnetic yoke 245.

回転軸241はベアリング243を介してハウジング242に回動可能に支持され,第一表面磁極部249が磁性体歯244に対向し,第二表面磁極部24cが磁性体歯247に対向して回転軸241に配置されている。第一表面磁極部249側の磁性体基板24aに永久磁石24bが埋め込まれ,磁性体基板24aの一部である磁性体突極と永久磁石24bとが周方向に交互に並んで磁性体歯244に対向し,第二表面磁極部24c側の磁性体基板24dに永久磁石24eが埋め込まれ,磁性体基板24dの一部である磁性体突極と永久磁石24eとが周方向に交互に並んで磁性体歯247に対向している。永久磁石24b及び永久磁石24eは互いに異なる極性の磁極が電機子に対向するよう配置され,永久磁石24b及び永久磁石24e内の矢印は磁化の方向を示す。   The rotating shaft 241 is rotatably supported by the housing 242 via a bearing 243, the first surface magnetic pole portion 249 faces the magnetic material teeth 244, and the second surface magnetic pole portion 24c rotates to face the magnetic material teeth 247. It is arranged on the shaft 241. The permanent magnets 24b are embedded in the magnetic substrate 24a on the first surface magnetic pole portion 249 side, and the magnetic salient poles and the permanent magnets 24b, which are part of the magnetic substrate 24a, are alternately arranged in the circumferential direction to form the magnetic teeth 244. The permanent magnet 24e is embedded in the magnetic substrate 24d on the second surface magnetic pole portion 24c side, and the magnetic salient poles and the permanent magnet 24e, which are part of the magnetic substrate 24d, are alternately arranged in the circumferential direction. Opposite the magnetic teeth 247. The permanent magnet 24b and the permanent magnet 24e are arranged such that magnetic poles having different polarities face the armature, and arrows in the permanent magnet 24b and the permanent magnet 24e indicate the directions of magnetization.

励磁部は,第一表面磁極部249の磁性体基板24a及び第二表面磁極部24cの磁性体基板24dを互いに異なる方向に磁化するよう磁性体基板24aに繋がる磁性体円板24n及び磁性体基板24dに繋がる磁性体円板24pと微小間隙を介して対向するよう電機子の内周部分に配置されている。励磁部は回転軸241を周回し,主要部を界磁極24f,界磁極24g,第一界磁磁石24h,第二界磁磁石24k,励磁コイル24jとより構成されている。第一界磁磁石24h,第二界磁磁石24kはほぼ等量の磁束を電機子側に流すようそれぞれの磁極表面積,飽和磁束密度等のパラメータが設定されている。磁性体円板24n,24pは交流磁束が通り難いよう軟鉄の円板で構成されている。番号24mは回転軸241を周回するよう配置された導体層であり,励磁コイル24jのインダクタンスを減少し且つ磁束を励磁磁路に集中させる為に設けられている。   The excitation unit includes a magnetic disk 24n and a magnetic substrate connected to the magnetic substrate 24a so as to magnetize the magnetic substrate 24a of the first surface magnetic pole portion 249 and the magnetic substrate 24d of the second surface magnetic pole portion 24c in different directions. It arrange | positions at the inner peripheral part of an armature so that it may oppose with the magnetic body disk 24p connected to 24d through a micro gap. The exciting part circulates around the rotating shaft 241, and the main part is composed of a field magnetic pole 24f, a field magnetic pole 24g, a first field magnet 24h, a second field magnet 24k, and an exciting coil 24j. The first field magnet 24h and the second field magnet 24k are set with parameters such as the magnetic pole surface area and saturation magnetic flux density so that substantially equal amounts of magnetic flux flow to the armature side. The magnetic discs 24n and 24p are made of soft iron so that AC magnetic flux is difficult to pass through. Reference numeral 24m denotes a conductor layer arranged so as to go around the rotating shaft 241 and is provided to reduce the inductance of the exciting coil 24j and concentrate the magnetic flux on the exciting magnetic path.

図25(a)は第一表面磁極部249を電機子側から見た平面図を示している。磁性体基板24aに永久磁石24bが埋め込まれ,磁性体基板24aの一部である磁性体突極251と永久磁石24bとが周方向に交互に電機子に対向している。図25(c)は第二表面磁極部24cを電機子側から見た平面図を示している。磁性体基板24dに永久磁石24eが埋め込まれ,磁性体基板24dの一部である磁性体突極252と永久磁石24eとが周方向に交互に電機子に対向している。番号253は磁性体突極251と永久磁石24b間,磁性体突極252と永久磁石24e間の磁気的な間隙を示す。   FIG. 25A shows a plan view of the first surface magnetic pole portion 249 viewed from the armature side. Permanent magnets 24b are embedded in the magnetic substrate 24a, and magnetic salient poles 251 and permanent magnets 24b, which are part of the magnetic substrate 24a, alternately face the armature in the circumferential direction. FIG. 25C shows a plan view of the second surface magnetic pole portion 24c as viewed from the armature side. Permanent magnets 24e are embedded in the magnetic substrate 24d, and the magnetic salient poles 252 and the permanent magnets 24e, which are part of the magnetic substrate 24d, alternately face the armature in the circumferential direction. Reference numeral 253 indicates a magnetic gap between the magnetic salient pole 251 and the permanent magnet 24b, and between the magnetic salient pole 252 and the permanent magnet 24e.

図25(a)及び図25(c)に於いて,永久磁石24bと永久磁石24eとは互いに異なる極性の磁極が電機子に対向するよう配置されて永久磁石24bではN極が,永久磁石24eではS極が図に示されている。また,磁性体突極251と永久磁石24eとが電機子を間に挟んで軸方向に対応し,永久磁石24bと磁性体突極252とが電機子を間に挟んで軸方向に対応するよう配置されている。   25 (a) and 25 (c), the permanent magnet 24b and the permanent magnet 24e are arranged such that the magnetic poles having different polarities are opposed to the armature. In the permanent magnet 24b, the N pole is the permanent magnet 24e. The S pole is shown in the figure. Further, the magnetic salient pole 251 and the permanent magnet 24e correspond to the axial direction with the armature interposed therebetween, and the permanent magnet 24b and the magnetic salient pole 252 correspond to the axial direction with the armature interposed therebetween. Is arranged.

図25(b)は電機子を第一表面磁極部249側から見た平面図を示している。磁性体歯244には電機子コイル246が巻回され,本実施例では9個の電機子コイル246を有し,それらは三相に結線されている。第二表面磁極部24cに対向する磁性体歯247,電機子コイル248も同じ構成である。   FIG. 25B is a plan view of the armature viewed from the first surface magnetic pole portion 249 side. The armature coils 246 are wound around the magnetic teeth 244, and in this embodiment, there are nine armature coils 246, which are connected in three phases. The magnetic teeth 247 and the armature coil 248 facing the second surface magnetic pole portion 24c have the same configuration.

図26及び図27は第一表面磁極部249及び電機子及び第二表面磁極部24cの周方向断面を図25に示したF−F’に沿って示す図である。これらの図により永久磁石24bと永久磁石24eと励磁部による磁束の流れを説明する。図26は励磁部が電機子コイル246,248と鎖交する磁束量を永久磁石24b及び永久磁石24eのみの場合より増大させる場合,図27は励磁部が電機子コイル246,248と鎖交する磁束量を永久磁石24b及び永久磁石24eのみの場合より減少させる場合をそれぞれ示している。   26 and 27 are cross-sectional views of the first surface magnetic pole portion 249 and the armature and second surface magnetic pole portion 24c in the circumferential direction along F-F 'shown in FIG. The flow of the magnetic flux by the permanent magnet 24b, the permanent magnet 24e, and the excitation part will be described with reference to these drawings. FIG. 26 shows a case where the excitation unit increases the amount of magnetic flux interlinking with the armature coils 246 and 248 as compared with the case where only the permanent magnet 24b and the permanent magnet 24e are used, and FIG. 27 shows the excitation unit interlinking with the armature coils 246 and 248. The cases where the amount of magnetic flux is decreased from the case of only the permanent magnet 24b and the permanent magnet 24e are shown.

図26,27に於いて,点線261は永久磁石24bからの磁束を示している。永久磁石24bの一方の磁極から磁束261は磁性体歯244,円環状磁気ヨーク245,隣接する磁性体歯244,磁性体突極251を介して永久磁石24bの他方の磁極に環流する。同様に点線262は永久磁石24eからの磁束を示している。永久磁石24eの一方の磁極から磁束262は磁性体歯247,円環状磁気ヨーク245,隣接する磁性体歯247,磁性体突極252を介して永久磁石24eの他方の磁極に環流する。図24に示された第一界磁磁石24h,第二界磁磁石24kの磁化状態では磁束が励磁部外に殆ど流れず,磁束261,262のみが電機子コイル246,248とそれぞれ鎖交する。   26 and 27, a dotted line 261 indicates the magnetic flux from the permanent magnet 24b. The magnetic flux 261 flows from one magnetic pole of the permanent magnet 24b to the other magnetic pole of the permanent magnet 24b through the magnetic teeth 244, the annular magnetic yoke 245, the adjacent magnetic teeth 244, and the magnetic salient poles 251. Similarly, a dotted line 262 indicates the magnetic flux from the permanent magnet 24e. The magnetic flux 262 flows from one magnetic pole of the permanent magnet 24e to the other magnetic pole of the permanent magnet 24e via the magnetic teeth 247, the annular magnetic yoke 245, the adjacent magnetic teeth 247, and the magnetic salient pole 252. In the magnetized state of the first field magnet 24h and the second field magnet 24k shown in FIG. 24, the magnetic flux hardly flows outside the exciting part, and only the magnetic fluxes 261 and 262 are linked to the armature coils 246 and 248, respectively. .

図26に於いて,励磁部から供給される磁束は点線263で示され,その方向は矢印264で示されている。磁性体突極251を永久磁石24bの磁極と異なる極性に磁化し,磁性体突極252を永久磁石24eの磁極と異なる極性に磁化している。この磁束263により電機子コイル246,248と鎖交する磁束量は永久磁石24b及び永久磁石24eのみの場合より増大される。   In FIG. 26, the magnetic flux supplied from the excitation unit is indicated by a dotted line 263 and the direction thereof is indicated by an arrow 264. The magnetic salient pole 251 is magnetized with a polarity different from that of the permanent magnet 24b, and the magnetic salient pole 252 is magnetized with a polarity different from that of the permanent magnet 24e. The magnetic flux 263 increases the amount of magnetic flux interlinking with the armature coils 246 and 248 as compared with the case of the permanent magnet 24b and the permanent magnet 24e alone.

図27に於いて,励磁部から供給される磁束は点線271で示され,その方向は矢印272で示されている。磁性体突極251を永久磁石24bの磁極と同じ極性に磁化し,磁性体突極252を永久磁石24eの磁極と同じ極性に磁化している。この磁束271により電機子コイル246,248と鎖交する磁束量は永久磁石24b及び永久磁石24eのみの場合より減少される。   In FIG. 27, the magnetic flux supplied from the excitation unit is indicated by a dotted line 271 and the direction thereof is indicated by an arrow 272. The magnetic salient pole 251 is magnetized with the same polarity as the magnetic pole of the permanent magnet 24b, and the magnetic salient pole 252 is magnetized with the same polarity as the magnetic pole of the permanent magnet 24e. This magnetic flux 271 reduces the amount of magnetic flux interlinking with the armature coils 246 and 248 as compared with the case of the permanent magnet 24b and the permanent magnet 24e alone.

励磁部は回転軸241を周回するよう構成され,その縦断面は図24に示されている。円筒状の界磁極24f,界磁極24g間に円筒状の第一界磁磁石24h,第二界磁磁石24kが配置され,励磁コイル24jが第一界磁磁石24h,第二界磁磁石24kを直列に繋ぐ磁路に磁束を発生させるよう配置されている。   The excitation unit is configured to circulate around the rotary shaft 241 and its longitudinal section is shown in FIG. A cylindrical first field magnet 24h and a second field magnet 24k are disposed between the cylindrical field pole 24f and the field pole 24g, and an exciting coil 24j connects the first field magnet 24h and the second field magnet 24k. It arrange | positions so that a magnetic flux may be generated in the magnetic path connected in series.

励磁コイル24jが誘起する磁束は第一界磁磁石24h,界磁極24f,第二界磁磁石24k,界磁極24gで構成する励磁磁路を流れるが,同時に磁性体円板24n,24p及び電機子側を含む主磁路にも流れようとする。本実施例では第二界磁磁石24kを磁化変更容易とし,磁性体円板24n,24pを交流磁束が流れ難いように軟鉄ブロックで構成し,主磁路の交流磁束に対する磁気抵抗を大に設定して励磁コイル24jが誘起する磁束が励磁磁路に集中するように構成している。   The magnetic flux induced by the exciting coil 24j flows through an exciting magnetic path constituted by the first field magnet 24h, the field magnetic pole 24f, the second field magnet 24k, and the field magnetic pole 24g. At the same time, the magnetic disks 24n and 24p and the armature It tends to flow also in the main magnetic path including the side. In this embodiment, the second field magnet 24k can be easily changed in magnetization, and the magnetic disks 24n and 24p are formed of a soft iron block so that the AC magnetic flux does not flow easily, and the magnetic resistance to the AC magnetic flux in the main magnetic path is set large. Thus, the magnetic flux induced by the exciting coil 24j is concentrated in the exciting magnetic path.

励磁コイル24jが誘起する磁束は直列接続された第一界磁磁石24h,第二界磁磁石24kを流れるのでそれぞれの内部に於ける磁界強度はほぼ同じとなる。したがって,第一界磁磁石24h,第二界磁磁石24kの磁化変更に要する磁界強度は異なった値となるように磁石の素材を変える必要がある。本実施例では組成の異なったアルニコ磁石を用いている。   Since the magnetic flux induced by the exciting coil 24j flows through the first field magnet 24h and the second field magnet 24k connected in series, the magnetic field strength in each of them is almost the same. Therefore, it is necessary to change the material of the magnet so that the magnetic field strength required for changing the magnetization of the first field magnet 24h and the second field magnet 24k has different values. In this embodiment, alnico magnets having different compositions are used.

この構成に於いて,第一界磁磁石24hの長さをL1,磁化変更に要する磁界強度をH1とし,第二界磁磁石24kの長さをL2,磁化変更に要する磁界強度をH2としてH1*L1がH2*(L1+L2)より大となるよう設定されている。励磁コイル24jに供給する磁化電流のピーク値と巻回数との積をATとしてそれぞれの界磁磁石の磁化を変更するATは次のように設定されている。第一界磁磁石24hの磁化を変更するATはH1*L1より大に,第二界磁磁石24kの磁化を変更するATはH1*L1より小で且つH2*(L1+L2)より大とする。   In this configuration, the length of the first field magnet 24h is L1, the magnetic field strength required for the magnetization change is H1, the length of the second field magnet 24k is L2, and the magnetic field strength required for the magnetization change is H2. * L1 is set to be larger than H2 * (L1 + L2). The AT that changes the magnetization of each field magnet with the product of the peak value of the magnetizing current supplied to the exciting coil 24j and the number of turns as AT is set as follows. The AT that changes the magnetization of the first field magnet 24h is larger than H1 * L1, and the AT that changes the magnetization of the second field magnet 24k is smaller than H1 * L1 and larger than H2 * (L1 + L2).

図28は励磁部の縦断面の上半分を示し,図28(a),(b),(c)はそれぞれ第一界磁磁石24h,第二界磁磁石24kの磁化方向の異なる組み合わせを示している。同図を用いて第一界磁磁石24h,第二界磁磁石24kの磁化を変更する方法を説明する。図26,27を用いて説明したように磁性体基板24aをS極に,磁性体基板24dをN極に励磁すると,電機子コイル246,248と鎖交する磁束量を増し,逆の場合は電機子コイル246,248と鎖交する磁束量を減ずるので図24に於いて外径方向の磁化が第一磁化であり,内径方向の磁化が第二磁化である。   FIG. 28 shows the upper half of the longitudinal section of the exciting part, and FIGS. 28A, 28B, and 28C show different combinations of the magnetization directions of the first field magnet 24h and the second field magnet 24k, respectively. ing. A method for changing the magnetization of the first field magnet 24h and the second field magnet 24k will be described with reference to FIG. As described with reference to FIGS. 26 and 27, when the magnetic substrate 24a is excited to the S pole and the magnetic substrate 24d is excited to the N pole, the amount of magnetic flux interlinking with the armature coils 246 and 248 is increased. Since the amount of magnetic flux interlinking with the armature coils 246 and 248 is reduced, the magnetization in the outer diameter direction is the first magnetization and the magnetization in the inner diameter direction is the second magnetization in FIG.

図28(a)は第一界磁磁石24h,第二界磁磁石24k共に第一磁化であり,図26に示した状態に相当して電機子コイル246,248と鎖交する磁束量は最大である。励磁コイル24jに供給する磁化電流は第一界磁磁石24hを第一磁化に磁化する極性で且つATをH1*L1より大として第一界磁磁石24hを第一磁化に磁化する。この時,第二界磁磁石24kは第二磁化となる。さらに励磁コイル24jに供給する磁化電流は第二界磁磁石24kを第一磁化に磁化する極性で且つATをH1*L1より小でH2*(L1+L2)より大として第二界磁磁石24kを第一磁化に磁化する。   FIG. 28A shows the first magnetization of the first field magnet 24h and the second field magnet 24k, and the amount of magnetic flux interlinking with the armature coils 246 and 248 corresponds to the state shown in FIG. It is. The magnetizing current supplied to the exciting coil 24j has a polarity that magnetizes the first field magnet 24h to the first magnetization, and magnetizes the first field magnet 24h to the first magnetization with AT larger than H1 * L1. At this time, the second field magnet 24k becomes the second magnetization. Further, the magnetization current supplied to the exciting coil 24j has a polarity for magnetizing the second field magnet 24k to the first magnetization, and AT is smaller than H1 * L1 and larger than H2 * (L1 + L2), and the second field magnet 24k is Magnetized to one magnetization.

図28(b)は第一界磁磁石24hは第一磁化,第二界磁磁石24kは第二磁化であり,励磁部から電機子側に磁束は供給されない状態である。図28(a)の状態で第二界磁磁石24kを第二磁化とするよう励磁コイル24jに第二界磁磁石24kを第二磁化に磁化する極性で且つATをH1*L1より小でH2*(L1+L2)より大とする磁化電流を励磁コイル24jに供給する。   FIG. 28B shows a state in which the first field magnet 24h is in the first magnetization and the second field magnet 24k is in the second magnetization, and no magnetic flux is supplied from the excitation unit to the armature side. In the state of FIG. 28A, the excitation coil 24j has a polarity for magnetizing the second field magnet 24k to the second magnetization so that the second field magnet 24k is set to the second magnetization, and AT is smaller than H1 * L1 and H2 * A magnetizing current larger than (L1 + L2) is supplied to the exciting coil 24j.

図28(c)は第一界磁磁石24h,第二界磁磁石24k共に第二磁化であり,図27に示した状態に相当して電機子コイル246,248と鎖交する磁束量は最小である。励磁コイル24jに供給する磁化電流は第一界磁磁石24hを第二磁化に磁化する極性で且つATをH1*L1より大として第一界磁磁石24hを第二磁化に磁化する。この時,第二界磁磁石24kは第一磁化の磁化となる。さらに励磁コイル24jに供給する磁化電流は第二界磁磁石24kを第二磁化に磁化する極性で且つATをH1*L1より小でH2*(L1+L2)より大として第二界磁磁石24kを第二磁化に磁化する。   FIG. 28 (c) shows that the first field magnet 24h and the second field magnet 24k both have the second magnetization, and the amount of magnetic flux interlinking with the armature coils 246 and 248 corresponds to the state shown in FIG. It is. The magnetizing current supplied to the exciting coil 24j has a polarity for magnetizing the first field magnet 24h to the second magnetization, and magnetizes the first field magnet 24h to the second magnetization with AT larger than H1 * L1. At this time, the second field magnet 24k becomes the magnetization of the first magnetization. Further, the magnetizing current supplied to the exciting coil 24j has a polarity for magnetizing the second field magnet 24k to the second magnetization, AT is smaller than H1 * L1 and larger than H2 * (L1 + L2), and the second field magnet 24k is secondly magnetized. Magnetized into two magnetizations.

以上,図24から図28に示した回転電機に於いて,第一界磁磁石24h,第二界磁磁石24kの磁化状態を変える事で電機子に流れる磁束量を制御できることを説明した。本実施例は電機子を流れる磁束量を制御して出力を最適化するシステムであり,図6,図7を用いて回転電機システムとしての制御を説明する。   As described above, in the rotating electric machine shown in FIGS. 24 to 28, it has been described that the amount of magnetic flux flowing through the armature can be controlled by changing the magnetization state of the first field magnet 24h and the second field magnet 24k. The present embodiment is a system for optimizing the output by controlling the amount of magnetic flux flowing through the armature, and the control as a rotating electrical machine system will be described with reference to FIGS.

回転電機が電動機として用いられる場合において,磁束量制御を行って回転力を最適に制御する。制御装置75は出力73である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には第二磁化の磁石数を増す方向のパルス電流62を励磁コイル24jに供給して第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とし,制御装置75は出力73である回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には第一磁化の磁石数を増す方向のパルス電流62を励磁コイル24jに供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   When the rotating electrical machine is used as an electric motor, the amount of magnetic flux is controlled to optimally control the rotational force. When the rotational speed of the output 73 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 75 supplies the excitation coil 24j with a pulse current 62 in a direction increasing the number of magnets of the second magnetization. The number of magnets with one magnetization is decreased and the number of magnets with second magnetization is increased to reduce the amount of magnetic flux flowing through the armature, and the control device 75 causes the rotational speed of the output 73 to be smaller than a predetermined value and the amount of magnetic flux flowing through the armature. Is increased, the pulse current 62 in the direction of increasing the number of magnets of the first magnetization is supplied to the exciting coil 24j to increase the number of magnets of the first magnetization and reduce the number of magnets of the second magnetization to flow through the armature. Is large.

回転電機が発電機として用いられる場合において,磁束量制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。制御装置75は出力73である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には第二磁化の磁石数を増す方向のパルス電流62を励磁コイル24jに供給して第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とする。制御装置75は出力73である発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には第一磁化の磁石数を増す方向のパルス電流62を励磁コイル24jに供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   A constant voltage power generation system that controls the amount of magnetic flux to be a predetermined voltage by controlling the amount of magnetic flux when a rotating electrical machine is used as a generator will be described. The control device 75 supplies the exciting coil 24j with a pulse current 62 in the direction of increasing the number of magnets of the second magnetization when the generated voltage as the output 73 is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced. The number of magnets with one magnetization is reduced and the number of magnets with second magnetization is increased to reduce the amount of magnetic flux flowing through the armature. The control device 75 supplies a pulse current 62 in the direction of increasing the number of magnets of the first magnetization to the exciting coil 24j when the generated voltage as the output 73 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased. The number of magnets with one magnetization is increased and the number of magnets with second magnetization is decreased to increase the amount of magnetic flux flowing through the armature.

本実施例では電機子コイル246,248と鎖交する磁束量を離散的に制御しているが,各状態に於いて励磁コイル24jにより電機子コイル246,248と鎖交する磁束量を更に調整する事もまた可能である。例えば,励磁コイル24jは励磁磁路及び主磁路に同時に磁束を発生させるので第二界磁磁石24kを空隙として算出した磁気抵抗が主磁路の直流磁束に対する磁気抵抗より大となるよう設定し,第二界磁磁石24kの磁化状態を変更しない程度の調整電流を励磁コイル24jに供給する。   In this embodiment, the amount of magnetic flux interlinked with the armature coils 246 and 248 is discretely controlled. However, in each state, the amount of magnetic flux interlinked with the armature coils 246 and 248 is further adjusted by the exciting coil 24j. It is also possible to do. For example, since the exciting coil 24j simultaneously generates magnetic fluxes in the exciting magnetic path and the main magnetic path, the magnetic resistance calculated with the second field magnet 24k as a gap is set to be larger than the magnetic resistance with respect to the DC magnetic flux in the main magnetic path. , An adjustment current that does not change the magnetization state of the second field magnet 24k is supplied to the exciting coil 24j.

本実施例はアキシャルギャップ構成であるが,同趣旨の構成でラジアルギャップ構成も可能である。その場合は電機子に於ける磁気ヨーク及び磁性体歯を回転軸と直交する平面で二分し,励磁部を二分された磁気ヨーク間に配置すると,励磁部が静止側に配置されて構造をシンプルに出来る。   Although the present embodiment has an axial gap configuration, a radial gap configuration is also possible with the configuration having the same concept. In that case, if the magnetic yoke and magnetic teeth in the armature are divided into two parts by a plane perpendicular to the rotation axis, and the excitation part is arranged between the two magnetic yokes, the excitation part is arranged on the stationary side and the structure is simplified. I can do it.

本発明による回転電機システムの第八実施例を図29から図32を用いて説明する。第八実施例は,アウターロータ構造の回転電機システムであり,励磁部は電機子の内周部分に配置されている。回転電機の主要部を磁気的にも物理的にもシールド容易な構成としてインホイールモータに適する構成である。図29は回転電機の縦断面図,図30は電機子と回転子とを示す断面図,図31は回転子の磁極部分を示す分解斜視図,図32は励磁部の拡大された縦断面図である。   An eighth embodiment of the rotating electrical machine system according to the present invention will be described with reference to FIGS. The eighth embodiment is a rotating electrical machine system having an outer rotor structure, and the exciting part is arranged on the inner peripheral part of the armature. This configuration is suitable for an in-wheel motor because the main part of the rotating electrical machine can be easily shielded magnetically and physically. 29 is a longitudinal sectional view of the rotating electrical machine, FIG. 30 is a sectional view showing the armature and the rotor, FIG. 31 is an exploded perspective view showing the magnetic pole portion of the rotor, and FIG. 32 is an enlarged longitudinal sectional view of the excitation unit. It is.

図29はラジアルギャップ・アウターロータ構造の回転電機に本発明を適用した実施例を示し,ロータハウジング292がベアリング293を介して固定軸291に回動可能に支持されている。磁性体突極と集合磁石とが周方向に交互に並ぶ表面磁極部297がロータハウジング292の内周側に配置され,隣り合う磁性体突極を固定軸291と平行の互いに異なる方向に延長させた第一延長部298,第二延長部299とを有する。電機子は磁性体歯294が周方向に並んで表面磁極部297と対向して内側に配置され,電機子コイル296が磁性体歯294に巻回されている。番号295は電機子支持体を示す。   FIG. 29 shows an embodiment in which the present invention is applied to a rotary electric machine having a radial gap / outer rotor structure, and a rotor housing 292 is rotatably supported by a fixed shaft 291 via a bearing 293. The surface magnetic pole portions 297 in which the magnetic salient poles and the collective magnets are alternately arranged in the circumferential direction are arranged on the inner peripheral side of the rotor housing 292, and the adjacent magnetic salient poles are extended in different directions parallel to the fixed shaft 291. A first extension 298 and a second extension 299. In the armature, the magnetic teeth 294 are arranged in the circumferential direction so as to face the surface magnetic pole portion 297 and the armature coil 296 is wound around the magnetic teeth 294. Reference numeral 295 denotes an armature support.

励磁部は固定軸291外側に固定軸291を周回するよう配置されて第一延長部298,第二延長部299に微小間隙を介して磁気的に結合し,隣接する磁性体突極を互いに異極に磁化するよう構成されている。励磁部の主要部は界磁極29a,界磁極29b,第一界磁磁石29c,第一界磁磁石29d,第二界磁磁石29e,励磁コイル29fとより構成される。番号29gは固定軸291を周回するよう配置された導体層であり,励磁コイル29fのインダクタンスを減少し且つ磁束を第一界磁磁石29c,第一界磁磁石29dに集中させる為に設けられている。番号29hは第一延長部298,第二延長部299の表面に形成した同心円状の凹凸を示し,交流磁束を通り難くする為に形成されている。   The exciter is arranged outside the fixed shaft 291 so as to go around the fixed shaft 291 and is magnetically coupled to the first extension 298 and the second extension 299 through a minute gap so that adjacent magnetic salient poles are different from each other. It is configured to be magnetized to the pole. The main part of the excitation part is composed of a field pole 29a, a field pole 29b, a first field magnet 29c, a first field magnet 29d, a second field magnet 29e, and an excitation coil 29f. Reference numeral 29g is a conductor layer arranged so as to go around the fixed shaft 291 and is provided to reduce the inductance of the exciting coil 29f and concentrate the magnetic flux on the first field magnet 29c and the first field magnet 29d. Yes. Reference numeral 29h indicates concentric concavities and convexities formed on the surfaces of the first extension 298 and the second extension 299, and is formed to make it difficult for AC magnetic flux to pass.

図30は図29のG−G’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示されている。磁性体歯294には電機子コイル296が巻回され,9個の電機子コイル296は三相に結線されている。   FIG. 30 is a cross-sectional view of the armature and the rotor along the line G-G ′ in FIG. 29, and in order to explain the mutual relationship, some of the components are shown with numbers. An armature coil 296 is wound around the magnetic teeth 294, and the nine armature coils 296 are connected in three phases.

図30に於いて,表面磁極部297には磁性体突極と集合磁石とが周方向に交互に配置されている。中間磁性体突極303の両側面にほぼ同じ磁化方向の磁石板305,306が配置された組み合わせは磁気的には磁石と等価な集合磁石として,回転子の表面磁極部297は一様な磁性体を周方向に等間隔に配置された集合磁石によって区分された磁性体突極301,302及び集合磁石とから構成されている。さらに隣接する磁性体突極301,302は互いに異なる方向に磁化されるよう隣接する集合磁石の磁化方向は互いに反転して構成されている。磁性体突極301,302それぞれの周方向両側面に配置された磁石板はV字状の配置であり,磁石板の交差角度は磁束バリアに好適な角度に設定する。磁石板305,306に付された矢印は磁石板305,306の板面にほぼ直交する磁化方向を示す。   In FIG. 30, magnetic salient poles and collective magnets are alternately arranged in the circumferential direction on the surface magnetic pole portion 297. The combination in which the magnet plates 305 and 306 having substantially the same magnetization direction are arranged on both side surfaces of the intermediate magnetic salient pole 303 is a collective magnet that is magnetically equivalent to the magnet, and the surface magnetic pole portion 297 of the rotor has a uniform magnetic property. The magnetic body salient poles 301 and 302 and the collective magnets are divided by collective magnets arranged at equal intervals in the circumferential direction. Further, the adjacent magnet salient poles 301 and 302 are configured such that the magnetizing directions of the adjacent collective magnets are reversed so that they are magnetized in different directions. The magnet plates arranged on both sides in the circumferential direction of each of the magnetic salient poles 301 and 302 are V-shaped, and the crossing angle of the magnet plates is set to an angle suitable for the magnetic flux barrier. Arrows attached to the magnet plates 305 and 306 indicate the magnetization directions substantially orthogonal to the plate surfaces of the magnet plates 305 and 306.

隣接する磁性体突極301,302のそれぞれは軸と平行の互いに異なる方向に延長されてそれぞれ第一延長部298,第二延長部299とされている。さらに第一延長部298,第二延長部299の一部は円盤状として図29に示すように励磁部と軸方向に対向するよう内周側にまで延びている。   The adjacent magnetic salient poles 301 and 302 are extended in different directions parallel to the axis to form a first extension 298 and a second extension 299, respectively. Further, a part of the first extension part 298 and the second extension part 299 is formed in a disk shape and extends to the inner peripheral side so as to face the excitation part in the axial direction as shown in FIG.

番号304は第一実施例に於いて番号24に対応する磁束チャネル部であり,軸方向に界磁磁束の伝搬供給を容易にする構成としている。ロータハウジング302は磁性を持たないステンレススチールで構成し,その内周面に形成された軸と平行に延びる凹部に磁束チャネル部304として軟鉄ブロックが配置され,所定の型でケイ素鋼板を打ち抜いて積層された磁性体突極301,302,中間磁性体突極303が配置され,磁石板305,306が配置されている。   Reference numeral 304 denotes a magnetic flux channel portion corresponding to the reference numeral 24 in the first embodiment, and is configured to facilitate propagation and supply of field magnetic flux in the axial direction. The rotor housing 302 is made of stainless steel having no magnetism, and a soft iron block is disposed as a magnetic flux channel portion 304 in a recess extending in parallel with an axis formed on the inner peripheral surface of the rotor housing 302. The magnetic salient poles 301 and 302 and the intermediate magnetic salient pole 303 are arranged, and the magnet plates 305 and 306 are arranged.

図31は回転子の磁極構成を示す分解斜視図である。理解を容易にする為に回転子からロータハウジング292を除き,磁性体突極301,302等を有する中心部と磁性体突極の第一延長部298,第二延長部299とを離して示している。第一延長部298は軟鉄をプレス成形して磁性体突極301の延長部分となる磁性体突部311及び磁性体円板313を一体として構成され,非磁性体部315は磁性を持たないステンレススチールで形成されている。第二延長部299は軟鉄をプレス成形して磁性体突極302の延長部分となる磁性体突部312及び磁性体円板314を一体として構成され,非磁性体部315は磁性を持たないステンレススチールで形成されている。   FIG. 31 is an exploded perspective view showing the magnetic pole configuration of the rotor. In order to facilitate understanding, the rotor housing 292 is removed from the rotor, and the central portion having the magnetic salient poles 301 and 302 and the first extension portion 298 and the second extension portion 299 of the magnetic salient pole are shown apart. ing. The first extension 298 is formed by integrally forming a magnetic projection 311 and a magnetic disc 313 that are extensions of the magnetic salient pole 301 by press-molding soft iron, and the non-magnetic portion 315 is a stainless steel that does not have magnetism. Made of steel. The second extension portion 299 is formed by integrally forming a magnetic projection 312 and a magnetic disc 314 that are extensions of the magnetic salient pole 302 by press molding soft iron, and the non-magnetic portion 315 is a stainless steel that does not have magnetism. Made of steel.

番号29hは第一延長部298,第二延長部299の表面に形成した同心円状の凹凸を示し,第6実施例に番号21gで示した同心円状凹凸と同様に交流磁束を通り難くする為に形成されている。ロータハウジング292,第一延長部298,第二延長部299の軸方向端面は界磁磁石からの励磁磁束が流れる磁気抵抗に支障を与えない範囲で通風口を設ける事が出来る。その際に通風口を利用して界磁磁石から磁性体突極301,302に至る磁路に短絡環を配置する構成として更に交流磁束を通り難くできる。   No. 29h indicates concentric irregularities formed on the surfaces of the first extension 298 and the second extension 299, and in order to make it difficult for AC magnetic flux to pass through like the concentric irregularities indicated by No. 21g in the sixth embodiment. Is formed. The axial end surfaces of the rotor housing 292, the first extension portion 298, and the second extension portion 299 can be provided with ventilation openings as long as they do not hinder the magnetic resistance through which the excitation magnetic flux from the field magnet flows. At that time, it is possible to make it difficult for the AC magnetic flux to pass through a configuration in which the short-circuit ring is arranged in the magnetic path from the field magnet to the magnetic salient poles 301 and 302 by using the vent hole.

励磁部は図29に縦断面が示されるように固定軸291を周回するよう構成されている。図24に示した第七実施例の励磁部に類似するが,界磁磁石の構成及び磁路構成が異なっている。すなわち,断面がC字状の界磁極29a,界磁極29b間に長さの異なる円筒状の磁石要素からなる第一界磁磁石29c,第一界磁磁石29dが配置され,さらに第一界磁磁石29c,第一界磁磁石29dと並列に第二界磁磁石29eが接続され,励磁コイル29f,導体層29gが配置されている。   The exciter is configured to circulate around the fixed shaft 291 as shown in a vertical section in FIG. Although it is similar to the excitation part of the seventh embodiment shown in FIG. 24, the configuration of the field magnet and the configuration of the magnetic path are different. That is, a first field magnet 29c and a first field magnet 29d composed of cylindrical magnet elements having different lengths are disposed between a field pole 29a having a C-shaped cross section and a field pole 29b. A second field magnet 29e is connected in parallel with the magnet 29c and the first field magnet 29d, and an exciting coil 29f and a conductor layer 29g are arranged.

この構成に於いて,第一界磁磁石29c,第一界磁磁石29dの一方の磁極から磁束が界磁極29a,第二界磁磁石29e,界磁極29bを流れて界磁磁石29c,界磁磁石29dの他方の磁極に環流する磁路は励磁磁路を構成し,界磁極29a,磁性体円板313,磁性体突部311,磁性体突極301,磁性体歯294,磁性体突極302,磁性体突部312,磁性体円板314,界磁極29bは主磁路を構成する。第二界磁磁石29eの側から見れば第一界磁磁石29c,第一界磁磁石29dを含む磁路が第二界磁磁石29eの励磁磁路となる。第二界磁磁石29eの磁化変更に要する磁界強度が第一界磁磁石29c,第一界磁磁石29dの磁化変更に要する磁界強度より小になるようアルニコ磁石の組成を変えて構成されている。   In this configuration, a magnetic flux flows from one magnetic pole of the first field magnet 29c and the first field magnet 29d through the field magnetic pole 29a, the second field magnet 29e, and the field magnetic pole 29b, and the field magnet 29c and the field magnet. The magnetic path circulating to the other magnetic pole of the magnet 29d constitutes an exciting magnetic path, and the field magnetic pole 29a, the magnetic disk 313, the magnetic protrusion 311, the magnetic salient pole 301, the magnetic teeth 294, and the magnetic salient pole. 302, the magnetic body protrusion 312, the magnetic disk 314, and the field magnetic pole 29b constitute a main magnetic path. When viewed from the second field magnet 29e side, the magnetic path including the first field magnet 29c and the first field magnet 29d becomes the exciting magnetic path of the second field magnet 29e. The composition of the alnico magnet is changed so that the magnetic field strength required for changing the magnetization of the second field magnet 29e is smaller than the magnetic field strength required for changing the magnetization of the first field magnet 29c and the first field magnet 29d. .

磁性体突極301をN極に磁化する第一界磁磁石29c,第一界磁磁石29d,第二界磁磁石29eの磁石要素を第一磁化,逆方向の磁化を持つ磁石要素を第二磁化とする。図29に於いて,左方向の磁化を持つ第一界磁磁石29c,第二界磁磁石29eが第一磁化に属し,右方向の磁化を持つ第一界磁磁石29dは第二磁化に属する。本実施例に於いて,励磁部は微小間隙を介して磁性体円板313,磁性体円板314と磁気的に結合して磁性体突極301,磁性体突極302を互いに異なる極性に磁化する構成である。界磁磁石の磁化変更は図32を参照して説明する。   Magnet elements of the first field magnet 29c, the first field magnet 29d, and the second field magnet 29e that magnetize the magnetic salient pole 301 to the N pole are the first magnetization, and the magnet element having the magnetization in the opposite direction is the second. Magnetized. In FIG. 29, the first field magnet 29c and the second field magnet 29e having leftward magnetization belong to the first magnetization, and the first field magnet 29d having rightward magnetization belongs to the second magnetization. . In the present embodiment, the excitation unit is magnetically coupled to the magnetic disk 313 and the magnetic disk 314 through a minute gap to magnetize the magnetic salient pole 301 and the magnetic salient pole 302 to different polarities. It is the structure to do. The magnetization change of the field magnet will be described with reference to FIG.

図32は図29に示した縦断面図の励磁部の上半分を示した図で,図32(a)〜(e)は第一界磁磁石29c,第一界磁磁石29d,第二界磁磁石29eの磁化方向の組み合わせが異なる場合を示している。本実施例では磁石板305,306が磁性体突極301,302を介して電機子側に供給する磁束量を1.0として第一界磁磁石29c,第一界磁磁石29dはそれぞれ0.25,第二界磁磁石29eは0.5に相当する磁束量を電機子側に供給するよう寸法諸元が設定されている。   FIG. 32 is a view showing the upper half of the excitation part of the longitudinal sectional view shown in FIG. 29. FIGS. 32 (a) to 32 (e) show the first field magnet 29c, the first field magnet 29d, and the second field. The case where the combination of the magnetization direction of the magnet 29e differs is shown. In the present embodiment, the amount of magnetic flux supplied to the armature side by the magnet plates 305 and 306 via the magnetic salient poles 301 and 302 is set to 1.0, and the first field magnet 29c and the first field magnet 29d are set to 0. 25 and 2nd field magnet 29e are dimensioned so that the amount of magnetic flux equivalent to 0.5 may be supplied to the armature side.

第一界磁磁石29c及び第一界磁磁石29dと第二界磁磁石29eとは直列接続で閉磁路を構成するのでそれぞれの界磁磁石の磁化状態を変更する方法は実施例三ないし実施例六とは若干異なる。第一界磁磁石29c,第一界磁磁石29d,第二界磁磁石29eの長さを順にL1,L2,L3とし,第一界磁磁石29c,第一界磁磁石29dを磁化変更するに必要な磁界強度をH1,第二界磁磁石29eを磁化変更するに必要な磁界強度をH3としてH1*L1>H1*L2>H3*(L3+L1)を満たすように構成されている。第二界磁磁石29eが最も磁化容易である。   Since the first field magnet 29c, the first field magnet 29d, and the second field magnet 29e are connected in series to form a closed magnetic circuit, the method for changing the magnetization state of each field magnet is described in the third to third embodiments. Slightly different from Roku. The lengths of the first field magnet 29c, the first field magnet 29d, and the second field magnet 29e are L1, L2, and L3 in this order, and the magnetization of the first field magnet 29c and the first field magnet 29d is changed. H1 * L1> H1 * L2> H3 * (L3 + L1) is satisfied, where H1 is a required magnetic field strength and H3 is a magnetic field strength required to change the magnetization of the second field magnet 29e. The second field magnet 29e is most easily magnetized.

この構成に於いて,励磁コイル29fに供給する磁化電流のピーク値と巻回数との積をATとしてそれぞれの界磁磁石の磁化を変更するATを次のように設定されている。すなわち,第一界磁磁石29cの磁化を変更するATはH1*L1より大に設定され,第一界磁磁石29dの磁化を変更するATはH1*L1より小で且つH1*L2より大に設定され,第二界磁磁石29eの磁化を変更するATはH1*L2より小で且つH3*(L3+L1)より大に設定されている。   In this configuration, the AT that changes the magnetization of each field magnet is set as follows, where the product of the peak value of the magnetization current supplied to the exciting coil 29f and the number of turns is AT. That is, AT for changing the magnetization of the first field magnet 29c is set to be larger than H1 * L1, and AT for changing the magnetization of the first field magnet 29d is smaller than H1 * L1 and larger than H1 * L2. The AT for changing the magnetization of the second field magnet 29e is set smaller than H1 * L2 and larger than H3 * (L3 + L1).

図32(a)に於いて,第一界磁磁石29c,第一界磁磁石29d,第二界磁磁石29eの磁化は右方向である第二磁化であって励磁部から電機子側に供給される磁束量は−1.0に相当し,磁石板305,306による磁束量を加えた総合磁束量は0.0である。第一界磁磁石29cの磁化を右方向に磁化する磁化電流を励磁コイル29fに供給し,その後に第二界磁磁石29eのみの磁化を右方向に磁化する磁化電流を励磁コイル29fに供給して図32(a)に示す磁化状態にする。   In FIG. 32A, the magnetization of the first field magnet 29c, the first field magnet 29d, and the second field magnet 29e is the second magnetization in the right direction and is supplied from the excitation unit to the armature side. The amount of magnetic flux to be applied corresponds to −1.0, and the total amount of magnetic flux obtained by adding the amount of magnetic flux by the magnet plates 305 and 306 is 0.0. A magnetization current that magnetizes the magnetization of the first field magnet 29c in the right direction is supplied to the excitation coil 29f, and then a magnetization current that magnetizes only the magnetization of the second field magnet 29e in the right direction is supplied to the excitation coil 29f. Thus, the magnetized state shown in FIG.

図32(b)は図32(a)に於いて第一界磁磁石29dの磁化を左方向に変更し,第一界磁磁石29cの磁化を変更しないレベルの磁化電流を励磁コイル29fに供給した場合の磁化状態を示している。この場合,電機子側に供給される総合磁束量は0.5である。   FIG. 32 (b) changes the magnetization of the first field magnet 29d to the left in FIG. 32 (a) and supplies a magnetization current at a level that does not change the magnetization of the first field magnet 29c to the excitation coil 29f. It shows the magnetization state in the case of. In this case, the total magnetic flux supplied to the armature side is 0.5.

図32(c)は図32(b)に於いて第一界磁磁石29dの磁化を右方向に変更する磁化電流を励磁コイル29fに供給した場合の磁化状態を示している。この場合,電機子側に供給される総合磁束量は0.0である。図32(a)に於いて第二界磁磁石29eの磁化のみを反転させる磁化電流を励磁コイル29fに供給しても結果は同じである。   FIG. 32C shows the magnetization state when the magnetizing current for changing the magnetization of the first field magnet 29d in the right direction in FIG. 32B is supplied to the exciting coil 29f. In this case, the total magnetic flux supplied to the armature side is 0.0. In FIG. 32A, the result is the same even when a magnetizing current for reversing only the magnetization of the second field magnet 29e is supplied to the exciting coil 29f.

図32(d)は図32(c)に於いて第一界磁磁石29cの磁化を左方向に変更する磁化電流を励磁コイル29fに供給し,その後に第一界磁磁石29dの磁化を右方向に変更し,第一界磁磁石29cの磁化を変更しないレベルの磁化電流を励磁コイル29fに供給した場合の磁化状態を示している。この場合,電機子側に供給される総合磁束量は1.5である。   FIG. 32D shows a state in which the magnetization current for changing the magnetization of the first field magnet 29c in the left direction in FIG. 32C is supplied to the exciting coil 29f, and then the magnetization of the first field magnet 29d is changed to the right. The magnetization state is shown when a magnetization current of a level that does not change the magnetization of the first field magnet 29c is supplied to the exciting coil 29f. In this case, the total magnetic flux supplied to the armature side is 1.5.

図32(e)は図32(d)に於いて第一界磁磁石29dの磁化を左方向に変更する磁化電流を励磁コイル29fに供給し,その後に第二界磁磁石29eの磁化を右方向に変更し,第一界磁磁石29dの磁化を変更しないレベルの磁化電流を励磁コイル29fに供給した場合の磁化状態を示している。この場合,電機子側に供給される総合磁束量は2.0である。   FIG. 32 (e) supplies a magnetizing current for changing the magnetization of the first field magnet 29d to the left in FIG. 32 (d) to the exciting coil 29f, and then changes the magnetization of the second field magnet 29e to the right. The magnetization state is shown in the case where a magnetization current of a level that does not change the magnetization of the first field magnet 29d is supplied to the excitation coil 29f. In this case, the total amount of magnetic flux supplied to the armature side is 2.0.

以上,図29から図32に示した回転電機に於いて,第一界磁磁石29c,第一界磁磁石29d,第二界磁磁石29eの磁化状態を変える事で電機子に流れる磁束量を制御できることを説明した。本実施例は電機子を流れる磁束量を制御して出力を最適化するシステムであり,図6,図7を用いて回転電機システムとしての制御を説明する。   As described above, in the rotating electrical machine shown in FIGS. 29 to 32, the amount of magnetic flux flowing through the armature is changed by changing the magnetization state of the first field magnet 29c, the first field magnet 29d, and the second field magnet 29e. Explained that it can be controlled. The present embodiment is a system for optimizing the output by controlling the amount of magnetic flux flowing through the armature, and the control as a rotating electrical machine system will be described with reference to FIGS.

回転電機が電動機として用いられる場合において,磁束量制御を行って回転力を最適に制御する。制御装置75は出力73である回転速度が所定の値より大となり電機子に流れる磁束量を小とする時には第二磁化の磁石数を増す方向のパルス電流62を励磁コイル29fに供給して第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とし,制御装置75は出力73である回転速度が所定の値より小となり電機子に流れる磁束量を大とする時には第一磁化の磁石数を増す方向のパルス電流62を励磁コイル29fに供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   When the rotating electrical machine is used as an electric motor, the amount of magnetic flux is controlled to optimally control the rotational force. When the rotational speed, which is the output 73, is greater than a predetermined value and the amount of magnetic flux flowing through the armature is reduced, the control device 75 supplies a pulse current 62 in the direction of increasing the number of magnets of the second magnetization to the exciting coil 29f. The number of magnets with one magnetization is decreased and the number of magnets with second magnetization is increased to reduce the amount of magnetic flux flowing through the armature, and the control device 75 causes the rotational speed of the output 73 to be smaller than a predetermined value and the amount of magnetic flux flowing through the armature. Is increased, the pulse current 62 in the direction of increasing the number of magnets of the first magnetization is supplied to the exciting coil 29f to increase the number of magnets of the first magnetization and reduce the number of magnets of the second magnetization to flow through the armature. Is large.

回転電機が発電機として用いられる場合において,磁束量制御を行って発電電圧を所定の電圧となるよう制御する定電圧発電システムを説明する。制御装置75は出力73である発電電圧が所定の値より大となり電機子に流れる磁束量を小とする時には第二磁化の磁石数を増す方向のパルス電流62を励磁コイル29fに供給して第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とする。制御装置75は出力73である発電電圧が所定の値より小となり電機子に流れる磁束量を大とする時には第一磁化の磁石数を増す方向のパルス電流62を励磁コイル29fに供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   A constant voltage power generation system that controls the amount of magnetic flux to be a predetermined voltage by controlling the amount of magnetic flux when a rotating electrical machine is used as a generator will be described. The control device 75 supplies a pulse current 62 in the direction of increasing the number of magnets of the second magnetization to the exciting coil 29f when the generated voltage as the output 73 is larger than a predetermined value and the amount of magnetic flux flowing through the armature is small. The number of magnets with one magnetization is reduced and the number of magnets with second magnetization is increased to reduce the amount of magnetic flux flowing through the armature. The control device 75 supplies the exciting coil 29f with a pulse current 62 in the direction of increasing the number of magnets of the first magnetization when the generated voltage as the output 73 is smaller than a predetermined value and the amount of magnetic flux flowing through the armature is increased. The number of magnets with one magnetization is increased and the number of magnets with second magnetization is decreased to increase the amount of magnetic flux flowing through the armature.

本実施例の構成はまた回転子の磁極構造を第七実施例のように磁性体基板内に永久磁石を埋め込んだ構造にも適用可能である。すなわち,円筒状磁性体基板の内周側に軸方向に延びる永久磁石板を埋め込み,電機子には周方向に永久磁石と円筒状磁性体基板の一部である磁性体突極とが交互に並ぶ二つの円筒状回転子を軸方向に並べて電機子と対向させる。二つの円筒状回転子それぞれで永久磁石は径方向磁化を持ち,同一極性の磁極面が電機子に対向する共に二つの円筒状回転子に於ける永久磁石の磁化方向は互いに逆とし,且つ一方の円筒状回転子の永久磁石には他方の円筒状回転子の磁性体突極が軸方向に対応するよう構成される。二つの円筒状回転子に於ける円筒状磁性体基板は励磁部により互いに異極に磁化されるので磁気的には分離して配置される。   The configuration of the present embodiment can also be applied to a structure in which the magnetic pole structure of the rotor is embedded in a permanent magnet in the magnetic substrate as in the seventh embodiment. That is, a permanent magnet plate extending in the axial direction is embedded on the inner peripheral side of the cylindrical magnetic substrate, and permanent magnets and magnetic salient poles that are part of the cylindrical magnetic substrate are alternately arranged in the armature. Two aligned cylindrical rotors are arranged in the axial direction so as to face the armature. The permanent magnets have radial magnetization in each of the two cylindrical rotors, and the magnetization directions of the permanent magnets in the two cylindrical rotors are opposite to each other, while the magnetic pole faces of the same polarity face the armature. The permanent magnet of the cylindrical rotor is configured such that the magnetic salient pole of the other cylindrical rotor corresponds to the axial direction. The cylindrical magnetic substrates in the two cylindrical rotors are magnetized differently from each other by the excitation unit, so that they are separated magnetically.

本発明の第九実施例による回転電機システムを図33,図34を用いて説明する。第九実施例に於ける励磁部は,第三実施例の励磁部を簡略にした構成である。図33は回転電機の縦断面図,図34は電機子と回転子とを示す断面図である。   A rotating electrical machine system according to a ninth embodiment of the present invention will be described with reference to FIGS. The exciter in the ninth embodiment is a simplified configuration of the exciter in the third embodiment. FIG. 33 is a longitudinal sectional view of the rotating electrical machine, and FIG. 34 is a sectional view showing the armature and the rotor.

図33はラジアルギャップ構造の回転電機に本発明を適用した実施例を示し,回転軸11がベアリング13を介してハウジング12に回動可能に支持されている。電機子の構成は第一実施例と同じであるので説明は省略する。回転子は磁性体突極と集合磁石とが周方向に交互に並ぶ表面磁極部331,隣り合う磁性体突極を回転軸11と平行の互いに異なる方向に延長させた第一延長部92,第二延長部93とを有する。   FIG. 33 shows an embodiment in which the present invention is applied to a rotating electrical machine having a radial gap structure, and a rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. Since the structure of the armature is the same as that of the first embodiment, description thereof is omitted. The rotor includes a surface magnetic pole portion 331 in which magnetic salient poles and collective magnets are alternately arranged in the circumferential direction, a first extension portion 92 in which adjacent magnetic salient poles are extended in different directions parallel to the rotating shaft 11, and a first extension portion 92. And two extending portions 93.

回転子の表面磁極部331の内側には励磁部が配置されて第一延長部92,第二延長部93に結合し,隣接する磁性体突極は互いに異極に磁化されるよう配置されている。励磁部は界磁極332,333,第二界磁磁石334,励磁コイル335を主要部として構成されている。励磁コイル335にはブラシ9a,スリップリング9bを介して図示していない制御部に接続され,番号94は回転軸11を周回するよう配置された導体層を示している。   An excitation part is arranged inside the surface magnetic pole part 331 of the rotor and is connected to the first extension part 92 and the second extension part 93 so that adjacent magnetic salient poles are magnetized differently from each other. Yes. The exciting part is composed mainly of field magnetic poles 332, 333, a second field magnet 334, and an exciting coil 335. The exciting coil 335 is connected to a control unit (not shown) via a brush 9a and a slip ring 9b, and numeral 94 denotes a conductor layer arranged so as to go around the rotating shaft 11.

図34は図33のH−H’に沿う電機子及び回転子の断面図を示し,相互の関係を説明する為に構成部分の一部に番号を付して示されている。電機子の構成は第一の実施例と同じである。回転子の構成は表面磁極部が図18に示す第五実施例の表面磁極部と同じであり,第一磁性体突極181,第二磁性体突極182はそれぞれ図33に於いて軸方向の左及び右方向に延伸されて第一延長部92,第二延長部93とされている。表面磁極部の構成は第五実施例で説明されているので更なる説明は省略する。   FIG. 34 is a sectional view of the armature and the rotor along the line H-H ′ in FIG. 33, and in order to explain the mutual relationship, some of the components are shown with numbers. The configuration of the armature is the same as that of the first embodiment. The structure of the rotor is the same as the surface magnetic pole part of the fifth embodiment shown in FIG. 18 in the surface magnetic pole part, and the first magnetic salient pole 181 and the second magnetic salient pole 182 are respectively in the axial direction in FIG. The first extension 92 and the second extension 93 are extended in the left and right directions. Since the configuration of the surface magnetic pole portion has been described in the fifth embodiment, further description is omitted.

本実施例では磁性体突極181,182間には集合磁石が配置され,集合磁石を構成する磁石板184,185を磁化を変更しない固定の第一界磁磁石とし,第二界磁磁石334の磁化状態を可変とする構成である。本実施例の構成に於いて集合磁石と第二界磁磁石334とは並列に接続され,磁性体突極181,磁性体歯14,磁性体突極182が主磁路を構成する。界磁極332,第一延長部92,磁性体突極181,磁性体板184,中間磁性体突極183,磁石板185,磁性体突極182,第二延長部93,界磁極96が第二界磁磁石334の励磁磁路を構成している。   In the present embodiment, a collective magnet is disposed between the magnetic salient poles 181 and 182, and the magnet plates 184 and 185 constituting the collective magnet are fixed first field magnets that do not change the magnetization, and the second field magnet 334. It is the structure which makes variable the magnetization state of. In the configuration of this embodiment, the collective magnet and the second field magnet 334 are connected in parallel, and the magnetic salient pole 181, the magnetic substance teeth 14, and the magnetic salient pole 182 constitute the main magnetic path. Field magnetic pole 332, first extension 92, magnetic salient pole 181, magnetic material plate 184, intermediate magnetic salient pole 183, magnet plate 185, magnetic salient pole 182, second extension 93, and field magnetic pole 96 are second. An exciting magnetic path of the field magnet 334 is configured.

本実施例の第一延長部92,第二延長部93は第三実施例と同じ形状であるが,励磁磁路に含まれ,第二界磁磁石334の磁化状態を変更する場合に励磁コイル334によって誘起されるパルス状磁束が流れるので鉄粉を押し固めた比抵抗の大きな圧粉鉄心で構成されている。励磁コイル335は第二界磁磁石334を含む励磁磁路に巻回されている。   The first extension 92 and the second extension 93 of the present embodiment have the same shape as that of the third embodiment, but are included in the excitation magnetic path, and the excitation coil is used when the magnetization state of the second field magnet 334 is changed. Since the pulsed magnetic flux induced by 334 flows, it is composed of a dust core having a large specific resistance obtained by pressing and solidifying iron powder. The exciting coil 335 is wound around an exciting magnetic path including the second field magnet 334.

以上に本実施例の構成を説明したように励磁部の構成は励磁磁路の一部が異なるのみで本実施例の第二界磁磁石334と図9に示される界磁磁石97とは同じ構成である。従って,第二界磁磁石334の磁化状態変更,システム動作等は第三実施例と同じであり,詳細な説明は省略する。   As described above, the configuration of the present embodiment is the same as the second field magnet 334 of the present embodiment and the field magnet 97 shown in FIG. It is a configuration. Therefore, the change of the magnetization state of the second field magnet 334, the system operation, and the like are the same as in the third embodiment, and detailed description thereof is omitted.

本実施例が第三実施例と大きく異なる点は,第二界磁磁石334の磁化状態を変更する際に励磁コイル335によって誘起されるパルス状磁束が電機子側に流入する事である。磁石板184,185の厚みを小として前記パルス状磁束の電機子側への流入を抑制できるが,これはまた第二界磁磁石334からの磁束を磁石板184,185で短絡させる事になるので妥協せざるを得ない。したがってパルス状磁束は電機子コイル16と鎖交し,大きな電圧パルスが電機子コイル16両端に現れるので電機子コイル16に接続される電子回路は耐電圧特性の優れた素子を使う必要がある。これは界磁磁石の磁化変更に際して生じる可能性のある不具合を回避するコストを如何に負担するかの手段の差である。第一実施例から第八実施例では励磁部構成にコストを費やして電機子コイル周辺の電子回路でのコスト負担を軽減させ,本実施例では磁路構成をシンプルとして電機子コイル周辺の電子回路でコストを費やして不具合を回避している。回転電機システムの仕様に応じて最適の構成を選択する。   This embodiment is greatly different from the third embodiment in that the pulsed magnetic flux induced by the exciting coil 335 flows into the armature side when the magnetization state of the second field magnet 334 is changed. Although the thickness of the magnet plates 184 and 185 can be reduced to suppress the inflow of the pulsed magnetic flux to the armature side, this also causes the magnetic flux from the second field magnet 334 to be short-circuited by the magnet plates 184 and 185. So you have to compromise. Therefore, the pulsed magnetic flux interlinks with the armature coil 16, and a large voltage pulse appears at both ends of the armature coil 16. Therefore, an electronic circuit connected to the armature coil 16 needs to use an element having excellent withstand voltage characteristics. This is a difference in means of how to bear the cost of avoiding problems that may occur when the magnetization of the field magnet is changed. In the first embodiment to the eighth embodiment, the cost of the excitation unit configuration is expended to reduce the cost burden on the electronic circuit around the armature coil. In this embodiment, the magnetic circuit configuration is simplified and the electronic circuit around the armature coil is reduced. The cost is avoided and the trouble is avoided. Select the optimal configuration according to the specifications of the rotating electrical machine system.

本発明の第十実施例による回転電機システムを図35を用いて説明する。第十実施例は第五実施例の回転電機システムをハイブリッドカーの発電機兼電動機システムとして用いた回転電機システムである。   A rotating electrical machine system according to a tenth embodiment of the present invention will be described with reference to FIG. The tenth embodiment is a rotating electrical machine system that uses the rotating electrical machine system of the fifth embodiment as a generator / motor system of a hybrid car.

同図に於いて,番号351は第五実施例で示した回転電機を示し,回転電機351はハイブリッドカーのエンジン352とベルトで回転力を伝達するよう結合された回転軸359を持ち,回転軸359の回転力はトランスミッション353を介して駆動軸35aに伝えられる。制御装置354は上位制御装置からの指令35bを受け,駆動回路355を介して回転電機351を電動機として駆動し,磁束量制御回路356を介して電機子に流入する磁束量を制御する。更に制御装置354は上位制御装置からの指令35bを受け,電機子コイル16の引き出し線35cに現れる発電電力を整流回路357を介して整流し,バッテリー358を充電する構成としている。制御装置354は指令35bの指示により駆動回路355を介して回転電機351を電動機として駆動し,エンジン352の回転をアシスト或いは単独で回転軸359を回転駆動させ,トランスミッション353,駆動軸35aを介してハイブリッドカーの駆動力に寄与する。   In the drawing, reference numeral 351 denotes the rotating electrical machine shown in the fifth embodiment, and the rotating electrical machine 351 has a rotating shaft 359 coupled to transmit a rotational force with an engine 352 of a hybrid car by a belt. The rotational force of 359 is transmitted to the drive shaft 35a via the transmission 353. The control device 354 receives a command 35b from the host control device, drives the rotating electric machine 351 as an electric motor via the drive circuit 355, and controls the amount of magnetic flux flowing into the armature via the magnetic flux amount control circuit 356. Further, the control device 354 receives the command 35b from the host control device, rectifies the generated power appearing on the lead wire 35c of the armature coil 16 via the rectifier circuit 357, and charges the battery 358. The control device 354 drives the rotating electrical machine 351 as an electric motor via the drive circuit 355 according to the instruction of the command 35b, assists the rotation of the engine 352 or independently drives the rotating shaft 359, and transmits the rotating shaft 359 via the transmission 353 and the driving shaft 35a. Contributes to the driving power of hybrid cars.

低回転速度域で磁石トルクを強化する必要がある場合は第一磁化の磁石数を増す方向のパルス電流62を磁化制御回路143により励磁コイル178に供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。高回転速度域で弱め界磁とする場合には第二磁化の磁石数を増す方向のパルス電流62を磁化制御回路143により励磁コイル178に供給して第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とする。   When it is necessary to reinforce the magnet torque in the low rotation speed region, a pulse current 62 in a direction to increase the number of first magnets is supplied to the exciting coil 178 by the magnetization control circuit 143 to increase the number of first magnets. The amount of magnetic flux flowing through the armature is increased by reducing the number of magnets of the second magnetization. In the case of using a field weakening in the high rotation speed region, a pulse current 62 in a direction to increase the number of second magnetization magnets is supplied to the excitation coil 178 by the magnetization control circuit 143 to reduce the number of first magnetization magnets and the second magnetization. The number of magnetized magnets is increased to reduce the amount of magnetic flux flowing through the armature.

エンジン352の回転力のみでハイブリッドカーを駆動する時は,指令35bにより電機子コイル16の引き出し線35cに現れる発電電力を整流回路357を介して直流に変え,バッテリー358を充電させる。その場合に制御装置354は発電電圧がバッテリー358を充電する最適な電圧より大である場合は磁束量制御回路356を介して磁束調整回路142により励磁コイル178に供給する磁束調整電流を減じて電機子に流れる磁束量を小とし,磁束調整電流が予め定めた値より小となる場合には第二磁化の磁石数を増す方向のパルス電流62を磁化制御回路143により励磁コイル178に供給して第一磁化の磁石数を減じると共に第二磁化の磁石数を増して電機子を流れる磁束量を小とする。   When the hybrid car is driven only by the rotational force of the engine 352, the generated power appearing on the lead wire 35c of the armature coil 16 is changed to direct current via the rectifier circuit 357 by the command 35b, and the battery 358 is charged. In that case, when the generated voltage is larger than the optimum voltage for charging the battery 358, the control device 354 reduces the magnetic flux adjustment current supplied to the exciting coil 178 by the magnetic flux adjustment circuit 142 via the magnetic flux amount control circuit 356. When the amount of magnetic flux flowing through the child is small and the magnetic flux adjustment current is smaller than a predetermined value, a pulse current 62 in a direction to increase the number of magnets of the second magnetization is supplied to the exciting coil 178 by the magnetization control circuit 143. The number of first magnetization magnets is reduced and the number of second magnetization magnets is increased to reduce the amount of magnetic flux flowing through the armature.

制御装置354は発電電圧がバッテリー358を充電する最適な電圧より小である場合は磁束量制御回路356を介して磁束調整回路142により励磁コイル98に供給する磁束調整電流を増して電機子に流れる磁束量を大とし,磁束調整電流が予め定めた値より大となる場合には第一磁化の磁石数を増す方向のパルス電流62を磁化制御回路143により励磁コイル178に供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とする。   When the generated voltage is smaller than the optimum voltage for charging the battery 358, the control device 354 increases the magnetic flux adjustment current supplied to the exciting coil 98 by the magnetic flux adjustment circuit 142 via the magnetic flux amount control circuit 356 and flows to the armature. When the magnetic flux amount is increased and the magnetic flux adjustment current is larger than a predetermined value, a pulse current 62 in a direction to increase the number of magnets of the first magnetization is supplied to the exciting coil 178 by the magnetization control circuit 143 and the first magnetization is applied. The number of magnets is increased and the number of second magnets is decreased to increase the amount of magnetic flux flowing through the armature.

バッテリー358に充電する場合に回転電機システムを定電圧発電機システムとする事で発電電圧を変換するコンバータは不要である。また,更にバッテリー358が電圧の種類の異なる複数種のバッテリーで構成される場合でも切り替え回路を付け加えてそれぞれのバッテリーに最適の発電電圧に制御する事で高価なコンバータを不要に出来る。   When the battery 358 is charged, a converter for converting the generated voltage is not required by using the rotating electrical machine system as a constant voltage generator system. Further, even when the battery 358 is composed of a plurality of types of batteries having different voltage types, an expensive converter can be eliminated by adding a switching circuit to control the power generation voltage to be optimal for each battery.

本実施例はまたハイブリッドカーの制動時に於けるエネルギー回収システムとしても有効に機能する。指令35bを通じて回生制動の指示を受けると,制御装置354は磁束量制御回路356を介して第一磁化の磁石数を増す方向のパルス電流62を磁化制御回路143により励磁コイル178に供給して第一磁化の磁石数を増すと共に第二磁化の磁石数を減じて電機子を流れる磁束量を大とし,発電電力でバッテリー358に充電させる。   This embodiment also functions effectively as an energy recovery system when braking a hybrid car. Upon receiving an instruction for regenerative braking through the command 35b, the control device 354 supplies a pulse current 62 in the direction of increasing the number of magnets of the first magnetization to the exciting coil 178 via the magnetic flux amount control circuit 356, to the exciting coil 178. The number of magnets with one magnetization is increased and the number of magnets with second magnetization is decreased to increase the amount of magnetic flux flowing through the armature, and the battery 358 is charged with generated power.

電機子コイル16と鎖交する磁束量は増えるので取り出せる電力は大きく,電気二重層コンデンサ他の蓄電システムに一時的に蓄えて制動力の確保とエネルギー回収を大にする。回転電機351は駆動用電動機として用いられる体格であるので回生制動用の発電機として十分な制動力を発生できる。   Since the amount of magnetic flux interlinking with the armature coil 16 increases, the electric power that can be taken out is large, and it is temporarily stored in an electric storage system such as an electric double layer capacitor to ensure the braking force and increase the energy recovery. Since the rotating electrical machine 351 is a physique used as a drive motor, it can generate a sufficient braking force as a generator for regenerative braking.

本実施例はハイブリッドカーの発電機兼電動機として用いた回転電機システムであるが,電気自動車に於ける回転電機システムとする事も当然に可能である。その場合には上記実施例に於いてハイブリッドカーのエンジン352を取り除き,本発明による回転電機システムのみで電気自動車を駆動し,制動時に於けるエネルギー回収システムを構成する。   The present embodiment is a rotating electrical machine system used as a generator / motor of a hybrid car, but it is naturally possible to use a rotating electrical machine system in an electric vehicle. In that case, the engine 352 of the hybrid car is removed in the above embodiment, and the electric vehicle is driven only by the rotating electrical machine system according to the present invention to constitute an energy recovery system during braking.

以上,本発明の回転電機システムについて,実施例を挙げて説明した。これらの実施例は本発明の趣旨,目的を実現する例を示したのであって本発明の範囲を限定するわけでは無い。例えば,上記の実施例に於いて電機子は磁性体歯を有する構造が示されたが,従来のアキシャルギャップ構成の回転電機では磁性体歯を配置しない構造例も存在する。また,ラジアルギャップ構成に於いても電機子構成を円筒状磁気ヨーク上に印刷配線された電機子コイルを配置して磁性体歯を持たない例も存在する。本発明は磁性体歯の有無に拘わらず適用可能であり,回転電機システムの仕様に沿って最適の電気子構成を採用する事が出来る。上記実施例を組み合わせる,或いは実施例の一部を組み合わせて本発明の趣旨,目的を実現するシステムを完成させる等が可能な事は勿論である。   The rotating electrical machine system of the present invention has been described with reference to the embodiments. These examples show examples of realizing the gist and purpose of the present invention, and do not limit the scope of the present invention. For example, in the above embodiment, the armature has a structure having magnetic teeth, but there is a structure example in which a magnetic tooth is not arranged in a conventional rotating electric machine having an axial gap configuration. Further, even in the radial gap configuration, there is an example in which the armature configuration is arranged with an armature coil printed and wired on a cylindrical magnetic yoke and does not have magnetic teeth. The present invention can be applied regardless of the presence or absence of magnetic teeth, and can employ an optimal electronic configuration according to the specifications of the rotating electrical machine system. Of course, it is possible to complete the system that achieves the gist and purpose of the present invention by combining the above-described embodiments, or by combining a part of the embodiments.

永久磁石励磁の回転電機システムに於いて,同種の磁化に励磁される磁性体突極には励磁部から一括して界磁磁束を供給する構成とし,励磁部に配置した界磁磁石の磁化状態を励磁コイルに流す磁化電流より不可逆的に変えて電機子側に流入する磁束量を制御する。界磁磁石の磁化状態を変更する際に励磁コイルに供給される電流パルスの影響が電機子コイルに及び難い構成として回転電機の運転に支障が無い構成を提案している。   In a rotating magnet system with permanent magnet excitation, magnetic flux is supplied to the magnetic salient pole excited by the same type of magnetization from the excitation unit in a lump, and the magnetization state of the field magnet arranged in the excitation unit Is irreversibly changed from the magnetizing current flowing through the exciting coil to control the amount of magnetic flux flowing into the armature side. As a configuration in which the influence of the current pulse supplied to the excitation coil does not easily affect the armature coil when changing the magnetization state of the field magnet, a configuration that does not hinder the operation of the rotating electric machine has been proposed.

本発明を適用した回転電機システムは従来の回転電機と同様に高出力の電動機として利用できる事に加えて実用出来る回転速度範囲を拡大し,更に発電機能を改善し,またその発電機能を制御できる。移動体の発電機兼電動機システムに用いて,駆動用電動機としては従来以上の回転速度範囲での使用が期待できる他に制動時のエネルギー回収を可能として総合的なエネルギー消費量を改善できる。更に定電圧発電機システムとして広い回転速度範囲で発電電圧を一定に制御できるので定電圧制御回路を不要とし,更に電圧の異なる複数種のバッテリー充電にもコンバータを不要に出来,全体のシステムコストを低減出来る。   The rotating electrical machine system to which the present invention is applied can be used as a high-output electric motor in the same way as a conventional rotating electrical machine. In addition, the practical rotational speed range can be expanded, the power generation function can be improved, and the power generation function can be controlled. . It can be used in a generator / motor system for a moving body, and it can be expected to be used in a range of rotational speeds higher than that of a conventional driving motor. In addition, it can recover energy during braking and improve overall energy consumption. In addition, the constant voltage generator system can control the generated voltage uniformly over a wide rotational speed range, eliminating the need for a constant voltage control circuit, and eliminating the need for a converter for charging multiple types of batteries with different voltages, reducing the overall system cost. It can be reduced.

11・・・回転軸, 12・・・ハウジング,
13・・・ベアリング, 14・・・磁性体歯,
15・・・円筒状磁気ヨーク, 16・・・電機子コイル,
17・・・表面磁極部, 18・・・第一延長部,
19・・・第二延長部, 1a,1e・・非磁性体部,
1b・・・内側磁極, 1c・・・円環状磁極,
1d・・・外側磁極, 1f・・・励磁磁極,
1g・・・励磁コイル, 1h・・・可動磁極,
1j・・・界磁磁石, 1k・・・制御棒,
1m・・・アクチュエータ, 1n・・・間隙,
1p・・・冷却ファン
21,22・・・磁性体突極, 23・・・磁気空隙部,
24・・・磁束チャネル部, 25・・・延長部,
26・・・可飽和磁性体部, 27・・・可飽和磁性体結合部,
28・・・短絡環
31・・・磁性体突部, 32・・・環状磁気コア部分,
33・・・円筒状磁気コア, 34・・・非磁性体部,
35・・・励磁部
41・・・外径方向の磁化を持つ界磁磁石領域,
42・・・内径方向の磁化を持つ界磁磁石領域
61・・・消磁電流, 62・・・パルス電流,
63・・・制御電流, 64,65・・時間
71・・・回転電機装置, 72・・・入力,
73・・・出力, 74・・・状態信号,
75・・・制御装置, 76・・・制御信号,
77・・・駆動回路
81・・・励磁磁極, 82・・・外側磁極
91・・・表面磁極部, 92・・・第一延長部,
93・・・第二延長部, 94・・・導体層,
95,96・・界磁極, 97・・・界磁磁石,
98・・・励磁コイル, 99・・・非磁性体部,
9a・・・ブラシ, 9b・・・スリップリング
101,102・・磁性体突極, 103・・・永久磁石,
104・・・磁束チャネル部, 105・・・可飽和磁性体部,
106・・・磁気空隙部
111,112・・磁性体突部, 113,114・・非磁性体部,
115・・・励磁部の一部
121,122,123,124・・磁石要素,
125・・・間隙
141・・・切換スイッチ, 142・・・磁束調整回路,
143・・・磁化制御回路
151・・・界磁磁石, 152,153・・界磁極,
154・・・励磁コイル, 155・・・C字状の環状磁気コア,
156・・・間隙
171・・・表面磁極部, 172・・・第一延長部,
173・・・第二延長部, 174・・・回転子支持体,
175,176・・界磁極, 177・・・界磁磁石,
178・・・励磁コイル
181,182・・・磁性体突極, 183・・・中間磁性体突極,
184,185・・磁石板, 186・・・磁束チャネル部,
187・・・スリット
191,192・・励磁部, 193,194・・磁性体突部,
195,196・・非磁性体部
201,202,203,204・・磁石要素,
205・・・間隙
211・・・固定軸, 212・・・ロータハウジング,
213・・・ベアリング, 214・・・磁性体歯,
215・・・円筒状磁気ヨーク, 216・・・電機子コイル,
217・・・磁性体突極, 218・・・基板,
219・・・プーリー部, 21a・・・第一界磁磁石,
21b・・・第二界磁磁石, 21c・・・励磁コイル,
21d・・・界磁極, 21e・・・円盤状磁極,
21f・・・導体層, 21g・・・同心円状の凹凸
221・・・磁気空隙部
231,232,233,234,235,236・・磁石要素,
241・・・回転軸, 242・・・ハウジング,
243・・・ベアリング, 244,247・・磁性体歯,
245・・・円環状磁気ヨーク, 246,248・・電機子コイル,
249・・・第一表面磁極部, 24a,24d・・磁性体基板,
24b,24e・・永久磁石, 24c・・・第二表面磁極部,
24f,24g・・界磁極, 24h・・・第一界磁磁石,
24j・・・励磁コイル, 24k・・・第二界磁磁石,
24m・・・導体層, 24n,24p・・磁性体円板
251,252・・磁性体突極, 253・・・磁気間隙
261・・・永久磁石24bからの磁束, 262・・・永久磁石24eからの磁束,
263・・・励磁部から供給される磁束, 264・・・磁束263の方向
271・・・励磁部から供給される磁束, 272・・・磁束271の方向
291・・・固定軸, 292・・・ロータハウジング,
293・・・ベアリング, 294・・・磁性体歯,
295・・・電機子支持体, 296・・・電機子コイル,
297・・・表面磁極部, 298・・・第一延長部,
299・・・第二延長部, 29a,29b・・界磁極,
29c,29d・・第一界磁磁石, 29e・・・第二界磁磁石,
29f・・・励磁コイル, 29g・・・導体層,
29h・・・同心円状の凹凸
301,302・・磁性体突極, 303・・・中間磁性体突極,
304・・・磁束チャネル部, 305,306・・磁石板
311,312・・磁性体突部, 313,314・・磁性体円板,
315・・・非磁性体部
331・・・表面磁極部, 332,333・・界磁極,
334・・・第二界磁磁石, 335・・・励磁コイル
351・・・第五の実施例で示した回転電機装置,
352・・・ハイブリッドカーのエンジン,
353・・・トランスミッション, 354・・・制御装置,
355・・・駆動回路, 356・・・磁束量制御回路,
357・・・整流回路, 358・・・バッテリー,
359・・・回転軸, 35a・・・駆動軸,
35b・・・上位制御装置からの指令, 35c・・・電機子コイルの引き出し線
11 ... rotating shaft, 12 ... housing,
13 ... Bearings, 14 ... Magnetic teeth,
15 ... cylindrical magnetic yoke, 16 ... armature coil,
17 ... surface magnetic pole part, 18 ... first extension part,
19 ... 2nd extension part, 1a, 1e ... nonmagnetic part,
1b ... inner magnetic pole, 1c ... annular magnetic pole,
1d: outer magnetic pole, 1f: excitation magnetic pole,
1g ... excitation coil, 1h ... movable magnetic pole,
1j: field magnet, 1k: control rod,
1m ... actuator, 1n ... gap,
1p ... cooling fans 21, 22 ... magnetic salient poles, 23 ... magnetic air gap,
24 ... magnetic flux channel part, 25 ... extension part,
26: saturable magnetic part, 27 ... saturable magnetic part,
28 ... Short-circuit ring 31 ... Magnetic body protrusion, 32 ... Annular magnetic core part,
33 ... cylindrical magnetic core, 34 ... non-magnetic part,
35 ... excitation part 41 ... field magnet region having magnetization in the outer diameter direction,
42 ... Field magnet region 61 having a magnetization in the inner diameter direction ... Demagnetizing current, 62 ... Pulse current,
63 ... Control current, 64, 65 ... Time 71 ... Rotary electrical machine device, 72 ... Input,
73 ... output, 74 ... status signal,
75 ... Control device, 76 ... Control signal,
77 ... Drive circuit 81 ... Excitation magnetic pole, 82 ... Outer magnetic pole 91 ... Surface magnetic pole part, 92 ... First extension part,
93 ... second extension, 94 ... conductor layer,
95, 96 ... Field poles, 97 ... Field magnets,
98 ... excitation coil, 99 ... non-magnetic part,
9a ... brush, 9b ... slip ring 101, 102 ... magnetic salient pole, 103 ... permanent magnet,
104 ... magnetic flux channel part, 105 ... saturable magnetic part,
106 ... Magnetic gap 111, 112 ... Magnetic body protrusion 113, 114 Non magnetic body,
115... Part of excitation part 121, 122, 123, 124 .. magnet element,
125 ... gap 141 ... changeover switch, 142 ... magnetic flux adjustment circuit,
143... Magnetization control circuit 151... Field magnet, 152, 153.
154 ... excitation coil, 155 ... C-shaped annular magnetic core,
156: gap 171 ... surface magnetic pole part, 172 ... first extension part,
173 ... second extension, 174 ... rotor support,
175, 176 .. Field poles, 177 ... Field magnets,
178 ... excitation coils 181, 182 ... magnetic salient poles, 183 ... intermediate magnetic salient poles,
184, 185 ... Magnetic plate, 186 ... Magnetic flux channel part,
187... Slits 191, 192 ... excitation part, 193, 194 ... magnetic part protrusion,
195, 196 .. Non-magnetic body parts 201, 202, 203, 204 .. Magnet elements,
205 ... gap 211 ... fixed shaft, 212 ... rotor housing,
213 ... bearings, 214 ... magnetic body teeth,
215 ... cylindrical magnetic yoke, 216 ... armature coil,
217 ... magnetic salient pole, 218 ... substrate,
219 ... pulley section, 21a ... first field magnet,
21b: second field magnet, 21c: excitation coil,
21d: Field magnetic pole, 21e: Disc-shaped magnetic pole,
21f: Conductor layer, 21g: Concentric concavities and convexities 221: Magnetic air gaps 231, 232, 233, 234, 235, 236 .. Magnet elements,
241 ... Rotating shaft, 242 ... Housing,
243 ... Bearings, 244, 247 ... Magnetic teeth,
245 ... Annular magnetic yoke, 246, 248 ... Armature coil,
249... First surface magnetic pole part, 24a, 24d .. magnetic substrate,
24b, 24e .. Permanent magnets, 24c...
24f, 24g, field pole, 24h, first field magnet,
24j ... excitation coil, 24k ... second field magnet,
24 m: conductor layer, 24 n, 24 p, magnetic disk 251, 252, magnetic salient poles, 253 magnetic gap 261 magnetic flux from permanent magnet 24 b, 262 permanent magnet 24 e Magnetic flux from
263 ... Magnetic flux supplied from the excitation unit, 264 ... Direction 271 of the magnetic flux 263 ... Magnetic flux supplied from the excitation unit, 272 ... Direction 291 of the magnetic flux 271 ... Fixed axis, 292 ...・ Rotor housing,
293 ... Bearings, 294 ... Magnetic teeth,
295 ... armature support, 296 ... armature coil,
297 ... surface magnetic pole part, 298 ... first extension part,
299 ... second extension, 29a, 29b, field pole,
29c, 29d, first field magnet, 29e, second field magnet,
29f: Excitation coil, 29g: Conductor layer,
29h ... Concentric concavities and convexities 301, 302 .. magnetic salient poles, 303 ... intermediate magnetic salient poles,
304... Magnetic flux channel part, 305, 306 .. Magnetic plates 311, 312.. Magnetic protrusions 313, 314.
315: Non-magnetic part 331: Surface magnetic pole part, 332, 333 .. Field magnetic pole,
334... Second field magnet, 335... Exciting coil 351... Rotary electric machine apparatus shown in the fifth embodiment,
352 ... Hybrid car engine,
353 ... transmission, 354 ... control device,
355 ... Drive circuit, 356 ... Magnetic flux control circuit,
357 ... rectifier circuit, 358 ... battery,
359 ... rotating shaft, 35a ... drive shaft,
35b: Command from the host controller, 35c: Armature coil lead wire

Claims (24)

電機子コイルを有する電機子と,電機子と対向して周方向に配置された複数の磁性体突極を有する表面磁極部と,同種の極性に磁化されるべき磁性体突極グループ毎に一括して磁化する励磁部とを有し,表面磁極部と電機子とは軸を中心に相対的に回転可能である回転電機装置であって,励磁部は界磁磁石及び界磁磁石の磁化を変更する励磁コイルを有し,前記界磁磁石のN極或いはS極の何れか一方の磁極から流れる磁束が磁性体突極及び電機子を介して界磁磁石の他方の磁極に環流する主磁路と,前記界磁磁石の一方の磁極から出た磁束が主として励磁部内で界磁磁石の他方の磁極に環流する励磁磁路とが並列に界磁磁石に接続され,励磁コイルは励磁磁路に加えて界磁磁石を含む磁路に磁束を誘起するよう配置され,回転電機装置の出力を最適化するように前記出力に応じて励磁コイルに磁化電流を供給して界磁磁石の磁化状態を不可逆的に変え,電機子に流れる磁束量が制御される事を特徴とする回転電機システム An armature having an armature coil, a surface magnetic pole portion having a plurality of magnetic salient poles arranged in the circumferential direction facing the armature, and a magnetic salient pole group to be magnetized to the same polarity A rotating electrical machine apparatus in which the surface magnetic pole part and the armature are relatively rotatable about an axis, and the excitation part is configured to magnetize the field magnet and the field magnet. A main magnet having an exciting coil to be changed, and a magnetic flux flowing from one of the N pole and S pole of the field magnet circulates to the other pole of the field magnet through the magnetic salient pole and the armature. And an exciting magnetic path in which the magnetic flux generated from one magnetic pole of the field magnet circulates mainly to the other magnetic pole of the field magnet in the exciting portion is connected to the field magnet in parallel. In addition to the magnetic path including the field magnet. Irreversibly changing the magnetization state of the field magnet by supplying a magnetizing current to the exciting coil in response to said output so as to optimize the magnetic flux amount flowing in the armature, characterized in that it is controlled rotary electric machine system 請求項1記載の回転電機システムに於いて,磁性体間に磁化方向長さと抗磁力の積が異なる磁石要素が並列に接続されて界磁磁石が構成されることを特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein a field magnet is configured by connecting in parallel a magnet element having a product of a magnetization direction length and a coercive force between magnetic bodies. 請求項1記載の回転電機システムに於いて,励磁コイルに供給される磁化電流による磁界の磁界強度が抗磁力より大とされる界磁磁石の磁石要素が磁化電流の極性により定められた方向に選択的に磁化されることを特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the magnet element of the field magnet whose magnetic field strength by the magnetizing current supplied to the exciting coil is larger than the coercive force is in a direction determined by the polarity of the magnetizing current. Rotating electrical machine system characterized by being selectively magnetized 請求項1記載の回転電機システムに於いて,界磁磁石は磁性体突極を予め定めた方向に磁化する第一磁化の磁石要素,第一磁化と逆方向の磁化である第二磁化の磁石要素を有している事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the field magnet is a magnet element having a first magnetization that magnetizes the magnetic salient pole in a predetermined direction, and a magnet having a second magnetization that is opposite to the first magnetization. Rotating electrical machine system characterized by having elements 請求項1記載の回転電機システムに於いて,表面磁極部は周方向に隣接する磁性体突極を互いに異極に磁化する永久磁石を有し,界磁磁石の第一磁化と前記永久磁石とが磁性体突極を同種の極性に磁化するよう前記永久磁石の磁化方向が設定され,界磁磁石全体が第一磁化とされて電機子を流れる磁束量が最大にされ,電機子内に於いて前記永久磁石からの磁束と界磁磁石からの磁束とが相殺されるように界磁磁石は第二磁化の磁極面積が第一磁化の磁極面積より大とされて電機子を流れる磁束量を最小であるゼロとするよう構成されている事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the surface magnetic pole portion includes a permanent magnet that magnetizes magnetic salient poles adjacent in the circumferential direction in different polarities, the first magnetization of the field magnet, the permanent magnet, The magnetization direction of the permanent magnet is set so as to magnetize the magnetic salient pole to the same kind of polarity, the field magnet as a whole is set to the first magnetization, and the amount of magnetic flux flowing through the armature is maximized. The magnetic field of the field magnet is such that the magnetic pole area of the second magnetization is larger than the magnetic pole area of the first magnetization so that the magnetic flux from the permanent magnet and the magnetic flux from the field magnet cancel each other. Rotating electrical machine system characterized by being configured to be the minimum zero 請求項1記載の回転電機システムに於いて,界磁磁石は磁化容易さが互いに異なる第一界磁磁石及び第二界磁磁石の並列接続で構成され,励磁コイルは第一界磁磁石及び第二界磁磁石が直列となる閉磁路に磁束を発生させ,第一界磁磁石及び第二界磁磁石は互いに他を励磁磁路の一部とするよう配置されていることを特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the field magnet is constituted by a parallel connection of a first field magnet and a second field magnet, which are different in ease of magnetization, and the exciting coil is composed of the first field magnet and the second field magnet. Rotation characterized in that a magnetic field is generated in a closed magnetic path in which two field magnets are in series, and the first field magnet and the second field magnet are arranged so that each other is part of the exciting magnetic path. Electric system 請求項6記載の回転電機システムに於いて,磁化容易さが互いに異なる第一界磁磁石及び第二界磁磁石は磁化変更に必要な磁界強度が互いに異なる磁石によりそれぞれ構成されることを特徴とする回転電機システム 7. The rotating electrical machine system according to claim 6, wherein the first field magnet and the second field magnet having different magnetization easiness are respectively composed of magnets having different magnetic field strengths necessary for changing the magnetization. Rotating electrical machine system 請求項1記載の回転電機システムに於いて,可動磁性体片を偏倚させて界磁磁石,主磁路,励磁磁路間の接続状態を変える磁路スイッチを有し,通常の運転中に界磁磁石は主磁路に接続されて励磁磁路は切り離され,励磁コイルにより界磁磁石の磁化状態を変更する際に界磁磁石は主磁路から切り離されて励磁磁路と接続されることを特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, further comprising a magnetic path switch for changing a connection state among the field magnet, the main magnetic path, and the exciting magnetic path by biasing the movable magnetic body piece, The magnet is connected to the main magnetic path and the excitation magnetic path is disconnected. When the magnetization state of the field magnet is changed by the excitation coil, the field magnet is disconnected from the main magnetic path and connected to the excitation magnetic path. Rotating electrical machine system characterized by 請求項1記載の回転電機システムに於いて,可動磁性体片を偏倚させて励磁磁路の構成を変える磁路スイッチを有し,通常の運転中に励磁磁路の磁気抵抗は大となるよう励磁磁路中の磁気的な間隙が大とされ,励磁コイルにより界磁磁石の磁化状態を変更する際に励磁磁路の磁気抵抗が小となるよう励磁磁路中の磁気的な間隙が小とされることを特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, further comprising a magnetic path switch for changing the configuration of the exciting magnetic path by biasing the movable magnetic piece so that the magnetic resistance of the exciting magnetic path becomes large during normal operation. The magnetic gap in the exciting magnetic path is made large so that the magnetic resistance in the exciting magnetic path becomes small when the magnetization state of the field magnet is changed by the exciting coil. Rotating electrical machine system characterized by 請求項1記載の回転電機システムに於いて,主磁路の磁気抵抗より励磁磁路の磁気抵抗が大に設定されていることを特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the magnetic resistance of the exciting magnetic path is set larger than the magnetic resistance of the main magnetic path. 請求項1記載の回転電機システムに於いて,界磁磁石から磁性体突極に至る磁路は界磁磁石に接する磁性体より渦電流損を大とする構成を有して交流磁束が通り難いよう構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the magnetic path from the field magnet to the magnetic salient pole has a configuration in which the eddy current loss is larger than that of the magnetic material in contact with the field magnet, and AC magnetic flux is difficult to pass. Rotating electrical machine system characterized by being configured 請求項1記載の回転電機システムに於いて,励磁コイルには界磁磁石の磁化状態変更の為の磁化電流を供給する回路に加えて磁束調整回路が接続され,磁束調整回路は界磁磁石に不可逆的な磁化変化を生ぜしめない程度の磁束調整電流を励磁コイルに供給し,誘起された磁束を界磁磁石からの磁束に重畳して電機子を流れる磁束量を調整する事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein a magnetic flux adjusting circuit is connected to the exciting coil in addition to a circuit for supplying a magnetizing current for changing the magnetization state of the field magnet, and the magnetic flux adjusting circuit is connected to the field magnet. A magnetic flux adjustment current that does not cause irreversible magnetization changes is supplied to the exciting coil, and the amount of magnetic flux that flows through the armature is adjusted by superimposing the induced magnetic flux on the magnetic flux from the field magnet. Rotating electrical machine system 請求項1記載の回転電機システムに於いて,回転子側に配置された表面磁極部が電機子と径方向に対向して配置され,隣接する磁性体突極は互いに軸と平行の異なる方向に延伸されて延長部分は延長方向により第一延長部,第二延長部とされ,励磁部は回転子内に配置され,第一延長部,第二延長部を介して隣接する磁性体突極が互いに異極に磁化するよう構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the surface magnetic pole portion disposed on the rotor side is disposed to face the armature in a radial direction, and adjacent magnetic salient poles are in different directions parallel to the axis. The extended part is made into a first extension part and a second extension part according to the extension direction, the excitation part is arranged in the rotor, and adjacent magnetic salient poles are arranged through the first extension part and the second extension part. Rotating electrical machine system characterized by being configured to magnetize with different polarities 請求項1記載の回転電機システムに於いて,回転子側に配置された表面磁極部が電機子と径方向に対向して配置され,電機子はさらに磁気ヨークを有し,隣接する磁性体突極は互いに軸と平行の異なる方向に延伸されて延長部分は延長方向により第一延長部,第二延長部とされ,回転子両端の静止側に配置された二つの励磁部は第一延長部と磁気ヨーク間,第二延長部と磁気ヨーク間にそれぞれ磁束を供給し,隣接する磁性体突極が互いに異極に磁化するよう構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the surface magnetic pole portion disposed on the rotor side is disposed to face the armature in a radial direction, the armature further including a magnetic yoke, and adjacent magnetic material protrusions. The poles are extended in different directions parallel to the axis, the extension part is defined as the first extension part and the second extension part according to the extension direction, and the two excitation parts arranged on the stationary side at both ends of the rotor are the first extension part. The rotating electrical machine system is configured to supply magnetic flux between the magnetic yoke and the magnetic yoke and between the second extension and the magnetic yoke so that the adjacent magnetic salient poles are magnetized differently from each other. 請求項1記載の回転電機システムに於いて,回転子側に配置された表面磁極部が電機子と径方向に対向して配置され,隣接する磁性体突極は互いに軸と平行の一方向,内径方向にそれぞれ延伸されて延長部分は延長方向により第一延長部,第二延長部とされ,回転子端の静止側に配置された励磁部は第一延長部と第二延長部間に磁束を供給し,隣接する磁性体突極が互いに異極に磁化するよう構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the surface magnetic pole portion disposed on the rotor side is disposed to face the armature in the radial direction, and the adjacent magnetic salient poles are in one direction parallel to the axis, The extension portions are respectively extended in the inner diameter direction into first extension portions and second extension portions according to the extension direction, and the excitation portion arranged on the stationary side of the rotor end has a magnetic flux between the first extension portion and the second extension portion. Rotating electrical machine system, characterized in that adjacent magnetic salient poles are magnetized differently from each other 請求項1記載の回転電機システムに於いて,回転子側に配置された表面磁極部が電機子と径方向に対向して電機子の外周側に配置され,隣接する磁性体突極は互いに軸と平行の異なる方向に延伸されて延長部分は延長方向により第一延長部,第二延長部とされ,励磁部は電機子の内周領域に配置され,第一延長部,第二延長部に微小間隙を介して磁気的に結合され,隣接する磁性体突極が互いに異極に磁化するよう構成される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the surface magnetic pole portion disposed on the rotor side is disposed on the outer peripheral side of the armature so as to face the armature in the radial direction, and the adjacent magnetic salient poles are mutually axial. The extension part is made into the first extension part and the second extension part according to the extension direction, and the excitation part is arranged in the inner peripheral region of the armature, and is extended to the first extension part and the second extension part. Rotating electrical machine system characterized by being configured to be magnetically coupled via a minute gap so that adjacent magnetic salient poles are magnetized differently from each other 請求項1から請求項16記載の何れかの回転電機システムに於いて,さらに制御装置を有し,回転力を入力とし,発電電力を出力とする回転電機システムであって,電機子コイルに誘起される発電電圧が所定の値より大の時は制御装置により界磁磁石内の第一磁化の磁極面積を減じるよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて第一磁化の磁極面積を減じて電機子を流れる磁束量が小とされ,電機子コイルに誘起される発電電圧が所定の値より小の時は制御装置により界磁磁石内の第一磁化の磁極面積を増すよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて第一磁化の磁極面積を増して電機子を流れる磁束量が大とされ,発電電圧が所定の値に制御される事を特徴とする回転電機システム 17. The rotary electric machine system according to claim 1, further comprising a control device, wherein the rotary electric machine system receives a rotational force as an input and outputs a generated power as an output. When the generated voltage is larger than a predetermined value, the control device supplies a magnetizing current having a polarity for magnetizing the field magnet to the exciting coil so as to reduce the magnetic pole area of the first magnet in the field magnet. When the generated magnetic voltage induced in the armature coil is smaller than a predetermined value, the control device reduces the magnetic pole area of the first magnetization in the field magnet. A magnetizing current having a polarity for magnetizing the field magnet is supplied to the exciting coil so as to increase the magnetic pole area of the first magnetization, the amount of magnetic flux flowing through the armature is increased, and the generated voltage is controlled to a predetermined value. Rotating electrical machine system characterized by 請求項1から請求項16記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,回転速度が所定の値より大で電機子を流れる磁束量を減少させる時には制御装置により界磁磁石内の第一磁化の磁極面積を減じるよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて第一磁化の磁極面積を減じて電機子を流れる磁束量が小とされ,回転速度が所定の値より小で電機子を流れる磁束量を増大させる時には制御装置により界磁磁石内の第一磁化の磁極面積を増すよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて第一磁化の磁極面積を増して電機子を流れる磁束量が大とされ,回転力が最適に制御される事を特徴とする回転電機システム The rotating electrical machine system according to any one of claims 1 to 16, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output. When the rotational speed is greater than a predetermined value and the amount of magnetic flux flowing through the armature is decreased, a magnetizing current having a polarity for magnetizing the field magnet is applied to the exciting coil so as to reduce the magnetic pole area of the first magnetization in the field magnet by the control device. The amount of magnetic flux flowing through the armature is reduced by reducing the magnetic pole area of the first magnetization, and when the rotational speed is lower than a predetermined value and the amount of magnetic flux flowing through the armature is increased, the controller The magnetizing current of the polarity that magnetizes the field magnet is supplied to the exciting coil so as to increase the magnetic pole area of the first magnetization, the magnetic pole area of the first magnetization is increased, the amount of magnetic flux flowing through the armature is increased, and the rotational force is optimal It is characterized by being controlled by Rotating electric machine system 請求項1から請求項16記載の何れかの回転電機システムに於いて,さらに制御装置を有し,電機子コイルへの供給電流を入力とし,回転力を出力とする回転電機システムであって,回転速度を減少させる場合には制御装置により界磁磁石内の第一磁化に属する磁極面積を増すよう界磁磁石を磁化する極性の磁化電流が励磁コイルに供給されて第一磁化の磁極面積を増して電機子を流れる磁束量が大とされ,回転エネルギーが発電電力として取り出される事を特徴とする回転電機システム The rotating electrical machine system according to any one of claims 1 to 16, further comprising a control device, wherein the current supplied to the armature coil is input and the rotational force is output. When the rotational speed is decreased, a magnetizing current having a polarity for magnetizing the field magnet is supplied to the exciting coil so as to increase the area of the magnetic pole belonging to the first magnetization in the field magnet by the control device. Increasingly, the amount of magnetic flux flowing through the armature is increased, and rotational energy is extracted as generated power. 電機子コイルを有する電機子と,電機子と対向して周方向に配置された複数の磁性体突極を有する表面磁極部と,同種の極性に磁化されるべき磁性体突極グループ毎に一括して磁化する励磁部とを有し,表面磁極部と電機子とは軸を中心に相対的に回転可能である回転電機装置の磁束量制御方法であって,励磁部は界磁磁石及び界磁磁石の磁化を変更する励磁コイルを有し,前記界磁磁石のN極或いはS極の何れか一方の磁極から流れる磁束が磁性体突極及び電機子を介して界磁磁石の他方の磁極に環流する主磁路と,励磁コイルを流れる電流により生起された磁束が界磁磁石を含んで主として励磁部内で環流する励磁磁路とを界磁磁石に並列に接続し,励磁コイルに磁化電流を供給して界磁磁石の磁化状態を不可逆的に変えて電機子を流れる磁束量を制御する磁束量制御方法 An armature having an armature coil, a surface magnetic pole portion having a plurality of magnetic salient poles arranged in the circumferential direction facing the armature, and a magnetic salient pole group to be magnetized to the same polarity A magnetic flux amount control method for a rotating electrical machine apparatus in which the surface magnetic pole part and the armature are relatively rotatable about an axis, wherein the excitation part includes a field magnet and a field magnet. An exciting coil for changing the magnetization of the magnet, and the magnetic flux flowing from either the N pole or the S pole of the field magnet is passed through the magnetic salient pole and armature to the other pole of the field magnet. The main magnetic path circulating in the magnet and the magnetic flux generated by the current flowing through the exciting coil, including the field magnet, mainly circulating in the exciting section are connected in parallel to the field magnet, and the magnetizing current is connected to the exciting coil. To flow the armature by irreversibly changing the magnetization state of the field magnet Flux amount control method of controlling the magnetic flux amount 請求項20記載の磁束量制御方法に於いて,界磁磁石は磁化の容易さが異なる磁石要素を並列に接続して構成する磁束量制御方法 21. A magnetic flux amount control method according to claim 20, wherein the field magnet is formed by connecting in parallel magnet elements having different ease of magnetization. 請求項20記載の磁束量制御方法に於いて,界磁磁石の磁化状態を変更しない程度の磁束調整電流を励磁コイルに供給し,生起された磁束を界磁磁石からの磁束に重畳して電機子を流れる磁束量を調整する磁束量制御方法 21. The magnetic flux amount control method according to claim 20, wherein a magnetic flux adjustment current that does not change a magnetization state of the field magnet is supplied to the exciting coil, and the generated magnetic flux is superimposed on the magnetic flux from the field magnet. Magnetic flux amount control method for adjusting the amount of magnetic flux flowing through a child 請求項20記載の磁束量制御方法に於いて,界磁磁石を磁化変更に必要な磁界強度が互いに異なる第一界磁磁石及び第二界磁磁石の並列接続で構成し,励磁コイルは第一界磁磁石及び第二界磁磁石が直列となる閉磁路に磁束を発生させる磁束量制御方法 21. The magnetic flux amount control method according to claim 20, wherein the field magnet is configured by parallel connection of a first field magnet and a second field magnet having different magnetic field strengths necessary for magnetization change, and the exciting coil is the first coil. Magnetic flux amount control method for generating magnetic flux in closed magnetic path in which field magnet and second field magnet are in series 請求項20記載の磁束量制御方法に於いて,界磁磁石から磁性体突極に至る磁路は渦電流損を大として交流磁束が通り難い構成を有する磁束量制御方法 21. A magnetic flux amount control method according to claim 20, wherein the magnetic path from the field magnet to the magnetic salient pole has a configuration in which an eddy current loss is large and an alternating magnetic flux is difficult to pass.
JP2009000617A 2008-06-30 2009-01-06 Magnetic excitation variable magnetic rotating machine system with magnet excitation Expired - Fee Related JP4337989B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000617A JP4337989B1 (en) 2008-06-30 2009-01-06 Magnetic excitation variable magnetic rotating machine system with magnet excitation

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008170090 2008-06-30
JP2008211565 2008-08-20
JP2008281057 2008-10-31
JP2008325117 2008-12-22
JP2009000617A JP4337989B1 (en) 2008-06-30 2009-01-06 Magnetic excitation variable magnetic rotating machine system with magnet excitation

Publications (2)

Publication Number Publication Date
JP4337989B1 JP4337989B1 (en) 2009-09-30
JP2010172046A true JP2010172046A (en) 2010-08-05

Family

ID=41190711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000617A Expired - Fee Related JP4337989B1 (en) 2008-06-30 2009-01-06 Magnetic excitation variable magnetic rotating machine system with magnet excitation

Country Status (1)

Country Link
JP (1) JP4337989B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099096A (en) * 2011-10-31 2013-05-20 Asmo Co Ltd Rotor and motor
US20130300242A1 (en) * 2010-11-19 2013-11-14 Asmo Co., Ltd. Rotor and motor
JP2014110759A (en) * 2012-12-03 2014-06-12 New Motech Co Ltd Variable magnetic flux motor
KR101754038B1 (en) 2016-09-08 2017-07-04 홍성도 A Hub Motor of Electric Automobile

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649625B1 (en) * 2009-10-13 2011-03-16 有限会社クラ技術研究所 Magnetic flux variable rotating electrical machine system
JP5647307B1 (en) * 2013-06-04 2014-12-24 成田 憲治 DC excitation field synchronous motor
CN108418368B (en) * 2018-04-13 2023-12-29 山东大学 Double-rotor hybrid excitation permanent magnet synchronous motor and method thereof
JP2022554183A (en) * 2019-10-25 2022-12-28 ヤコビ モータース エルエルシー Method for magnetizing and controlling a variable flux memory motor
JP2022013088A (en) * 2020-07-03 2022-01-18 聯文 ▲とう▼ Magnetic explosion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130300242A1 (en) * 2010-11-19 2013-11-14 Asmo Co., Ltd. Rotor and motor
US9502929B2 (en) 2010-11-19 2016-11-22 Asmo Co., Ltd. Rotor and motor
JP2013099096A (en) * 2011-10-31 2013-05-20 Asmo Co Ltd Rotor and motor
JP2014110759A (en) * 2012-12-03 2014-06-12 New Motech Co Ltd Variable magnetic flux motor
KR101754038B1 (en) 2016-09-08 2017-07-04 홍성도 A Hub Motor of Electric Automobile

Also Published As

Publication number Publication date
JP4337989B1 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4403253B1 (en) Magnetic flux amount variable axial gap rotating electrical machine system
JP4337989B1 (en) Magnetic excitation variable magnetic rotating machine system with magnet excitation
US8207645B2 (en) Magnetic flux controllable rotating electric machine system
JP4649625B1 (en) Magnetic flux variable rotating electrical machine system
CN102067412B (en) Permanent magnet type rotating electric machine
JP4707696B2 (en) Axial gap type motor
WO2010127469A1 (en) Ac elelctric machine with claw poles
JP2008289300A (en) Permanent-magnet rotary electric machine
JP6158022B2 (en) Rotating electric machine and vehicle
JP6539004B1 (en) Rotor and rotating electric machine
JP2012175738A (en) Permanent magnet type rotary electric machine
JP4735772B1 (en) Magnet excitation rotating electrical machine system
JP2011050186A (en) Variable magnetic flux rotating electric machine system
JP2012165540A (en) Rotary electric machine
JP2011182622A (en) Magnetic flux volume variable rotary electric machine system
JP2009005445A (en) Field control electromagnetic rotation system
JPH10304633A (en) Synchronous rotary machine using permanent magnet and method for driving it
JP2008312307A (en) Field-control electromagnetic rotation system
JP4599523B2 (en) Field-controlled electromagnetic rotation system
JP4403252B1 (en) Magnetic flux variable rotating electrical machine system
JP2010093929A (en) Axial gap-type motor
JP2016140219A (en) Rotary electric machine
JP4238298B1 (en) Magnetic flux shunt control rotating electrical machine system
JP2011072173A (en) Magnetic flux amount variable rotary electric machine system
JP2020141554A (en) Permanent magnet type motor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees