JP2002044889A - 3-axis anistropic one-body permanent magnet and rotating machine - Google Patents
3-axis anistropic one-body permanent magnet and rotating machineInfo
- Publication number
- JP2002044889A JP2002044889A JP2001098590A JP2001098590A JP2002044889A JP 2002044889 A JP2002044889 A JP 2002044889A JP 2001098590 A JP2001098590 A JP 2001098590A JP 2001098590 A JP2001098590 A JP 2001098590A JP 2002044889 A JP2002044889 A JP 2002044889A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- rotating machine
- anisotropic
- magnet
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Brushless Motors (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は3軸異方性を有する
アークセグメント形状の永久磁石に関する。また本発明
は前記永久磁石を用いて構成した高性能の回転機に関す
る。The present invention relates to an arc segment-shaped permanent magnet having triaxial anisotropy. The present invention also relates to a high-performance rotating machine configured using the permanent magnet.
【0002】[0002]
【従来の技術】永久磁石界磁方式の回転機効率を左右す
る空隙磁束密度波形、有効磁束量は界磁磁石の形状およ
び磁気異方性の付与パターンにより大きく変化する。特
開平11-285185号公報には、図11に示される、回転子コ
ア(磁石埋設型界磁鉄心;以下コアと記す)10に断面バ
スタブ曲線形状の永久磁石11(例えばフェライト磁石)
が4つ、その断面バスタブ曲線形状の底部(凸部)を中
心孔4に向けて埋設し、構成された3相4極の永久磁石
界磁型電動機の記載がある。永久磁石11は回転子コア10
の径方向に磁気配向したものである。しかし、本発明者
らの検討によれば、後述の比較例2に示す通り、特開平
11-285185号公報に記載の磁気配向を有する永久磁石11
を用いて回転機を構成した場合、昨今の回転機の高性能
化(高効率化)の要求を十分に満足できず、改良の余地
があることがわかった。2. Description of the Related Art The air gap magnetic flux density waveform and the effective magnetic flux which affect the efficiency of a rotating machine of a permanent magnet field type greatly vary depending on the shape of a field magnet and a pattern for imparting magnetic anisotropy. Japanese Patent Application Laid-Open No. 11-285185 discloses a permanent magnet 11 (for example, a ferrite magnet) having a bathtub curve shape in cross section on a rotor core (magnet-embedded field core; hereinafter referred to as a core) 10 shown in FIG.
There is a description of a three-phase four-pole permanent magnet field type electric motor in which four bottoms (projections) having a bathtub curve shape in section are buried toward the center hole 4. The permanent magnet 11 is the rotor core 10
Are magnetically oriented in the radial direction. However, according to the study by the present inventors, as shown in Comparative Example 2 described later,
Permanent magnet 11 having a magnetic orientation described in 11-285185
It was found that when a rotating machine was constructed using the above, the demand for higher performance (higher efficiency) of the recent rotating machine could not be sufficiently satisfied, and there was room for improvement.
【0003】[0003]
【発明が解決しようとする課題】したがって、本発明が
解決しようとする課題は、従来に比べて高効率の回転機
を構成できる3軸異方性一体形永久磁石およびそれを用
いた回転機を提供することである。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a three-axis anisotropic integrated permanent magnet which can constitute a rotating machine with higher efficiency than the conventional one, and a rotating machine using the same. To provide.
【0004】[0004]
【問題を解決するための手段】上記課題を解決した本発
明の3軸異方性一体形永久磁石は、3軸異方性を有する
アークセグメント形状の永久磁石であって、図3に示す
ように、前記永久磁石の両端の1軸異方性部分の中心位
置P1およびP3、ならびに中央の1軸異方性部分の中
心位置P2を実質的に結ぶ線が形成する円弧の半径をR
Kとするとともに、位置P1、P2およびP3からそれ
ぞれの磁化方向M1、M2およびM3を内径側に延長し
てそれらが交差する位置Qを求め、位置Qと位置P2と
のなす間隔をRMとしたとき、RK≧RMであることを
特徴とする。RK≧RMである場合に従来に比べて回転
機の効率を高めることができる。前記3軸異方性一体形
永久磁石は一体ものなので回転機への組み込み性に優れ
ており、工業生産効率の向上に寄与することができる。
前記3軸異方性一体形永久磁石を焼結磁石で形成すると
回転機効率をより高められるので好ましく、特に前記3
軸異方性一体形永久磁石が、下記一般式: (A1−xRx)O・n[(Fe1−yMy)2O3](原
子比率) (ただし、AはSrおよび/またはBaであり、RはL
a,Nd,PrおよびCeのうちの少なくとも1種であ
り、Rに占めるLaの比率が30原子%以上であり、Mは
CoまたはCoおよびZnであり、x、yおよびnはそ
れぞれ下記条件: 0.01≦x≦0.4, 0.005≦y≦0.04,および 5≦n≦6.2 を満たす数字である。)により表される基本組成を有
し、実質的にマグネトプランバイト型結晶構造を有する
フェライト磁石からなる場合の実用性が高い。RにはL
a,Nd,PrおよびCeのうちの少なくとも1種以外
の不可避の希土類元素(Yを含む)を含むことが許容さ
れる。実用に耐える磁気特性を具備するためにx,yお
よびnをそれぞれ0.01≦x≦0.4,0.005≦y≦0.04およ
び5≦n≦6.2 にするとともにRに占めるLaの比率
を30原子%以上にするのが好ましく、Rに占めるLaの
比率を50原子%以上にするのがより好ましい。モル比n
は5〜6.2とする必要があり、5.5〜6.1がより好まし
く、5.7〜6.0が特に好ましい。nが6.2超ではマグネト
プランバイト相以外の異相(α−Fe2O3等)の存在により
固有保磁力iHcが大きく低下し、nが5未満では残留磁
束密度Brが大きく低下する。xは0.01〜0.4が好まし
く、0.1〜0.3がより好ましく、0.15〜0.25が特に好まし
い。xが0.01未満では添加効果を得られず、0.4超では
逆に磁気特性が低下する。yとxとの間には電荷補償の
ために理想的には y=x/(2.0n)の関係が成立する必
要があるが、yがx/(2.6n)以上、x/(1.6n)以
下であれば高いBrおよび高い減磁曲線の角形比を具備す
る3軸異方性一体形フェライト焼結磁石を作製可能であ
る。なお、yがx/(2.0n)からずれた場合、Fe2+
を含む場合があるが、何ら支障はない。典型的な例で
は、yの好ましい範囲は0.04以下であり、特に0.005〜
0.03である。緻密なフェライト焼結磁石を得るために焼
結性を制御する添加物としてSiO2およびCaOを所定量含
有することが実用上極めて重要である。 SiO2は焼結時
の結晶粒成長を抑制する添加物であり、3軸異方性一体
形フェライト焼結磁石の総重量を100重量%としてSiO2
含有量を0.05〜0.55重量%とするのが好ましく、0.25〜
0.50重量%とするのがより好ましい。SiO2含有量が0.05
重量%未満では焼結時に結晶粒成長が過度に進行し保磁
力が大きく低下し、0.55重量%超では結晶粒成長が過度
に抑制され結晶粒成長による配向度の改善が不十分とな
りBrが大きく低下する。CaOは結晶粒成長を促進する添
加物であり、3軸異方性一体形フェライト焼結磁石の総
重量を100重量%としてCaO含有量を0.35〜1.5重量%に
するのが好ましく、0.4〜1.0重量%にするのがより好ま
しく、0.5〜0.9重量%にするのが特に好ましい。CaO含
有量が1.5重量%超では焼結時に結晶粒成長が過度に進
行し、保磁力が大きく低下し、0.35重量%未満では結晶
粒成長が過度に抑制され、結晶粒成長による配向度の改
善が不十分となりBrが大きく低下する。また5.7≦n≦
6.2,0.2≦x≦0.3および1.0<x/2ny≦1.3 というR
過剰の基本成分組成を選択し、かつCaO含有量が0.5〜0.
9重量%及びSiO2含有量が0.25〜0.55重量%のときに従
来に比べて減磁曲線の角形比を顕著に高めることができ
るので最も好ましい。本発明の3軸異方性一体形フェラ
イト焼結磁石が前記基本組成を有し、M元素がCoおよ
びZnからなる場合、室温のiHcを279kA/m(3.5kOe)以
上とし耐熱性を具備するために、[Co/(Co+Z
n)]比率を50〜90原子%にするのが好ましく、70〜90
原子%にするのがより好ましい。Co含有量が90原子%
超ではZnの含有によるBrの向上効果が事実上得られ
ず、Co含有量が50原子%未満では室温のiHcで279kA/m
(3.5kOe)以上を得られなくなる。本発明の3軸異方性
一体形永久磁石が実質的にマグネトプランバイト型結晶
構造を有するフェライト焼結磁石からなるとき、実質的
にマグネトプランバイト型結晶構造を有するとは磁気特
性発現相がマグネトプランバイト相のみの場合に限定さ
れず、主相がマグネトプランバイト相である場合を包含
する。A three-axis anisotropic integral permanent magnet of the present invention which has solved the above-mentioned problems is an arc segment-shaped permanent magnet having triaxial anisotropy, as shown in FIG. The radius of an arc formed by a line substantially connecting the center positions P 1 and P 3 of the uniaxially anisotropic portions at both ends of the permanent magnet and the center position P 2 of the central uniaxially anisotropic portion is defined as R
With a K, determine the position Q where they intersect the position P 1, P 2 and P 3 from the respective magnetization directions M 1, M 2 and M 3 by extending the inner diameter side, and the position Q and the position P 2 when forming interval was defined as R M, characterized in that it is a R K ≧ R M. As compared with the conventional in the case of R K ≧ R M can increase the efficiency of the rotating machine. Since the three-axis anisotropic integrated permanent magnet is a single body, it is excellent in incorporation into a rotating machine, and can contribute to improvement of industrial production efficiency.
It is preferable that the three-axis anisotropic integrated permanent magnet is formed of a sintered magnet because the efficiency of the rotating machine can be further improved.
The axially anisotropic integrated permanent magnet has the following general formula: (A 1−x R x ) On · ([Fe 1− y My ) 2 O 3 ] (atomic ratio) (where A is Sr and / or Or Ba and R is L
at least one of a, Nd, Pr and Ce, wherein the ratio of La in R is 30 atomic% or more, M is Co or Co and Zn, and x, y and n are the following conditions, respectively: It is a number that satisfies 0.01 ≦ x ≦ 0.4, 0.005 ≦ y ≦ 0.04, and 5 ≦ n ≦ 6.2. ) Is highly practical when it is made of a ferrite magnet substantially having a magnetoplumbite type crystal structure having a basic composition represented by L for R
It is allowed to contain unavoidable rare earth elements (including Y) other than at least one of a, Nd, Pr and Ce. X, y and n are set to 0.01 ≦ x ≦ 0.4, 0.005 ≦ y ≦ 0.04 and 5 ≦ n ≦ 6.2, respectively, and the ratio of La occupying R is set to 30 atomic% or more in order to have magnetic properties that can withstand practical use. It is more preferable that the ratio of La to R be 50 atomic% or more. Molar ratio n
Must be 5 to 6.2, more preferably 5.5 to 6.1, and particularly preferably 5.7 to 6.0. When n exceeds 6.2, the intrinsic coercive force iHc greatly decreases due to the presence of a different phase (such as α-Fe 2 O 3 ) other than the magnetoplumbite phase, and when n is less than 5, the residual magnetic flux density Br greatly decreases. x is preferably 0.01 to 0.4, more preferably 0.1 to 0.3, and particularly preferably 0.15 to 0.25. If x is less than 0.01, the effect of addition cannot be obtained, and if it exceeds 0.4, the magnetic properties deteriorate. Ideally, the relationship of y = x / (2.0n) needs to be established between y and x for charge compensation. However, when y is x / (2.6n) or more, x / (1.6n) If) or less, a triaxial anisotropic integrated ferrite sintered magnet having a high Br and a high demagnetization curve squareness ratio can be produced. When y deviates from x / (2.0n), Fe 2+
May be included, but there is no problem. In a typical example, the preferred range of y is 0.04 or less, especially 0.005 to
0.03. In order to obtain a dense sintered ferrite magnet, it is extremely important in practice to contain predetermined amounts of SiO 2 and CaO as additives for controlling the sinterability. SiO 2 is a additive inhibit grain growth during sintering, SiO 2 on the total weight of the 3-axis anisotropic integral ferrite sintered magnet as 100 wt%
Preferably, the content is 0.05 to 0.55% by weight, and 0.25 to
More preferably, it is 0.50% by weight. SiO 2 content 0.05
If the amount is less than 0.5% by weight, the crystal grain growth proceeds excessively during sintering, and the coercive force is greatly reduced. descend. CaO is an additive that promotes crystal grain growth, and preferably has a CaO content of 0.35 to 1.5% by weight based on a total weight of the triaxial anisotropic integrated ferrite sintered magnet of 100% by weight, and 0.4 to 1.0% by weight. %, More preferably from 0.5 to 0.9% by weight. If the CaO content exceeds 1.5% by weight, crystal grain growth proceeds excessively during sintering, and the coercive force greatly decreases. If the content is less than 0.35% by weight, crystal grain growth is excessively suppressed and the degree of orientation is improved by crystal grain growth. Is insufficient and Br is greatly reduced. 5.7 ≦ n ≦
6.2, 0.2 ≦ x ≦ 0.3 and 1.0 <x / 2ny ≦ 1.3 R
Excess basic component composition is selected, and CaO content is 0.5-0.
When the content of SiO 2 is 9% by weight and the content of SiO 2 is 0.25 to 0.55% by weight, the squareness ratio of the demagnetization curve can be remarkably increased as compared with the conventional case. When the triaxial anisotropic integral ferrite sintered magnet of the present invention has the above basic composition and the M element is composed of Co and Zn, the room temperature iHc is set to 279 kA / m (3.5 kOe) or more, and heat resistance is provided. Therefore, [Co / (Co + Z
n)] The ratio is preferably 50 to 90 atomic%, and 70 to 90 atomic%.
More preferably, it is set to atomic%. 90 atomic% Co content
If the content is higher than the above, the effect of improving Br by the inclusion of Zn is practically not obtained, and if the Co content is less than 50 atomic%, iHc at room temperature is 279 kA / m2.
(3.5 kOe) or more cannot be obtained. When the three-axis anisotropic integral permanent magnet of the present invention is substantially composed of a ferrite sintered magnet having a magnetoplumbite crystal structure, it is considered that the magnet substantially has a magnetoplumbite crystal structure when the phase exhibiting magnetic properties is It is not limited to the case where only the magnetoplumbite phase is used, but includes the case where the main phase is the magnetoplumbite phase.
【0005】また本発明の回転機は、3軸異方性を有す
るアークセグメント形状の永久磁石を用いた回転機であ
って、前記永久磁石の両端の1軸異方性部分の中心位置
P1およびP3、ならびに中央の1軸異方性部分の中心
位置P2を実質的に結ぶ線が形成する円弧の半径をRK
とするとともに、位置P1、P2およびP3からそれぞ
れの磁化方向M1、M2およびM3を内径側に延長して
それらが交差する位置Qを求め、位置Qと位置P2との
なす間隔をRMとしたとき、RK≧RMであることを特
徴とする。従来の界磁磁石を用いた回転機に比べて、本
発明の回転機では隣り合う界磁磁石間の漏洩磁束を少な
く抑えられるので有効磁束量(効率)が高められ、同時
に回転機の性能向上に好適な空隙磁束密度分布波形を得
られる。特に、本発明の回転機の磁極数が4極または6
極であり、かつ前記3軸異方性一体形永久磁石が、下記
一般式: (A1−xRx)O・n[(Fe1−yMy)2O3](原
子比率) (ただし、AはSrおよび/またはBaであり、RはL
a,Nd,PrおよびCeのうちの少なくとも1種であ
り、Rに占めるLaの比率が30原子%以上であり、Mは
CoまたはCoおよびZnであり、x、yおよびnはそ
れぞれ下記条件: 0.01≦x≦0.4, 0.005≦y≦0.04,および 5≦n≦6.2 を満たす数字である。)により表される基本組成を有
し、実質的にマグネトプランバイト型結晶構造を有する
フェライト磁石の場合の実用性が高い。Further, the rotating machine of the present invention is a rotating machine using an arc segment-shaped permanent magnet having triaxial anisotropy, wherein a center position P 1 of a uniaxial anisotropic portion at both ends of the permanent magnet is provided. and P 3, as well as the radius of the circular arc substantially connecting line forms a center position P 2 of the uniaxial anisotropy portion of the central R K
From the positions P 1 , P 2, and P 3 , the respective magnetization directions M 1 , M 2, and M 3 are extended toward the inner diameter side to obtain a position Q at which they intersect, and the position Q and the position P 2 when the Nasu interval and R M, characterized in that it is a R K ≧ R M. Compared to a conventional rotary machine using field magnets, the rotating machine of the present invention can reduce the amount of leakage magnetic flux between adjacent field magnets, thereby increasing the effective magnetic flux (efficiency) and simultaneously improving the performance of the rotary machine. A suitable air gap magnetic flux density distribution waveform can be obtained. In particular, the rotating machine of the present invention has four magnetic poles or six magnetic poles.
The pole and the three-axis anisotropic integral permanent magnet are represented by the following general formula: (A 1-x R x ) On · ([Fe 1- y My ) 2 O 3 ] (atomic ratio) ( Where A is Sr and / or Ba, and R is L
at least one of a, Nd, Pr and Ce, wherein the ratio of La in R is 30 atomic% or more, M is Co or Co and Zn, and x, y and n are the following conditions, respectively: It is a number that satisfies 0.01 ≦ x ≦ 0.4, 0.005 ≦ y ≦ 0.04, and 5 ≦ n ≦ 6.2. ), And has high practicality in the case of a ferrite magnet substantially having a magnetoplumbite type crystal structure.
【0006】[0006]
【発明の実施の形態】本発明の3軸異方性一体形永久磁
石は公知の異方性バルク磁石材料またはボンド磁石材料
を用いて形成できるが、異方性焼結磁石材料で形成する
のがより好ましい。例えば3軸異方性一体形永久磁石を
マグネトプランバイト型結晶構造相を主相とするフェラ
イト磁石(Srフェライト磁石等)またはR’2Fe
14B金属間化合物を主相とするR’−Fe−B系焼結
磁石(R’はYを含む希土類元素の少なくとも1種であ
り、かつNd、PrおよびDyのうちの少なくとも1種
を含む)で形成したものが実用性に富んでいる。3軸異
方性を有する一体形の焼結磁石またはボンド磁石を製造
するに際し、3軸異方性の付与は、磁場中成形用金型構
造を工夫し、磁場中成形工程において最終製品の3軸異
方性一体形永久磁石の磁化方向に対応する配向磁場を印
加することにより行う。DESCRIPTION OF THE PREFERRED EMBODIMENTS The three-axis anisotropic integral permanent magnet of the present invention can be formed using a known anisotropic bulk magnet material or a bonded magnet material. Is more preferred. For example, a ferrite magnet (Sr ferrite magnet or the like) having a triaxial anisotropic integrated permanent magnet whose main phase is a magnetoplumbite crystal structure phase, or R ′ 2 Fe
R'-Fe-B based sintered magnet having a 14B intermetallic compound as a main phase (R 'is at least one kind of rare earth element including Y and contains at least one kind of Nd, Pr and Dy ) Is practical. In producing an integral sintered magnet or a bonded magnet having triaxial anisotropy, the imparting of triaxial anisotropy is performed by devising a mold structure for molding in a magnetic field and forming a final product in a molding step in a magnetic field. This is performed by applying an orientation magnetic field corresponding to the magnetization direction of the axially anisotropic integrated permanent magnet.
【0007】以下、本発明を図面および実施例により詳
細に説明するが、それらにより本発明が限定されるもの
ではない。図1は本発明の回転機の一態様であるブラス
レスモータ30の要部断面図を示している。ブラスレスモ
ータ30は、回転軸23まわりに厚みが約0.5mmの強磁性
体製の薄板(けい素鋼板)を積層して形成した回転子コ
ア24および回転子コア24中に埋設された3軸異方性一体
形永久磁石25a、25b、25cおよび25dを配置して構成され
た回転子20と、エアギャップ28を介して対向する固定子
21を具備して構成されている。3軸異方性一体形永久磁
石25a、25b、25cおよび25dの磁気異方性は矢印(それぞ
れM1、M2およびM3)方向に付与されている。3軸
異方性一体形永久磁石の25aおよび25cの凸部、25bおよ
び25dの凸部が回転軸23および回転子コア24を介して対
向し、かつ隣接する界磁磁石、例えば25aおよび25b、25
aおよび25dの凸部側の端部同士が近接するように配置さ
れて、回転子20の外周面周方向に等間隔で対称4極の磁
極N,S,N,Sが形成されている。回転子20では、1
つの界磁磁石25からの磁力線がM1、M2およびM3方
向に発生し、それらが回転子20の外周面上に収束し、1
磁極を形成するようになっているので回転機の有効磁束
量(効率)を高めることができる。Hereinafter, the present invention will be described in detail with reference to the drawings and embodiments, but the present invention is not limited thereto. FIG. 1 is a sectional view of a main part of a brassless motor 30 which is an embodiment of the rotating machine of the present invention. The brassless motor 30 includes a rotor core 24 formed by laminating a ferromagnetic thin plate (silicon steel plate) having a thickness of about 0.5 mm around a rotation shaft 23, and a three-axis motor embedded in the rotor core 24. A rotor 20 configured by arranging anisotropic integrated permanent magnets 25a, 25b, 25c, and 25d, and a stator facing through an air gap 28
21. The magnetic anisotropy of the three-axis anisotropic integrated permanent magnets 25a, 25b, 25c and 25d is given in the directions of arrows (M 1 , M 2 and M 3 , respectively). The projections of the three-axis anisotropic integrated permanent magnets 25a and 25c, and the projections of 25b and 25d are opposed via the rotating shaft 23 and the rotor core 24, and are adjacent field magnets, for example, 25a and 25b. twenty five
The symmetrical four-pole magnetic poles N, S, N, and S are formed at equal intervals in the circumferential direction of the outer peripheral surface of the rotor 20 so that the protruding ends of the a and 25d are arranged close to each other. In rotor 20, 1
Lines of magnetic force from the two field magnets 25 are generated in the directions M 1 , M 2 and M 3 , converge on the outer peripheral surface of the rotor 20 and
Since the magnetic poles are formed, the effective magnetic flux amount (efficiency) of the rotating machine can be increased.
【0008】図2の斜視図に示される3軸異方性一体形
永久磁石25において、T1は中央の1軸異方性部分の厚
みであり、T2は両端の1軸異方性部分の厚みであり、
M1およびM3は両端の1軸異方性部分の磁気異方性付
与方向であり、M2は中央の1軸異方性部分の磁気異方
性付与方向である。X1は3軸異方性一体形永久磁石25
の凸部側の端縁の両端部分に沿う直線を延長し、それら
2つの延長線の交点Rと、交点Rから凸部平面におろし
た垂線と凸部平面とが交差する位置Sとのなす間隔であ
る。X2は3軸異方性一体形永久磁石25の側面側端縁に
沿う直線を延長し、それら2つの延長線の交点Wと、交
点Wから凹部平面におろした垂線と凹部平面とが交差す
る位置Wとのなす間隔である。θ1は凸部側の端縁の両
端部分に沿う直線を延長し、それら2つの延長線のなす
角度であり、θ2はアークセグメント25の開き角度であ
る。図3(a)は3軸異方性一体形永久磁石25が円弧で
ありかつ側面側端部に平面部34、34を形成したアークセ
グメントを示す断面図である。図3(b)は3軸異方性
一体形永久磁石25’が凸部側平面部49および凹部側平面
部45を有する形状でありかつ側面側端部に平面部44、44
を形成したアークセグメントを示す断面図である。また
図3(a)、(b)に模式的に示すように、3軸異方性
一体形永久磁石25(25’)は、異なる1軸異方性方向
(M1、M2またはM3方向)を有する3つの1軸異方
性領域31、32および33(41、42および43)から実質的に
構成されている。なお、1軸異方性領域31と32(41と4
2)の間には磁気異方性付与方向がM1→M2に変化す
る変移領域37(47)が存在し、1軸異方性領域32と33
(42と43)の間には磁気異方性付与方向がM2→M3に
変化する変移領域38(48)が存在する。しかし、これら
変移領域37、38(47、48)は1軸異方性領域31、32およ
び33(41、42および43)に比べて3軸異方性一体形永久
磁石25(25’)に占める体積比率が小さく、高効率、高
トルクの回転機の実現に有効に寄与するのは1軸異方性
領域31、32および33(41、42および43)である。3軸異
方性一体形永久磁石25(25’)における1軸異方性領域
31、32および33(41、42および43)の体積比率は、従来
に比べて回転機効率を高めるために、31:32:33(41:
42:43)=5〜45:90〜10:5〜45とするのが好まし
く、31:32:33(41:42:43)=20〜40:60〜20:20〜
40とするのがより好ましい。1軸異方性領域31、32およ
び33(41、42および43)の各々における平均した磁気異
方性付与方向がそれぞれM1、M2およびM3であり、
1軸異方性領域31、32または33(41、42または43)内に
おける磁力線の向きはそれら磁力線の向きの平均値(M
1、M2またはM3)の5°以内に入っている。また、
従来に比べて回転機効率を高めるために、磁極数が4極
の回転機を構成する場合はM1とM3の方位差を88〜12
0°とするのが好ましく、磁極数が6極の回転機を構成
する場合はM1とM3の方位差を58〜90°とするのが好
ましい。これらの場合、M1とM2の方位差あるいはM
2とM3の方位差は5°超でありかつM1およびM3の
方位差未満になるようにする。本発明の3軸異方性一体
形永久磁石を、L1=5〜30mm,0.3L2≦L1≦2.5
L2,0.7T2≦T1≦1.3T2,88°≦θ1≦120°お
よび90°≦θ2≦120°であり、かつフェライト磁石の
場合はT1=3〜9mm,R’−Fe−B系磁石の場合
はT1=1.4〜4mmの形状に形成することにより、従
来の界磁磁石を用いた場合に比べて高トルク、高効率の
回転機を構成することができる。図3(a)、(b)に
おける中心位置P1、P2またはP3は以下のようにし
て求めることができる。まず、着磁された3軸異方性一
体形永久磁石25(25’)から発生している磁力線の向き
を測定し、その測定値から1軸異方性領域31、32および
33(41、42および43)を決定する。次いで、1軸異方性
領域31、32および33(41、42および43)の各断面形状か
らそれら各断面形状を有する各剛体を想定し、各剛体の
重心位置として中心位置P1、P2またはP3を求める
ことができる。また図3(a)、(b)において、
P1、P2およびP3の3点が同一円弧上に存在しない
場合はP1、P2およびP3の3点が最も接近するよう
に回帰分析し求めた円弧を描き、RKを求めることがで
きる。また、図3(a)、(b)において、交差位置Q
が2点になる場合があるが、その場合は2点の位置Qと
位置P2とのなす間隔のうちの大きい方を用いてRMと
すればよい。[0008] In three-axis anisotropic integral permanent magnet 25 shown in the perspective view of FIG. 2, T 1 is the thickness of the uniaxial anisotropy portion of the central, T 2 is uniaxial anisotropic portion at both ends Is the thickness of
M 1 and M 3 are the directions in which the magnetic anisotropy is imparted to the uniaxially anisotropic portions at both ends, and M 2 is the direction in which the magnetic anisotropy is imparted to the central uniaxially anisotropic portion. X 1 is 3-axis anisotropic integral permanent magnet 25
A straight line extending along both end portions of the edge on the convex side is formed, and an intersection R between the two extended lines and a position S where a perpendicular drawn from the intersection R to the convex plane intersects with the convex plane are formed. The interval. X 2 is extended straight along the side face side end edge of the three-axis anisotropic integral permanent magnet 25, cross the intersection W of the two extension lines, and the perpendicular and the recess planar grated the recess plane from the intersection W is This is an interval between the position W and the position W. theta 1 is extended straight along the edge end portions of the convex portion side and the angle of the two extension lines, theta 2 is the opening angle of the arc segment 25. FIG. 3A is a cross-sectional view showing an arc segment in which the three-axis anisotropic integrated permanent magnet 25 has an arc shape and has flat portions 34, 34 formed at the side end portions. FIG. 3B shows a shape in which the three-axis anisotropic integrated permanent magnet 25 ′ has a convex-side flat portion 49 and a concave-side flat portion 45, and flat portions 44, 44 at the side end.
FIG. 4 is a cross-sectional view showing an arc segment in which is formed. Further, as schematically shown in FIGS. 3A and 3B, the three-axis anisotropic integrated permanent magnet 25 (25 ′) has different uniaxial anisotropic directions (M 1 , M 2 or M 3). (Directions) are substantially constituted by three uniaxial anisotropic regions 31, 32 and 33 (41, 42 and 43). The uniaxial anisotropic regions 31 and 32 (41 and 4
Between 2), there is a transition region 37 (47) in which the magnetic anisotropy imparting direction changes from M 1 to M 2 , and uniaxial anisotropic regions 32 and 33 exist.
Is present transition region 38 where the magnetic anisotropy imparting direction is changed to M 2 → M 3 (48) between (42 and 43). However, these transition regions 37, 38 (47, 48) are more integral with the triaxial anisotropic integrated permanent magnet 25 (25 ') than the uniaxial anisotropic regions 31, 32, and 33 (41, 42, and 43). The uniaxial anisotropic regions 31, 32, and 33 (41, 42, and 43) effectively contribute to the realization of a high-efficiency, high-torque rotating machine having a small volume ratio. Uniaxial anisotropic region in triaxial anisotropic integrated permanent magnet 25 (25 ')
The volume ratio of 31, 32 and 33 (41, 42 and 43) is 31:32:33 (41:
42:43) = 5-45: 90-10: 5-45, preferably 31:32:33 (41:42:43) = 20-40: 60-20: 20-
More preferably, it is set to 40. The average magnetic anisotropy imparting directions in each of the uniaxial anisotropic regions 31, 32 and 33 (41, 42 and 43) are M 1 , M 2 and M 3 respectively,
The direction of the magnetic field lines in the uniaxial anisotropic region 31, 32 or 33 (41, 42 or 43) is determined by the average value (M
Contains 1, M 2 or M 3) 5 ° within the to. Also,
To increase the rotating machine efficiency as compared with the conventional, if the number of magnetic poles to constitute a four-pole rotating machine misorientation of M 1 and M 3 eighty-eight to twelve
It is preferable to be 0 °, if the number of magnetic poles constitute a six-pole rotating machine is preferably a fifty-eight to ninety ° misorientation of M 1 and M 3. In these cases, the misorientation between M 1 and M 2 or M
The misorientation between 2 and M 3 should be greater than 5 ° and less than the misorientation between M 1 and M 3 . The three-axis anisotropic integrated permanent magnet of the present invention is prepared by using L 1 = 5 to 30 mm, 0.3 L 2 ≦ L 1 ≦ 2.5
L 2, 0.7T 2 ≦ T 1 ≦ 1.3T 2, 88 ° ≦ θ 1 ≦ 120 ° and 90 ° ≦ theta is 2 ≦ 120 °, and T 1 = 3~9mm For ferrite magnets, R'- In the case of the Fe-B based magnet, by forming it into a shape of T 1 = 1.4 to 4 mm, a rotating machine with higher torque and higher efficiency can be configured as compared with the case where a conventional field magnet is used. The center position P 1 , P 2 or P 3 in FIGS. 3A and 3B can be determined as follows. First, the directions of the lines of magnetic force generated from the magnetized triaxial anisotropic integrated permanent magnet 25 (25 ') are measured, and the uniaxial anisotropic regions 31, 32 and
Determine 33 (41, 42 and 43). Next, from the cross-sectional shapes of the uniaxial anisotropic regions 31, 32, and 33 (41, 42, and 43), respective rigid bodies having the respective cross-sectional shapes are assumed, and center positions P 1 and P 2 are defined as the centers of gravity of the respective rigid bodies. or P 3 can be determined. In FIGS. 3A and 3B,
If three points P 1, P 2 and P 3 are not present on the same arc in an arc determined by regression analysis, as three points P 1, P 2 and P 3 are closest, seeking R K be able to. 3 (a) and 3 (b), the intersection position Q
There they may have a two-point may be the R M using a larger of the eggplant interval if its the position Q of the two points and the position P 2.
【0009】(実施例1)図1のブラシレスモータ30の
界磁磁石として、[(Sr0.99Ba0.01)1-xLax]O・n[(Fe
1-yCoy) 2O3](原子比率)、x=0.23,y=0.016,n
=6 で示される基本組成を有し、SiO2を0.39重量%、C
aOを0.8重量%含有し、図2の形状に形成されT1=8.2
mm、T2=7.8mm、θ1=98°、θ2=110°、X1
=7mm、X2=13.8mm、軸方向長さL=84mm、R
M=16.0mmおよびRK=19.5mmの寸法を有し、マグ
ネトプランバイト型結晶構造を有する3軸異方性一体形
フェライト焼結磁石25a〜25dを作製した。これらのフェ
ライト磁石はいずれも、磁化方向M1とM2とのなす角
度が約49°であり、M 2 とM3とのなす角度が約49°
であった。室温における代表的な磁気特性(Br、保磁力
HcおよびiHc)を表1に示す。次いで、作製した前記界
磁磁石25a〜25dを着磁し、組み込んでブラシレスモータ
30を作製した。このブラシレスモータ30の有効磁束量お
よびモータ効率(相対値表示)を測定した結果を表1に
示す。また、ブラシレスモータ30に組み込んだ回転子20
の外周面に沿うエアギャップ28における周方向の磁束密
度分布を測定した結果を図4に示す。図4より、高効率
および高トルクのブラシレスモータを構成するのに好適
な略台形状の磁束密度分布波形を得られたことがわか
る。また、図4の1磁極分の磁束密度分布波形におい
て、1磁極幅をαとし、磁束密度分布波形の最大値を
(Bg)としたとき、0.9Bg〜1.0Bgである波形幅は0.6α
であった。本発明者らの関連した検討から、1磁極分の
磁束密度分布波形において、0.9Bg〜1.0Bgである波形幅
が0.5α〜0.7αのときに、従来に比べてモータ効率、ト
ルクを高められることがわかった。(Embodiment 1) The brushless motor 30 shown in FIG.
As a field magnet, [(Sr0.99Ba0.01)1-xLax] O ・ n [(Fe
1-yCoy)TwoOThree] (Atomic ratio), x = 0.23, y = 0.016, n
= 6 and SiO 2Two0.39% by weight, C
containing 0.8% by weight of aO, formed in the shape of FIG.1= 8.2
mm, T2= 7.8mm, θ1= 98 °, θ2= 110 °, X1
= 7mm, X2= 13.8mm, axial length L = 84mm, R
M= 16.0mm and RKHas dimensions of 19.5mm,
Triaxial anisotropic monolith with netoprubite-type crystal structure
Ferrite sintered magnets 25a to 25d were produced. These fe
Each of the light magnets has a magnetization direction M1And M2Angle with
Degree is about 49 °, M 2 And M3Angle of about 49 °
Met. Typical magnetic properties at room temperature (Br, coercive force
Hc and iHc) are shown in Table 1. Then, the field
Magnets 25a to 25d are magnetized and incorporated into a brushless motor
30 were produced. The effective magnetic flux of the brushless motor 30
Table 1 shows the measurement results of the motor and motor efficiency (displayed as relative values).
Show. Also, the rotor 20 incorporated in the brushless motor 30
Magnetic flux density in the air gap 28 along the outer peripheral surface of
FIG. 4 shows the result of measuring the degree distribution. From Fig. 4, high efficiency
Suitable for configuring brushless motors with high torque and high torque
It can be seen that a substantially trapezoidal magnetic flux density distribution waveform was obtained.
You. Also, in the magnetic flux density distribution waveform for one magnetic pole in FIG.
Where α is the width of one magnetic pole and the maximum value of the magnetic flux density distribution waveform is
(Bg), the waveform width from 0.9Bg to 1.0Bg is 0.6α
Met. From the related study of the present inventors, one magnetic pole
Waveform width of 0.9Bg to 1.0Bg in magnetic flux density distribution waveform
Is 0.5α to 0.7α, motor efficiency and torque
It turned out to be able to enhance Luke.
【0010】[0010]
【表1】 [Table 1]
【0011】(比較例1)実施例1のフェライト焼結磁
石と同一組成を有する、1軸異方性の台形状のフェライ
ト焼結磁石51,52および53(磁化方向はそれぞれM4、
M5およびM6)を作製した。それらをエポキシ系接着
剤で接着し、実施例1の3軸異方性一体形フェライト焼
結磁石と同一形状およびほぼ同様の磁気異方性を有する
図5の界磁磁石50を作製した。以降は、この界磁磁石50
を組み込んだ以外は実施例1と同様にして図1と同じ構
造のブラシレスモータを構成した。界磁磁石50の室温の
磁気特性、作製したブラシレスモータの有効磁束量およ
び効率を測定した結果を表1に示す。また作製したブラ
シレスモータのエアギャップにおける周方向の磁束密度
分布波形を測定した結果を図6に示す。図6において0.
9Bg〜1.0Bgになる波形幅は約0.6αであり良好であった
が、表1に示すように実施例1に比べて有効磁束量およ
びモータ効率は低くなった。本発明者らの検討から、実
施例1に比べて有効磁束量およびモータ効率が低下した
のは接着部分の影響であることがわかった。 (比較例2)図7に示すラジアル異方性を有する以外は
実施例1の3軸異方性一体形フェライト焼結磁石と同一
形状のフェライト焼結磁石(ただし、RM=22.0mmお
よびRK=19.5mm)を作製した。このフェライト磁石
を界磁磁石に用いた以外は実施例1と同様にして図1と
同じ構造のブラシレスモータを作製し、評価した。前記
フェライト磁石の室温の磁気特性、作製したブラシレス
モータの有効磁束量および効率を測定した結果を表1に
示す。また作製したブラシレスモータのエアギャップの
周方向における磁束密度分布波形を測定した結果を図8
に示す。図8において0.9Bg〜1.0Bgになる波形幅は約0.
6αで良好であったが、表1に示すように実施例1に比
べて有効磁束量およびモータ効率が低くなった。本発明
者らの検討から、実施例1に比べて有効磁束量およびモ
ータ効率が低下したのは、前記界磁磁石がラジアル異方
性を有するのでRK<RMになり、回転機の1磁極への
磁力線の収束程度が弱まったためであることがわかっ
た。 (比較例3)図9に示す平行異方性を付与した以外は実
施例1の3軸異方性一体形フェライト焼結磁石と同一形
状のフェライト焼結磁石を作製した。このフェライト磁
石を界磁磁石に用いた以外は実施例1と同様にして図1
と同じ構造のブラシレスモータを作製し、評価した。前
記フェライト磁石の室温の磁気特性、作製したブラシレ
スモータの有効磁束量および効率を測定した結果を表1
に示す。また作製したブラシレスモータのエアギャップ
における周方向の磁束密度分布波形を測定した結果を図
10に示す。図10において0.9Bg〜1.0Bgになる波形幅は約
0.74αであり、表1に示すように実施例1に比べて有効
磁束量およびモータ効率が非常に低くなった。このた
め、実施例1に比べてモータトルクが小さくなり、実施
例1と同一のモータトルクを得るために消費電力を大き
くする必要があることがわかった。(Comparative Example 1) Uniaxially anisotropic trapezoidal ferrite sintered magnets 51, 52 and 53 having the same composition as the ferrite sintered magnet of Example 1 (the magnetization direction is M 4 , respectively)
To prepare a M 5 and M 6). These were adhered with an epoxy adhesive to produce a field magnet 50 of FIG. 5 having the same shape and substantially the same magnetic anisotropy as the triaxial anisotropic integral ferrite sintered magnet of Example 1. Hereinafter, this field magnet 50
A brushless motor having the same structure as that of FIG. Table 1 shows the results of measuring the magnetic properties of the field magnet 50 at room temperature, the effective magnetic flux amount and the efficiency of the manufactured brushless motor. FIG. 6 shows the results of measuring the circumferential magnetic flux density distribution waveform in the air gap of the manufactured brushless motor. In FIG.
The waveform width from 9 Bg to 1.0 Bg was about 0.6α, which was good, but as shown in Table 1, the effective magnetic flux amount and the motor efficiency were lower than those in Example 1. From the examination of the present inventors, it was found that the effective magnetic flux amount and the motor efficiency were reduced as compared with the first embodiment due to the effect of the bonded portion. Comparative Example 2 A ferrite sintered magnet having the same shape as the three-axis anisotropic integral ferrite sintered magnet of Example 1 except that it has the radial anisotropy shown in FIG. 7 (provided that R M = 22.0 mm and R K = 19.5 mm). A brushless motor having the same structure as in FIG. 1 was produced and evaluated in the same manner as in Example 1 except that this ferrite magnet was used as a field magnet. Table 1 shows the results of measuring the magnetic properties of the ferrite magnet at room temperature, the effective magnetic flux and the efficiency of the manufactured brushless motor. FIG. 8 shows the results of measuring the magnetic flux density distribution waveform in the circumferential direction of the air gap of the manufactured brushless motor.
Shown in In FIG. 8, the waveform width from 0.9Bg to 1.0Bg is about 0.
6α was good, but as shown in Table 1, the effective magnetic flux amount and the motor efficiency were lower than those in Example 1. From a study of the present inventors, in comparison with the amount of effective magnetic flux and motor efficiency is lowered in Example 1, the field magnet becomes R K <R M because it has a radially anisotropic, the rotary machine 1 It was found that the degree of convergence of the lines of magnetic force to the magnetic poles was weakened. Comparative Example 3 A ferrite sintered magnet having the same shape as the triaxial anisotropic integral ferrite sintered magnet of Example 1 was produced except that the parallel anisotropy shown in FIG. 9 was imparted. 1 in the same manner as in Example 1 except that this ferrite magnet was used as a field magnet.
A brushless motor having the same structure as described above was manufactured and evaluated. Table 1 shows the results of measuring the magnetic properties at room temperature of the ferrite magnet, the effective magnetic flux amount and the efficiency of the manufactured brushless motor.
Shown in The figure also shows the results of measuring the circumferential magnetic flux density distribution waveform in the air gap of the manufactured brushless motor.
See Figure 10. In FIG. 10, the waveform width from 0.9Bg to 1.0Bg is approximately
0.74α, and as shown in Table 1, the effective magnetic flux amount and the motor efficiency were extremely lower than those in Example 1. For this reason, the motor torque was smaller than in the first embodiment, and it was found that it was necessary to increase the power consumption in order to obtain the same motor torque as in the first embodiment.
【0012】(実施例2)図1のブラシレスモータ30の
界磁磁石として、[(Sr0.99Ba0.01)1-xLax]O・n[(Fe
1-yCo0.7yZn0.3y)2O3](原子比率)、x=0.20,y=
0.016,n=5.9 で示される基本組成を有し、SiO2を0.4
3重量%、CaOを0.65重量%含有し、図2の形状に形成さ
れT1=8.1mm、T2=7.7mm、θ 1=98°、θ2=
109°、X1=7mm、X2=13.6mm、軸方向長さL
=83mm、RM=16.0mmおよびRK=19.4mmの寸法
を有し、マグネトプランバイト型結晶構造を有する3軸
異方性一体形フェライト焼結磁石25a〜25dを作製した。
これらのフェライト磁石はいずれも、磁化方向M1とM
2とのなす角度が約49°であり、M2 とM3とのなす
角度が約49°であった。また室温の磁気特性はBr=450m
T(4.5kG)、iHc=302kA/m(3.8kOe)であり実施例1の3
軸異方性一体形フェライト焼結磁石よりも高Brのもので
ある。次にこれらの界磁磁石25a〜25dを着磁し、組み込
んでブラシレスモータ30を作製した直後においてこのブ
ラシレスモータの有効磁束量を測定した。得られた有効
磁束量は実施例1のブラシレスモータの有効磁束量に比
べて約1.5%高くなっており、良好なモータ性能を有す
ることがわかった。 (比較例4)図7に示すラジアル異方性を有する以外は
実施例2の3軸異方性一体形フェライト焼結磁石と同一
形状のフェライト焼結磁石(ただし、RM=21.9mmお
よびRK=19.3mm)を作製した。これらのフェライト
磁石を界磁磁石とした以外は実施例2と同様にして着磁
し、回転子に組み込んで図1と同じ構造のブラシレスモ
ータを作製した。このブラシレスモータを作製した直後
において有効磁束量を測定したところ、有効磁束量は実
施例2のブラシレスモータに比べて約2%低かった。(Embodiment 2) The brushless motor 30 of FIG.
As a field magnet, [(Sr0.99Ba0.01)1-xLax] O ・ n [(Fe
1-yCo0.7yZn0.3y)TwoOThree] (Atomic ratio), x = 0.20, y =
It has a basic composition represented by 0.016, n = 5.9,TwoTo 0.4
Contains 3% by weight and 0.65% by weight of CaO, and is formed into the shape shown in Fig. 2.
Re T1= 8.1mm, T2= 7.7mm, θ 1= 98 °, θ2=
109 °, X1= 7mm, X2= 13.6mm, axial length L
= 83mm, RM= 16.0mm and RK= Dimension of 19.4mm
Having a magnetoplumbite crystal structure
Anisotropic integrated ferrite sintered magnets 25a to 25d were prepared.
Each of these ferrite magnets has a magnetization direction M1And M
2Is about 49 °, and M2 And M3Make with
The angle was about 49 °. The magnetic properties at room temperature are Br = 450m
T (4.5 kG), iHc = 302 kA / m (3.8 kOe), and 3 of Example 1
Higher Br than axially anisotropic integrated ferrite sintered magnet
is there. Next, these field magnets 25a to 25d are magnetized and assembled.
Immediately after fabricating the brushless motor 30
The effective magnetic flux of the brushless motor was measured. Effective obtained
The magnetic flux is compared to the effective magnetic flux of the brushless motor of the first embodiment.
About 1.5% higher in all, with good motor performance
I found out. Comparative Example 4 Except for having the radial anisotropy shown in FIG.
Same as the triaxial anisotropic integrated ferrite sintered magnet of Example 2.
Shaped ferrite sintered magnet (RM= 21.9mm
And RK= 19.3 mm). These ferrites
Magnetize in the same manner as in Example 2 except that the magnet is a field magnet
And a brushless motor with the same structure as in Fig. 1
Data was prepared. Immediately after manufacturing this brushless motor
The effective magnetic flux was measured at
It was about 2% lower than the brushless motor of Example 2.
【0013】[0013]
【発明の効果】以上説明した如く、本発明の3軸異方性
一体形永久磁石を用いることにより、従来に比べて高効
率、高トルクの回転機を提供することができる。また、
回転機の小型化および軽量化を実現でき、さらに一体も
のなので回転機の組立効率を向上できるという有用な効
果を得られる。As described above, by using the three-axis anisotropic integrated permanent magnet of the present invention, it is possible to provide a rotating machine with higher efficiency and higher torque than before. Also,
It is possible to reduce the size and weight of the rotating machine and to obtain a useful effect that the assembly efficiency of the rotating machine can be improved because it is integrated.
【図1】本発明の回転機の一例を示す要部断面図であ
る。FIG. 1 is a sectional view of a main part showing an example of a rotating machine of the present invention.
【図2】本発明の3軸異方性一体形永久磁石の一例を示
す斜視図である。FIG. 2 is a perspective view showing an example of a three-axis anisotropic integrated permanent magnet of the present invention.
【図3】本発明の3軸異方性一体形永久磁石を説明する
模式図であり、円弧状のアークセグメントを示す断面図
(a)、凸部および凹部に平面部を形成したアークセグ
メントを示す断面図(b)である。FIG. 3 is a schematic view illustrating a three-axis anisotropic integrated permanent magnet according to the present invention. FIG. 3 (a) is a cross-sectional view illustrating an arc segment having an arc shape, and FIG. It is sectional drawing (b) shown.
【図4】実施例の空隙磁束密度分布を示す図である。FIG. 4 is a diagram showing an air gap magnetic flux density distribution of an example.
【図5】比較例の界磁磁石を示す要部断面図である。FIG. 5 is a sectional view of a main part showing a field magnet of a comparative example.
【図6】比較例の空隙磁束密度分布を示す図である。FIG. 6 is a diagram showing a gap magnetic flux density distribution of a comparative example.
【図7】比較例の界磁磁石を示す要部断面図である。FIG. 7 is a sectional view of a main part showing a field magnet of a comparative example.
【図8】比較例の空隙磁束密度分布を示す図である。FIG. 8 is a diagram showing a gap magnetic flux density distribution of a comparative example.
【図9】比較例の界磁磁石を示す要部断面図である。FIG. 9 is a sectional view of a main part showing a field magnet of a comparative example.
【図10】比較例の空隙磁束密度分布を示す図である。FIG. 10 is a diagram showing the air gap magnetic flux density distribution of the comparative example.
【図11】従来の回転機を示す断面図である。FIG. 11 is a sectional view showing a conventional rotating machine.
20 回転子、21 固定子、23 回転軸、24 回転子コ
ア、25a,25b,25c,25d 界磁磁石(3軸異方性一体形永
久磁石)、26 固定子コア、30 回転機。20 rotors, 21 stators, 23 rotating shafts, 24 rotor cores, 25a, 25b, 25c, 25d field magnets (3-axis anisotropic integrated permanent magnets), 26 stator cores, 30 rotating machines.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H019 AA04 AA07 AA10 CC03 CC08 GG01 5H621 BB07 BB10 GA04 GA11 HH01 5H622 CA02 CA10 CA13 CB04 CB05 DD01 PP01 QA10 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H019 AA04 AA07 AA10 CC03 CC08 GG01 5H621 BB07 BB10 GA04 GA11 HH01 5H622 CA02 CA10 CA13 CB04 CB05 DD01 PP01 QA10
Claims (4)
状の永久磁石であって、前記永久磁石の両端の1軸異方
性部分の中心位置P1およびP3、ならびに中央の1軸
異方性部分の中心位置P2を実質的に結ぶ線が形成する
円弧の半径をRKとするとともに、位置P1、P2およ
びP3からそれぞれの磁化方向M1、M2およびM3を
内径側に延長してそれらが交差する位置Qを求め、位置
Qと位置P2とのなす間隔をRMとしたとき、RK≧R
Mであることを特徴とする3軸異方性一体形永久磁石。1. An arc segment-shaped permanent magnet having triaxial anisotropy, wherein central positions P 1 and P 3 of uniaxial anisotropic portions at both ends of the permanent magnet, and a central uniaxial anisotropic member. the radius of the circular arc substantially connecting line the center position P 2 of the sexual portion is formed with a R K, the position P 1, the inner diameter of P 2 and each of the magnetization directions M 1 from P 3, M 2 and M 3 obtain the position Q that intersects they extend to the side, when the forming distance between the position P 2 and a position Q was R M, R K ≧ R
M is a three-axis anisotropic integral permanent magnet.
子比率) (ただし、AはSrおよび/またはBaであり、RはL
a,Nd,PrおよびCeのうちの少なくとも1種であ
り、Rに占めるLaの比率が30原子%以上であり、Mは
CoまたはCoおよびZnであり、x、yおよびnはそ
れぞれ下記条件: 0.01≦x≦0.4, 0.005≦y≦0.04,および 5≦n≦6.2 を満たす数字である。)により表される基本組成を有
し、実質的にマグネトプランバイト型結晶構造を有する
フェライト磁石である請求項1に記載の3軸異方性一体
形永久磁石。2. The three-axis anisotropic integrated permanent magnet has the following general formula: (A 1−x R x ) On · ((Fe 1− y My ) 2 O 3 ] (atomic ratio) ( Where A is Sr and / or Ba, and R is L
at least one of a, Nd, Pr and Ce, wherein the ratio of La in R is 30 atomic% or more, M is Co or Co and Zn, and x, y and n are the following conditions, respectively: It is a number that satisfies 0.01 ≦ x ≦ 0.4, 0.005 ≦ y ≦ 0.04, and 5 ≦ n ≦ 6.2. 2. The three-axis anisotropic integrated permanent magnet according to claim 1, which is a ferrite magnet having a basic composition represented by the formula (1) and substantially having a magnetoplumbite type crystal structure.
状の永久磁石を用いた回転機であって、 前記永久磁石の両端の1軸異方性部分の中心位置P1お
よびP3、ならびに中央の1軸異方性部分の中心位置P
2を実質的に結ぶ線が形成する円弧の半径をR Kとする
とともに、位置P1、P2およびP3からそれぞれの磁
化方向M1、M 2およびM3を内径側に延長してそれら
が交差する位置Qを求め、位置Qと位置P2とのなす間
隔をRMとしたとき、RK≧RMであることを特徴とす
る回転機。3. An arc segment type having triaxial anisotropy.
A rotating machine using a permanent magnet in a shape, wherein a center position P of a uniaxially anisotropic portion at both ends of the permanent magnet is provided.1You
And P3, And the central position P of the central uniaxial anisotropic part
2The radius of the arc formed by the line substantially connecting KTo be
With position P1, P2And P3From each magnet
Direction M1, M 2And M3Extend to the inner diameter side
Is determined, and the position Q and the position P2While
RMAnd RK≧ RMIs characterized by
Rotating machine.
り、 かつ前記3軸異方性一体形永久磁石が、 下記一般式: (A1−xRx)O・n[(Fe1−yMy)2O3](原
子比率) (ただし、AはSrおよび/またはBaであり、RはL
a,Nd,PrおよびCeのうちの少なくとも1種であ
り、Rに占めるLaの比率が30原子%以上であり、Mは
CoまたはCoおよびZnであり、x、yおよびnはそ
れぞれ下記条件: 0.01≦x≦0.4, 0.005≦y≦0.04,および 5≦n≦6.2 を満たす数字である。)により表される基本組成を有
し、実質的にマグネトプランバイト型結晶構造を有する
フェライト磁石である請求項3に記載の回転機。4. The rotating machine according to claim 1, wherein the rotating machine has four or six magnetic poles, and the three-axis anisotropic integral permanent magnet has the following general formula: (A 1-x R x ) On · (Fe 1-y M y) 2 O 3] ( atomic ratio) (wherein, a is Sr and / or Ba, R is L
at least one of a, Nd, Pr and Ce, wherein the ratio of La in R is 30 atomic% or more, M is Co or Co and Zn, and x, y and n are the following conditions, respectively: It is a number that satisfies 0.01 ≦ x ≦ 0.4, 0.005 ≦ y ≦ 0.04, and 5 ≦ n ≦ 6.2. The rotating machine according to claim 3, wherein the rotating machine is a ferrite magnet having a basic composition represented by the formula (1) and substantially having a magnetoplumbite type crystal structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001098590A JP2002044889A (en) | 2000-05-17 | 2001-03-30 | 3-axis anistropic one-body permanent magnet and rotating machine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-144868 | 2000-05-17 | ||
JP2000144868 | 2000-05-17 | ||
JP2001098590A JP2002044889A (en) | 2000-05-17 | 2001-03-30 | 3-axis anistropic one-body permanent magnet and rotating machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002044889A true JP2002044889A (en) | 2002-02-08 |
Family
ID=26592031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001098590A Pending JP2002044889A (en) | 2000-05-17 | 2001-03-30 | 3-axis anistropic one-body permanent magnet and rotating machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002044889A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006280195A (en) * | 2005-03-01 | 2006-10-12 | Toshiba Corp | Permanent magnet type rotary electric machine |
WO2008023413A1 (en) * | 2006-08-23 | 2008-02-28 | Kabushiki Kaisha Toshiba | Permanent magnetic type electric motor |
JP2009124899A (en) * | 2007-11-16 | 2009-06-04 | Denso Corp | Synchronous machine |
JP2012050189A (en) * | 2010-08-25 | 2012-03-08 | Hitachi Appliances Inc | Electric motor, hermetic compressor including the electric motor and refrigerator including the hermetic compressor |
CN102170212B (en) * | 2006-08-23 | 2012-07-18 | 株式会社东芝 | Permanent magnet type rotating motor |
CN102761217A (en) * | 2012-08-02 | 2012-10-31 | 山东呈瑞新能源科技有限公司 | Integral type steel magnet of high-performance permanent magnetic synchronous motor |
JP2013207943A (en) * | 2012-03-29 | 2013-10-07 | Hitachi Industrial Equipment Systems Co Ltd | Permanent magnet synchronous machine |
WO2014050154A1 (en) * | 2012-09-28 | 2014-04-03 | ダイキン工業株式会社 | Rotor and rotary electric machine |
JP2015043651A (en) * | 2013-08-26 | 2015-03-05 | ダイキン工業株式会社 | Magnetic structure |
JP2018166399A (en) * | 2018-07-10 | 2018-10-25 | 日立アプライアンス株式会社 | Rotor assembly |
JP2021155317A (en) * | 2020-03-30 | 2021-10-07 | Tdk株式会社 | Ferrite sintered magnet and rotating electric machine |
US11482899B2 (en) * | 2018-12-14 | 2022-10-25 | Tdk Corporation | Rotating electrical machine with rotor having arc shaped permanent magnets |
US11658530B2 (en) | 2021-07-15 | 2023-05-23 | Stoneridge, Inc. | Modular brushless DC (BLDC) motor construction |
-
2001
- 2001-03-30 JP JP2001098590A patent/JP2002044889A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006280195A (en) * | 2005-03-01 | 2006-10-12 | Toshiba Corp | Permanent magnet type rotary electric machine |
WO2008023413A1 (en) * | 2006-08-23 | 2008-02-28 | Kabushiki Kaisha Toshiba | Permanent magnetic type electric motor |
US8044548B2 (en) | 2006-08-23 | 2011-10-25 | Kabushiki Kaisha Toshiba | Permanent-magnet-type rotating electrical machine |
CN102170212B (en) * | 2006-08-23 | 2012-07-18 | 株式会社东芝 | Permanent magnet type rotating motor |
JP2009124899A (en) * | 2007-11-16 | 2009-06-04 | Denso Corp | Synchronous machine |
JP4492681B2 (en) * | 2007-11-16 | 2010-06-30 | 株式会社デンソー | Synchronous machine |
US8227952B2 (en) | 2007-11-16 | 2012-07-24 | Denso Corporation | IPM type of synchronous machine |
JP2012050189A (en) * | 2010-08-25 | 2012-03-08 | Hitachi Appliances Inc | Electric motor, hermetic compressor including the electric motor and refrigerator including the hermetic compressor |
CN102386699A (en) * | 2010-08-25 | 2012-03-21 | 日立空调·家用电器株式会社 | Motor, sealed compressor with same and refrigerator with same |
KR101193045B1 (en) * | 2010-08-25 | 2012-10-22 | 히타치 어플라이언스 가부시키가이샤 | Motor, hermetic compressor comprising the same and refrigerator comprising the same |
JP2013207943A (en) * | 2012-03-29 | 2013-10-07 | Hitachi Industrial Equipment Systems Co Ltd | Permanent magnet synchronous machine |
CN102761217A (en) * | 2012-08-02 | 2012-10-31 | 山东呈瑞新能源科技有限公司 | Integral type steel magnet of high-performance permanent magnetic synchronous motor |
WO2014050154A1 (en) * | 2012-09-28 | 2014-04-03 | ダイキン工業株式会社 | Rotor and rotary electric machine |
JP2014082927A (en) * | 2012-09-28 | 2014-05-08 | Daikin Ind Ltd | Rotor and rotating electrical machine |
CN104685764A (en) * | 2012-09-28 | 2015-06-03 | 大金工业株式会社 | Rotor and rotary electric machine |
AU2013321841B2 (en) * | 2012-09-28 | 2016-02-25 | Daikin Industries, Ltd. | Rotor and rotary electric machine |
US10122231B2 (en) | 2012-09-28 | 2018-11-06 | Daikin Industries, Ltd. | Rotor and rotary electric machine |
JP2015043651A (en) * | 2013-08-26 | 2015-03-05 | ダイキン工業株式会社 | Magnetic structure |
JP2018166399A (en) * | 2018-07-10 | 2018-10-25 | 日立アプライアンス株式会社 | Rotor assembly |
US11482899B2 (en) * | 2018-12-14 | 2022-10-25 | Tdk Corporation | Rotating electrical machine with rotor having arc shaped permanent magnets |
JP2021155317A (en) * | 2020-03-30 | 2021-10-07 | Tdk株式会社 | Ferrite sintered magnet and rotating electric machine |
US11658530B2 (en) | 2021-07-15 | 2023-05-23 | Stoneridge, Inc. | Modular brushless DC (BLDC) motor construction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101402451B1 (en) | Permanent magnet and permanent magnet rotating machine | |
EP3125405B1 (en) | Permanent magnet assembly and motor | |
KR100891856B1 (en) | Preparation Process of Radial Anisotropic Sintered Magnet | |
EP1648073A1 (en) | Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor | |
EP1713098B1 (en) | Radial anisotropic cylindrical sintered magnet and permanent magnet motor | |
JP2009027847A (en) | Permanent magnet and embedded magnet type motor employing the same | |
CN102754316A (en) | Sintered magnet and method for producing the same | |
JP2002044889A (en) | 3-axis anistropic one-body permanent magnet and rotating machine | |
EP0996216A2 (en) | Permanent magnet motor and rotor thereof | |
JP2006261433A (en) | Compound magnet, method for manufacturing the same and motor | |
JP2009027846A (en) | Permanent magnet and surface magnet type motor employing the same | |
JPH0789728B2 (en) | Motor | |
JP2587608B2 (en) | Motor | |
CN209030005U (en) | Permanent magnet and motor | |
US11482899B2 (en) | Rotating electrical machine with rotor having arc shaped permanent magnets | |
JP2003164082A (en) | Ferrite magnet, rotating machine and production method of ferrite magnet | |
JP2006180677A (en) | Integrated skew magnetic rotor with core, and its manufacturing method | |
JP2014147151A (en) | Permanent magnet motor | |
JP2010098863A (en) | Cylindrical magnet material and surface magnet type motor | |
JP2004242378A (en) | Motor, motor rotor, and compound anisotropic magnet | |
US11411449B2 (en) | Rotating electrical machine with rotor having arch shaped permanent magnets with perpendicular reference surface | |
JP3683442B2 (en) | Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor | |
JP5448314B2 (en) | Permanent magnet and permanent magnet rotating machine | |
JP7243117B2 (en) | permanent magnets and motors | |
JPS6158455A (en) | Motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050609 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070613 |