JP2010130859A - Permanent magnet type dynamo electric machine - Google Patents

Permanent magnet type dynamo electric machine Download PDF

Info

Publication number
JP2010130859A
JP2010130859A JP2008305416A JP2008305416A JP2010130859A JP 2010130859 A JP2010130859 A JP 2010130859A JP 2008305416 A JP2008305416 A JP 2008305416A JP 2008305416 A JP2008305416 A JP 2008305416A JP 2010130859 A JP2010130859 A JP 2010130859A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
permanent magnet
magnets
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008305416A
Other languages
Japanese (ja)
Other versions
JP5355055B2 (en
Inventor
Kazuto Sakai
和人 堺
Yutaka Hashiba
豊 橋場
Norio Takahashi
則雄 高橋
Kazuaki Yuki
和明 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008305416A priority Critical patent/JP5355055B2/en
Publication of JP2010130859A publication Critical patent/JP2010130859A/en
Application granted granted Critical
Publication of JP5355055B2 publication Critical patent/JP5355055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly magnetize the upper and lower layers and intermediate layer of a variable magnetic-force magnet. <P>SOLUTION: A rotor 1 is composed of a rotor core 2, the variable magnetic-force magnets 3 and fixed magnetic-force magnets 4. The variable magnetic-force magnets 3 are configured by superposing magnet variable magnetic-force magnets 3a and 3c having a strong coercive force and the variable magnetic-force magnets 3b having a weak coercive force in the direction of magnetization of each magnet. The magnets superposed in series are arranged in the rotor core 2 at positions where the direction of magnetization is the d-axis direction. The fixed magnetic-force magnets 4 and 4 are arranged at positions where the direction of magnetization is the d-axis direction on both sides of the magnets superposing the variable magnetic-force magnets 3 and the fixed magnetic-force magnets 4a in series. When the interlinking magnetic flux of the variable magnetic-force magnets 3 is reduced, a magnetic field in the direction opposite to the direction of magnetization of the variable magnetic-force magnets 3 is worked by a current in an armature winding. Since the intermediate layer receiving a comparatively weak magnetic field in the variable magnetic-force magnets 3 is composed of the variable magnetic-force magnets 3b having the weak coercive force, the whole of the variable magnetic-force magnets 3 is magnetized uniformly. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、2種類以上の永久磁石を使用し、そのうちの少なくとも1つの永久磁石の磁束量を不可逆的に変化させて、低速から高速までの広範囲での可変速運転を可能とした永久磁石式回転電機に関する。   The present invention uses two or more types of permanent magnets, and irreversibly changes the amount of magnetic flux of at least one of the permanent magnets, thereby enabling a variable speed operation in a wide range from low speed to high speed. It relates to a rotating electrical machine.

一般に、永久磁石式回転電機は大きく分けて2種類のタイプがある。回転子鉄心の外周に永久磁石を貼り付けた表面磁石型永久磁石式回転電機と、永久磁石を回転子鉄心の中に埋め込んだ埋め込み型永久磁石式回転電機である。可変速駆動用モータとしては、埋め込み型永久磁石式回転電機が適している。   Generally, permanent magnet type rotating electrical machines are roughly divided into two types. They are a surface magnet type permanent magnet type rotating electrical machine in which a permanent magnet is attached to the outer periphery of a rotor core, and an embedded type permanent magnet type rotating electrical machine in which a permanent magnet is embedded in a rotor core. As the variable speed drive motor, an embedded permanent magnet type rotating electrical machine is suitable.

永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定の強さで発生しているので、永久磁石による誘導電圧は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。永久磁石による誘導電圧がインバータの電子部品に印加されてその耐電圧以上になると、電子部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、その場合には永久磁石式回転電機の低速域での出力及び効率が低下する。   In the permanent magnet type rotating electrical machine, the interlinkage magnetic flux of the permanent magnet is always generated with a constant strength, so that the induced voltage by the permanent magnet increases in proportion to the rotational speed. Therefore, when variable speed operation is performed from low speed to high speed, the induced voltage (back electromotive voltage) by the permanent magnet becomes extremely high at high speed rotation. When the induced voltage by the permanent magnet is applied to the electronic component of the inverter and exceeds its withstand voltage, the electronic component breaks down. For this reason, it is conceivable to perform a design in which the amount of magnetic flux of the permanent magnet is reduced so as to be equal to or lower than the withstand voltage, but in that case, the output and efficiency in the low speed region of the permanent magnet type rotating electrical machine are reduced.

低速から高速まで定出力に近い可変速運転を行う場合、永久磁右の鎖交磁束は一定であるので、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速回転域では出力が大幅に低下し、さらには高速回転まで広範囲に可変速運転することができなくなる。   When performing variable speed operation close to constant output from low speed to high speed, the interlinkage magnetic flux on the right of the permanent magnet is constant, so the rotating electrical machine voltage reaches the upper limit of the power supply voltage in the high-speed rotation range, and the current required for output flows. Disappear. As a result, the output is greatly reduced in the high-speed rotation region, and further, variable speed operation cannot be performed over a wide range up to high-speed rotation.

最近では、可変速範囲を拡大する方法として、非特許文献1に記載されているような弱め磁束制御が適用され始めている。電機子巻線の総鎖交磁束量はd軸電流による磁束と永久磁石による磁束とから成る。弱め磁束制御では、負のd軸電流による磁束を発生させることによって、この負のd軸電流による磁束で全鎖交磁束量を減少させる。また、弱め磁束制御においても高保磁力の永久磁石は磁気特性(B−H特性)の動作点が可逆の範囲で変化するようにする。このため、永久磁石は弱め磁束制御の滅磁界により不可逆的に滅磁しないように高保磁力のNdFeB磁石を適用する。   Recently, as a method for expanding the variable speed range, the flux-weakening control as described in Non-Patent Document 1 has begun to be applied. The total amount of interlinkage magnetic flux of the armature winding is composed of a magnetic flux caused by a d-axis current and a magnetic flux caused by a permanent magnet. In the flux weakening control, by generating a magnetic flux due to a negative d-axis current, the total flux linkage is reduced by the magnetic flux due to this negative d-axis current. Even in the flux-weakening control, the permanent magnet having a high coercive force changes the operating point of the magnetic characteristics (BH characteristics) within a reversible range. For this reason, the NdFeB magnet having a high coercive force is applied to the permanent magnet so that the permanent magnet is not irreversibly demagnetized by the demagnetizing field of the magnetic flux control.

弱め磁束制御を適用した運転では、負のd軸電流による磁束で鎖交磁束が減少するので、鎖交磁束の減少分が電圧上限値に対する電圧の余裕分を作る。そして、トルク成分となる電流を増加できるので高速域での出力が増加する。また、電圧余裕分だけ回転速度を上昇させることができ、可変速運転の範囲が拡大される。   In operation using the flux-weakening control, the linkage flux decreases due to the magnetic flux due to the negative d-axis current, and therefore the decrease in linkage flux creates a voltage margin with respect to the voltage upper limit value. And since the electric current which becomes a torque component can be increased, the output in a high speed region increases. Further, the rotational speed can be increased by the voltage margin, and the range of variable speed operation is expanded.

しかし、出力には寄与しない負のd軸電流を常時流し続けるため銅損が増加して効率は悪化する。さらに、負のd軸電流による滅磁界は高調波磁束を生じ、高調波磁束等で生じる電圧の増加は弱め磁束制御による電圧低減の限界を作る。これらより、埋め込み型永久磁石式回転電機に弱め磁束制御を適用しても規定速度の3倍以上の可変速運転は困難である。さらに、前述の高調波磁束により鉄損が増加し、中・高速域で大幅に効率が低下する問題がある。また、高調波磁束による電磁力で振動を発生する可能性もある。   However, since the negative d-axis current that does not contribute to the output is constantly flowing, the copper loss increases and the efficiency deteriorates. Further, the demagnetizing field due to the negative d-axis current generates a harmonic magnetic flux, and the increase in the voltage generated by the harmonic magnetic flux or the like is weakened to create a limit of voltage reduction by the magnetic flux control. Therefore, even if the flux-weakening control is applied to the embedded permanent magnet type rotating electrical machine, it is difficult to perform variable speed operation at three times the specified speed or more. Furthermore, there is a problem that the iron loss increases due to the above-described harmonic magnetic flux, and the efficiency is greatly lowered in the middle and high speed ranges. Further, there is a possibility that vibration is generated by electromagnetic force generated by the harmonic magnetic flux.

ハイブリッド自動車用駆動電動機に埋め込み型永久磁石電動機を適用した場合、エンジンのみで駆動される状態では電動機は連れ回される。中・高速回転では電動機の永久磁石による誘導電圧が上昇するので、電源電圧以内に抑制するため、弱め磁束制御で負のd軸電流を流し続ける。この状態では、電動機は損失のみを発生するので総合運転効率が悪化する。   When an embedded permanent magnet motor is applied to a drive motor for a hybrid vehicle, the motor is rotated when driven by an engine alone. In medium / high speed rotation, the induced voltage of the motor's permanent magnet rises. Therefore, in order to suppress it within the power supply voltage, the negative d-axis current is kept flowing by the flux weakening control. In this state, since the electric motor generates only a loss, the overall operation efficiency is deteriorated.

電車用駆動電動機に埋め込み型永久磁石電動機を適用した場合、電車は惰行運転する状態があり、上と同様に永久磁石による誘導電圧を電源電圧以下にするために弱め磁束制御で負のd軸電流を流し続ける。その場合、電動機は損失のみを発生するので総合運転効率が悪化する。   When an embedded permanent magnet motor is applied to a train drive motor, the train is in a coasting state, and in the same way as above, a negative d-axis current is controlled by a weak magnetic flux control so that the induced voltage by the permanent magnet is lower than the power supply voltage. Continue to flow. In that case, since the electric motor generates only a loss, the overall operation efficiency deteriorates.

このような問題点を解決する技術として、特許文献1や特許文献2には、固定子巻線の電流で作る磁界により不可逆的に磁束密度が変化する程度の低保磁力の永久磁石(以下、可変磁力磁石という)と、可変磁力磁石の2倍以上の保磁力を有する高保磁力の永久磁石(以下、固定磁力磁石という)を配置し、電源電圧の最大電圧以上となる高速回転域では可変磁力磁石と固定磁力磁石による全鎖交磁束が減じるように、電流による磁界で可変磁力磁石を磁化させて全鎖交磁束量を調整する技術が記載されている。   As a technique for solving such a problem, Patent Documents 1 and 2 disclose a permanent magnet having a low coercive force (hereinafter, referred to as “magnetic coercive force”) whose magnetic flux density is irreversibly changed by a magnetic field generated by a current of a stator winding. Variable magnets) and high coercivity permanent magnets (hereinafter referred to as fixed magnets) that have a coercive force more than twice that of variable magnets. A technique is described in which the amount of total interlinkage magnetic flux is adjusted by magnetizing a variable magnetic magnet with a magnetic field generated by a current so that the total interlinkage magnetic flux between the magnet and the fixed magnetic magnet is reduced.

この特許文献1の永久磁石式回転電機は、図17に記載のような構成の回転子1を備えている。すなわち、回転子1は、回転子鉄心2、8個の可変磁力磁石3及び8個の固定磁力磁石4から構成されている。回転子鉄心2は珪素鋼板を積層して構成され、可変磁力磁石3はアルニコ磁石またはFeCrCo磁石であり、固定磁力磁石4はNdFeB磁石である。   The permanent magnet type rotating electrical machine of Patent Document 1 includes a rotor 1 having a configuration as shown in FIG. That is, the rotor 1 includes a rotor core 2, eight variable magnetic magnets 3, and eight fixed magnetic magnets 4. The rotor core 2 is configured by laminating silicon steel plates, the variable magnetic force magnet 3 is an alnico magnet or an FeCrCo magnet, and the fixed magnetic force magnet 4 is an NdFeB magnet.

可変磁力磁石3は回転子鉄心2の中に埋め込まれ、可変磁力磁石3の両端部には第1の空洞5が設けられている。可変磁力磁石3は磁極間の中心軸になるq軸と一致する回転子の半径方向に沿って配置され、半径方向に対して直角方向に磁化される。固定磁力磁石4は回転子鉄心2内に埋め込まれ、固定磁力磁石4の両端部には第2の空洞6が設けられている。固定磁力磁石4は、2個の可変磁力磁石3により回転子1内周側で挟まれるように回転子1のほぼ周方向に配置されている。固定磁力磁石4は回転子1の周方向に対してほぼ直角方向に磁化されている。   The variable magnetic force magnet 3 is embedded in the rotor core 2, and first cavities 5 are provided at both ends of the variable magnetic force magnet 3. The variable magnetic force magnet 3 is disposed along the radial direction of the rotor that coincides with the q axis serving as the central axis between the magnetic poles, and is magnetized in a direction perpendicular to the radial direction. The fixed magnetic magnet 4 is embedded in the rotor core 2, and second cavities 6 are provided at both ends of the fixed magnetic magnet 4. The fixed magnetic magnet 4 is disposed substantially in the circumferential direction of the rotor 1 so as to be sandwiched between the two variable magnetic magnets 3 on the inner peripheral side of the rotor 1. The fixed magnetic magnet 4 is magnetized in a direction substantially perpendicular to the circumferential direction of the rotor 1.

回転子鉄心2の磁極部7は2個の可変磁力磁石3と1個の固定磁力磁石4で取り囲まれるようにして形成されている。回転子鉄心2の磁極部7の中心軸方向がd軸、磁極間の中心軸方向がq軸となる。この回転子1を採用した特許文献1の永久磁石式回転電機では、固定子巻線に通電時間が極短時間(100μs〜1ms程度)となるパルス的な電流を流して磁界を形成し、可変磁力磁石3に磁界を作用させる。着磁磁界を250kA/mとすると、理想的には可変磁力磁石3には十分な着磁磁界が作用し、固定磁力磁石4には着磁による不可逆減磁はない。   The magnetic pole portion 7 of the rotor core 2 is formed so as to be surrounded by two variable magnetic magnets 3 and one fixed magnetic magnet 4. The central axis direction of the magnetic pole part 7 of the rotor core 2 is the d axis, and the central axis direction between the magnetic poles is the q axis. In the permanent magnet type rotating electrical machine of Patent Document 1 adopting this rotor 1, a magnetic field is formed by passing a pulsed current whose energization time is extremely short (about 100 μs to 1 ms) to the stator winding to make it variable. A magnetic field is applied to the magnetic magnet 3. If the magnetizing magnetic field is 250 kA / m, ideally, a sufficient magnetizing magnetic field acts on the variable magnetic force magnet 3, and the fixed magnetic force magnet 4 does not undergo irreversible demagnetization due to magnetization.

その結果、特許文献1の永久磁石式回転電機では、回転子1のd軸電流により可変磁力磁石3の鎖交磁束量を最大から0まで大きく変化でき、また磁化方向も正逆の両方向にできる。すなわち、固定磁力磁石4の鎖交磁束を正方向とすると、可変磁力磁石3の鎖交磁束を正方向の最大値から0、さらには逆方向の最大値まで広範囲に調整することができる。従って、本実施の形態の回転子では、可変磁力磁石3をd軸電流で着磁することにより可変磁力磁石3と固定磁力磁石4を合わせた全鎖交磁束量を広範囲に調整することができる。   As a result, in the permanent magnet type rotating electrical machine disclosed in Patent Document 1, the amount of interlinkage magnetic flux of the variable magnetic force magnet 3 can be greatly changed from the maximum to 0 by the d-axis current of the rotor 1, and the magnetization direction can be changed in both forward and reverse directions. . That is, assuming that the linkage magnetic flux of the fixed magnetic magnet 4 is in the positive direction, the linkage magnetic flux of the variable magnetic magnet 3 can be adjusted over a wide range from the maximum value in the positive direction to 0 and further in the reverse direction. Therefore, in the rotor of the present embodiment, the total interlinkage magnetic flux combined with the variable magnetic magnet 3 and the fixed magnetic magnet 4 can be adjusted over a wide range by magnetizing the variable magnetic magnet 3 with the d-axis current. .

例えば、低速域では可変磁力磁石3は固定磁力磁石4の鎖交磁束と同方向(初期状態)で最大値になるようにd軸電流で磁化することにより、永久磁石によるトルクは最大値になるので、回転電機のトルク及び出力を最大にすることができる。中・高速域では、可変磁力磁石3の磁束量を低下させ、全鎖交磁束量を下げることにより、回転電機の電圧は下がるので、電源電圧の上限値に対して余裕ができ、回転速度(周波数)をさらに高くすることが可能となる。   For example, in the low speed range, the variable magnetic magnet 3 is magnetized with the d-axis current so as to have the maximum value in the same direction (initial state) as the interlinkage magnetic flux of the fixed magnetic magnet 4, so that the torque by the permanent magnet becomes the maximum value. Therefore, the torque and output of the rotating electrical machine can be maximized. In the middle / high speed range, the voltage of the rotating electrical machine is lowered by reducing the amount of magnetic flux of the variable magnetic magnet 3 and lowering the total flux linkage, so that there is room for the upper limit of the power supply voltage and the rotational speed ( (Frequency) can be further increased.

図18(A)から(D)は、そのことを説明する模式図である。特許文献1の永久磁石式回転電機では、図18(A)のように、2つの可変磁力磁石3と1つの固定磁力磁石4とが、d軸を中心としてU字形に配置されている。電動機の通常の運転状態では、可変磁力磁石3及び固定磁力磁石4の磁束の方向は、中心の磁極部7の方を向いている。この状態で、d軸電流をパルス的に流して、減磁用の磁界を発生すると、その磁束は図18(B)のように、回転子1の外周側から可変磁力磁石3及び固定磁力磁石4を貫くように発生し、それによって、可変磁力磁石3は減磁される。このとき、固定磁力磁石4は、保磁力が高いため、減磁されることはない。   FIGS. 18A to 18D are schematic views for explaining this. In the permanent magnet type rotating electrical machine of Patent Document 1, as shown in FIG. 18A, two variable magnetic magnets 3 and one fixed magnetic magnet 4 are arranged in a U shape with the d axis as the center. In the normal operation state of the electric motor, the direction of the magnetic flux of the variable magnetic magnet 3 and the fixed magnetic magnet 4 is directed toward the central magnetic pole portion 7. In this state, when a d-axis current is applied in a pulsed manner to generate a magnetic field for demagnetization, the magnetic flux is changed from the outer peripheral side of the rotor 1 to the variable magnetic magnet 3 and the fixed magnetic magnet as shown in FIG. 4 so that the variable magnetic force magnet 3 is demagnetized. At this time, the fixed magnet 4 is not demagnetized because of its high coercivity.

この減磁の場合、図18(C)のように、固定磁力磁石4の磁束は、d軸方向と共に可変磁力磁石3の内側から外側に向かって、可変磁力磁石3の当初の磁束の向きとは逆に流れるので、d軸電流の作る磁界による減磁作用を補助する。そのため、可変磁力磁石3の極性を反転させるまでの減磁が可能である。   In the case of this demagnetization, as shown in FIG. 18C, the magnetic flux of the fixed magnetic magnet 4 is changed from the inner direction to the outer side of the variable magnetic magnet 3 along with the d-axis direction. Flows in the opposite direction, and assists the demagnetizing action by the magnetic field generated by the d-axis current. Therefore, demagnetization until the polarity of the variable magnetic force magnet 3 is reversed is possible.

一方、増磁の場合には、d軸電流を再びパルス的に印加することで、前記とは逆方向の磁界を発生させ、その磁界を構成する逆方向の磁束によって、減磁した可変磁力磁石3の鎖交磁束を前記(A)の通常運転時の状態に戻す。   On the other hand, in the case of magnetization, a variable magnetic force magnet demagnetized by a reverse magnetic flux that generates a magnetic field in the opposite direction by applying a d-axis current again in a pulsed manner. The flux linkage 3 is returned to the normal operation state of (A).

特開2006−280195号公報JP 2006-280195 A 特開2008−48514号公報JP 2008-48514 A

前記のような構成を有する特許文献1の永久磁石式回転電機は、回転子1のd軸電流により、可変磁力磁石3の鎖交磁束量を最大から0まで大きく変化でき、また磁化方向も正逆の両方向にできるという優れた特性を有する。ところが、d軸電流によって可変磁力磁石3に作用させた磁界は、磁石内で均一な磁界に分布しないという問題点がある。すなわち、図2(a)に示すように、可変磁力磁石3の中央部分は上側と下側部分よりもd軸電流による磁界が弱くなる   In the permanent magnet type rotating electrical machine of Patent Document 1 having the above-described configuration, the amount of interlinkage magnetic flux of the variable magnetic force magnet 3 can be greatly changed from the maximum to 0 by the d-axis current of the rotor 1, and the magnetization direction is also positive. It has an excellent characteristic that it can be made in both opposite directions. However, there is a problem in that the magnetic field applied to the variable magnetic force magnet 3 by the d-axis current is not distributed in a uniform magnetic field within the magnet. That is, as shown in FIG. 2A, the magnetic field due to the d-axis current is weaker in the central portion of the variable magnetic force magnet 3 than in the upper and lower portions.

可変磁力磁石3内で、このような磁界の不均一が起こるため、可変磁力磁石3に着磁する強さの磁界を作用させたとしても、周辺部分しか磁化せず、中央部分の磁化が十分に行われないため、鎖交磁束の変化量を大きくすることができなかった。そのため、磁界の不均一を防ぐために、可変磁力磁石3の厚さを制限するなどの工夫が必要であった。   Since such a magnetic field non-uniformity occurs in the variable magnetic force magnet 3, even if a magnetic field having a magnetization intensity is applied to the variable magnetic force magnet 3, only the peripheral portion is magnetized and the central portion is sufficiently magnetized. Therefore, the amount of change in the flux linkage could not be increased. Therefore, in order to prevent the non-uniformity of the magnetic field, it has been necessary to devise such as limiting the thickness of the variable magnetic force magnet 3.

本発明は、上述した課題を解決するためになされたものであり、回転子内に設置する可変磁力磁石として、保磁力が異なる複数の可変磁力磁石を組み合わせ、可変磁石の磁化を均一に行うことにより、可変磁力磁石の鎖交磁束の変化量を大きくすることを目的とする。また、本発明では、低速から高速までの広範囲で可変速運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上を可能とした永久磁石式回転電機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and as a variable magnetic magnet to be installed in a rotor, a plurality of variable magnetic magnets having different coercive forces are combined to uniformly magnetize the variable magnet. Thus, the object is to increase the amount of change in the linkage flux of the variable magnetic magnet. In addition, the present invention enables a variable speed operation in a wide range from low speed to high speed, high torque in the low speed rotation range, high output in the middle / high speed rotation range, and improvement in efficiency. The purpose is to provide an electric machine.

本発明の永久磁石回転電機は、保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石を用いて回転子の磁極を形成し、電機子巻線の電流が作る磁界により、前記2種類以上の永久磁石のうち、保磁力と磁化方向厚の積が小の永久磁石を磁化させて、磁極を構成する永久磁石の磁束量を不可逆的に変化させ、電機子巻線の電流が作る磁界により磁化させる保磁力と磁化方向厚の積が小の永久磁石を、保磁力と磁化方向厚の積の値が異なる複数の永久磁石を積層して複合磁石を構成し、この複合磁石の中央部に位置する永久磁石の保磁力と磁化方向厚の積の値が、複合磁石の上層部または下層部の少なくとも一方に位置する永久磁石の保磁力と磁化方向厚の積の値よりも小さく設定されていることを特徴とする。   The permanent magnet rotating electric machine of the present invention forms a magnetic pole of a rotor using two or more kinds of permanent magnets having a product of coercive force and magnetization direction thickness different from those of other permanent magnets, and a magnetic field generated by the current of the armature winding. Accordingly, among the two or more types of permanent magnets, a permanent magnet having a small product of coercive force and magnetization direction thickness is magnetized to irreversibly change the amount of magnetic flux of the permanent magnet constituting the magnetic pole, A composite magnet is constructed by laminating a permanent magnet having a small product of the coercive force and the magnetization direction thickness by a magnetic field generated by a current, and a plurality of permanent magnets having different values of the product of the coercive force and the magnetization direction thickness. The product of the coercive force and magnetization direction thickness of the permanent magnet located in the center of the composite magnet is the product of the coercivity and magnetization direction thickness of the permanent magnet located in at least one of the upper or lower layer of the composite magnet. It is characterized by being set smaller.

本発明において、回転子の各磁極ごとに2種類以上の永久磁石を磁気回路上で直並列に配置すること、複数の磁極の間で2種類以上の永久磁石を磁気回路上で直並列に配置することも可能である。また、各磁極に、磁気障壁を設けたり、短絡コイルを設けることも可能である。   In the present invention, two or more kinds of permanent magnets are arranged in series and parallel on the magnetic circuit for each magnetic pole of the rotor, and two or more kinds of permanent magnets are arranged in series and parallel on the magnetic circuit between the plurality of magnetic poles. It is also possible to do. Further, it is possible to provide a magnetic barrier or a short-circuit coil for each magnetic pole.

以上のような構成を有する本発明によれば、回転子内に設置する可変磁力磁石として、保磁力が異なる複数の可変磁力磁石を組み合わせ、可変磁力磁石全体でその磁化を均一に行うことにより、可変磁力磁石の鎖交磁束の変化量を大きくすることができるので、回転機の効率化を達成することができる。   According to the present invention having the above-described configuration, by combining a plurality of variable magnetic magnets having different coercive forces as variable magnetic magnets installed in the rotor, the entire variable magnetic magnet is uniformly magnetized, Since the amount of change in the linkage flux of the variable magnetic magnet can be increased, the efficiency of the rotating machine can be increased.

以下、本発明に係る永久磁石式型回転電機の実施の形態について、図1,2を参照して説明する。本実施の形態の回転電機は12極の場合で説明しており、他の極数でも同様に適用できる。   Hereinafter, an embodiment of a permanent magnet type rotating electrical machine according to the present invention will be described with reference to FIGS. The rotating electrical machine of the present embodiment has been described in the case of 12 poles, and can be similarly applied to other pole numbers.

(1.第1の実施の形態)
(1−1.構成)
本発明の第1の実施の形態について、図1を用いて説明する。
(1. First embodiment)
(1-1. Configuration)
A first embodiment of the present invention will be described with reference to FIG.

本発明の第1の実施の形態の回転子1は、図1に示すように回転子鉄心2、保磁力と磁化方向厚みの積が小となる永久磁石(以下、可変磁力磁石という)3、保磁力と磁化方向厚の積が大となる永久磁石(以下、固定磁力磁石という)4から構成する。回転子鉄心2は珪素鋼板を積層して構成し、前記の可変磁力磁石3及び固定磁力磁石4は回転子鉄心2内に埋め込む。可変磁力磁石3は、保磁力が異なる可変磁力磁石を積層させたものであり、保磁力が強い可変磁力磁石3a,3cを上層部と下層部に配置し、保磁力が可変磁力磁石3a,3cより弱い可変磁力磁石3bを中層部に配置する。   As shown in FIG. 1, a rotor 1 according to a first embodiment of the present invention includes a rotor core 2, a permanent magnet (hereinafter referred to as a variable magnetic force magnet) 3 in which a product of a coercive force and a magnetization direction thickness is small, It is composed of a permanent magnet (hereinafter referred to as a fixed magnetic magnet) 4 having a large product of coercive force and magnetization direction thickness. The rotor core 2 is formed by laminating silicon steel plates, and the variable magnetic magnet 3 and the fixed magnetic magnet 4 are embedded in the rotor core 2. The variable magnetic force magnet 3 is formed by stacking variable magnetic force magnets having different coercive forces. The variable magnetic force magnets 3a and 3c having strong coercive force are arranged in the upper layer portion and the lower layer portion, and the coercive force is variable magnetic magnets 3a and 3c. A weaker variable magnetic force magnet 3b is disposed in the middle layer.

可変磁力磁石3はサマリウムコバルト磁石またはアルニコ磁石を使用することができる。固定磁力磁石4は、NdFeB磁石を使用することができる。本実施の形態では、可変磁力磁石3a,3cは保磁力が300kA/mのサマリウムコバルト磁石とし、可変磁力磁石3bは保磁力が200kA/mのサマリウムコバルト磁石とし、固定磁力磁石4は保磁力が1000kA/mのNdFeB磁石とする。   The variable magnetic magnet 3 can be a samarium cobalt magnet or an alnico magnet. The fixed magnetic magnet 4 can be an NdFeB magnet. In the present embodiment, the variable magnetic force magnets 3a and 3c are samarium cobalt magnets having a coercive force of 300 kA / m, the variable magnetic force magnet 3b is a samarium cobalt magnet having a coercive force of 200 kA / m, and the fixed magnetic force magnet 4 has a coercive force. A 1000 kA / m NdFeB magnet is used.

可変磁力磁石3a〜3cを各磁石の磁化方向に重ね合わせて1つの可変磁力磁石を構成する。すなわち、可変磁力磁石3a〜3cが磁化方向を同じくして、磁気的に直列に配置する。この直列に重ねた可変磁力磁石3は、磁化方向がd軸方向(ここでは、ほぼ回転子の半径方向)となる位置で回転子鉄心2内に配置する。一方、可変磁力磁石3の両側に、固定磁力磁石4,4を磁化方向がd軸方向となる位置で配置する。この横に配置した固定磁力磁石4,4は、積層した可変磁力磁石3に対して、磁気回路上で並列回路を構成する。   The variable magnetic magnets 3a to 3c are superposed in the magnetization direction of each magnet to constitute one variable magnetic magnet. That is, the variable magnetic force magnets 3a to 3c are magnetically arranged in series with the same magnetization direction. The variable magnetic magnets 3 stacked in series are arranged in the rotor core 2 at a position where the magnetization direction is in the d-axis direction (here, approximately the radial direction of the rotor). On the other hand, the fixed magnetic magnets 4 and 4 are arranged on both sides of the variable magnetic magnet 3 at positions where the magnetization direction is the d-axis direction. The fixed magnetic magnets 4, 4 arranged on the side constitute a parallel circuit on the magnetic circuit with respect to the laminated variable magnetic magnet 3.

回転子鉄心2内を通過する磁束が可変磁力磁石3及び固定磁力磁石4をその厚さ方向に通過するように、可変磁力磁石3及び固定磁力磁石4の端部に空洞6を設ける。特に、磁束が可変磁力磁石3に集中するように、磁気障壁となる空洞5を、固定磁力磁石4の上下に設ける。回転子鉄心2の磁極部7は1個の可変磁力磁石3と2個の固定磁力磁石4で取り囲まれるようにして形成する。回転子鉄心2の磁極部7の中心軸方向がd軸、磁極間の中心軸方向がq軸となる。   A cavity 6 is provided at the ends of the variable magnetic magnet 3 and the fixed magnetic magnet 4 so that the magnetic flux passing through the rotor core 2 passes through the variable magnetic magnet 3 and the fixed magnetic magnet 4 in the thickness direction. In particular, cavities 5 serving as magnetic barriers are provided above and below the fixed magnetic magnet 4 so that the magnetic flux is concentrated on the variable magnetic magnet 3. The magnetic pole part 7 of the rotor core 2 is formed so as to be surrounded by one variable magnetic magnet 3 and two fixed magnetic magnets 4. The central axis direction of the magnetic pole part 7 of the rotor core 2 is the d axis, and the central axis direction between the magnetic poles is the q axis.

前記両側の固定磁力磁石4,4の上下面と平行に、固定磁力磁石4,4を取り囲むように、上側短絡コイル8a及び下側短絡コイル8bを設ける。この時、短絡コイル8a,8bが固定磁力磁石4の磁化方向が中心軸となるようにする。この短絡コイル8a,8bは、リング状の導電性部材から構成し、回転子鉄心2内に設けた空洞6の縁の部分にはめ込むように装着する。なお、回転子鉄心2の穴に高温で溶けた導電性部材を流し込んで鋳造して製作することも可能である。   An upper short circuit coil 8a and a lower short circuit coil 8b are provided so as to surround the fixed magnetic magnets 4 and 4 in parallel with the upper and lower surfaces of the fixed magnetic magnets 4 and 4 on both sides. At this time, the short-circuit coils 8a and 8b are set so that the magnetization direction of the fixed magnetic force magnet 4 is the central axis. The short-circuit coils 8a and 8b are made of a ring-shaped conductive member and are mounted so as to be fitted into the edge portion of the cavity 6 provided in the rotor core 2. It is also possible to manufacture by casting a conductive member melted at a high temperature into the hole of the rotor core 2.

この短絡コイル8a,8bは、電機子巻線にd軸電流を通電させた場合に発生する磁束で、短絡電流が発生するものである。短絡コイル8a,8bに流れる短絡電流は、不可逆変化させる永久磁石3a,3b,3cの磁化が変化する程度の強さで1秒以内に流れ、その後1秒以内に50%以上減衰するものであることが好ましい。また、前記短絡コイル8のインダクタンス値と抵抗値を、可変磁力磁石3の磁化が変化する程度の短絡電流が流れるような値とすると、効率が良い。   The short-circuit coils 8a and 8b are magnetic fluxes generated when a d-axis current is passed through the armature windings, and generate a short-circuit current. The short-circuit current flowing through the short-circuit coils 8a and 8b flows within 1 second with such a strength that the magnetization of the permanent magnets 3a, 3b and 3c to be irreversibly changed, and then attenuates 50% or more within 1 second. It is preferable. Further, when the inductance value and the resistance value of the short-circuit coil 8 are set to values that allow a short-circuit current to flow to the extent that the magnetization of the variable magnetic force magnet 3 changes, the efficiency is good.

前記回転子2の外周には、エアギャップを介して固定子10を設ける。この固定子10は、電機子鉄心11と電機子巻線12とを有する。この電機子巻線12に流れる磁化電流により、前記短絡コイル8a,8bに誘導電流が誘起され、その誘導電流によって短絡コイル8a,8bを貫通する磁束が形成される。また、この電機子巻線12に流れる磁化電流(d軸電流)により、可変磁力磁石3の磁化方向が不可逆的に変化する。   A stator 10 is provided on the outer periphery of the rotor 2 through an air gap. The stator 10 has an armature core 11 and an armature winding 12. An induced current is induced in the short-circuit coils 8a and 8b by the magnetizing current flowing in the armature winding 12, and a magnetic flux penetrating the short-circuit coils 8a and 8b is formed by the induced current. Further, the magnetization direction of the variable magnetic force magnet 3 is irreversibly changed by the magnetization current (d-axis current) flowing through the armature winding 12.

すなわち、可変磁力磁石3a〜3cに対しては、永久磁石式回転電機の運転時において、d軸電流による磁界で可変磁力磁石3を磁化させて、その磁束量を不可逆的に変化させる。その場合、可変磁力磁石3を磁化するd軸電流を流すと同時にq軸電流により回転電機のトルクを制御する。   That is, with respect to the variable magnetic force magnets 3a to 3c, during operation of the permanent magnet type rotating electric machine, the variable magnetic force magnet 3 is magnetized by a magnetic field generated by the d-axis current, and the amount of magnetic flux is irreversibly changed. In that case, the d-axis current for magnetizing the variable magnetic force magnet 3 is supplied, and at the same time, the torque of the rotating electrical machine is controlled by the q-axis current.

また、d軸電流で生じる磁束により、電流(q軸電流とd軸電流とを合成した全電流)と可変磁力磁石3a〜3c及び固定磁力磁石4,4とで生じる電機子巻線の鎖交磁束量、すなわち、回転電機の全電流によって電機子巻線に生じる磁束と、回転子側の2種類以上の永久磁石3a〜3c,4,4によって生じる磁束とから構成される電機子巻線全体の鎖交磁束量をほぼ不可逆的に変化させる。   Also, the linkage of armature windings generated by the current (total current obtained by combining the q-axis current and the d-axis current) and the variable magnetic magnets 3a to 3c and the fixed magnetic magnets 4 and 4 due to the magnetic flux generated by the d-axis current. The entire armature winding composed of the amount of magnetic flux, that is, the magnetic flux generated in the armature winding by the total current of the rotating electrical machine and the magnetic flux generated by the two or more types of permanent magnets 3a to 3c, 4, 4 on the rotor side The amount of flux linkage is changed almost irreversibly.

特に、本実施の形態では、瞬時の大きなd軸電流による磁界で可変磁力磁石3a〜3cを不可逆変化させる。この状態で不可逆減磁がほとんど生じないか、僅かの不可逆減磁が生じる範囲のd軸電流を連続的に流して運転する。このときのd軸電流は電流位相を進めて端子電圧を調整するように作用する。   In particular, in the present embodiment, the variable magnetic magnets 3a to 3c are irreversibly changed by a magnetic field generated by an instantaneous large d-axis current. In this state, operation is carried out by continuously supplying a d-axis current in a range where little or no irreversible demagnetization occurs. The d-axis current at this time acts to adjust the terminal voltage by advancing the current phase.

また、大きなd軸電流で可変磁力磁石3の極性を反転させ、電流位相を進める運転制御方法を行う。このようにd軸電流で可変磁力磁石3の極性を反転させているので、端子電圧を低下させるような負のd軸電流を流しても、可変磁力磁石3にとっては減磁界ではなく増磁界となる。すなわち、負のd軸電流で可変磁力磁石3は減磁することなく、端子電圧の大きさを調整することができる。   Further, an operation control method is performed in which the polarity of the variable magnetic force magnet 3 is reversed with a large d-axis current to advance the current phase. As described above, since the polarity of the variable magnetic force magnet 3 is reversed by the d-axis current, even if a negative d-axis current that reduces the terminal voltage is passed, the variable magnetic force magnet 3 is not demagnetized but increased. Become. That is, the magnitude of the terminal voltage can be adjusted without demagnetizing the variable magnetic force magnet 3 with a negative d-axis current.

一般の磁石モータでは磁石の極性は反転していないので電流位相を進めることによりd軸電流が増加すると、磁石が不可逆減磁する問題があるが、本実施の形態においては、可変磁力磁石3の極性を反転させて位相を進めることが可能である。   In a general magnet motor, since the polarity of the magnet is not reversed, if the d-axis current increases by advancing the current phase, there is a problem that the magnet is irreversibly demagnetized. It is possible to advance the phase by reversing the polarity.

(1−2.基本的な作用)
つぎに、第1の実施の形態の作用について説明する。
本実施の形態では、固定子の電機子巻線に通電時間が0.1ms〜100ms程度の極短時間(本実施の形態では10ms)となるパルス的な電流を流して磁界を形成し、可変磁力磁石3に磁界を作用させる。可変磁力磁石3を磁化するための磁界を形成するパルス電流は固定子の電機子巻線のd軸電流成分とする。可変磁力磁石3と固定磁力磁石4の厚みはほぼ同等するとd軸電流による作用磁界による永久磁石の磁化状態変化は保磁力の大きさにより変る。
(1-2. Basic action)
Next, the operation of the first embodiment will be described.
In the present embodiment, a magnetic field is formed by flowing a pulse-like current having an energization time of about 0.1 ms to 100 ms (10 ms in the present embodiment) through the armature winding of the stator to form a variable. A magnetic field is applied to the magnetic magnet 3. A pulse current that forms a magnetic field for magnetizing the variable magnetic force magnet 3 is a d-axis current component of the armature winding of the stator. If the thicknesses of the variable magnetic magnet 3 and the fixed magnetic magnet 4 are substantially equal, the change in the magnetization state of the permanent magnet due to the applied magnetic field due to the d-axis current changes depending on the magnitude of the coercive force.

可変磁力磁石3と固定磁力磁石4の厚みはほぼ同等するとd軸電流による作用磁界による永久磁石の磁化状態変化は保磁力の大きさにより変わる。すなわち、作用磁界による永久磁石の磁化状態変化は、保磁力の大きさと永久磁石の厚みの積で概算する。前記のように本実施形態では、可変磁力磁石3a,3cの保磁力は300kA/m、可変磁力磁石3bの保磁力は200kA/m、固定磁力磁石4の保磁力は1000kA/mと設定されている。   If the thicknesses of the variable magnetic magnet 3 and the fixed magnetic magnet 4 are substantially equal, the change in the magnetization state of the permanent magnet due to the applied magnetic field due to the d-axis current varies depending on the magnitude of the coercive force. That is, the change in the magnetization state of the permanent magnet due to the applied magnetic field is approximated by the product of the magnitude of the coercive force and the thickness of the permanent magnet. As described above, in this embodiment, the coercive force of the variable magnetic magnets 3a and 3c is set to 300 kA / m, the coercive force of the variable magnetic magnet 3b is set to 200 kA / m, and the coercive force of the fixed magnetic magnet 4 is set to 1000 kA / m. Yes.

この時、固定磁力磁石4の保磁力は、可変磁力磁石3a〜3cの保磁力の3〜5倍となる。従って、可変磁力磁石3a〜3cの磁力を可変できる電流では、固定磁力磁石4の磁力は変わらずに維持できる。これより、これらの磁石を並列に組み合わせて磁石を構成すると、固定磁力磁石4の磁力をベース分として維持して、可変磁力磁石3の磁力を変化させることにより、永久磁石の全鎖交磁束量を調整できる。   At this time, the coercive force of the fixed magnetic magnet 4 is 3 to 5 times the coercive force of the variable magnetic magnets 3a to 3c. Therefore, the magnetic force of the fixed magnetic magnet 4 can be maintained unchanged with the current that can change the magnetic force of the variable magnetic magnets 3a to 3c. Thus, when these magnets are combined in parallel to form a magnet, the total magnetic flux linkage of the permanent magnet is obtained by maintaining the magnetic force of the fixed magnetic magnet 4 as a base and changing the magnetic force of the variable magnetic magnet 3. Can be adjusted.

初めに磁石の磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線にパルス的に通電させる。負のd軸電流によって変化した磁石内の磁界が350kA/mになったとすると、可変磁力磁石3aの保磁力が300kA/mなので可変磁力磁石3a〜3cの磁力は不可逆的に大幅に低下する。一方、固定磁力磁石4の保磁力が1000kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になると可変磁力磁石3のみが減磁した状態となり、全体の磁石による鎖交磁束量を減少することができる。   First, a negative d-axis current that generates a magnetic field in a direction opposite to the magnetization direction of the magnet is applied to the armature winding in a pulsed manner. Assuming that the magnetic field in the magnet changed by the negative d-axis current becomes 350 kA / m, the coercive force of the variable magnetic magnet 3a is 300 kA / m, so that the magnetic forces of the variable magnetic magnets 3a to 3c are irreversibly greatly reduced. On the other hand, since the coercive force of the fixed magnetic magnet 4 is 1000 kA / m, the magnetic force does not decrease irreversibly. As a result, when the pulsed d-axis current becomes zero, only the variable magnetic force magnet 3 is demagnetized, and the amount of interlinkage magnetic flux by the entire magnet can be reduced.

つぎに、永久磁石の磁化方向と同方向の磁界を発生する正のd軸電流を電機子巻線に通電する。可変磁力磁石3が着磁するために必要な磁界を発生させる。正のd軸電流によって変化した磁石内の磁界が350kA/mとすると、減磁していた可変磁力磁石3は着磁されて最大に磁力を発生する。一方、固定磁力磁石4の保磁力が1000kA/mなので磁力は不可逆的に変化しない。その結果、パルス的な正のd軸電流が0になると可変磁力磁石3のみが増磁した状態となり、全体の磁石による鎖交磁束量を増加することができる。これにより元の最大の鎖交磁束量に戻すことが可能となる。   Next, a positive d-axis current that generates a magnetic field in the same direction as the magnetization direction of the permanent magnet is applied to the armature winding. A magnetic field necessary for magnetizing the variable magnetic force magnet 3 is generated. If the magnetic field in the magnet changed by the positive d-axis current is 350 kA / m, the demagnetized variable magnetic force magnet 3 is magnetized to generate a maximum magnetic force. On the other hand, since the coercive force of the fixed magnetic magnet 4 is 1000 kA / m, the magnetic force does not change irreversibly. As a result, when the pulsed positive d-axis current becomes 0, only the variable magnetic force magnet 3 is magnetized, and the amount of flux linkage by the entire magnet can be increased. This makes it possible to return to the original maximum flux linkage.

以上のようにd軸電流による瞬時的な磁界を可変磁力磁石3と固定磁力磁石4に作用させることにより、可変磁力磁石3の磁力を不可逆的に変化させて、永久磁石の全鎖交磁束量を任意に変化させることが可能となる。   As described above, by applying an instantaneous magnetic field due to the d-axis current to the variable magnetic magnet 3 and the fixed magnetic magnet 4, the magnetic force of the variable magnetic magnet 3 is irreversibly changed, and the total interlinkage magnetic flux of the permanent magnet Can be arbitrarily changed.

この場合、永久磁石式回転電機の最大トルク時には磁極の永久磁石の磁束が加え合わせになるように可変磁力磁石3を磁化させ、トルクの小さな軽負荷時や、中速回転域と高速回転域では、前記可変磁力磁石3は、電流による磁界で磁化させて磁束を減少させるか、極性を反転させることにより永久磁石の鎖交磁束量を減少させる。また、磁極の磁石を不可逆変化させて鎖交磁束を最小にした状態で回転子が最高回転速度になったときに、永久磁石による誘導起電圧が、回転電機の電源であるインバータ電子部品の耐電圧以下とする。   In this case, the variable magnetic force magnet 3 is magnetized so that the magnetic flux of the permanent magnet of the magnetic pole is added at the time of the maximum torque of the permanent magnet type rotating electric machine, and at a light load with a small torque or in the middle speed rotation range and the high speed rotation range. The variable magnetic force magnet 3 is magnetized by a magnetic field caused by an electric current to reduce the magnetic flux, or by reversing the polarity, thereby reducing the amount of flux linkage of the permanent magnet. In addition, when the rotor reaches the maximum rotational speed with the magnetic flux magnet minimized by irreversibly changing the magnetic pole magnet, the induced electromotive force generated by the permanent magnet is resistant to the inverter electronic components that are the power source of the rotating electrical machine. Below voltage.

(1−3.直列配置の作用)
本実施の形態では、可変磁力磁石3として、可変磁力磁石3a〜3cを磁気的に直列に配置しているので、前記可変磁力磁石3の減磁及び増磁の際に、図2(a)で示した従来の単層の可変磁力磁石3とは異なる作用を有する。この点を図2(b)により説明する。
(1-3. Action of serial arrangement)
In the present embodiment, the variable magnetic force magnets 3a to 3c are magnetically arranged in series as the variable magnetic force magnet 3, so that when the variable magnetic force magnet 3 is demagnetized and magnetized, FIG. The conventional single-layer variable magnetic force magnet 3 shown in FIG. This point will be described with reference to FIG.

図2(b)は、磁化時の本実施の形態の可変磁力磁石3a〜3c中の磁界の分布図である。単層の可変磁力磁石3と同様にd軸電流によって可変磁力磁石3に作用させた磁界は、磁石内で均一な磁界に分布せず、可変磁力磁石3の上下部分の磁界は中心部に比べかなり高くなる。   FIG. 2B is a distribution diagram of magnetic fields in the variable magnetic force magnets 3a to 3c of the present embodiment during magnetization. Similar to the single-layer variable magnetic magnet 3, the magnetic field applied to the variable magnetic magnet 3 by the d-axis current is not distributed in a uniform magnetic field in the magnet, and the magnetic fields of the upper and lower portions of the variable magnetic magnet 3 are compared to the central portion. It gets quite expensive.

しかし、本実施の形態では、図2(b)のように、上層部及び下層部に保磁力が300kA/mの可変磁力磁石3a,3cを配置し、中層部に保磁力に200kA/mの可変磁力磁石3bを配置する。これにより、d軸電流によって可変磁力磁石3の上層部及び下層部に強い磁界が作用するので、保磁力が300kA/mの可変磁力磁石3a,3cを磁化することができる。一方、可変磁力磁石3の中央部には比較的弱い磁界が作用するが、中層部に配置される可変磁力磁石3bは保磁力が200kA/mと保磁力が小さいので、比較的弱い磁界でも中層部を十分に磁化することができる。   However, in this embodiment, as shown in FIG. 2B, the variable magnetic magnets 3a and 3c having a coercive force of 300 kA / m are arranged in the upper layer part and the lower layer part, and the coercive force is 200 kA / m in the middle layer part. A variable magnetic magnet 3b is arranged. Thereby, since a strong magnetic field acts on the upper layer part and the lower layer part of the variable magnetic force magnet 3 by the d-axis current, the variable magnetic force magnets 3a and 3c having a coercive force of 300 kA / m can be magnetized. On the other hand, a relatively weak magnetic field acts on the central portion of the variable magnetic force magnet 3, but the variable magnetic force magnet 3b disposed in the middle layer portion has a small coercive force of 200 kA / m. The part can be sufficiently magnetized.

(1−4.磁気障壁の作用)
固定磁力磁石4,4の外周部に設けられた磁気障壁の作用について、図3について述べる。磁気障壁となる空洞5,6は、可変磁力磁石3を積層した磁石の外周部になく、並列に配置した固定磁力磁石4,4の外周部に設けられている。固定磁力磁石4,4は磁気障壁があるので、d軸電流による磁界aは小さくなる。
(1-4. Action of magnetic barrier)
The action of the magnetic barrier provided on the outer periphery of the fixed magnetic magnets 4 and 4 will be described with reference to FIG. The cavities 5 and 6 serving as magnetic barriers are provided not on the outer peripheral portion of the magnets on which the variable magnetic force magnets 3 are stacked, but on the outer peripheral portions of the fixed magnetic force magnets 4 and 4 arranged in parallel. Since the fixed magnetic magnets 4 and 4 have a magnetic barrier, the magnetic field a due to the d-axis current is small.

一方、可変磁力磁石3を積層した磁石の周りには磁気障壁がないのでd軸電流により生じる磁界は高くできる。これより、d軸電流による磁界Aを効果的に可変磁力磁石3を積層した磁石に作用させることができる。また、d軸電流により増加する磁束に関しても、固定磁力磁石4,4を通る磁束量の増加を抑制できるので、鉄心の磁気飽和を緩和でき、可変磁力磁石3の磁化を変化させるためのd軸電流も低減できる。   On the other hand, since there is no magnetic barrier around the magnet on which the variable magnetic force magnet 3 is laminated, the magnetic field generated by the d-axis current can be increased. As a result, the magnetic field A caused by the d-axis current can be effectively applied to the magnet on which the variable magnetic force magnet 3 is laminated. Also, with respect to the magnetic flux that increases due to the d-axis current, the increase in the amount of magnetic flux that passes through the fixed magnetic magnets 4 and 4 can be suppressed, so that the magnetic saturation of the iron core can be mitigated and the d-axis for changing the magnetization of the variable magnetic magnet 3 The current can also be reduced.

また、図4に示すように、q軸磁束Bが磁石外周部の鉄心を横切るように分布するが、磁気障壁となる空洞5,6があるので磁路断面積が狭くなって磁気抵抗が高くなる。従って、q軸インダクタンスを小さくすることができ、端子電圧を下げることができる。   As shown in FIG. 4, the q-axis magnetic flux B is distributed so as to cross the iron core on the outer periphery of the magnet. However, since there are cavities 5 and 6 serving as magnetic barriers, the magnetic path cross-sectional area is narrowed and the magnetic resistance is high. Become. Therefore, the q-axis inductance can be reduced and the terminal voltage can be lowered.

(1−5.短絡コイルの作用)
つぎに、図5により、短絡コイル8a,8bの作用について述べる。可変磁力磁石3と固定磁力磁石4は、回転子鉄心2内に埋め込まれて磁気回路を構成しているので、前記d軸電流による磁界は可変磁力磁石3のみでなく、固定磁力磁石4にも作用する。本来、前記d軸電流による磁界は可変磁力磁石3の磁化を変化させるために行う。
(1-5. Action of short-circuit coil)
Next, the operation of the short-circuit coils 8a and 8b will be described with reference to FIG. Since the variable magnetic magnet 3 and the fixed magnetic magnet 4 are embedded in the rotor core 2 to form a magnetic circuit, the magnetic field due to the d-axis current is applied not only to the variable magnetic magnet 3 but also to the fixed magnetic magnet 4. Works. Originally, the magnetic field generated by the d-axis current is used to change the magnetization of the variable magnetic force magnet 3.

そこで、前記d軸電流による磁界が固定磁力磁石4,4に作用しないようにし、可変磁力磁石3に集中するようにすればよい。本実施の形態では、固定磁力磁石4,4の上側と下側に短絡コイル8を配置する。短絡コイルは固定磁力磁石4,4の磁化方向を中心軸として配置する。前記d軸電流による磁界が固定磁力磁石4,4に作用すると、前記磁界を打ち消すような誘導電流が短絡コイル8a,8bに流れる。従って、固定磁力磁石4,4中には前記d軸電流による磁界と短絡電流による磁界で、磁界の増減はほとんど生じない。さらに短絡電流による磁界は可変磁力磁石3にも作用し、d軸電流による磁界と同方向になる。   Therefore, the magnetic field due to the d-axis current may be prevented from acting on the fixed magnetic magnets 4 and 4 and concentrated on the variable magnetic magnet 3. In the present embodiment, short-circuit coils 8 are arranged above and below the fixed magnetic magnets 4 and 4. The short-circuit coil is arranged with the magnetization direction of the fixed magnetic magnets 4 and 4 as the central axis. When a magnetic field due to the d-axis current acts on the fixed magnetic magnets 4 and 4, an induced current that cancels the magnetic field flows through the short-circuit coils 8a and 8b. Therefore, in the fixed magnetic magnets 4 and 4, there is almost no increase or decrease in the magnetic field due to the magnetic field due to the d-axis current and the magnetic field due to the short-circuit current. Furthermore, the magnetic field due to the short-circuit current also acts on the variable magnetic force magnet 3 and is in the same direction as the magnetic field due to the d-axis current.

従って、可変磁力磁石3を磁化させる磁界が強まり、少ないd軸電流で可変磁力磁石3を磁化できることになる。この場合、本実施の形態では、短絡コイル8a,8bにより発生する磁界は、可変磁力磁石3の上下層に強く加わり、中層部には余り加わらないが、本実施の形態のでは、中層部の可変磁力磁石3bは保磁力が弱い磁石で構成されているため、磁化の不均一が生じることがない。また、短絡コイルにより固定磁力磁石4,4は前記d軸電流の影響を受けず、磁束の増加はほとんど生じないので、前記d軸電流による電機子鉄心の磁気飽和も緩和できる。   Therefore, the magnetic field that magnetizes the variable magnetic force magnet 3 is strengthened, and the variable magnetic force magnet 3 can be magnetized with a small d-axis current. In this case, in the present embodiment, the magnetic field generated by the short-circuit coils 8a and 8b is strongly applied to the upper and lower layers of the variable magnetic force magnet 3 and is not so much applied to the middle layer portion. Since the variable magnetic force magnet 3b is composed of a magnet having a weak coercive force, nonuniform magnetization does not occur. Further, since the fixed magnetic magnets 4 and 4 are not affected by the d-axis current due to the short-circuit coil and the magnetic flux hardly increases, the magnetic saturation of the armature core due to the d-axis current can be reduced.

なお、固定磁力磁石4,4の下面(回転子の内周側)に、前記短絡コイル8bに代えて導電性の板を設けることもできる。導電性の板として、銅板またはアルミ板を使用することが好ましい。また、導電性の板は、固定磁力磁石4,4の下面に限らず、上面(回転子の外周側)に配置しても良いが、上面に設けると、電流高調波やスロット高調波で導電性板に誘導電流が生じて前記高調波を低減できるメリットがある。   A conductive plate may be provided on the lower surface of the fixed magnetic force magnets 4 and 4 (inner peripheral side of the rotor) instead of the short-circuit coil 8b. It is preferable to use a copper plate or an aluminum plate as the conductive plate. In addition, the conductive plate is not limited to the lower surface of the fixed magnetic magnets 4 and 4, but may be disposed on the upper surface (the outer peripheral side of the rotor). There is a merit that an induced current is generated in the insulating plate and the harmonics can be reduced.

このような構成では、磁化電流によって発生した磁界が導電性の板に加わると、導電性の板の表面には誘導電流(渦電流)が発生し、それによって、前記短絡コイル8a,8bと同様な磁界が発生する。その磁界により、固定磁力磁石4,4中には前記d軸電流による磁界と短絡電流による磁界で、磁界の増減はほとんど生じない。さらに短絡電流による磁界は可変磁力磁石3にも作用し、d軸電流による磁界と同方向になる。同時に、電機子鉄心11の磁気飽和を緩和する作用も発揮される。   In such a configuration, when a magnetic field generated by the magnetizing current is applied to the conductive plate, an induced current (eddy current) is generated on the surface of the conductive plate, and as in the case of the short-circuit coils 8a and 8b. Magnetic field is generated. Due to the magnetic field, there is almost no increase or decrease in the magnetic field due to the d-axis current and the short-circuit current in the fixed magnetic magnets 4 and 4. Furthermore, the magnetic field due to the short-circuit current also acts on the variable magnetic force magnet 3 and is in the same direction as the magnetic field due to the d-axis current. At the same time, the effect of relaxing the magnetic saturation of the armature core 11 is also exhibited.

(1−6.エアギャップ長の作用)
第1の実施の形態では、図1に示すように、固定磁力磁石4が配置された近傍のエアギャップ長L1は、可変磁力磁石3が配置された近傍のエアギャップ長L2よりも長くした構成とする。
(1-6. Action of air gap length)
In the first embodiment, as shown in FIG. 1, the air gap length L1 in the vicinity where the fixed magnetic magnet 4 is arranged is longer than the air gap length L2 in the vicinity where the variable magnetic magnet 3 is arranged. And

本実施の形態では、d軸電流による磁界は可変磁力磁石3に作用させることを目的としているが、漏れ磁界も生じる。そのため、本実施の形態ではq軸近傍のエアギャップ長L2をd軸近傍のエアギャップ長L1よりも大きくしている。すなわち、エアギャップ長は可変磁力磁石3が配置された近傍で短くなっているので、エアギャップ部分の磁気抵抗が小さくなる。   In the present embodiment, the magnetic field generated by the d-axis current is intended to act on the variable magnetic force magnet 3, but a leakage magnetic field is also generated. Therefore, in the present embodiment, the air gap length L2 near the q axis is made larger than the air gap length L1 near the d axis. That is, since the air gap length is shorter in the vicinity where the variable magnetic force magnet 3 is disposed, the magnetic resistance of the air gap portion is reduced.

従って、磁石を磁化させるためのd軸電流による磁界は、d軸部に配置された可変磁力磁石3に集中させることができ、同時に高い磁界を作用させることができ、少ないd軸電流で可変磁力磁石3を効果的に磁化できる。また、q軸側の磁気抵抗が大きくできるので、回転電機のインダクタンスを低減でき、力率を向上できる。他の実施例として、q軸方向の磁気抵抗を大きくするような非磁性部分を回転子鉄心内に設けてもよい。   Accordingly, the magnetic field generated by the d-axis current for magnetizing the magnet can be concentrated on the variable magnetic force magnet 3 disposed in the d-axis portion, and at the same time, a high magnetic field can be applied, and the variable magnetic force can be reduced with a small d-axis current. The magnet 3 can be effectively magnetized. In addition, since the q-axis side magnetic resistance can be increased, the inductance of the rotating electrical machine can be reduced and the power factor can be improved. As another example, a nonmagnetic portion that increases the magnetic resistance in the q-axis direction may be provided in the rotor core.

(1−7.効果)
以上のような構成並びに作用を有する本実施の形態においては、次の効果が得られる。
(1)d軸電流によって可変磁力磁石3の中央部の可変磁力磁石3bにかかる磁界が、その上層部及び下層部の可変磁力磁石3a,3cに比べて弱くても、可変磁力磁石3の中央部分の磁化を確実に行うことができるので、鎖交磁束の変化量を大きくすることができる。すなわち、d軸電流で可変磁力磁石3を不可逆的に変化させた場合の鎖交磁束量は、可変磁力磁石3と固定磁力磁石4,4を合わせた全鎖交磁束量とすることができる。
(1-7. Effect)
In the present embodiment having the configuration and operation as described above, the following effects can be obtained.
(1) Even if the magnetic field applied to the variable magnetic magnet 3b in the central portion of the variable magnetic magnet 3 by the d-axis current is weaker than the variable magnetic magnets 3a and 3c in the upper and lower layers, the center of the variable magnetic magnet 3 Since the magnetization of the portion can be reliably performed, the amount of change in the linkage flux can be increased. That is, the amount of flux linkage when the variable magnetic magnet 3 is irreversibly changed by the d-axis current can be the total flux linkage of the variable magnetic magnet 3 and the fixed magnetic magnets 4 and 4.

(2)永久磁石の全鎖交磁束量の調整は回転電機の電圧を広範囲に調整することを可能とし、また、着磁は極短時間のパルス的な電流で行うことにより、常時弱め磁束電流を流し続ける必要もないので損失を大幅に低減できる。また、従来のように弱め磁束制御を行う必要がないので高調波磁束による高調波鉄損も発生しない。以上により、本実施の形態の回転電機は、高出力で低速から高速までの広範囲の可変速運転を可能とし、広い運転範囲において高効率も可能となる。 (2) The adjustment of the total interlinkage magnetic flux of the permanent magnet makes it possible to adjust the voltage of the rotating electrical machine in a wide range, and the magnetization is always weakened by performing a pulse-like current in an extremely short time. Since it is not necessary to continue the flow, loss can be greatly reduced. Further, since it is not necessary to perform the flux-weakening control as in the prior art, harmonic iron loss due to the harmonic magnetic flux does not occur. As described above, the rotating electrical machine according to the present embodiment enables high-output, wide-range variable speed operation from low speed to high speed, and high efficiency in a wide operation range.

(3)永久磁石による誘導電圧に関しては、可変磁力磁石3を負のd軸電流で着磁して永久磁石の全鎖交磁束量を小さくできるので、永久磁石の誘導電圧によるインバータ電子部品の破損がなくなり、信頼性が向上する。 (3) Regarding the induced voltage by the permanent magnet, the variable magnetic force magnet 3 can be magnetized with a negative d-axis current to reduce the total interlinkage magnetic flux of the permanent magnet. Therefore, the inverter electronic component is damaged by the induced voltage of the permanent magnet. And the reliability is improved.

(4)回転電機が無負荷で連れ回される状態では、可変磁力磁石3を負のd軸電流で着磁して永久磁石の全鎖交磁束量を小さくできる。これより、誘導電圧は著しく低くなり、誘導電圧を下げるための弱め磁束電流を常時通電する必要がほとんどなくなり、総合効率が向上する。特に惰行運転時間が長くなる通勤電車に本実施の形態の回転電機を搭載して駆動すると、総合運転効率は大幅に向上する。 (4) In a state where the rotating electrical machine is rotated with no load, the total magnetic flux linkage of the permanent magnet can be reduced by magnetizing the variable magnetic force magnet 3 with a negative d-axis current. As a result, the induced voltage is remarkably lowered, and there is almost no need to constantly apply a weak magnetic flux current for lowering the induced voltage, thereby improving the overall efficiency. In particular, when the rotating electric machine of the present embodiment is mounted on a commuter train that has a long coasting operation time, the overall driving efficiency is greatly improved.

(2.第2の実施の形態)
(2−1.構成)
本発明の第2の実施の形態について、図6を用いて説明する。
(2. Second Embodiment)
(2-1. Configuration)
A second embodiment of the present invention will be described with reference to FIG.

本発明の第2の実施の形態の構成は、第1の実施の形態の可変磁力磁石3として積層する永久磁石の種類を変えたものである。すなわち、第1の実施形態の可変磁力磁石3a〜3cの代りに、上層部に保磁力が強い可変磁力磁石3aを配置し、中層部に保磁力が可変磁力磁石3aより弱い可変磁力磁石3bを配置し、下層部に可変磁力磁石3aの3倍〜5倍の保磁力の固定磁力磁石4’を配置した。してなる複合磁石を使用する。   The configuration of the second embodiment of the present invention is obtained by changing the type of permanent magnet to be laminated as the variable magnetic magnet 3 of the first embodiment. That is, instead of the variable magnetic force magnets 3a to 3c of the first embodiment, the variable magnetic force magnet 3a having a strong coercive force is disposed in the upper layer portion, and the variable magnetic force magnet 3b having a coercive force weaker than the variable magnetic force magnet 3a is disposed in the middle layer portion. The fixed magnetic magnet 4 ′ having a coercive force 3 to 5 times that of the variable magnetic magnet 3a is arranged in the lower layer portion. A composite magnet is used.

すなわち、可変磁力磁石3a,3bと固定磁力磁石4’の磁化方向を同じくして、磁気的に直列に配置する。一方、可変磁力磁石3a,3bと固定磁力磁石4’を直列に積層した磁石の両側に、固定磁力磁石4,4を磁化方向がd軸方向となる位置で配置する。この横に配置した固定磁力磁石4,4は、前記直列に重ねた磁石に対して、磁気回路上で並列回路を構成する。すなわち、磁気回路上では、可変磁力磁石3a,3bに対して、直列に固定磁力磁石4’を、並列に固定磁力磁石4,4を配置する。可変磁力磁石3a,3bはサマリウムコバルト磁石またはアルニコ磁石とし、固定磁力磁石4,4’は、NdFeB磁石とすることができる。また、各磁石の保磁力は、前記第1の実施の形態と等しく設定する。   That is, the magnetization directions of the variable magnetic force magnets 3a and 3b and the fixed magnetic force magnet 4 'are the same and are magnetically arranged in series. On the other hand, the fixed magnetic magnets 4 and 4 are arranged on both sides of a magnet in which the variable magnetic magnets 3a and 3b and the fixed magnetic magnet 4 'are stacked in series at positions where the magnetization direction is the d-axis direction. The fixed magnetic magnets 4 and 4 arranged on the side form a parallel circuit on the magnetic circuit with respect to the magnets stacked in series. That is, on the magnetic circuit, the fixed magnetic magnet 4 'is arranged in series with the variable magnetic magnets 3a and 3b, and the fixed magnetic magnets 4 and 4 are arranged in parallel. The variable magnetic magnets 3a and 3b can be samarium cobalt magnets or alnico magnets, and the fixed magnetic magnets 4 and 4 'can be NdFeB magnets. Further, the coercive force of each magnet is set equal to that in the first embodiment.

(2−2.直列配置の作用)
本実施の形態では、複数の磁石を磁気的に直列に配置しているので、複合磁石の減磁及び増磁の際に、前記特許文献1の永久磁石式回転電機とは異なる作用を有する。この点を図7〜13により説明する。
(2-2. Action of series arrangement)
In the present embodiment, since the plurality of magnets are magnetically arranged in series, the composite magnet has an action different from that of the permanent magnet type rotating electrical machine of Patent Document 1 when demagnetizing and magnetizing the composite magnet. This point will be described with reference to FIGS.

図7は、減磁前の最大の鎖交磁束量を得ている場合の図である。この場合、2種類の可変磁力磁石3a,3bと固定磁力磁石4’の磁化方向は同一であるため、3つの永久磁石3a,3b,4’の磁束が加え合わせになって、最大の磁束量が得られる。   FIG. 7 is a diagram when the maximum amount of flux linkage before demagnetization is obtained. In this case, since the magnetization directions of the two types of variable magnetic magnets 3a and 3b and the fixed magnetic magnet 4 'are the same, the magnetic fluxes of the three permanent magnets 3a, 3b and 4' are added together to obtain the maximum amount of magnetic flux. Is obtained.

図8は、減磁時の状態を示すもので、電機子巻線によりd軸方向から2種類の可変磁力磁石3a,3bと固定磁力磁石4’の磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線にパルス的に通電させる。負のd軸電流によって変化した磁石内の磁界が350kA/mになったとすると、保磁力の強い可変磁力磁石3aの保磁力が300kA/mなので可変磁力磁石3a,3bの磁力は不可逆的に大幅に低下する。この場合、可変磁力磁石3a,3bには、それに積層した固定磁力磁石4’からの磁界が加わる。これが減磁のためのd軸方向から加わる磁界と打ち消し合うことになるため、その分大きな磁化電流が必要となるが、減磁のための磁化電流は増磁時に比較して少なくて済むので、磁化電流の増加は少ない。   FIG. 8 shows a state at the time of demagnetization, and a magnetic field in the opposite direction to the magnetization direction of the two types of variable magnetic magnets 3a and 3b and the fixed magnetic magnet 4 'is generated from the d-axis direction by the armature winding. A negative d-axis current is applied to the armature winding in a pulse manner. If the magnetic field in the magnet changed by the negative d-axis current becomes 350 kA / m, the coercive force of the variable magnetic magnet 3a having a strong coercive force is 300 kA / m, and the magnetic force of the variable magnetic magnets 3a and 3b is irreversibly large. To drop. In this case, the magnetic field from the fixed magnetic magnet 4 'laminated thereon is applied to the variable magnetic magnets 3a and 3b. Since this cancels out the magnetic field applied from the d-axis direction for demagnetization, a larger magnetizing current is required, but the magnetizing current for demagnetization is smaller than that at the time of demagnetization. There is little increase in magnetizing current.

図9は、負のd軸電流により逆磁界での可変磁力磁石3a,3bの磁力が減少した状態を示すものである。可変磁力磁石3の磁力は不可逆的に大幅に低下するが、固定磁力磁石4’の保磁力が1000kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になると可変磁力磁石3a,3bのみが減磁した状態となり、全体の磁石による鎖交磁束量を減少することができる。   FIG. 9 shows a state in which the magnetic forces of the variable magnetic magnets 3a and 3b in a reverse magnetic field are reduced by a negative d-axis current. Although the magnetic force of the variable magnetic magnet 3 is irreversibly significantly reduced, the magnetic force is not irreversibly lowered because the coercive force of the fixed magnetic magnet 4 'is 1000 kA / m. As a result, when the pulsed d-axis current becomes 0, only the variable magnetic force magnets 3a and 3b are demagnetized, and the amount of interlinkage magnetic flux by the entire magnet can be reduced.

図10は、負のd軸電流により逆磁界での可変磁力磁石3a,3bの磁力が逆方向に磁化し、全体の磁石による鎖交磁束が最小になった状態を示すものである。負のd軸電流の大きさの可変磁力磁石3aが着磁するために必要な350kA/mの磁界を発生しているならば、減磁していた可変磁力磁石3aは着磁されて磁力を発生する。この時、複合磁石の中央部にかかる磁界は、350kA/m以下になる。しかし、中央部に配置された可変磁力磁石3bの保磁力は、200kA/mであり、着磁に必要な磁界の強さも低くなるので、可変磁力磁石3bも着磁されて磁力を発生する。この場合、可変磁力磁石3a,3bと固定磁力磁石4’の磁化方向が逆であるため、両方の永久磁石の磁束が減算され磁束が最小となる。   FIG. 10 shows a state in which the magnetic force of the variable magnetic force magnets 3a and 3b in the reverse magnetic field is magnetized in the reverse direction by the negative d-axis current, and the linkage flux by the entire magnet is minimized. If a magnetic field of 350 kA / m necessary for magnetizing the variable magnetic magnet 3a having a negative d-axis current magnitude is generated, the demagnetized variable magnetic magnet 3a is magnetized to generate a magnetic force. appear. At this time, the magnetic field applied to the central portion of the composite magnet is 350 kA / m or less. However, the coercive force of the variable magnetic magnet 3b disposed in the center is 200 kA / m, and the strength of the magnetic field required for magnetization is also low, so the variable magnetic magnet 3b is also magnetized to generate a magnetic force. In this case, since the magnetization directions of the variable magnetic magnets 3a and 3b and the fixed magnetic magnet 4 'are opposite, the magnetic fluxes of both permanent magnets are subtracted to minimize the magnetic flux.

図11は、負のd軸電流で極性が反転した可変磁力磁石3a,3bの磁力を減少させるために磁界を発生させた状態を示すものである。固定磁力磁石4’の磁化方向の磁界を発生する正のd軸電流を電機子巻線にパルス的に通電させる。正のd軸電流によって変化した磁石内の磁界の極性が反転した可変磁力磁石3a,3bの磁力を不可逆的に大幅に低下する。この場合、可変磁力磁石3に積層されている固定磁力磁石4’からの磁界が磁化電流による磁界と加え合わせになる(固定磁力磁石4’からバイアス的な磁界が可変磁力磁石3に作用する)ため、可変磁力磁石3a,3bの減磁が容易に行われる。   FIG. 11 shows a state in which a magnetic field is generated in order to reduce the magnetic force of the variable magnetic magnets 3a and 3b whose polarity is reversed by a negative d-axis current. A positive d-axis current that generates a magnetic field in the magnetization direction of the fixed magnetic magnet 4 ′ is applied in a pulse manner to the armature winding. The magnetic force of the variable magnetic force magnets 3a and 3b in which the polarity of the magnetic field in the magnet changed by the positive d-axis current is reversed is irreversibly greatly reduced. In this case, the magnetic field from the fixed magnetic magnet 4 ′ stacked on the variable magnetic magnet 3 is added to the magnetic field generated by the magnetizing current (a biased magnetic field acts on the variable magnetic magnet 3 from the fixed magnetic magnet 4 ′). Therefore, the demagnetization of the variable magnetic force magnets 3a and 3b is easily performed.

図12は、正のd軸電流による磁界で極性反転した可変磁力磁石3a,3bの磁力が減少した状態を示すものである。可変磁力磁石3の磁力を不可逆的に低下させる正のd軸電流による磁界には、固定磁力磁石4’による磁界も加わっている。そのため、通常は大きな磁化電流を必要とする時においても、固定磁力磁石4’の作用により、磁化電流の増大を抑止できる。   FIG. 12 shows a state in which the magnetic force of the variable magnetic magnets 3a and 3b whose polarity is reversed by a magnetic field due to a positive d-axis current is reduced. The magnetic field generated by the fixed magnetic force magnet 4 'is also added to the magnetic field generated by the positive d-axis current that irreversibly decreases the magnetic force of the variable magnetic force magnet 3. Therefore, even when a large magnetizing current is usually required, an increase in the magnetizing current can be suppressed by the action of the fixed magnetic magnet 4 '.

図13は、正のd軸電流により可変磁力磁石3a,3bが逆方向に磁化(極性が再度反転)し、全体の磁石による鎖交磁束が最大になった状態を示すものである。可変磁力磁石3a,3bと固定磁力磁石4’の磁化方向は同一であるため、両方の永久磁石の磁束が加え合わせになって、最大の磁束量が得られる。   FIG. 13 shows a state in which the variable magnetic force magnets 3a and 3b are magnetized in the reverse direction (polarity is reversed again) by the positive d-axis current, and the linkage flux of the entire magnet is maximized. Since the magnetization directions of the variable magnetic magnets 3a and 3b and the fixed magnetic magnet 4 'are the same, the magnetic fluxes of both permanent magnets are added together to obtain the maximum amount of magnetic flux.

(2−3.可変磁力磁石の作用)
次に、可変磁力磁石3の作用について述べる。図14は、代表的な磁石であるNdFeB磁石及びアルニコ磁石と、保磁力が300kA/mと200kA/mのサマリウムコバルト磁石の磁気特性(保磁力と磁束密度との関係)を示したグラフである。本実施の形態では、固定磁力磁石4,4’としてはNdFeB磁石を使用し、可変磁力磁石3a〜3cとして、保磁力が300kA/mと200kA/mのサマリウムコバルト磁石を使用する。
(2-3. Action of variable magnetic magnet)
Next, the operation of the variable magnetic force magnet 3 will be described. FIG. 14 is a graph showing magnetic characteristics (relationship between coercive force and magnetic flux density) of typical magnets such as NdFeB magnet and alnico magnet and samarium cobalt magnets having coercive forces of 300 kA / m and 200 kA / m. . In the present embodiment, NdFeB magnets are used as the fixed magnetic magnets 4 and 4 ', and samarium cobalt magnets having coercive forces of 300 kA / m and 200 kA / m are used as the variable magnetic magnets 3a to 3c.

可変磁力磁石3a,3bは、低保磁力であっても、可変磁力磁石3a,3bのみの状態のときは高磁束密度であるが、固定磁力磁石4を並列に配置した状態では、その作用で可変磁力磁石3a,3bの動作点は低下し、その磁束密度が低下する。これに対して、可変磁力磁石3と固定磁力磁石4’を直列に積層した状態では、直列に積層した固定磁力磁石4’の作用で、可変磁力磁石3の磁石の動作点は上昇し、磁束密度が上昇する。   The variable magnetic force magnets 3a and 3b have a high magnetic flux density when only the variable magnetic force magnets 3a and 3b are in a state of low coercive force, but in the state where the fixed magnetic force magnets 4 are arranged in parallel, The operating point of the variable magnetic magnets 3a and 3b is lowered, and the magnetic flux density is lowered. On the other hand, in the state where the variable magnetic magnet 3 and the fixed magnetic magnet 4 ′ are stacked in series, the operating point of the magnet of the variable magnetic magnet 3 rises due to the action of the fixed magnetic magnet 4 ′ stacked in series, and the magnetic flux Density increases.

すなわち、低保磁力で高磁束密度の磁石である可変磁力磁石3a,3bの動作点は、可変磁力磁石3a,3bのみの状態では高磁束密度側(図14のA,B)にあるが、固定磁力磁石4,4を並列に配置した状態では低磁束密度側(図14のA’,B’)に低下する。しかし、本実施の形態のように、可変磁力磁石3と固定磁力磁石4’を直列に積層した状態では、並列に配置された固定磁力磁石4,4と、直列に配置された固定磁力磁石4’の磁界の向きが逆方向であるため、両者の磁界は相殺され、可変磁力磁石3の動作点は高磁束密度側(図14のA”,B”)に移動する。   That is, the operating points of the variable magnetic force magnets 3a and 3b, which are low coercive force and high magnetic flux density magnets, are on the high magnetic flux density side (A and B in FIG. 14) when only the variable magnetic force magnets 3a and 3b are present. In a state where the fixed magnetic magnets 4 and 4 are arranged in parallel, the magnetic flux density decreases to the low magnetic flux density side (A ′ and B ′ in FIG. 14). However, in the state where the variable magnetic magnet 3 and the fixed magnetic magnet 4 ′ are stacked in series as in the present embodiment, the fixed magnetic magnets 4 and 4 arranged in parallel and the fixed magnetic magnet 4 arranged in series. Since the direction of the magnetic field 'is opposite, both magnetic fields cancel each other, and the operating point of the variable magnetic force magnet 3 moves to the high magnetic flux density side (A ″, B ″ in FIG. 14).

このグラフから分かるように、可変磁力磁石3a,3bを単独で使用した場合には、動作点A,B点から磁束密度を下げるためには、その保磁力に打ち勝つだけの磁力を電機子巻線のd軸電流による磁界で発生させる必要があり、大きなd軸電流が必要となる。しかし、本実施の形態のように、並列に配置された固定磁力磁石4,4と、直列に配置された固定磁力磁石4’によって、可変磁力磁石3の動作点は図中A”に移動することになるので、磁界の強さをわずかに変化するだけでその磁束密度が急激に低下することになる。これにより、電機子巻線のd軸電流により逆磁界で可変磁力磁石3の磁力が減少した場合に、その磁束密度の変化を大きくすることができるので、少ないd軸電流によって、磁極内に配置された永久磁石全体による鎖交磁束量を大きく変化させることができる。   As can be seen from this graph, when the variable magnetic force magnets 3a and 3b are used singly, in order to lower the magnetic flux density from the operating points A and B, the magnetic force sufficient to overcome the coercive force is used. Therefore, a large d-axis current is required. However, as in the present embodiment, the operating point of the variable magnetic force magnet 3 is moved to A ″ in the figure by the fixed magnetic force magnets 4 and 4 arranged in parallel and the fixed magnetic force magnet 4 ′ arranged in series. Therefore, the magnetic flux density is drastically reduced by slightly changing the strength of the magnetic field, so that the magnetic force of the variable magnetic force magnet 3 is reversed by the d-axis current of the armature winding. When it decreases, the change in the magnetic flux density can be increased, so that the amount of interlinkage magnetic flux by the entire permanent magnet disposed in the magnetic pole can be greatly changed with a small d-axis current.

また、アルニコ磁石もサマリウムコバルト磁石と同じ磁束特性の150kA/mの低保磁力で高磁束密度の可変磁石である。したがって、可変磁力磁石3として、可変磁力磁石3a〜3cを三層に積層する場合や、可変磁力磁石3a,3bと固定磁力磁石4’を積層する場合の中層の可変磁力磁石3bとして使用することができる。可変磁力磁石3bとしてアルニコ磁石を使用した場合でも、磁界の強さをわずかに変化するだけでその磁束密度が急激に低下する。   The alnico magnet is also a variable magnet having a low magnetic coercive force of 150 kA / m and a high magnetic flux density, which has the same magnetic flux characteristics as the samarium cobalt magnet. Therefore, as the variable magnetic magnet 3, when the variable magnetic magnets 3a to 3c are laminated in three layers, or when the variable magnetic magnets 3a, 3b and the fixed magnetic magnet 4 ′ are laminated, the variable magnetic magnet 3b is used as the middle variable magnetic magnet 3b. Can do. Even when an alnico magnet is used as the variable magnetic force magnet 3b, the magnetic flux density is drastically lowered only by slightly changing the strength of the magnetic field.

(2−4.効果)
以上のような構成並びに作用を有する本実施の形態においては、次の効果が得られる。
(1)可変磁力磁石の磁気特性上の動作点を高い位置から低い位置まで変化させることができるので、永久磁石の全鎖交磁束量を広い範囲で変化させることができる。さらにd軸電流によって可変磁力磁石3の中央部にかかる磁界が、上層部及び下層部に比べて弱くても、可変磁力磁石3の中央部分の磁化を確実に行うことができるので、鎖交磁束の変化量を大きくすることができる。すなわち、d軸電流で可変磁力磁石3を不可逆的に変化させた場合の鎖交磁束量は、可変磁力磁石3a,3bと固定磁力磁石4’と固定磁力磁石4,4を合わせた全鎖交磁束量とすることができる。
(2)増磁時の磁化電流の増加を抑止できるので、永久磁石式回転電機を駆動するためのインバータの大型化を必要とせず、現状のインバータをそのまま使用して、運転の効率化が可能となる。
(3)本回転電機の永久磁石の全鎖交磁束が最大にした状態において、可変磁力磁石の磁気特性上の動作点を高くできるので(磁束密度が高くなる)、可変磁力磁石の磁束量を大きくできるので、最大トルクを増加できる。
(2-4. Effect)
In the present embodiment having the configuration and operation as described above, the following effects can be obtained.
(1) Since the operating point on the magnetic characteristics of the variable magnetic force magnet can be changed from a high position to a low position, the total flux linkage of the permanent magnet can be changed in a wide range. Further, even if the magnetic field applied to the central portion of the variable magnetic force magnet 3 by the d-axis current is weaker than that of the upper layer portion and the lower layer portion, the central portion of the variable magnetic force magnet 3 can be surely magnetized. The amount of change can be increased. That is, the amount of flux linkage when the variable magnetic magnet 3 is irreversibly changed by the d-axis current is the total linkage of the variable magnetic magnets 3a, 3b, the fixed magnetic magnet 4 ', and the fixed magnetic magnets 4, 4. It can be the amount of magnetic flux.
(2) Since the increase in magnetizing current at the time of magnetizing can be suppressed, it is not necessary to increase the size of the inverter for driving the permanent magnet type rotating electrical machine, and the current inverter can be used as it is to improve the operation efficiency. It becomes.
(3) In the state where the total interlinkage magnetic flux of the permanent magnet of this rotating electrical machine is maximized, the operating point on the magnetic characteristics of the variable magnetic force magnet can be increased (the magnetic flux density is increased). Since it can be increased, the maximum torque can be increased.

(3.第3の実施の形態)
本発明の第3の実施の形態について、図15を用いて説明する。
本実施の形態は、図15のように、1つの固定磁力磁石4を磁化方向がd軸方向(ここでは、ほぼ回転子の半径方向)となる位置(回転子の磁極中心軸)となるように、回転子鉄心2内に配置する。一方、可変磁力磁石3a,3bと固定磁力磁石4’を直列に重ねた複合磁石を固定磁力磁石4の両側に、磁化方向がd軸方向となる位置で配置する。この両側に配置した可変磁力磁石3a,3bと固定磁力磁石4’を積層した複合磁石は、前記磁極中心部の固定磁力磁石4に対して、磁気回路上で並列回路を構成する。
(3. Third embodiment)
A third embodiment of the present invention will be described with reference to FIG.
In the present embodiment, as shown in FIG. 15, one fixed magnetic magnet 4 is positioned at the position where the magnetization direction is the d-axis direction (here, substantially the radial direction of the rotor) (the magnetic pole central axis of the rotor). In the rotor core 2. On the other hand, composite magnets in which the variable magnetic magnets 3a and 3b and the fixed magnetic magnet 4 ′ are stacked in series are arranged on both sides of the fixed magnetic magnet 4 at positions where the magnetization direction is the d-axis direction. The composite magnet in which the variable magnetic magnets 3a and 3b and the fixed magnetic magnet 4 ′ disposed on both sides are laminated forms a parallel circuit on the magnetic circuit with respect to the fixed magnetic magnet 4 at the magnetic pole center.

なお、複合磁石及び固定磁力磁石を構成する各磁石の保磁力は、前記第2の実施の形態と同様なものとする。   The coercive force of each magnet constituting the composite magnet and the fixed magnetic magnet is the same as that of the second embodiment.

以上のような構成を有する本実施の形態では、前記の実施の形態と同様な作用効果に加えて、磁極に対して左右に可変磁力磁石3a,3bと固定磁力磁石4’を積層した磁石が配置されるので、左右の片側ずつ2回に分けて可変磁力磁石3の磁化が可能になる。その結果、可変磁力磁石3a,3bの極性変化を妨げることになる固定磁力磁石4は、並列に配置された1つだけになる。すなわち、固定磁力磁石4が2つ配置された前記実施の形態に比べ、可変磁力磁石3の極性変化を妨げる固定磁力磁石4による磁界を小さくできるので、可変磁力磁石3の磁力を変化させるときに要する磁化電流(d軸電流)を低減することができる。   In the present embodiment having the above-described configuration, in addition to the same effect as the above-described embodiment, a magnet in which the variable magnetic magnets 3a and 3b and the fixed magnetic magnet 4 ′ are stacked on the left and right with respect to the magnetic pole is provided. Since they are arranged, the variable magnetic magnet 3 can be magnetized by dividing the left and right sides twice. As a result, there is only one fixed magnetic magnet 4 arranged in parallel that will prevent the polarity change of the variable magnetic magnets 3a, 3b. That is, compared to the embodiment in which two fixed magnetic magnets 4 are arranged, the magnetic field by the fixed magnetic magnet 4 that prevents the change in polarity of the variable magnetic magnet 3 can be reduced, so that the magnetic force of the variable magnetic magnet 3 can be changed. The required magnetizing current (d-axis current) can be reduced.

また、電機子巻線が集中巻の巻線や分数溝巻線などの特殊な巻線構造では、固定子と回転子の幾何的位置が磁極ごとにずれているので、分割して磁化することにより可変磁力磁石3の磁化が可能となる。
(4.第4の実施の形態)
本発明の第4の実施の形態について、図16を用いて説明する。
本実施の形態は、図16のように、第1の実施の形態で使用した可変磁力磁石3a〜3cの両側に固定磁力磁石4b,4bを並べて回転子の第1の磁極を構成する。一方、前記第1の磁極と隣接して、固定磁力磁石4aを配置して第2の磁極を構成する。これら隣接する第1と第2の磁極における固定磁力磁石4a,4bの極性は、回転子の外周側及び内周側でそれぞれ異なった極性となるように配置する。
Also, in special winding structures, such as concentrated windings and fractional groove windings, the stator and rotor geometric positions are shifted for each magnetic pole. Thus, the variable magnetic magnet 3 can be magnetized.
(4. Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIG.
In the present embodiment, as shown in FIG. 16, the fixed magnetic magnets 4b and 4b are arranged on both sides of the variable magnetic magnets 3a to 3c used in the first embodiment to constitute the first magnetic pole of the rotor. On the other hand, a fixed magnetic force magnet 4a is disposed adjacent to the first magnetic pole to constitute a second magnetic pole. The polarities of the fixed magnetic magnets 4a and 4b in the adjacent first and second magnetic poles are arranged to have different polarities on the outer peripheral side and the inner peripheral side of the rotor.

すなわち、可変磁力磁石3a〜3cの両側に固定磁力磁石4b,4bを配置した第1の磁極と、この第1の磁極の両側に配置され、第1の磁極の固定磁力磁石4b,4bとはその極性が異なる固定磁力磁石4aを用いて構成された第2の磁極とから、回転子の磁極が形成される。また、第1の磁極内では、可変磁力磁石3a〜3cと固定磁力磁石4b,4bが磁気回路上で並列に配置され、第1の磁極の可変磁力磁石3a〜3cと第2の磁極に配置された固定磁力磁石4aが磁気回路上で直列に配置される。   That is, the first magnetic pole in which the fixed magnetic magnets 4b and 4b are arranged on both sides of the variable magnetic magnets 3a to 3c and the fixed magnetic magnets 4b and 4b in the first magnetic pole are arranged on both sides of the first magnetic pole. The magnetic pole of the rotor is formed from the second magnetic pole configured using the fixed magnetic magnets 4a having different polarities. In the first magnetic pole, the variable magnetic force magnets 3a to 3c and the fixed magnetic force magnets 4b and 4b are arranged in parallel on the magnetic circuit, and are arranged on the variable magnetic force magnets 3a to 3c of the first magnetic pole and the second magnetic pole. The fixed fixed magnets 4a are arranged in series on the magnetic circuit.

以上のような構成を有する本実施の形態では、可変磁力磁石3a〜3cは回転子の1つの極内では、固定磁力磁石と直列に配置されていない。しかし、可変磁力磁石3a〜3cは隣接する極の固定磁力磁石4aの磁界の影響を受けるので、前記実施の形態のように固定磁力磁石4aを積層した場合と同様の効果を得ることができる。すなわち、隣接する回転子の極の固定磁力磁石4aの磁界は、可変磁力磁石3内部では、可変磁力磁石3a〜3cに対して並列に配置された固定磁力磁石4b,4bの磁界とは逆方向であり、互いに相殺するように作用する。これにより、可変磁力磁石3a〜3cを不可逆減磁させた状態から増磁させて元の極性に戻す場合に、変化を妨げるような隣接する固定磁力磁石4b,4bによる磁界を小さくできるので、可変磁力磁石3a〜3cの磁力を変化させるときに要する磁化電流(d軸電流)を低減できる。   In the present embodiment having the above configuration, the variable magnetic force magnets 3a to 3c are not arranged in series with the fixed magnetic force magnet in one pole of the rotor. However, since the variable magnetic magnets 3a to 3c are affected by the magnetic field of the adjacent fixed magnetic magnet 4a, it is possible to obtain the same effect as when the fixed magnetic magnet 4a is stacked as in the above embodiment. That is, the magnetic field of the fixed magnetic magnet 4a at the pole of the adjacent rotor is opposite to the magnetic field of the fixed magnetic magnets 4b and 4b arranged in parallel to the variable magnetic magnets 3a to 3c in the variable magnetic magnet 3. And act to offset each other. As a result, when the variable magnetic magnets 3a to 3c are magnetized from the irreversibly demagnetized state and returned to the original polarity, the magnetic field generated by the adjacent fixed magnetic magnets 4b and 4b that hinders the change can be reduced. Magnetization current (d-axis current) required when changing the magnetic force of the magnetic magnets 3a to 3c can be reduced.

本実施形態においても、d軸電流によって可変磁力磁石3の上層部及び下層部に強い磁界が作用するので、保磁力が300kA/mの可変磁力磁石3a,3cを磁化することができる。一方、可変磁力磁石3の中央部には弱い磁界が作用するが、中層部に配置される可変磁力磁石3bは保磁力が200kA/mと保磁力が小さいので、十分に磁化することができる。   Also in the present embodiment, since a strong magnetic field acts on the upper layer portion and the lower layer portion of the variable magnetic force magnet 3 by the d-axis current, the variable magnetic force magnets 3a and 3c having a coercive force of 300 kA / m can be magnetized. On the other hand, a weak magnetic field acts on the central portion of the variable magnetic force magnet 3, but the variable magnetic force magnet 3b arranged in the middle layer portion can be sufficiently magnetized because the coercive force is as small as 200 kA / m.

(5.他の実施の形態)
本発明は、前記の各実施の形態に限定されるものではなく、つぎのような他の実施の形態も包含する。
(5. Other embodiments)
The present invention is not limited to the above-described embodiments, and includes other embodiments as follows.

(1)前記の可変磁力磁石は、保磁力の異なる可変磁力磁石を3層、あるいは保磁力の異なる可変磁力磁石を2層と固定磁力磁石を1層積層した複合磁石としたが、積層数はこれに限定されるものではなく、4層以上とすることもできる。また、磁気障壁や短絡コイルの配置により、可変磁力磁石に加わる磁束の強度を調整した場合には、調整された強度に合わせて、保磁力の強い可変磁力磁石と保磁力の弱い可変磁力磁石との配置を、可変磁力磁石に加わる磁束の強度に合わせて変更することも可能である。 (1) The variable magnetic magnet is a composite magnet in which three layers of variable magnetic magnets having different coercive force or two layers of variable magnetic magnets having different coercive force and one layer of fixed magnetic magnet are stacked. However, the present invention is not limited to this, and the number of layers may be four or more. In addition, when the strength of the magnetic flux applied to the variable magnetic force magnet is adjusted by the arrangement of the magnetic barrier and the short-circuit coil, the variable magnetic force magnet having a strong coercive force and the variable magnetic force magnet having a low coercive force are adjusted in accordance with the adjusted strength. It is also possible to change the arrangement according to the intensity of the magnetic flux applied to the variable magnetic magnet.

(2)保磁力の弱い可変磁力磁石としては、実施の形態に記載した保磁力の弱いサマリウムコバルト磁石、アルニコ磁石以外に、フェライト磁石を使用することも可能である。さらに低保磁力化したNdFeB磁石や他の低保磁力の磁石も適用できる。 (2) As the variable magnetic magnet having a weak coercive force, a ferrite magnet can be used in addition to the samarium cobalt magnet and the alnico magnet having a weak coercive force described in the embodiment. Further, a NdFeB magnet having a low coercive force and other low coercive force magnets can be applied.

(3)前記各実施の形態では4極の回転電機を示したが、8極等の多極の回転電機にも本発明を適用できるのは当然である。極数に応じて永久磁石の配置位置、形状が幾分変ることはもちろんであり、作用と効果は同様に得られる。 (3) In each of the above embodiments, a four-pole rotating electric machine is shown, but the present invention is naturally applicable to a multi-pole rotating electric machine such as an eight-pole machine. Depending on the number of poles, the position and shape of the permanent magnets will of course change somewhat, and the action and effect can be obtained in the same way.

(4)磁極を形成する永久磁石において、保磁力と磁化方向の厚みの積をもって永久磁石を区別する定義をしている。従って、磁極は同じ種類の永久磁石で形成し、磁化方向厚みを異なるように形成しても同様な作用と効果が得られる。 (4) In the permanent magnet forming the magnetic pole, the permanent magnet is defined to be distinguished by the product of the coercive force and the thickness in the magnetization direction. Therefore, even if the magnetic poles are formed of the same type of permanent magnet and are formed so as to have different magnetization direction thicknesses, the same operation and effect can be obtained.

(5)前記回転子鉄心2において、固定磁力磁石の外周側に磁気障壁を構成するために設ける空洞の形状や位置、また、固定磁力磁石の内周側にその磁路断面積を決定するために設ける空洞の位置などは、使用する永久磁石の保磁力や磁化電流によって生じる磁界の強さなどに応じて、適宜変更できる。 (5) In the rotor core 2, in order to determine the shape and position of the cavity provided to form the magnetic barrier on the outer peripheral side of the fixed magnetic magnet, and the magnetic path cross-sectional area on the inner peripheral side of the fixed magnetic magnet The position of the cavity provided in can be appropriately changed according to the coercive force of the permanent magnet used, the strength of the magnetic field generated by the magnetizing current, and the like.

(6)運転時に極短時間のパルス的なd軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させ、かつ、全磁石の誘起電圧に対して位相を進めた電流を連続的に通電させて、電流と永久磁石で生じる電機子巻線の鎖交磁束量を変化させる。 (6) During operation, the permanent magnet is magnetized by a magnetic field generated by a pulsed d-axis current for a very short time, and the amount of magnetic flux of the permanent magnet is irreversibly changed, and the phase is advanced with respect to the induced voltage of all the magnets. By continuously energizing the current, the amount of interlinkage magnetic flux of the armature winding generated by the current and the permanent magnet is changed.

すなわち、パルス電流で永久磁石の磁束量を減少させ、さらに電流位相を進めると、磁石磁束に対して逆方向の電流で生じる磁束が発生するので、これを相殺して、全鎖交磁束を減少でき、端子電圧を低下させることができる。なお、電流位相を進めることは負のd軸電流成分を流していることと等価である。   That is, if the amount of magnetic flux of the permanent magnet is reduced by the pulse current and the current phase is further advanced, magnetic flux generated by the current in the opposite direction to the magnetic flux is generated. Terminal voltage can be reduced. Note that advancing the current phase is equivalent to flowing a negative d-axis current component.

このような電流位相進み制御においては、電流位相を進めるとd軸電流が流れて磁石は減磁して幾分磁束量は減る。しかし、パルス電流で大きく減磁させているので、磁束量の低下は比率的には小さい利点がある。   In such current phase advance control, when the current phase is advanced, a d-axis current flows, the magnet is demagnetized, and the amount of magnetic flux is somewhat reduced. However, since the magnetic field is greatly demagnetized by the pulse current, there is an advantage that the reduction of the magnetic flux amount is small in proportion.

(7)回転子を固定子に挿入して組み立てる時は、保磁力と磁化方向厚の積が小さな永久磁石を減磁するか、極性を反転させることにより永久磁石の鎖交磁束量を減少させた状態とすることができる。それにより、組立作業を容易に行うことができる。 (7) When assembling the rotor by inserting it into the stator, demagnetize the permanent magnet whose product of coercive force and magnetization direction thickness is small, or reduce the flux linkage of the permanent magnet by reversing the polarity. State. Thereby, assembly work can be easily performed.

本発明の第1の実施の形態における回転子と固定子の断面図Sectional drawing of the rotor and stator in the 1st Embodiment of this invention 回転子内の可変磁力磁石を磁化したときの磁界分布を示した断面図Sectional view showing magnetic field distribution when magnetizing variable magnetic magnet in rotor 第1の実施の形態における減磁時の状態を示す断面図Sectional drawing which shows the state at the time of demagnetization in 1st Embodiment 本発明における磁気障壁とq軸磁束との関係を示す断面図Sectional drawing which shows the relationship between the magnetic barrier in this invention, and q-axis magnetic flux 本発明における短絡コイルの作用を示す断面図Sectional drawing which shows the effect | action of the short circuit coil in this invention 本発明の第2の実施の形態における回転子と固定子の断面図Sectional drawing of the rotor and stator in the 2nd Embodiment of this invention 第2の実施の磁石の鎖交磁束が最大の状態を示す断面図Sectional drawing which shows the state with the largest flux linkage of the magnet of 2nd implementation 第2の実施のコイルの電流で可変磁力磁石の磁力減少させる磁界を発生させた状態を示す断面図Sectional drawing which shows the state which generated the magnetic field which reduces the magnetic force of a variable magnetic force magnet with the electric current of the coil of 2nd implementation 第2の実施の電流による逆磁界で可変磁力磁石の磁力が減少した状態を示す断面図Sectional drawing which shows the state where the magnetic force of the variable magnetic force magnet decreased with the reverse magnetic field by the electric current of 2nd implementation 第2の実施の電流による逆磁界で可変磁力磁石が逆方向に磁化し、磁石の鎖交磁束が最小の状態を示す断面図Sectional drawing which shows the state where a variable magnetic force magnet is magnetized in the reverse direction by the reverse magnetic field by the electric current of 2nd implementation, and the linkage flux of a magnet is the minimum 第2の実施のコイルの電流で極性反転した可変磁力磁石の磁力を減少させる磁界を発生た状態を示す断面図Sectional drawing which shows the state which generate | occur | produced the magnetic field which reduces the magnetic force of the variable magnetic magnet which reversed the polarity with the electric current of the coil of 2nd implementation 第2の実施の電流による磁界で極性反転した可変磁力磁石の磁力を減少させた状態を示す断面図Sectional drawing which shows the state which reduced the magnetic force of the variable magnetic magnet which reversed the polarity with the magnetic field by 2nd implementation electric current 第2の実施の電流による逆磁界で可変磁力磁石が逆方向に磁化し、磁石の鎖交磁束が最大の状態を示す断面図Sectional drawing which shows the state where a variable magnetic force magnet is magnetized in the reverse direction by the reverse magnetic field by the electric current of 2nd implementation, and the linkage flux of a magnet is the maximum 低保磁力磁石の動作点変化と代表的磁石の磁気特性を示す図Diagram showing operating point change of low coercivity magnet and magnetic characteristics of typical magnet 本発明の第3の実施の形態の構成を示す模式図The schematic diagram which shows the structure of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の構成を示す模式図The schematic diagram which shows the structure of the 4th Embodiment of this invention. 特許文献1に記載の回転子の断面図Sectional view of rotor described in Patent Document 1 特許文献1に記載の回転子の作用を示す模式図Schematic diagram showing the action of the rotor described in Patent Document 1

符号の説明Explanation of symbols

1…回転子
2…回転子鉄心
3,3a〜3c…可変磁力磁石
4,4’,4a,4b…固定磁力磁石
5…空洞(磁気障壁)
6…永久磁石端の空洞(磁気障壁)
7…磁極部
8a,8b…短絡コイル
DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Rotor core 3, 3a-3c ... Variable magnetic magnet 4, 4 ', 4a, 4b ... Fixed magnetic magnet 5 ... Cavity (magnetic barrier)
6. Cavity at the end of permanent magnet (magnetic barrier)
7: Magnetic pole portions 8a, 8b ... Short-circuit coil

Claims (18)

保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石を用いて回転子の磁極を形成し、電機子巻線の電流が作る磁界により、前記2種類以上の永久磁石のうち、保磁力と磁化方向厚の積が小の永久磁石を磁化させて、磁極を構成する永久磁石の磁束量を不可逆的に変化させる永久磁石回転電機において、
電機子巻線の電流が作る磁界により磁化させる保磁力と磁化方向厚の積が小の永久磁石を、保磁力と磁化方向厚の積の値が異なる複数の永久磁石を積層して複合磁石を構成し、
この複合磁石の中央部に位置する永久磁石の保磁力と磁化方向厚の積の値が、複合磁石の上層部または下層部の少なくとも一方に位置する永久磁石の保磁力と磁化方向厚の積の値よりも小さく設定されていることを特徴とする永久磁石式回転電機。
The magnetic poles of the rotor are formed by using two or more types of permanent magnets having a product of the coercive force and the magnetization direction thickness different from those of other permanent magnets, and the two or more types of permanent magnets are generated by the magnetic field generated by the current of the armature winding. Among them, in a permanent magnet rotating electrical machine that magnetizes a permanent magnet having a small product of coercive force and magnetization direction thickness and irreversibly changes the amount of magnetic flux of the permanent magnet constituting the magnetic pole,
Permanent magnets with a small product of coercive force and magnetization direction thickness, which are magnetized by the magnetic field generated by the current generated by the armature winding, are laminated with a plurality of permanent magnets with different values of the product of coercive force and magnetization direction thickness. Configure
The product of the coercive force and the magnetization direction thickness of the permanent magnet located in the center of the composite magnet is the product of the product of the coercivity and the magnetization direction thickness of the permanent magnet located in at least one of the upper layer or the lower layer of the composite magnet. A permanent magnet type rotating electrical machine characterized by being set smaller than the value.
前記複合磁石が、保磁力と磁化方向厚の積が小の永久磁石を少なくとも3層積層したものであり、
複合磁石の中央部に位置する永久磁石の保磁力と磁化方向厚の積の値が、複合磁石の上下層部に位置する永久磁石の保磁力と磁化方向厚の積の値よりも小さく設定されていることを特徴とする請求項1に記載の永久磁石式回転電機。
The composite magnet is formed by laminating at least three layers of permanent magnets having a small product of coercive force and magnetization direction thickness.
The product of the coercive force and magnetization direction thickness of the permanent magnet located in the center of the composite magnet is set smaller than the product of the coercivity and magnetization direction thickness of the permanent magnet located in the upper and lower layers of the composite magnet. The permanent magnet type rotating electrical machine according to claim 1, wherein:
前記複合磁石に対して、保磁力と磁化方向厚の積が大の永久磁石が積層され、
複合磁石の中央部に位置する永久磁石の保磁力と磁化方向厚の積の値が、複合磁石の他の永久磁石の保磁力と磁化方向厚の積の値よりも小さく設定されていることを特徴とする請求項1に記載の永久磁石式回転電機。
A permanent magnet having a large product of coercive force and magnetization direction thickness is laminated to the composite magnet,
The value of the product of the coercive force and the magnetization direction thickness of the permanent magnet located at the center of the composite magnet is set to be smaller than the product of the coercivity and the magnetization direction thickness of the other permanent magnets of the composite magnet. The permanent magnet type rotating electrical machine according to claim 1, wherein
前記回転子の同一磁極において、前記複合磁石と、保磁力と磁化方向厚の積が大の永久磁石を磁気回路上で直列と並列に配置し、
前記複合磁石の磁極間側に保磁力と磁化方向厚の積が大の永久磁石を配置したことを特徴とする請求項1から請求項3のいずれか1項に記載の永久磁石式回転電機。
In the same magnetic pole of the rotor, the composite magnet and a permanent magnet having a large product of coercive force and magnetization direction thickness are arranged in series and in parallel on the magnetic circuit,
The permanent magnet type rotating electric machine according to any one of claims 1 to 3, wherein a permanent magnet having a large product of a coercive force and a magnetization direction thickness is disposed between the magnetic poles of the composite magnet.
前記回転子の同一磁極において、前記複合磁石と、保磁力と磁化方向厚の積が大の永久磁石を磁気回路上で直列と並列に配置し、
前記磁極の中央部に保磁力と磁化方向厚の積が大の永久磁石を配置し、磁極間側に複合磁石を配置したたことを特徴とする請求項1から請求項3のいずれか1項に記載の永久磁石式回転電機。
In the same magnetic pole of the rotor, the composite magnet and a permanent magnet having a large product of coercive force and magnetization direction thickness are arranged in series and in parallel on the magnetic circuit,
The permanent magnet having a large product of the coercive force and the magnetization direction thickness is disposed at the center of the magnetic pole, and the composite magnet is disposed between the magnetic poles. The permanent magnet type rotating electrical machine described in 1.
前記回転子の磁極を、保磁力と磁化方向厚の積が大の磁石で構成される磁極と、前記複合磁石と保磁力と磁化方向厚の積が大の磁石とで構成される磁極から構成し、
保磁力と磁化方向厚の積が大の磁石で構成される磁極の永久磁石と、前記複合磁石と保磁力と磁化方向厚の積が大の磁石とで構成される磁極の複合磁石とを磁気回路的に直列に接続したことを特徴とする請求項1から請求項3のいずれか1項に記載の永久磁石式回転電機。
The rotor magnetic pole is composed of a magnetic pole composed of a magnet having a large product of coercive force and magnetization direction thickness, and a magnetic pole composed of the composite magnet and a magnet having a large product of coercive force and magnetization direction thickness. And
A magnetic pole permanent magnet composed of a magnet having a large product of coercive force and magnetization direction thickness, and a composite magnet of magnetic pole composed of the composite magnet and a magnet having a large product of coercive force and magnetization direction thickness are magnetized. The permanent magnet type rotating electrical machine according to any one of claims 1 to 3, wherein the permanent magnet type rotating electrical machine is connected in series in a circuit.
電機子巻線の電流が作る磁界により複合磁石を磁化させて永久磁石による鎖交磁束を不可逆的に減少させ、また減少後に電流による磁界を前記と逆方向に発生させて前記複合磁石を磁化させて鎖交磁束量を不可逆的に増加させることを特徴とする請求項1から請求項6のいずれか1項に記載の永久磁石式回転電機。   The composite magnet is magnetized by the magnetic field generated by the current of the armature winding to irreversibly decrease the flux linkage by the permanent magnet, and after the decrease, the magnetic field by the current is generated in the opposite direction to magnetize the composite magnet. The permanent magnet type rotating electrical machine according to any one of claims 1 to 6, wherein the amount of flux linkage is irreversibly increased. d軸電流による磁界で複合磁石を磁化させてその磁束量を不可逆的に変化させ、複合磁石を磁化するd軸電流を流すと同時にq軸電流によりトルクを制御することを特徴とする請求項1から請求項7のいずれか1項に記載の永久磁石式回転電機。   The composite magnet is magnetized by a magnetic field generated by a d-axis current to change the amount of magnetic flux irreversibly, and a d-axis current for magnetizing the composite magnet is supplied, and at the same time, torque is controlled by a q-axis current. The permanent magnet type rotating electrical machine according to claim 1. 運転時にd軸電流による磁界で複合磁石を磁化させて永久磁石の磁束量を不可逆的に変化させる動作、d軸電流で生じる磁束により電流と永久磁石で生じる電機子巻線の鎖交磁束量をほぼ可逆的に変化させる動作を有することを特徴とする請求項1から請求項8のいずれか1項に記載の永久磁石式回転電機。   The operation of irreversibly changing the amount of magnetic flux of the permanent magnet by magnetizing the composite magnet with the magnetic field due to the d-axis current during operation, the amount of flux linkage between the current and the armature winding generated by the permanent magnet by the magnetic flux generated by the d-axis current The permanent magnet type rotating electrical machine according to any one of claims 1 to 8, wherein the permanent magnet rotating electric machine has an operation of changing in a substantially reversible manner. 最大トルク時には永久磁石の全鎖交磁束が大となるように複合磁石を磁化させ、トルクの小さな軽負荷時や、中速回転域と高速回転域では、前記複合磁石は、電流による磁界で磁化させて、永久磁石の全鎖交磁束を減少させることを特徴とする請求項1から請求項9のいずれか1項に記載の永久磁石式回転電機。   At maximum torque, the composite magnet is magnetized so that the total interlinkage magnetic flux of the permanent magnet is large, and the magnet is magnetized by a magnetic field due to current at light loads with small torque and at medium and high speed rotation ranges. The permanent magnet type rotating electrical machine according to any one of claims 1 to 9, wherein the interlinkage magnetic flux of the permanent magnet is reduced. 磁気回路上で並列に配置する磁石はほぼ一直線上か、V字上に配置されることを特徴とする請求項1から請求項10のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 10, wherein the magnets arranged in parallel on the magnetic circuit are arranged substantially on a straight line or on a V-shape. 磁気回路上で並列に配置する磁石において、磁極の側面のほぼq軸上に配置される磁石と、磁極の中央部に配置される磁石から構成されることを特徴とする請求項1から請求項11のいずれか1項に記載の永久磁石式回転電機。   The magnet arranged in parallel on the magnetic circuit is composed of a magnet arranged substantially on the q-axis of the side surface of the magnetic pole and a magnet arranged in the center of the magnetic pole. 11. The permanent magnet type rotating electrical machine according to any one of 11 above. 保磁力と磁化方向厚の積が大の磁石の磁路中に磁気抵抗が大きくなる部分を設けることを特徴とする請求項1から請求項12のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 12, wherein a portion in which a magnetic resistance is increased is provided in a magnetic path of a magnet having a large product of a coercive force and a magnetization direction thickness. . 回転子に設けられた保磁力と磁化方向厚の積が大の永久磁石に、その磁化方向と直交する方向に短絡コイルを設けることを特徴とする請求項1から請求項13のいずれか1項に記載の永久磁石式回転電機。   The short-circuit coil is provided in a direction perpendicular to the magnetization direction of a permanent magnet having a large product of the coercive force and the magnetization direction thickness provided in the rotor. The permanent magnet type rotating electrical machine described in 1. q軸方向の磁気抵抗が磁石部を除くq軸方向の磁気抵抗よりも大きくすることを特徴とする請求項1から請求項14のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 14, wherein a magnetoresistance in the q-axis direction is larger than a magnetoresistance in the q-axis direction excluding the magnet portion. q軸方向のエアギャップ長はd軸方向のエアギャップ長よりも大きくすることを特徴とする請求項1から請求項15のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 15, wherein an air gap length in the q-axis direction is larger than an air gap length in the d-axis direction. 磁極の磁石を不可逆変化させて鎖交磁束を最小にした状態で回転子が最高回転速度になったときに、永久磁石による誘導起電圧が、回転電機の電源であるインバータ電子部品の耐電圧以下とすることを特徴とする請求項1から請求項16のいずれか1項に記載の永久磁石式回転電機。   When the rotor reaches the maximum rotation speed with the magnetic flux linkage minimized by irreversibly changing the magnetic pole magnet, the induced electromotive force of the permanent magnet is less than the withstand voltage of the inverter electronic component that is the power supply of the rotating electrical machine The permanent magnet type rotating electric machine according to any one of claims 1 to 16, wherein: 回転子を固定子に挿入して組み立てる時は、保磁力と磁化方向厚の積が小さな永久磁石を減磁するか、極性を反転させることにより永久磁石の鎖交磁束量を減少させた状態とすることを特徴とする請求項1から請求項17のいずれか1項に記載の永久磁石式回転電機。   When assembling the rotor into the stator, the permanent magnet with a small product of the coercive force and the magnetization direction thickness is demagnetized or the interlinkage magnetic flux of the permanent magnet is reduced by reversing the polarity. The permanent magnet type rotating electrical machine according to any one of claims 1 to 17, wherein the permanent magnet type rotating electrical machine is provided.
JP2008305416A 2008-11-28 2008-11-28 Permanent magnet rotating electric machine Active JP5355055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305416A JP5355055B2 (en) 2008-11-28 2008-11-28 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305416A JP5355055B2 (en) 2008-11-28 2008-11-28 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2010130859A true JP2010130859A (en) 2010-06-10
JP5355055B2 JP5355055B2 (en) 2013-11-27

Family

ID=42330814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305416A Active JP5355055B2 (en) 2008-11-28 2008-11-28 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP5355055B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008295A1 (en) * 2010-07-14 2012-01-19 株式会社 豊田自動織機 Rotating element with embedded permanent magnet and rotating electrical machine
JP2012023856A (en) * 2010-07-14 2012-02-02 Toyota Industries Corp Embedded permanent magnet type rotor and rotary electric machine
JP2012023854A (en) * 2010-07-14 2012-02-02 Toyota Industries Corp Permanent magnet embedded rotor and rotary electric machine
WO2013135257A3 (en) * 2012-03-13 2014-06-05 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft Würzburg Electrical machine
JP2014165938A (en) * 2013-02-21 2014-09-08 Honda Motor Co Ltd Rotary electric machine
CN112821621A (en) * 2021-03-18 2021-05-18 哈尔滨工业大学 Magnetic circuit split type series-parallel adjustable flux motor
CN113169608A (en) * 2019-03-05 2021-07-23 宝马股份公司 Rotor for an electric machine excited by permanent magnets, comprising a support structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102629775B1 (en) 2016-04-12 2024-01-26 삼성전자주식회사 Interior permanent magnet motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182282A (en) * 1994-12-27 1996-07-12 Railway Technical Res Inst Permanent magnetic excitation synchronous motor for vehicle
JP2006261433A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Compound magnet, method for manufacturing the same and motor
JP2006280195A (en) * 2005-03-01 2006-10-12 Toshiba Corp Permanent magnet type rotary electric machine
JP2008048514A (en) * 2006-08-11 2008-02-28 Toshiba Corp Rotor of permanent magnet type rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182282A (en) * 1994-12-27 1996-07-12 Railway Technical Res Inst Permanent magnetic excitation synchronous motor for vehicle
JP2006280195A (en) * 2005-03-01 2006-10-12 Toshiba Corp Permanent magnet type rotary electric machine
JP2006261433A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Compound magnet, method for manufacturing the same and motor
JP2008048514A (en) * 2006-08-11 2008-02-28 Toshiba Corp Rotor of permanent magnet type rotating electric machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008295A1 (en) * 2010-07-14 2012-01-19 株式会社 豊田自動織機 Rotating element with embedded permanent magnet and rotating electrical machine
JP2012023856A (en) * 2010-07-14 2012-02-02 Toyota Industries Corp Embedded permanent magnet type rotor and rotary electric machine
JP2012023854A (en) * 2010-07-14 2012-02-02 Toyota Industries Corp Permanent magnet embedded rotor and rotary electric machine
US9276443B2 (en) 2010-07-14 2016-03-01 Kabushiki Kaisha Toyota Jidoshokki Rotating element with embedded permanent magnet and rotating electrical machine
JP2015525051A (en) * 2012-03-13 2015-08-27 ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク Electric machine with high level of efficiency
JP2015510387A (en) * 2012-03-13 2015-04-02 ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク Electric machine
WO2013135257A3 (en) * 2012-03-13 2014-06-05 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft Würzburg Electrical machine
US9634528B2 (en) 2012-03-13 2017-04-25 Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg Efficient electric machine
US9634527B2 (en) 2012-03-13 2017-04-25 Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg Electrical machine with a high level of efficiency
US9831726B2 (en) 2012-03-13 2017-11-28 Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg Electrical machine
US9876397B2 (en) 2012-03-13 2018-01-23 Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg Electrical machine
JP2014165938A (en) * 2013-02-21 2014-09-08 Honda Motor Co Ltd Rotary electric machine
CN113169608A (en) * 2019-03-05 2021-07-23 宝马股份公司 Rotor for an electric machine excited by permanent magnets, comprising a support structure
CN112821621A (en) * 2021-03-18 2021-05-18 哈尔滨工业大学 Magnetic circuit split type series-parallel adjustable flux motor

Also Published As

Publication number Publication date
JP5355055B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5159577B2 (en) Permanent magnet rotating electric machine
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5305753B2 (en) Permanent magnet rotating electric machine
JP5361260B2 (en) Permanent magnet rotary electric machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5355055B2 (en) Permanent magnet rotating electric machine
JP5398103B2 (en) Permanent magnet rotating electric machine
JP5787673B2 (en) Permanent magnet type rotating electric machine
JP5159171B2 (en) Permanent magnet rotating electric machine
JP2010148235A (en) Permanent magnet type rotary electric machine
JP5178488B2 (en) Permanent magnet rotating electric machine
JP5198178B2 (en) Permanent magnet type rotating electric machine and permanent magnet motor drive system
JP2019154232A (en) Rotor and dynamo-electric machine
JP4735772B1 (en) Magnet excitation rotating electrical machine system
JP5544738B2 (en) Permanent magnet rotating electric machine
JP5197551B2 (en) Permanent magnet rotating electric machine
JP5390314B2 (en) Permanent magnet rotating electric machine
JP2013051760A (en) Permanent magnet type rotating electrical machine
JP5178487B2 (en) Permanent magnet rotating electric machine
JP2011172323A (en) Permanent magnet type rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R151 Written notification of patent or utility model registration

Ref document number: 5355055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151