WO2014156678A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2014156678A1
WO2014156678A1 PCT/JP2014/056648 JP2014056648W WO2014156678A1 WO 2014156678 A1 WO2014156678 A1 WO 2014156678A1 JP 2014056648 W JP2014056648 W JP 2014056648W WO 2014156678 A1 WO2014156678 A1 WO 2014156678A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
rotor
electric motor
permanent magnet
flux barrier
Prior art date
Application number
PCT/JP2014/056648
Other languages
French (fr)
Japanese (ja)
Inventor
夏樹 渡辺
貞一郎 千葉
敦誉 小柴
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2014156678A1 publication Critical patent/WO2014156678A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • the present invention relates to an electric motor, and more particularly to an improvement in a rotor of an embedded permanent magnet type synchronous motor.
  • the rotor core is provided with a gap at a position corresponding to the end portion of the permanent magnet to reduce the leakage magnetic flux from the end portion. Since this air gap is located near the outer peripheral surface of the rotor, a portion between the air gap and the outer peripheral surface of the rotor core is formed in a bridge shape having a predetermined thickness. Such a part will be referred to as a side bridge.
  • An object of the present invention is to provide an electric motor capable of improving durability while maintaining good characteristics as an electric motor.
  • An electric motor includes an annular stator mounted in a housing, a rotor disposed in the stator and rotatably supported by the housing, and a plurality of permanent magnets in a rotor core of the rotor. Embedded in the rotor core, formed on the rotor core between the flux barrier where the end face of the permanent magnet is located, the flux barrier located near the outer periphery of the rotor core, and the outer peripheral surface of the rotor core. And a first concave portion and a second concave portion that are recessed from the both ends in the circumferential direction of the side bridge toward the inner side of the rotor core.
  • the side bridge is formed in a curved arch shape so as to protrude outward in the radial direction of the rotor core.
  • the side bridge has a substantially uniform thickness in the circumferential direction of the rotor core.
  • the pair of permanent magnets are arranged in a V shape when viewed from the axial center of the rotor, and the flux barrier on which the inner end surfaces of the pair of permanent magnets are located is It is desirable that they are adjacent to each other via a center bridge.
  • An electric motor includes an annular stator mounted in a housing, and a rotor disposed in the stator and rotatably supported by the housing.
  • the rotor core of the rotor has a plurality of rectangular cross sections.
  • One end face on the short side of the outer peripheral side is located near the outer periphery of the rotor core, and the other end face on the short side of the permanent magnet is located on the inner side of the flux barrier.
  • An inner flux barrier located on the outer side, a side bridge formed between the outer peripheral flux barrier and the outer peripheral surface of the rotor core, A center bridge formed between a pair of adjacent inner-side flux barriers, and a first recess and a second recess recessed from the circumferential ends of the side bridge toward the inner side of the rotor core.
  • the side bridge is formed in an arch shape curved so as to protrude outward in the radial direction of the rotor core, and has a substantially uniform thickness in the circumferential direction of the rotor core,
  • the outer peripheral flux barrier is provided between a line connecting the first recess and the axis center of the rotor core and a line connecting the second recess and the axis center of the rotor core.
  • the stress caused by the centrifugal force at the time of rotation of the rotor is applied to the three centers in the circumferential direction of the first and second recesses and the side bridge
  • the amount of stress at each location can be reduced and the durability can be improved.
  • the side bridge is formed to be thin so that stress is generated at the center in the circumferential direction. By doing so, leakage magnetic flux from the permanent magnet can be reduced.
  • the side bridge is curved and protrudes outward, the first and second recesses formed at both ends of the side bridge can be made into a clearer shape recessed inward, Various characteristics such as torque pulsation and iron loss can be maintained satisfactorily.
  • the side bridge since the side bridge has a uniform thickness in the circumferential direction, the stress generated in the middle of the circumferential direction can be distributed along the circumferential direction, and is generated in a concentrated manner at the minimal part. Can be suppressed.
  • the center bridge is provided between the adjacent flux barriers, it is possible to more reliably cope with the centrifugal force during the rotation of the rotor, and the durability can be further improved.
  • the effects of the first to fourth aspects can be obtained similarly.
  • a sectional view showing the whole electric motor concerning one embodiment of the present invention The figure which shows the rotor core of the said electric motor.
  • FIG. 1 is a cross-sectional view showing the entire electric motor 1 of the present embodiment.
  • FIG. 2 is a view showing the rotor core 41 of the electric motor 1.
  • an electric motor 1 includes an annular stator 3 mounted in a housing 2 and a rotor 4 that is disposed in the stator 3 and is rotatably supported in the housing 2.
  • Such an electric motor 1 is configured as an embedded permanent magnet type synchronous motor in which a permanent magnet 43 is embedded in a rotor core 41 of a rotor 4.
  • the stator 3 includes a stator core 31 formed by laminating a large number of electromagnetic steel plates along the axial direction.
  • the stator core 31 includes an outer peripheral yoke 32 continuous in the circumferential direction and a plurality of teeth 33 protruding from the yoke 32 toward the central rotor 4 side.
  • the plurality of teeth 33 are provided at equal intervals along the circumferential direction of the yoke 32.
  • An electromagnetic coil 34 is wound around such a tooth 33.
  • the rotor 4 includes an annular rotor core 41 configured by laminating a large number of electromagnetic steel plates along the axial direction in the same manner as the stator core 31, and a rotor shaft 42 inserted through an insertion hole 41A provided in the center of the rotor core 41. And a total of 16 prismatic permanent magnets 43 fitted into the embedded holes 41B of the rotor core 41.
  • the embedded hole 41B of the rotor core 41 is provided in a V shape so as to be symmetric when viewed from the axial center side.
  • a pair of such embedded holes 41B is taken as one set, and one magnetic pole is formed by a pair of permanent magnets 43 embedded in the set of embedded holes 41B. That is, the number of poles of the rotor 4 of this embodiment is eight. The polarities of adjacent magnetic poles are different from each other.
  • the magnetic poles are formed at equal intervals along the circumferential direction of the rotor core 41.
  • one end in the longitudinal direction of the embedded hole 41B whose opening shape is a long hole is a flux barrier 41C made of a gap.
  • one end surface 43B (see FIG. 3) is positioned on the flux barrier 41C.
  • the other end in the longitudinal direction of the embedded hole 41B is a similar flux barrier 41D on which the other end face 43B of the permanent magnet 43 is located. That is, a pair of side surfaces 43A (see FIG. 3) on the long side of the permanent magnet 43 are in contact with the inner surface of the embedded hole 41B except for a part of an end surface 43B that comes into contact with support portions 71 and 72 described later. is doing.
  • the flux barrier 41 ⁇ / b> C located on the outer peripheral side of the rotor core 41 is provided in order to reduce the leakage magnetic flux from the permanent magnet 43.
  • the flux barrier 41D located on the inner side far from the outer peripheral surface of the rotor core 41 is provided to reduce leakage magnetic flux from the permanent magnet 43 and to constitute a part of a cooling structure described later.
  • a side bridge 44 is provided between the flux barrier 41C and the outer peripheral surface of the rotor core 41, and a center bridge 45 is provided between the flux barriers 41D adjacent to each other on the center side of the magnetic pole. The side bridge 44 will be described later.
  • the annular end plates 46 and 47 are attached to both sides of the rotor core 41 in the axial direction.
  • the end plate 46 attached to the rotor core 41 communicates the portion corresponding to the flux barrier 41D of the rotor core 41 and the rotor shaft 42 side.
  • a path 46A is provided along the radial direction.
  • a discharge hole 46B opened in the housing 2 is provided at the end of the oil passage 46A.
  • the other end plate 47 is provided with a discharge opening 47A at a position corresponding to the flux barrier 41D, and the flux barrier 41D communicates with the inside of the housing 2.
  • the horizontal electric motor 1 in which the axial direction of the rotor shaft 42 is substantially horizontal is described.
  • the vertical electric motor in which the axial direction of the rotor shaft is substantially vertical is described.
  • An electric motor may be used.
  • the discharge hole 46B may be omitted.
  • an oil passage 42B that opens on the opposite side to the output part 42A and extends toward the output part 42A along the axial direction.
  • the end portion on the output portion 42A side of the oil passage 42B communicates with the oil passage 42C penetrating in the radial direction.
  • the oil passage 42 ⁇ / b> C communicates with the oil passage 46 ⁇ / b> A of the end plate 46.
  • a rare earth permanent magnet such as neodymium or dysprosium is preferably used.
  • a permanent magnet 43 is fixed by an adhesive in a state of being fitted in the embedded hole 41B of the rotor core 41.
  • the fixing structure of the permanent magnet 43 will be described later.
  • the supply flow path 52 from the cooling oil tank 51 is connected to the opening side of the oil path 42B provided in the rotor shaft 42 of the electric motor 1.
  • a drain passage 53 to the cooling oil tank 51 is connected to a drain opening 2 ⁇ / b> A provided in the bottom portion of the housing 2 constituting the electric motor 1.
  • the supply passage 52 is provided with a hydraulic pump 54, and the drain passage 53 is provided with an oil cooler 55.
  • the cooling oil sucked up by the hydraulic pump 54 from the cooling oil tank 51 enters the oil passage 42B of the rotor shaft 42, flows in the oil passage 42B from one end side to the other end side along the axial direction, and the other end. It flows into the oil passage 46A of the end plate 46 through the radial oil passage 42C provided on the side.
  • a portion of the cooling oil that has entered the oil passage 46A is injected into the housing 2 from the discharge hole 46B, thereby cooling the rotor core 41 and the electromagnetic coil 34. Further, the other cooling oil that has entered the oil passage 46A enters the flux barrier 41D of the rotor core 41 and cools the rotor core 41 and the permanent magnet 43 by flowing in the flux barrier 41D along the axial direction. The cooling oil that has finished flowing through the flux barrier 41D is injected into the housing 2 from the discharge opening 47A of the end plate 47, and also cools the rotor core 41 and the electromagnetic coil 34.
  • the cooling oil sprayed from the discharge hole 46B and the discharge opening 47A cools the rotor core 41 and the electromagnetic coil 34, and cools the bearings 21 and 22 that support the rotation of the rotor shaft 42.
  • the cooling oil that has cooled them is dropped into the housing 2 and collected in the oil reservoir 23 at the bottom.
  • the collected cooling oil flows from the oil reservoir 23 through the drain opening 2 ⁇ / b> A through the drain passage 53, is cooled by the oil cooler 55, and then returns to the cooling oil tank 51.
  • FIG. 3 is an enlarged view showing a main part of the rotor core 41 in an enlarged manner.
  • two adjacent poles are shown.
  • the outer peripheral surface of the rotor core 41 is provided with a first recess 61 and a second recess 62 that are recessed inward in the vicinity of the flux barrier 41 ⁇ / b> C located near the outer periphery.
  • the first recesses 61 are provided at positions on the outer side in the circumferential direction with respect to the center of the magnetic pole
  • the second recesses 62 are provided at positions on the inner side in the circumferential direction with respect to the center of the magnetic pole.
  • interval of the circumferential direction of the 1st recessed part 61 and the 2nd recessed part 62 is a magnitude
  • the side bridge 44 has a substantially uniform thickness (a radial thickness) in the circumferential direction of the rotor core 41 in relation to the opening shape of the flux barrier 41C, and protrudes outward in the radial direction of the rotor core. It is formed in a curved arch shape. That is, the first recess 61 and the second recess 62 are provided on the base end side of the arched side bridge 44.
  • the curvature radius of the side bridge 44 is smaller than the radius of the outer periphery of the rotor core 41.
  • the side bridge 44 having such a shape, stress concentration occurs due to the centrifugal force accompanying the rotation of the rotor 4, but the places where the side bridges 44 occur are near both ends in the circumferential direction and the center in the circumferential direction. Specifically, stress is generated by being dispersed at three locations, that is, the bottom portions of the first recess portion 61 and the second recess portion 62 and the inner surface side portion of the side bridge 44 (flux barrier 41C). Therefore, compared with the conventional case where stress concentration occurs at one point, the stress generated at each point can be reduced, and the durability is improved.
  • the second recess 62 can function as a conventional recess, and the characteristics of the electric motor 1 can be maintained well. .
  • the support portion 72 on the flux barrier 41D side is provided at the base end portion on the outer side of the center bridge 45, and the other end surface 43B of the permanent magnet 43 is on the edge closer to the outer peripheral surface of the rotor core 41. It is in contact.
  • the permanent magnet 43 is supported by the rotor core 41 at two diagonal positions on the opposite short side edge.
  • the contact width at which the support portions 71 and 72 are in contact with the end surface 43B of the permanent magnet 43 is approximately 1/5 (5 minutes) with respect to the entire width on the short side of the permanent magnet 43 provided with the end surface 43B. It is desirable to be shorter than 1). By being shorter than 1/5, the leakage magnetic flux from the end face 43B can be reduced. Further, the contact portion of the support portions 71 and 72 on the end surface 43 ⁇ / b> B may be separated from the end portion in the width direction of the end surface 43 ⁇ / b> B that is a corner portion of the permanent magnet 43.
  • the extended part 73 is provided in the position on the opposite side to the support parts 71 and 72 across the corner part of the permanent magnet 43.
  • the extended portion 73 is provided by extending a part of the embedded hole 41 ⁇ / b> B in order to form a slight gap with the side surface 43 ⁇ / b> A of the permanent magnet 43.
  • the extension part 73 is also provided in all the steel plates 7 to be laminated.
  • the laminated steel plates 7 all have the same shape, and by aligning each, an embedded hole 41B communicating with the lamination direction (same as the axial direction of the rotor core 41) is formed, and the permanent magnet 43 is formed in the embedded hole 41B. Can be incorporated.
  • a filling hole 48 penetrating the rotor core 41 along the axial direction is formed at two positions at different diagonal positions of the permanent magnet 43 in the embedded hole 41B. That is, such a filling hole 48 is formed between the permanent magnet 43 and the extended portion 73 in a state where the permanent magnet 43 is incorporated in the embedded hole 41B.
  • a resin material such as a molding material may be used as the adhesive.
  • the permanent magnet 43 is fitted in the embedded hole 41B, and the side surfaces 43A on both sides of the permanent magnet 43 are in contact with the inner surface of the embedded hole 41B. Therefore, the permanent magnet 43 can be reliably held in the embedded hole 41B with at least an adhesive filling amount.
  • the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the permanent magnet 43 is fixed to the rotor core 41 with the adhesive filling the filling hole 48, but the fixing structure of the permanent magnet 43 is not limited to this.
  • the size of the embedded hole 41B is set so that the permanent magnet 43 can be loosely fitted, and an adhesive is filled in the gap formed between the inner surface of the embedded hole 41B and the side surface 43A of the permanent magnet 43.
  • the permanent magnet 43 may be fixed to the rotor core 41, or both end surfaces of the permanent magnet 43 in the axial direction may be fixed to the end plates 46 and 47 with an adhesive.
  • a pair of permanent magnets 43 arranged in a V shape is used as one set to form one magnetic pole.
  • a magnet 43 may be provided, and one magnetic pole may be formed by each permanent magnet 43.
  • the flux barrier 41C is provided in a line-symmetric shape at both ends of each permanent magnet 43, and the side bridge 44 and the first and second recesses 61, 62 are provided corresponding to each flux barrier 41C.
  • the present invention is used for vehicles such as an electric vehicle, a hybrid vehicle, an electric construction machine, and a hybrid construction machine, and can be preferably used as an electric motor for running these construction machines.
  • SYMBOLS 1 Electric motor, 2 ... Housing, 3 ... Stator, 4 ... Rotor, 41 ... Rotor core, 41C, 41D ... Flux barrier, 43 ... Permanent magnet, 43B ... End face, 44 ... Side bridge, 45 ... Center bridge, 61 ... 1st Recess, 62 ... second recess.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

An electric motor provided with an annular stator that is mounted in a housing and a rotor that is disposed within the stator, is rotatably supported by the housing, and has a rotor core (41) having a plurality of permanent magnets (43) embedded therein, wherein the rotor core (41) is provided with flux barriers (41C, 41D) at which the end faces of the permanent magnets (43) are positioned, side bridges (44) that are formed between the flux barriers (41C) that are positioned closer to the periphery of the rotor core (41) and the outer peripheral surface of the rotor core (41), and first recesses (61) and second recesses (62) that are recessed from the ends, in the peripheral direction, of the side bridges (44) toward the inside of the rotor core (41).

Description

電動機Electric motor
 本発明は、電動機に係り、特に埋込永久磁石型同期電動機のロータの改良に関する。 The present invention relates to an electric motor, and more particularly to an improvement in a rotor of an embedded permanent magnet type synchronous motor.
 従来、埋込永久磁石型同期電動機では、トルク脈動や、鉄損、磁束高調波、あるいはコギングトルクを低下させる目的で、ロータを構成するロータコアの外周表面に凹部を設けることが知られている(例えば、特許文献1,2参照)。電動機を電動車両やハイブリッド車両の走行用の駆動源として用いる場合、そのような諸特性は、電動機での振動や騒音の発生、電動機の小型化、ハイブリッド車両での燃費等に大きく影響するため、特許文献1,2以外にも、凹部の形状や位置に関する多くの提案がなされている。そして、そのような凹部は、ロータコア内に埋め込まれる永久磁石の端部近傍に位置することとなる。 Conventionally, in an embedded permanent magnet type synchronous motor, it is known that a concave portion is provided on the outer peripheral surface of a rotor core constituting a rotor for the purpose of reducing torque pulsation, iron loss, magnetic flux harmonics, or cogging torque ( For example, see Patent Documents 1 and 2). When using an electric motor as a driving source for running an electric vehicle or a hybrid vehicle, such characteristics greatly affect vibration and noise generation in the electric motor, miniaturization of the electric motor, fuel consumption in the hybrid vehicle, etc. In addition to Patent Documents 1 and 2, many proposals have been made regarding the shape and position of the recesses. And such a recessed part will be located in the edge part vicinity of the permanent magnet embedded in a rotor core.
 一方、ロータコアには、永久磁石の端部に対応した位置に空隙が設けられ、端部からの漏れ磁束を低減させている。この空隙は、ロータの外周表面の近くに位置することから、空隙とロータコアの外周表面との間の部位は、所定の厚みを有したブリッジ状に形成される。このような部位は、サイドブリッジと称されることとなる。 On the other hand, the rotor core is provided with a gap at a position corresponding to the end portion of the permanent magnet to reduce the leakage magnetic flux from the end portion. Since this air gap is located near the outer peripheral surface of the rotor, a portion between the air gap and the outer peripheral surface of the rotor core is formed in a bridge shape having a predetermined thickness. Such a part will be referred to as a side bridge.
特開2004-328956号公報Japanese Patent Laid-Open No. 2004-328956 特開2009-278860号公報JP 2009-278860 A
 しかし、前述のサイドブリッジでは、空隙の形状によっては、ロータの回転によって生じる遠心力により、ブリッジの基端部分に応力が集中し、ロータの回転中にサイドブリッジが破損する可能性があるなど、耐久性に問題が生じる。
 これに対して、サイドブリッジの破損を防止するために、サイドブリッジの基端部分の肉厚を大きくすることも考えられるが、このような場合には、永久磁石からの漏れ磁束が増えるうえ、凹部がもたらす特性に影響を及ぼすこが懸念される。
However, in the above-mentioned side bridge, depending on the shape of the air gap, due to the centrifugal force generated by the rotation of the rotor, stress concentrates on the base end portion of the bridge, and the side bridge may be damaged during the rotation of the rotor, etc. There is a problem with durability.
On the other hand, in order to prevent breakage of the side bridge, it is conceivable to increase the thickness of the base end portion of the side bridge, but in such a case, the leakage magnetic flux from the permanent magnet increases, There is a concern that the characteristics brought about by the recess may be affected.
 本発明の目的は、電動機としての特性を良好に維持しつつ、耐久性を向上させることができる電動機を提供することにある。 An object of the present invention is to provide an electric motor capable of improving durability while maintaining good characteristics as an electric motor.
 第1発明に係る電動機は、ハウジング内に装着された環状のステータと、前記ステータ内に配置されて前記ハウジングに回転可能に支持されたロータとを備えるとともに、前記ロータのロータコアに複数の永久磁石が埋め込まれている電動機であって、前記ロータコアには、前記永久磁石の端面が位置するフラックスバリアと、前記ロータコアの外周寄りに位置した前記フラックスバリアと前記ロータコアの外周表面との間で形成されるサイドブリッジと、前記サイドブリッジの周方向の両端から前記ロータコアの内方に向けて窪んだ第1凹部および第2凹部とが設けられることを特徴とする。 An electric motor according to a first aspect of the present invention includes an annular stator mounted in a housing, a rotor disposed in the stator and rotatably supported by the housing, and a plurality of permanent magnets in a rotor core of the rotor. Embedded in the rotor core, formed on the rotor core between the flux barrier where the end face of the permanent magnet is located, the flux barrier located near the outer periphery of the rotor core, and the outer peripheral surface of the rotor core. And a first concave portion and a second concave portion that are recessed from the both ends in the circumferential direction of the side bridge toward the inner side of the rotor core.
 第2発明に係る電動機では、前記サイドブリッジは、前記ロータコアの径方向の外方に突出するように湾曲したアーチ状に形成されていることが望ましい。
 第3発明に係る発電機では、前記サイドブリッジは、前記ロータコアの周方向において略均一な厚さを有していることが望ましい。
 第4発明に係る電動機では、一対の前記永久磁石は、前記ロータの軸中心から見てV字形状に配置され、前記一対の永久磁石の前記ロータコアの内方側の端面が位置するフラックスバリアは、センタブリッジを介して互いに隣設されていることが望ましい。
In the electric motor according to the second aspect of the present invention, it is desirable that the side bridge is formed in a curved arch shape so as to protrude outward in the radial direction of the rotor core.
In the generator according to the third aspect of the invention, it is desirable that the side bridge has a substantially uniform thickness in the circumferential direction of the rotor core.
In the electric motor according to the fourth aspect of the present invention, the pair of permanent magnets are arranged in a V shape when viewed from the axial center of the rotor, and the flux barrier on which the inner end surfaces of the pair of permanent magnets are located is It is desirable that they are adjacent to each other via a center bridge.
 第5発明に係る電動機は、ハウジング内に装着された環状のステータと、前記ステータ内に配置されて前記ハウジングに回転可能に支持されたロータとを備えるとともに、前記ロータのロータコアに複数の断面矩形状の永久磁石が埋め込まれている電動機であって、前記ロータの軸中心から見てV字形状に配置された一対の前記永久磁石により1つの磁極が形成され、前記ロータコアには、前記永久磁石の短辺側の一方の端面が位置し、かつ前記ロータコアの外周寄りに位置した外周側のフラックスバリアと、前記永久磁石の短辺側の他方の端面が位置し、かつ前記フラックスバリアよりも内方側に位置した内方側のフラックスバリアと、前記外周側のフラックスバリアと前記ロータコアの外周表面との間で形成されるサイドブリッジと、互いに隣設する一対の前記内方側のフラックスバリアの間に形成されるセンタブリッジと、前記サイドブリッジの周方向の両端から前記ロータコアの内方に向けて窪んだ第1凹部および第2凹部とが設けられ、前記サイドブリッジは、前記ロータコアの径方向の外方に突出するように湾曲したアーチ状に形成されているとともに、前記ロータコアの周方向において略均一な厚さを有し、前記第1凹部と前記ロータコアの軸中心とを結ぶ線、および第2凹部と前記ロータコアの軸中心とを結ぶ線の間に、前記外周側のフラックスバリアが設けられていることを特徴とする。 An electric motor according to a fifth aspect of the present invention includes an annular stator mounted in a housing, and a rotor disposed in the stator and rotatably supported by the housing. The rotor core of the rotor has a plurality of rectangular cross sections. An electric motor in which a permanent magnet having a shape is embedded, and one magnetic pole is formed by a pair of the permanent magnets arranged in a V shape when viewed from the axial center of the rotor, and the rotor core has the permanent magnet One end face on the short side of the outer peripheral side is located near the outer periphery of the rotor core, and the other end face on the short side of the permanent magnet is located on the inner side of the flux barrier. An inner flux barrier located on the outer side, a side bridge formed between the outer peripheral flux barrier and the outer peripheral surface of the rotor core, A center bridge formed between a pair of adjacent inner-side flux barriers, and a first recess and a second recess recessed from the circumferential ends of the side bridge toward the inner side of the rotor core. And the side bridge is formed in an arch shape curved so as to protrude outward in the radial direction of the rotor core, and has a substantially uniform thickness in the circumferential direction of the rotor core, The outer peripheral flux barrier is provided between a line connecting the first recess and the axis center of the rotor core and a line connecting the second recess and the axis center of the rotor core.
 第1発明によれば、サイドブリッジの両端に第1、第2凹部を設けるので、ロータの回転時の遠心力による応力を、第1、第2凹部およびサイドブリッジの周方向の中央の3箇所に分散させて生じさせることができ、各箇所での応力の大きさを低減できて耐久性を向上させることができる。また、第1、第2凹部のいずれかを従来の凹部として機能させることが可能であり、凹部が電動機にもたらす特性を良好に維持できる。なお、サイドブリッジは、周方向の中央に応力が生じるように薄肉に形成されるが、こうすることで永久磁石からの漏れ磁束も軽減できる。 According to the first invention, since the first and second recesses are provided at both ends of the side bridge, the stress caused by the centrifugal force at the time of rotation of the rotor is applied to the three centers in the circumferential direction of the first and second recesses and the side bridge The amount of stress at each location can be reduced and the durability can be improved. Moreover, it is possible to make any one of a 1st, 2nd recessed part function as a conventional recessed part, and can maintain the characteristic which a recessed part brings to an electric motor favorably. The side bridge is formed to be thin so that stress is generated at the center in the circumferential direction. By doing so, leakage magnetic flux from the permanent magnet can be reduced.
 第2発明によれば、サイドブリッジが外方に向けて湾曲して突出しているため、サイドブリッジの両端に形成される第1,第2凹部を内方に窪んだより明瞭な形状にでき、トルク脈動や鉄損等の諸特性を良好に維持できる。
 第3発明によれば、サイドブリッジが周方向に均一な厚さを有しているので、周方向の中程で生じる応力を該周方向に沿って分散でき、極小部位に大きく集中して生じるのを抑制できる。
 第4発明によれば、隣接されるフラックスバリア間にセンタブリッジを設けることになるので、ロータ回転時の遠心力に対してより確実に対抗でき、耐久性を一層向上させることができる。
 第5発明によれば、第1発明ないし第4発明での作用効果を同様に得ることができる。
According to the second invention, since the side bridge is curved and protrudes outward, the first and second recesses formed at both ends of the side bridge can be made into a clearer shape recessed inward, Various characteristics such as torque pulsation and iron loss can be maintained satisfactorily.
According to the third invention, since the side bridge has a uniform thickness in the circumferential direction, the stress generated in the middle of the circumferential direction can be distributed along the circumferential direction, and is generated in a concentrated manner at the minimal part. Can be suppressed.
According to the fourth invention, since the center bridge is provided between the adjacent flux barriers, it is possible to more reliably cope with the centrifugal force during the rotation of the rotor, and the durability can be further improved.
According to the fifth aspect, the effects of the first to fourth aspects can be obtained similarly.
本発明の一実施形態に係る電動機の全体を示す断面図。A sectional view showing the whole electric motor concerning one embodiment of the present invention. 前記電動機のロータコアを示す図。The figure which shows the rotor core of the said electric motor. 前記ロータコアの要部を拡大して示す拡大図。The enlarged view which expands and shows the principal part of the said rotor core. 本発明の変形例を示す図。The figure which shows the modification of this invention.
〔電動機の全体構成〕
 以下、本発明の一実施形態を図面に基づいて説明する。
 図1は、本実施形態の電動機1の全体を示す断面図である。図2は、電動機1のロータコア41を示す図である。
[Overall configuration of electric motor]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing the entire electric motor 1 of the present embodiment. FIG. 2 is a view showing the rotor core 41 of the electric motor 1.
 図1において、電動機1は、ハウジング2の内部に装着された環状のステータ3と、ステータ3内に配置されるとともに、ハウジング2内で回転可能に支持されたロータ4とを備える。このような電動機1は、ロータ4のロータコア41内に永久磁石43が埋め込まれた埋込永久磁石型同期電動機として構成されている。 1, an electric motor 1 includes an annular stator 3 mounted in a housing 2 and a rotor 4 that is disposed in the stator 3 and is rotatably supported in the housing 2. Such an electric motor 1 is configured as an embedded permanent magnet type synchronous motor in which a permanent magnet 43 is embedded in a rotor core 41 of a rotor 4.
〔ステータ〕
 ステータ3は、図には明示していないが、電磁鋼板を軸方向に沿って多数積層することにより構成されたステータコア31を備える。ステータコア31は、周方向に連続した外周側のヨーク32と、ヨーク32から中央のロータ4側に向けて突出した複数のティース33とを備える。複数のティース33は、ヨーク32の周方向に沿って互いに等間隔で設けられている。このようなティース33には、電磁コイル34が巻線されている。
[Stator]
Although not clearly shown in the figure, the stator 3 includes a stator core 31 formed by laminating a large number of electromagnetic steel plates along the axial direction. The stator core 31 includes an outer peripheral yoke 32 continuous in the circumferential direction and a plurality of teeth 33 protruding from the yoke 32 toward the central rotor 4 side. The plurality of teeth 33 are provided at equal intervals along the circumferential direction of the yoke 32. An electromagnetic coil 34 is wound around such a tooth 33.
〔ロータ〕
 ロータ4は、ステータコア31と同様に電磁鋼板を軸方向に沿って多数積層することにより構成された環状のロータコア41と、ロータコア41の中央に設けられた挿通孔41Aに挿通されたロータシャフト42と、ロータコア41の埋込孔41B内に嵌合された合計16個の角柱状の永久磁石43とを備える。
[Rotor]
The rotor 4 includes an annular rotor core 41 configured by laminating a large number of electromagnetic steel plates along the axial direction in the same manner as the stator core 31, and a rotor shaft 42 inserted through an insertion hole 41A provided in the center of the rotor core 41. And a total of 16 prismatic permanent magnets 43 fitted into the embedded holes 41B of the rotor core 41.
 図2において、ロータコア41の埋込孔41Bは、軸心側から見て対称となるようにV字形状に設けられている。このような埋込孔41Bの一対を一組とし、この一組の埋込孔41B内に埋め込まれた一対の永久磁石43により1つの磁極が形成される。すなわち、本実施形態のロータ4の極数は、8極である。隣り合う磁極の極性は、互いに相違している。それぞれの磁極は、ロータコア41の周方向に沿って等間隔で形成されている。 2, the embedded hole 41B of the rotor core 41 is provided in a V shape so as to be symmetric when viewed from the axial center side. A pair of such embedded holes 41B is taken as one set, and one magnetic pole is formed by a pair of permanent magnets 43 embedded in the set of embedded holes 41B. That is, the number of poles of the rotor 4 of this embodiment is eight. The polarities of adjacent magnetic poles are different from each other. The magnetic poles are formed at equal intervals along the circumferential direction of the rotor core 41.
 ロータコア41において、開口形状が長孔とされた埋込孔41Bの長手方向の一端は、空隙からなるフラックスバリア41Cになっている。このフラックスバリア41Cには、断面矩形状の永久磁石43の短辺側の一対の端面43B、43Bのうち、一方の端面43B(図3参照)が位置する。同様に埋込孔41Bの長手方向の他端は、永久磁石43の他方の端面43Bが位置する同様なフラックスバリア41Dになっている。つまり、埋込孔41Bの内面に対しては、後述の支持部71,72に当接する端面43Bの一部を除き、永久磁石43の長辺側の一対の側面43A(図3参照)が接触している。 In the rotor core 41, one end in the longitudinal direction of the embedded hole 41B whose opening shape is a long hole is a flux barrier 41C made of a gap. Of the pair of end surfaces 43B, 43B on the short side of the permanent magnet 43 having a rectangular cross section, one end surface 43B (see FIG. 3) is positioned on the flux barrier 41C. Similarly, the other end in the longitudinal direction of the embedded hole 41B is a similar flux barrier 41D on which the other end face 43B of the permanent magnet 43 is located. That is, a pair of side surfaces 43A (see FIG. 3) on the long side of the permanent magnet 43 are in contact with the inner surface of the embedded hole 41B except for a part of an end surface 43B that comes into contact with support portions 71 and 72 described later. is doing.
 フラックスバリア41C,41Dのうち、ロータコア41の外周側に位置するフラックスバリア41Cは、永久磁石43からの漏れ磁束を低減するために設けられている。ロータコア41の外周表面から遠い内方側に位置したフラックスバリア41Dは、永久磁石43からの漏れ磁束の低減、および後述する冷却構造の一部を構成するために設けられている。なお、フラックスバリア41Cとロータコア41の外周表面との間は、サイドブリッジ44となっており、磁極の中心側で隣設し合うフラックスバリア41Dの間は、センタブリッジ45となっている。サイドブリッジ44については後述する。 Among the flux barriers 41 </ b> C and 41 </ b> D, the flux barrier 41 </ b> C located on the outer peripheral side of the rotor core 41 is provided in order to reduce the leakage magnetic flux from the permanent magnet 43. The flux barrier 41D located on the inner side far from the outer peripheral surface of the rotor core 41 is provided to reduce leakage magnetic flux from the permanent magnet 43 and to constitute a part of a cooling structure described later. A side bridge 44 is provided between the flux barrier 41C and the outer peripheral surface of the rotor core 41, and a center bridge 45 is provided between the flux barriers 41D adjacent to each other on the center side of the magnetic pole. The side bridge 44 will be described later.
 このようなロータコア41の軸方向の両側には、環状のエンドプレート46,47が取り付けられている。ロータシャフト42の出力部42A(図1中の左側)側にて、ロータコア41に取り付けられたエンドプレート46には、ロータコア41のフラックスバリア41Dに対応した部位とロータシャフト42側とを連通させる油路46Aが、径方向に沿って設けられている。油路46Aの端部には、ハウジング2内に開口した吐出孔46Bが設けられている。もう一方のエンドプレート47には、フラックスバリア41Dに対応した位置に吐出開口47Aが設けられ、フラックスバリア41Dとハウジング2内とが連通している。なお、本実施形態では、ロータシャフト42の軸方向が略水平とされた横置きの電動機1について説明しているが、本発明としては、ロータシャフトの軸方向が略鉛直とされた縦置きの電動機であってもよい。そして、縦置きとした場合には、吐出孔46Bを省略してもよい。 The annular end plates 46 and 47 are attached to both sides of the rotor core 41 in the axial direction. On the side of the output portion 42A (left side in FIG. 1) of the rotor shaft 42, the end plate 46 attached to the rotor core 41 communicates the portion corresponding to the flux barrier 41D of the rotor core 41 and the rotor shaft 42 side. A path 46A is provided along the radial direction. A discharge hole 46B opened in the housing 2 is provided at the end of the oil passage 46A. The other end plate 47 is provided with a discharge opening 47A at a position corresponding to the flux barrier 41D, and the flux barrier 41D communicates with the inside of the housing 2. In the present embodiment, the horizontal electric motor 1 in which the axial direction of the rotor shaft 42 is substantially horizontal is described. However, in the present invention, the vertical electric motor in which the axial direction of the rotor shaft is substantially vertical is described. An electric motor may be used. And when set vertically, the discharge hole 46B may be omitted.
 ロータシャフト42の中央には、出力部42Aとは反対側に開口し、軸方向に沿って出力部42A側に向かって延びた油路42Bが設けられている。油路42Bの出力部42A側の端部は、径方向に貫通した油路42Cと連通している。油路42Cは、エンドプレート46の油路46Aと連通している。 At the center of the rotor shaft 42, there is provided an oil passage 42B that opens on the opposite side to the output part 42A and extends toward the output part 42A along the axial direction. The end portion on the output portion 42A side of the oil passage 42B communicates with the oil passage 42C penetrating in the radial direction. The oil passage 42 </ b> C communicates with the oil passage 46 </ b> A of the end plate 46.
 永久磁石43としては、ネオジウムやジスプロシウムなどの希土類永久磁石が好適に用いられる。このような永久磁石43は、ロータコア41の埋込孔41B内に嵌合された状態で接着剤により固定される。永久磁石43の固定構造に関しては後述する。 As the permanent magnet 43, a rare earth permanent magnet such as neodymium or dysprosium is preferably used. Such a permanent magnet 43 is fixed by an adhesive in a state of being fitted in the embedded hole 41B of the rotor core 41. The fixing structure of the permanent magnet 43 will be described later.
〔冷却構造〕
 電動機1では、ヒステリシス損や渦電流損を要因とする発熱によってステータコア31、電磁コイル34、ロータコア41、永久磁石43が高温状態となる。このため、本実施形態においては、ハウジング2の内部と、外部の冷却油タンク51との間で冷却油が循環し、電動機1を冷却する構造を採用している。
(Cooling structure)
In the electric motor 1, the stator core 31, the electromagnetic coil 34, the rotor core 41, and the permanent magnet 43 are in a high temperature state due to heat generation caused by hysteresis loss and eddy current loss. For this reason, in the present embodiment, a structure in which the cooling oil circulates between the inside of the housing 2 and the external cooling oil tank 51 to cool the electric motor 1 is adopted.
 本構造において、電動機1のロータシャフト42に設けられた油路42Bの開口側には、冷却油タンク51からの供給流路52が接続されている。一方、電動機1を構成するハウジング2の底部分に設けられたドレン開口2Aには、冷却油タンク51へのドレン流路53が接続されている。供給流路52には油圧ポンプ54が設けられ、ドレン流路53にはオイルクーラ55が設けられている。 In this structure, the supply flow path 52 from the cooling oil tank 51 is connected to the opening side of the oil path 42B provided in the rotor shaft 42 of the electric motor 1. On the other hand, a drain passage 53 to the cooling oil tank 51 is connected to a drain opening 2 </ b> A provided in the bottom portion of the housing 2 constituting the electric motor 1. The supply passage 52 is provided with a hydraulic pump 54, and the drain passage 53 is provided with an oil cooler 55.
 冷却油タンク51から油圧ポンプ54にて吸い上げられた冷却油は、ロータシャフト42の油路42Bに入り込み、油路42B内を軸方向に沿って一端側から他端側に向けて流れ、他端側に設けられた径方向の油路42Cを通ってエンドプレート46の油路46Aに流れ込む。 The cooling oil sucked up by the hydraulic pump 54 from the cooling oil tank 51 enters the oil passage 42B of the rotor shaft 42, flows in the oil passage 42B from one end side to the other end side along the axial direction, and the other end. It flows into the oil passage 46A of the end plate 46 through the radial oil passage 42C provided on the side.
 油路46Aに入り込んだ冷却油の一部は、吐出孔46Bからハウジング2内に噴射され、ロータコア41および電磁コイル34を冷却する。また、油路46Aに入り込んだ他の冷却油は、ロータコア41のフラックスバリア41Dに入り込み、フラックスバリア41D内を軸方向に沿って流れることでロータコア41および永久磁石43を冷却する。フラックスバリア41Dを流れ終えた冷却油は、エンドプレート47の吐出開口47Aからハウジング2内に噴射され、やはりロータコア41および電磁コイル34を冷却する。 A portion of the cooling oil that has entered the oil passage 46A is injected into the housing 2 from the discharge hole 46B, thereby cooling the rotor core 41 and the electromagnetic coil 34. Further, the other cooling oil that has entered the oil passage 46A enters the flux barrier 41D of the rotor core 41 and cools the rotor core 41 and the permanent magnet 43 by flowing in the flux barrier 41D along the axial direction. The cooling oil that has finished flowing through the flux barrier 41D is injected into the housing 2 from the discharge opening 47A of the end plate 47, and also cools the rotor core 41 and the electromagnetic coil 34.
 吐出孔46Bおよび吐出開口47Aから噴射された冷却油は、ロータコア41および電磁コイル34を冷却する他、ロータシャフト42を回転支持するベアリング21,22を冷却する。これらを冷却した冷却油は、ハウジング2内を滴下等して底部分の油溜部23に集約される。集約された冷却油は、油溜部23からドレン開口2Aを通してドレン流路53を流れ、オイルクーラ55にて冷却された後に冷却油タンク51に戻る。 The cooling oil sprayed from the discharge hole 46B and the discharge opening 47A cools the rotor core 41 and the electromagnetic coil 34, and cools the bearings 21 and 22 that support the rotation of the rotor shaft 42. The cooling oil that has cooled them is dropped into the housing 2 and collected in the oil reservoir 23 at the bottom. The collected cooling oil flows from the oil reservoir 23 through the drain opening 2 </ b> A through the drain passage 53, is cooled by the oil cooler 55, and then returns to the cooling oil tank 51.
〔サイドブリッジ〕
 図3は、ロータコア41の要部を拡大して示す拡大図である。この図3には、隣り合う2極分が示されている。
 図3に示すように、ロータコア41の外周表面には、この外周寄りに位置したフラックスバリア41Cの近傍において、内方に向けて窪んだ第1凹部61および第2凹部62が設けられている。各磁極では、第1凹部61同士が磁極の中心に対して周方向の外側の位置に設けられ、第2凹部62同士が磁極の中心に対して周方向の内側の位置に設けられている。そして、第1凹部61および第2凹部62の周方向の間隔は、フラックスバリア41Cを周方向に跨ぐ程度の大きさである。すなわち、第1凹部61とロータコア41の軸中心とを結ぶ線をL1とし、第2凹部62とロータコア41の軸中心とを結ぶ線をL2としたとき、線L1,L2の間にフラックスバリア41Cが設けられている。この結果、フラックスバリア41Cとロータコア41の外周表面との間の薄肉部分により、第1凹部61および第2凹部62の間を連結するサイドブリッジ44が形成される。
[Side Bridge]
FIG. 3 is an enlarged view showing a main part of the rotor core 41 in an enlarged manner. In FIG. 3, two adjacent poles are shown.
As shown in FIG. 3, the outer peripheral surface of the rotor core 41 is provided with a first recess 61 and a second recess 62 that are recessed inward in the vicinity of the flux barrier 41 </ b> C located near the outer periphery. In each magnetic pole, the first recesses 61 are provided at positions on the outer side in the circumferential direction with respect to the center of the magnetic pole, and the second recesses 62 are provided at positions on the inner side in the circumferential direction with respect to the center of the magnetic pole. And the space | interval of the circumferential direction of the 1st recessed part 61 and the 2nd recessed part 62 is a magnitude | size of the grade which straddles the flux barrier 41C in the circumferential direction. That is, when the line connecting the first recess 61 and the axis center of the rotor core 41 is L1, and the line connecting the second recess 62 and the axis center of the rotor core 41 is L2, the flux barrier 41C is between the lines L1 and L2. Is provided. As a result, the side bridge 44 that connects the first recess 61 and the second recess 62 is formed by the thin portion between the flux barrier 41 </ b> C and the outer peripheral surface of the rotor core 41.
 サイドブリッジ44は、フラックスバリア41Cの開口形状との関係で、ロータコア41の周方向において略均一な厚さ(径方向の肉厚)を有しているとともに、ロータコアの径方向の外方に突出するように湾曲したアーチ状に形成されている。つまり、アーチ状とされたサイドブリッジ44の基端側に第1凹部61および第2凹部62が設けられている。サイドブリッジ44の曲率半径は、ロータコア41の外周の半径よりも小さい。 The side bridge 44 has a substantially uniform thickness (a radial thickness) in the circumferential direction of the rotor core 41 in relation to the opening shape of the flux barrier 41C, and protrudes outward in the radial direction of the rotor core. It is formed in a curved arch shape. That is, the first recess 61 and the second recess 62 are provided on the base end side of the arched side bridge 44. The curvature radius of the side bridge 44 is smaller than the radius of the outer periphery of the rotor core 41.
 このような形状のサイドブリッジ44では、ロータ4の回転に伴う遠心力によって応力集中が生じるが、生じる箇所は、サイドブリッジ44の周方向の両端部および周方向の中央付近である。具体的には、第1凹部61および第2凹部62の底部分と、サイドブリッジ44(フラックスバリア41C)の内面側の部分との3箇所に分散して応力が生じる。従って、1点に応力集中が生じていた従来と比較して、各箇所で生じる応力を小さくでき、耐久性が向上する。また、第1凹部61および第2凹部62のうち、本実施形態では特に、第2凹部62を従来からの凹部として機能させることができ、電動機1の特性を良好に維持することが可能である。 In the side bridge 44 having such a shape, stress concentration occurs due to the centrifugal force accompanying the rotation of the rotor 4, but the places where the side bridges 44 occur are near both ends in the circumferential direction and the center in the circumferential direction. Specifically, stress is generated by being dispersed at three locations, that is, the bottom portions of the first recess portion 61 and the second recess portion 62 and the inner surface side portion of the side bridge 44 (flux barrier 41C). Therefore, compared with the conventional case where stress concentration occurs at one point, the stress generated at each point can be reduced, and the durability is improved. Of the first recess 61 and the second recess 62, in the present embodiment, the second recess 62 can function as a conventional recess, and the characteristics of the electric motor 1 can be maintained well. .
〔永久磁石の固定構造〕
 以下には、図3に基づき、永久磁石43の固定構造について説明する。
 図3に示すように、鋼板7のフラックスバリア41C,41Dを形成する部分には、永久磁石43の2箇所の対角位置に向けて突出した支持部71,72が設けられている。フラックスバリア41C側の支持部71は、永久磁石43の一方の端面43Bの中でも、ロータコア41の外周表面から遠い方の辺縁に当接している。フラックスバリア41D側の支持部72は、センタブリッジ45の外方側の基端部分に設けられており、永久磁石43の他方の端面43Bの中でも、ロータコア41の外周表面に近い方の辺縁に当接している。このように、永久磁石43は、対向する短辺側の辺縁の2箇所の対角位置にてロータコア41に支持されている。
[Permanent magnet fixing structure]
Below, based on FIG. 3, the fixed structure of the permanent magnet 43 is demonstrated.
As shown in FIG. 3, support portions 71 and 72 projecting toward two diagonal positions of the permanent magnet 43 are provided at portions where the flux barriers 41 </ b> C and 41 </ b> D of the steel plate 7 are formed. The support portion 71 on the flux barrier 41 </ b> C side is in contact with the edge farther from the outer peripheral surface of the rotor core 41 in one end face 43 </ b> B of the permanent magnet 43. The support portion 72 on the flux barrier 41D side is provided at the base end portion on the outer side of the center bridge 45, and the other end surface 43B of the permanent magnet 43 is on the edge closer to the outer peripheral surface of the rotor core 41. It is in contact. Thus, the permanent magnet 43 is supported by the rotor core 41 at two diagonal positions on the opposite short side edge.
 ここで、支持部71,72が永久磁石43の端面43Bに当接する当接幅は、端面43Bが設けられている永久磁石43の短辺側の全幅に対して、略1/5(5分の1)よりも短いことが望ましい。1/5よりも短いことで、端面43Bからの漏れ磁束を低減できる。また、支持部71,72の端面43Bでの当接箇所は、永久磁石43の角部である端面43Bの幅方向の端部から離れていてもよい。 Here, the contact width at which the support portions 71 and 72 are in contact with the end surface 43B of the permanent magnet 43 is approximately 1/5 (5 minutes) with respect to the entire width on the short side of the permanent magnet 43 provided with the end surface 43B. It is desirable to be shorter than 1). By being shorter than 1/5, the leakage magnetic flux from the end face 43B can be reduced. Further, the contact portion of the support portions 71 and 72 on the end surface 43 </ b> B may be separated from the end portion in the width direction of the end surface 43 </ b> B that is a corner portion of the permanent magnet 43.
 そして、鋼板7の埋込孔41Bを形成する部分には、支持部71,72とは永久磁石43の角部を挟んで反対側の位置に拡張部73が設けられている。拡張部73は、永久磁石43の側面43Aとの間に僅かな隙間を形成するために、埋込孔41Bの一部を拡張して設けられている。拡張部73はまた、積層される全ての鋼板7に設けられている。積層される鋼板7は全て同一形状であり、それぞれを位置合わせすることで積層方向(ロータコア41の軸方向と同じ)に連通した埋込孔41Bが形成され、この埋込孔41Bに永久磁石43を組み込むことが可能である。 And in the part which forms the embedding hole 41B of the steel plate 7, the extended part 73 is provided in the position on the opposite side to the support parts 71 and 72 across the corner part of the permanent magnet 43. The extended portion 73 is provided by extending a part of the embedded hole 41 </ b> B in order to form a slight gap with the side surface 43 </ b> A of the permanent magnet 43. The extension part 73 is also provided in all the steel plates 7 to be laminated. The laminated steel plates 7 all have the same shape, and by aligning each, an embedded hole 41B communicating with the lamination direction (same as the axial direction of the rotor core 41) is formed, and the permanent magnet 43 is formed in the embedded hole 41B. Can be incorporated.
 積層方向に連通した全ての拡張部73により、埋込孔41Bにおける永久磁石43の別の対角位置にある2箇所には、ロータコア41を軸方向に沿って貫通した充填孔48が形成される。つまり、このような充填孔48は、永久磁石43が埋込孔41Bに組み込まれた状態で、永久磁石43と拡張部73との間に形成される。軸方向に連続した充填孔48に対して接着剤を充填することにより、永久磁石43の対向する長辺側の辺縁の2箇所の対角位置がロータコア41に固定されることになる。なお、モールド材等の樹脂材料などを接着剤として用いてもよい。 By all the extended portions 73 communicating in the stacking direction, a filling hole 48 penetrating the rotor core 41 along the axial direction is formed at two positions at different diagonal positions of the permanent magnet 43 in the embedded hole 41B. . That is, such a filling hole 48 is formed between the permanent magnet 43 and the extended portion 73 in a state where the permanent magnet 43 is incorporated in the embedded hole 41B. By filling the axially continuous filling hole 48 with the adhesive, the two diagonal positions of the opposing long side edges of the permanent magnet 43 are fixed to the rotor core 41. A resin material such as a molding material may be used as the adhesive.
 従って、本実施形態では、永久磁石43の側面43A全体に接着剤を回して固定する必要がなく、接着剤を充填する手間を大幅に省くことができ、組立作業を容易にできる。しかも、永久磁石43は埋込孔41B内に嵌合されており、永久磁石43の両側の側面43Aが埋込孔41Bの内面と接触した状態にある。従って、接着剤の充填量が少なくとも、永久磁石43を埋込孔41B内に確実に保持しておくことができる。 Therefore, in this embodiment, it is not necessary to rotate and fix the adhesive on the entire side surface 43A of the permanent magnet 43, and the labor for filling the adhesive can be greatly reduced, and the assembling work can be facilitated. Moreover, the permanent magnet 43 is fitted in the embedded hole 41B, and the side surfaces 43A on both sides of the permanent magnet 43 are in contact with the inner surface of the embedded hole 41B. Therefore, the permanent magnet 43 can be reliably held in the embedded hole 41B with at least an adhesive filling amount.
〔変形例〕
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 前記実施形態では、永久磁石43が充填孔48に充填される接着剤にてロータコア41に固定されていたが、永久磁石43の固定構造としてはこれに限定されない。例えば、埋込孔41Bの大きさを永久磁石43が遊嵌される大きさに設けておき、埋込孔41Bの内面と永久磁石43の側面43Aとの間に生じる隙間に接着剤を充填して、永久磁石43をロータコア41に固定してもよいし、永久磁石43の軸方向での両端面をエンドプレート46,47に接着剤にて固定してもよい。
[Modification]
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
In the embodiment, the permanent magnet 43 is fixed to the rotor core 41 with the adhesive filling the filling hole 48, but the fixing structure of the permanent magnet 43 is not limited to this. For example, the size of the embedded hole 41B is set so that the permanent magnet 43 can be loosely fitted, and an adhesive is filled in the gap formed between the inner surface of the embedded hole 41B and the side surface 43A of the permanent magnet 43. The permanent magnet 43 may be fixed to the rotor core 41, or both end surfaces of the permanent magnet 43 in the axial direction may be fixed to the end plates 46 and 47 with an adhesive.
 前記実施形態では、V字形状に配置された一対の永久磁石43を一組として1つの磁極を形成していたが、例えば、図4に示すように、ロータコア41の外周に沿って複数の永久磁石43を設け、各々の永久磁石43にて1つの磁極を形成してもよい。
 このような構成では、各永久磁石43の両端にフラックスバリア41Cが線対称な形状に設けられ、各フラックスバリア41Cに対応してサイドブリッジ44および第1,第2凹部61,62が設けられる。
In the embodiment, a pair of permanent magnets 43 arranged in a V shape is used as one set to form one magnetic pole. For example, as shown in FIG. A magnet 43 may be provided, and one magnetic pole may be formed by each permanent magnet 43.
In such a configuration, the flux barrier 41C is provided in a line-symmetric shape at both ends of each permanent magnet 43, and the side bridge 44 and the first and second recesses 61, 62 are provided corresponding to each flux barrier 41C.
 本発明は、電動自動車、ハイブリッド自動車、電動建設機械、ハイブリッド建設機械等の車両に用いられ、好ましくはこれら建設機械の走行用の電動機として利用できる。 The present invention is used for vehicles such as an electric vehicle, a hybrid vehicle, an electric construction machine, and a hybrid construction machine, and can be preferably used as an electric motor for running these construction machines.
 1…電動機、2…ハウジング、3…ステータ、4…ロータ、41…ロータコア、41C,41D…フラックスバリア、43…永久磁石、43B…端面、44…サイドブリッジ、45…センタブリッジ、61…第1凹部、62…第2凹部。 DESCRIPTION OF SYMBOLS 1 ... Electric motor, 2 ... Housing, 3 ... Stator, 4 ... Rotor, 41 ... Rotor core, 41C, 41D ... Flux barrier, 43 ... Permanent magnet, 43B ... End face, 44 ... Side bridge, 45 ... Center bridge, 61 ... 1st Recess, 62 ... second recess.

Claims (5)

  1.  ハウジング内に装着された環状のステータと、前記ステータ内に配置されて前記ハウジングに回転可能に支持されたロータとを備えるとともに、前記ロータのロータコアに複数の永久磁石が埋め込まれている電動機であって、
     前記ロータコアには、
     前記永久磁石の端面が位置するフラックスバリアと、
     前記ロータコアの外周寄りに位置した前記フラックスバリアと前記ロータコアの外周表面との間で形成されるサイドブリッジと、
     前記サイドブリッジの周方向の両端から前記ロータコアの内方に向けて窪んだ第1凹部および第2凹部とが設けられる
     ことを特徴とする電動機。
    An electric motor comprising an annular stator mounted in a housing and a rotor disposed in the stator and rotatably supported by the housing, and a plurality of permanent magnets embedded in a rotor core of the rotor. And
    In the rotor core,
    A flux barrier in which an end face of the permanent magnet is located;
    A side bridge formed between the flux barrier located near the outer periphery of the rotor core and the outer peripheral surface of the rotor core;
    An electric motor comprising a first recess and a second recess that are recessed from both ends in the circumferential direction of the side bridge toward the inside of the rotor core.
  2. 請求項1に記載の電動機において、
     前記サイドブリッジは、前記ロータコアの径方向の外方に突出するように湾曲したアーチ状に形成されている
     ことを特徴とする電動機。
    The electric motor according to claim 1,
    The electric motor according to claim 1, wherein the side bridge is formed in a curved arch shape so as to protrude outward in a radial direction of the rotor core.
  3.  請求項1または請求項2に記載の電動機において、
     前記サイドブリッジは、前記ロータコアの周方向において略均一な厚さを有している
     ことを特徴とする電動機。
    The electric motor according to claim 1 or 2,
    The electric motor according to claim 1, wherein the side bridge has a substantially uniform thickness in a circumferential direction of the rotor core.
  4.  請求項1ないし請求項3のいずれかに記載の電動機において、
     一対の前記永久磁石は、前記ロータの軸中心から見てV字形状に配置され、
     前記一対の永久磁石の前記ロータコアの内方側の端面が位置するフラックスバリアは、センタブリッジを介して互いに隣設されている
     ことを特徴とする電動機。
    The electric motor according to any one of claims 1 to 3,
    The pair of permanent magnets are arranged in a V shape when viewed from the axial center of the rotor,
    Flux barriers in which end faces on the inner side of the rotor core of the pair of permanent magnets are located adjacent to each other via a center bridge.
  5.  ハウジング内に装着された環状のステータと、前記ステータ内に配置されて前記ハウジングに回転可能に支持されたロータとを備えるとともに、前記ロータのロータコアに複数の断面矩形状の永久磁石が埋め込まれている電動機であって、
     前記ロータの軸中心から見てV字形状に配置された一対の前記永久磁石により1つの磁極が形成され、
     前記ロータコアには、
     前記永久磁石の短辺側の一方の端面が位置し、かつ前記ロータコアの外周寄りに位置した外周側のフラックスバリアと、
     前記永久磁石の短辺側の他方の端面が位置し、かつ前記フラックスバリアよりも内方側に位置した内方側のフラックスバリアと、
     前記外周側のフラックスバリアと前記ロータコアの外周表面との間で形成されるサイドブリッジと、
     互いに隣設する一対の前記内方側のフラックスバリアの間に形成されるセンタブリッジと、
     前記サイドブリッジの周方向の両端から前記ロータコアの内方に向けて窪んだ第1凹部および第2凹部とが設けられ、
     前記サイドブリッジは、前記ロータコアの径方向の外方に突出するように湾曲したアーチ状に形成されているとともに、前記ロータコアの周方向において略均一な厚さを有し、
     前記第1凹部と前記ロータコアの軸中心とを結ぶ線、および第2凹部と前記ロータコアの軸中心とを結ぶ線の間に、前記外周側のフラックスバリアが設けられている
     ことを特徴とする電動機。
    An annular stator mounted in the housing, and a rotor disposed in the stator and rotatably supported by the housing, and a plurality of rectangular permanent magnets embedded in the rotor core of the rotor An electric motor,
    One magnetic pole is formed by the pair of permanent magnets arranged in a V shape when viewed from the axial center of the rotor,
    In the rotor core,
    One end face on the short side of the permanent magnet is located, and the outer peripheral flux barrier located near the outer periphery of the rotor core,
    The other end face on the short side of the permanent magnet is located, and the inner flux barrier located on the inner side of the flux barrier;
    A side bridge formed between the outer peripheral flux barrier and the outer surface of the rotor core;
    A center bridge formed between a pair of inner flux barriers adjacent to each other;
    A first recess and a second recess recessed from both ends in the circumferential direction of the side bridge toward the inside of the rotor core;
    The side bridge is formed in an arch shape curved so as to protrude outward in the radial direction of the rotor core, and has a substantially uniform thickness in the circumferential direction of the rotor core,
    The outer peripheral flux barrier is provided between a line connecting the first recess and the axis center of the rotor core and a line connecting the second recess and the axis center of the rotor core. .
PCT/JP2014/056648 2013-03-29 2014-03-13 Electric motor WO2014156678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013073378A JP6133657B2 (en) 2013-03-29 2013-03-29 Electric motor
JP2013-073378 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156678A1 true WO2014156678A1 (en) 2014-10-02

Family

ID=51623661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056648 WO2014156678A1 (en) 2013-03-29 2014-03-13 Electric motor

Country Status (2)

Country Link
JP (1) JP6133657B2 (en)
WO (1) WO2014156678A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152712A (en) * 2015-02-18 2016-08-22 株式会社デンソー Dynamo-electric machine
CN114614583A (en) * 2020-11-25 2022-06-10 日本电产株式会社 Rotor and rotating electrical machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736553B1 (en) * 2014-12-05 2017-05-30 주식회사 포스코 Rotor and permanent magnet type motor including the same
JP2016158401A (en) * 2015-02-25 2016-09-01 日立オートモティブシステムズ株式会社 Rotor for rotary electric machine, and rotary electric machine with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280195A (en) * 2005-03-01 2006-10-12 Toshiba Corp Permanent magnet type rotary electric machine
JP2008211934A (en) * 2007-02-27 2008-09-11 Toyota Industries Corp Rotating electrical machine and rotator therefor
JP2012186889A (en) * 2011-03-03 2012-09-27 Nippon Soken Inc Rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280195A (en) * 2005-03-01 2006-10-12 Toshiba Corp Permanent magnet type rotary electric machine
JP2008211934A (en) * 2007-02-27 2008-09-11 Toyota Industries Corp Rotating electrical machine and rotator therefor
JP2012186889A (en) * 2011-03-03 2012-09-27 Nippon Soken Inc Rotary electric machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152712A (en) * 2015-02-18 2016-08-22 株式会社デンソー Dynamo-electric machine
WO2016132843A1 (en) * 2015-02-18 2016-08-25 株式会社デンソー Rotating electrical machine
CN114614583A (en) * 2020-11-25 2022-06-10 日本电产株式会社 Rotor and rotating electrical machine

Also Published As

Publication number Publication date
JP6133657B2 (en) 2017-05-24
JP2014197971A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
WO2014171558A2 (en) Electric machine
JP5757281B2 (en) Rotating electrical machine rotor
JP6508168B2 (en) Electric rotating machine
US8546990B2 (en) Permanent magnet synchronous rotating electric machine and rotor core
US9923436B2 (en) Rotor for a rotary electric machine
US8362668B2 (en) Rotor for rotating electrical machine
JP5935615B2 (en) Rotating electrical machine rotor
US20120200186A1 (en) Rotor for electric rotating machine
JP5382012B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
JP6336711B2 (en) Electric motor
JP6190219B2 (en) Electric motor, rotor core, and laminated steel sheet
JP5891089B2 (en) Permanent magnet synchronous machine
CN109690910B (en) Rotating electrical machine
JP7112340B2 (en) Rotor of rotating electric machine and rotating electric machine
JP6083467B2 (en) Permanent magnet embedded rotary electric machine
JP6133657B2 (en) Electric motor
JP2014103741A (en) Magnet embedded type rotor
JP2014075892A (en) Rotor of rotary electric machine
JP2014155415A (en) Embedded magnet rotor and method of manufacturing embedded magnet rotor
JP2013183481A (en) Cooling structure of rotor for rotary electric machine and rotary electric machine
JP2012217278A (en) Permanent magnet type rotary electric machine and manufacturing method therefor
JP6748852B2 (en) Brushless motor
JP2014045634A (en) Rotor and rotary electric machine including the same
JP2013013295A (en) Rotating electrical machine
JP6357859B2 (en) Permanent magnet embedded rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774181

Country of ref document: EP

Kind code of ref document: A1