JP2006278877A - 放射線撮像装置及びその製造方法 - Google Patents

放射線撮像装置及びその製造方法 Download PDF

Info

Publication number
JP2006278877A
JP2006278877A JP2005098033A JP2005098033A JP2006278877A JP 2006278877 A JP2006278877 A JP 2006278877A JP 2005098033 A JP2005098033 A JP 2005098033A JP 2005098033 A JP2005098033 A JP 2005098033A JP 2006278877 A JP2006278877 A JP 2006278877A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
substrate
radiation imaging
imaging apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005098033A
Other languages
English (en)
Inventor
Kenji Kajiwara
賢治 梶原
Koji Sato
浩司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005098033A priority Critical patent/JP2006278877A/ja
Publication of JP2006278877A publication Critical patent/JP2006278877A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】 スペーサーの加圧による素子破壊を解消し、歩留り向上による低コスト化と、且つ接着厚みを確保して、解像度ムラのない画像を表示できる放射線撮像装置を提供する。
【解決手段】 平面的に配列された複数個の光電変換素子基板をベース基板上に保持し、該複数の光電変換素子基板の受光面上に、放射線を前記光電変換素子にて光電変換可能な波長域に波長変換する波長変換体を透光性接着剤にて固定した放射線撮像装置において、該透光性接着剤に混在し前記波長変換体と前記受光面間の距離を保持するための複数個のスペーサーが、隣接した光電変換素子基板間の隙間の幅よりも小さい径を有する。
【選択図】 図2

Description

本発明は、医療診断用または非破壊検査用の2次元画像を読み込める放射線撮像装置に係り、波長変換体(シンチレータ)と複数個の光電変換素子基板で構成された大面積光電変換素子基板との接合方法に関する。なお、本明細書では、X線、γ線等の電磁波も、放射線に含まれるものとして説明する。
昨今、医療のさまざまな分野でディジタル化が進み、放射線を利用したX線診断の分野では、画像情報のディジタル化のため2次元の放射線撮像装置の開発が盛んに行われている。撮像素子は様々な方式があるが、蛍光体と光電変換素子基板を接合した間接型撮像装置が低コストで大面積化し易いため一般的に普及している。
従来の間接型撮像装置の一例として下記特許文献1が挙げられる。該撮像装置は、放射線の入力によってその放射線を光に変換するシンチレータと、このシンチレータからの光の入力によってその光を電気信号に変換する光電変換素子基板とを備え、これらは透光性接着剤によって互いに固定されている。前記接着剤は、光電変換素子基板に対するシンチレータの固着という機能の他に、シンチレータで生じた光を対応する光電変換素子基板側に導き易くするという光学的機能をも有している。このため、光電変換素子基板に対応する蛍光体の配置姿勢、及び透光性接着剤の光学特性共にそれぞれ均一でなければならない。そのため、前記透光性接着剤には、透明度の高い、粒状で同径のスペーサー(「スペーサービーズ」と称する)が複数混在され、流動的性質を有する接着剤を介して光電変換素子基板に対して蛍光体を軽く押圧することで、該接着剤層の層厚を特定している。また、スペーサーは押し圧による光電変換素子表面の破損を防止するために比較的硬度の低い材質のものを用いている。
同じ目的でスペーサーを用いた従来例として下記特許文献2が挙げられる。該装置は胸部撮影用等の放射線撮像装置であり、43cm角以上の撮像エリアが必要なため、複数の光電変換素子基板をタイル状に貼り合わせて大面積化している。
図18は、該装置の概略構成を示す図であり、(a)は該装置の上面図、(b)は(a)のb−b線の光電変換素子基板の中央断面図、(c)は(a)のc−c線のフリキシブル回路基板を挿入する孔の近傍を示した断面図である。
複数枚(図中では10枚)の光電変換素子基板1が2次元に規則正しく配列され、基板保持用接着剤2を介してベース基板3にそれぞれ接着され、大面積光電変換素子基板4を形成している。該大面積光電変換素子基板4の受光面5上には、放射線を光電変換素子で検出可能な波長の光(例えば可視光)に変換するシンチレータ(蛍光体)6を備えた光ファイバープレート7が、スペーサー8を含んだ透光性接着剤9によって接合されている。
人体を透過した放射線は、シンチレータ6で可視光に変換され、光ファイバープレート7により解像度を落とすことなく大面積光電変換素子基板4の受光面5に入射される。該光学像は光電変換作用により電気信号に変換され、個別の光電変換素子基板1上に設けられた電極パッド10からバンプ11によって接合されたリード線12を介してフレキシブル回路基板13へ転送される(図19)。フレキシブル回路基板13はベース基板3に設けられた長孔14を通してベース基板3裏側にある駆動あるいは演算処理用のIC15を備えたプリント回路基板16にコネクター17で接続されている。フレキシブル回路基板13に転送された電気信号は該プリント回路基板16で信号処理され、この情報を外部のイメージプロセッサで再構成し、人体画像をディスプレイにて出力している。
特開平6−331749号公報 特開2003−60186号公報
しかしながら、複数の光電変換素子基板をタイル状に貼り合わせた大面積光電変換素子基板と波長変換体とをスペーサーを含む透光性接着剤で貼り合わせた場合、次のような問題が生じる。
図19は、特許文献2に記載された放射線撮像装置における個別の光電変換素子基板1の端部を示した上面図である。
2次元配列した複数の通常画素18と、駆動回路19の外側に設けられた複数の周辺画素20と、駆動回路19は、各通常画素18及び各周辺画素20を順次駆動するためのものである。光電変換素子基板1の入出力用の電極パッド10と、電極パッド上にあるバンプ11を示している。通常画素18はある一定間隔で、ほぼ個別の光電変換素子基板1の全面に配され、通常画素18間には駆動回路19を分割して分散配置している。なお、周辺画素20は、通常画素18に比べて面積が小さいため、画素信号を補正処理することによって、面積の相違を補正している。
図20は、隣接する光電変換素子基板間のつなぎ部近傍を示した図であり、(a)は上面図、(b)は(a)のb−b線の構造断面図である。
フレキシブル回路基板13のリード線12は光電変換素子基板1の電極パッド10に設けられたバンプ11と接続されている。リード線12は光電変換素子基板間で直角に曲げられ、固定樹脂22によって光電変換素子基板1端面とフレキシブル回路基板13を固定している。該フレキシブル回路基板13は光電変換素子基板間の隙間から裏面へと引き出されている。
周辺画素20の幅(S1)は通常画素18の幅(S2)より小さくなっており、各周辺画素20間のピッチ(P2)及び各通常画素18と各周辺画素20との間のピッチ(P1)が一定となるように配置されている。さらに、各通常画素18間のピッチも同ピッチ(P)となるように配置されている(P1=P2=P)。隣接した光電変換素子基板とは画素ピッチがすべて等ピッチとなり、画像品位の劣化がなきよう設計されており、従来例では、画素ピッチ(P)は160μ、周辺画素の幅(S1)は60μ、通常画素の幅(S2)は140μといった寸法を採用している。
図21は、隣接する光電変換素子基板間のつなぎ部の拡大断面図である。
画素ピッチが同等になるよう配列し、しかも光電変換素子基板1の端近くまで画素領域を設けようとすると、光電変換素子基板間の距離G、基板端から画素までの距離Dなどの設計値を厳密に考慮しなくてはならない。従来例では、フレキシブル回路基板13と固定樹脂22を含めた厚み(Tf)が50±10μ、光電変換素子基板1のアライメントマージン(±10μ)なので、最低でも光電変換素子基板間の隙間が10μとなるように距離(G)を80μに設計している。以上の設計値より、基板端から画素までの距離Dは、P=G+S1+2Dの計算式から10μと算出される。個別の光電変換素子基板1はウェハーからダイシング装置で切り出すため、基板の端にはチッピングやクラックが多数存在している。これらが10μ以上の大きさになると画素の素子が破壊されるため、10μ以内に収まるよう製造工程を厳密に管理している。
これまでの説明から、複数の光電変換素子基板1をタイル状に貼り合わせた大面積光電変換素子基板4は、個別光電変換素子基板1の端部の扱いには十分注意しなくてはならないことがわかる。
図22は、特許文献2に記載された放射線撮像装置の光電変換素子基板間つなぎ部の蛍光体基板を含めた拡大断面図である。
蛍光体層を備えた基板(シンチレータ(蛍光体)6を備えた光ファイバープレート7)と複数の光電変換素子基板1から構成された大面積光電変換素子基板4間を接合するための透光性接着剤9の厚みは、二つの基板を上下から加圧しスペーサー8を各基板に接触させ制御している。スペーサー8は素子破壊を考慮し比較的硬度の低い材質のものを使用しているため、受光面上にあるスペーサー8はある程度歪んでしまう。二つの基板を接合する時は、スペーサー8を含む透光性接着剤9をいずれかの基板に塗布してから貼り合わせるので、スペーサー8は必ずしも受光面上にあるとは限らず、図のように個別の光電変換素子基板間に配置されるケースもある。
図23は、図22の光電変換素子基板間(点線部)を拡大した断面図である。
前述したように、基板の端はダイシングによるチッピングやクラックなどが多数存在するので、基板中央付近と比べて機械的強度が弱い。貼り合わせ圧力やスペーサーの位置如何では、基板端に内在しているクラック23が増長したり、チッピング24が発生するなどし、画素部の素子を破壊してしまう。
そこで、本発明では、複数個の光電変換素子基板に対する波長変換体の固着にスペーサーを用いて透光性接着剤の光学特性を均一にした放射線撮像装置において、スペーサーの加圧による素子破壊を解消し、歩留り向上による低コスト化と、且つ接着厚みを確保して、解像度ムラのない画像を表示できる放射線撮像装置を提供することを目的とする。
このような問題を解決するために、本発明の放射線撮像装置は、平面的に配列された複数個の光電変換素子基板をベース基板上に保持し、該複数の光電変換素子基板の受光面上に、放射線を前記光電変換素子にて光電変換可能な波長域に波長変換する波長変換体を透光性接着剤にて固定した放射線撮像装置において、該透光性接着剤に混在し前記波長変換体と前記受光面間の距離を保持するための複数個のスペーサーが、隣接した光電変換素子基板間の隙間の幅よりも小さい径を有することを特徴とする。
本発明によれば、複数個の光電変換素子基板と波長変換体を固定する透光性接着剤の層厚を複数個のスペーサーにより保持しながら、複数個のスペーサーを個別の光電変換素子基板と隣接した光電変換素子基板との隙間の幅よりも小さい径を有することで、基板端の素子破壊を防ぐことができる。
本発明の実施の形態について図面を参照して説明する。
なお、従来の放射線撮像装置と共通の部分については同じ符号を付している。
(実施形態1)
図1は、本発明の第1の実施形態である放射線撮像装置を示す図であり、(a)は上面図、(b)は(a)のb−b線の構造断面図である。
CCD、CMOS、a−Siフォトダイオード(PIN型、MIS型)に代表される光電変換素子基板1が複数枚(図中では10枚)が2次元に規則正しく配列され、各々基板保持用接着剤2を介してベース基板3に接着され、大面積光電変換素子基板4を形成している。該ベース基板はガラス、セラミック、CFRP、アルミなどの材料を用いるが、後述する使用環境温度の範囲を考慮し、蛍光体と光電変換素子基板とベース板の熱膨張係数が極力近いものになるように選定することが望ましい。
大面積光電変換素子基板4の受光面5上には、波長変換体としてのシンチレータ(蛍光体)6を形成した光ファイバープレート7が配置されている。以後、蛍光体6を形成した光ファイバープレート7をFOS(Fibre Optic plate with Scintilater)と略す。FOSは、光ファイバープレート面と受光面5が対向するようにスペーサー8を含んだ透光性接着剤9によって接合されている。蛍光体6は、CsI、CaWO、CdWO、GdS、LaS、YS、HfP、ZnS、ZnCdS等の材料が用いられ、これらは放射線を照射するとある特定領域の波長の可視光を発光する。光ファイバープレート7上に蛍光体を作製する手段とし、結合材を含んだ溶剤中に粉末状の蛍光体(CaWO、CdWO、GdS、LaS、YS、HfP、ZnS、ZnCdS)を混合し、この混合液を光ファイバープレート上にロールコート、スピンコート等の手段で塗布し乾燥させる方法、また、CsIを光ファイバープレート上に蒸着させて形成する手段もある。本実施形態では、光電変換素子の受光面上に蛍光体層を有する基板としてFOSを用いているが、アモルファスカーボン上にCsIを蒸着させた基板(以後ACSと称する)を用いる場合もある。ACSを使用する時は、蛍光体面と受光面を対向して貼り合わせる。
FOSと光電変換素子基板4を固定する透光性接着剤9は、エポキシ、シリコーン、アクリル系の樹脂であり、熱で硬化するタイプを用いる。該接着剤は光学的に透明であり、光電変換素子基板1上の配線が電食しないようにNa、Kなどのアルカリ金属のイオン成分が10ppm以下であることが望ましい。
スペーサー8は、透光性接着剤9の厚みを制御し、蛍光体層を有する基板と光電変換素子基板1の受光面間の距離を保持する目的で用いる。形状は一般に球状タイプや柱状タイプがあるが、透光性接着剤9中に均一に分散させること、貼り合わせた時に厚み方向にスペーサーが重なって厚み制御がしにくいことを考慮すると球状が最適である。また、デバイス破壊を防止するため比較的硬度の低い材質を選定する。光学的には画素欠陥にならないように透明な材質が最適で、できることなら透光性接着剤9と屈折率を合わせることが望ましい。
光電変換素子基板1の端部には電極パッド10があり、その上にバンプ11が形成されている。該バンプ11はフレキシブル回路基板13のリード線12と接合され、ベース基板3に設けられた長孔14を通してベース基板3裏側にある駆動あるいは演算処理用のICを備えたプリント回路基板にコネクターで接続されている。
該放射線撮像装置では、人体を透過してきた放射線を、蛍光体層を有する基板にて可視光に変換し、これを光電変換素子にて光電変換し電気的情報を得る。電気的情報は光電変換素子基板1の電極部10からフレキシブル回路基板13に転送され、プリント回路基板で信号処理される。信号処理された情報は外部のイメージプロセッサで再構成し、人体画像をディスプレイにて出力している。該装置は50cm×50cmの撮像領域を持ち、主に胸部診断向けに設計されている。
本発明では、大面積光電変換素子基板の受光面上に蛍光体基板をプレス貼り合わせする時に発生する光電変換素子基板端部の画素部破壊を防止するための手段を提案している。具体的に隣接した光電変換素子基板の隙間とスペーサーの大きさとの関係について言及したものであり、以下その関係について詳細を述べる。
図2は、図1の点線部で囲まれた部分を拡大した、隣接した光電変換素子基板間の拡大断面図(a)及び蛍光体を省略した光電変換素子基板受光面の上面図(b)である。
周辺画素20の幅(S1)は、通常画素18の幅(S2)より小さく、各周辺画素20間のピッチ(P2)及び各通常画素18と各周辺画素20との間のピッチ(P1)が一定となるように配置されている。さらに、各通常画素18間のピッチも同ピッチ(P)となるように配置されている(P1=P2=P)。本実施形態では、画素ピッチ(P)は160μ、周辺画素20の幅(S1)は120μ、通常画素18の幅(S2)は140μといった寸法を採用している。また、光電変換素子基板1のアライメントマージン(±10μ)なので、最低でも光電変換素子基板間の隙間が10μとなるよう距離(G1)を20μに設計している。
透光性接着剤9は蛍光体基板と大面積光電変換素子基板4との固定に用いるが、該接着剤の厚みは製品性能を大きく左右し、対向する基板を保持するための接着強度のみならず画像解像度といった性能面で重要な因子となる。
画像解像度に関しては、診断部位や病巣の種類にもよるが、肺や胃などの癌病巣部をみるには、接着厚みを100μ以下にすることが良いと言われている。
また、接着強度に関しては、該装置は50cm×50cmの接着面積を有しており、該接着面積が大きいので使用環境温度の範囲如何では基板間熱膨張差で接着剥れを引き起こし易くなる。剥れないためには、熱応力を緩和する手段が必要で、具体的に透光性接着剤9の厚膜化、該接着剤のゴム弾性化、構成部材の熱膨張係数を合わせこむなどの設計項目を考慮しなくてはならない。本実施形態の装置は−30℃〜60℃の温度範囲で使用するので、その範囲で蛍光体と光電変換素子基板が剥れてはならない。
本実施形態では、蛍光体の基台と光電変換素子基板1とベース基板3の熱膨張係数が極力近いものになるように選定し、透光性接着剤9もシリコーン系樹脂のようにゴム弾性を有するものを用い評価した結果、接着厚みは最低でも5μ以上が必要であることがわかった。
また、製造上の問題点とし、対向する基板同士をプレスする際に、スペーサー8が光電変換素子基板間に挟まり、両基板の端面の角部に接触し素子破壊を起こすことが挙げられる。素子破壊を生じさせないためには、角部に接触しないようスペーサーの径(φB)を光電変換素子基板間の隙間(G1)より小さくしなくてはならない。本実施形態では、間隔が20μあるので、それよりも小さい径でなくてはならない。
上記制約条件から接着剤9の厚み(D)は5≦D<20μの範囲に限定されるが、光電変換素子基板1を配列するアライメント精度を考慮すると5≦D<10μとなる。品質信頼性を重視し、接着剥れが起こらないよう接着厚みを上限近傍に絞り、本実施形態では、接着剤の厚みを制御するスペーサー8の径を、粒度分布が約0.5μあることを考慮し9μとした。光電変換素子基板間にあるスペーサー8は基板端と接触することなく隙間に入りこむので、基板端にあるクラックを増長させることがなくなった。
これにより、本実施形態における放射線撮像装置は、診断可能な解像度及び信頼性における接着強度を保証するのみならず、素子破壊を防止することで良品率を向上し安価な装置を提供することができた。
次に本実施形態の放射線撮像装置の製造方法について詳細を述べる。
図3は、光電変換素子基板の上面図(a)及び点線領域で囲まれた端部の拡大上面図(b)である。
まず、薄膜半導体プロセスによって作製されたセンサーウェハーを所定のスライスラインに沿ってダイシングブレードで切断し、図3(a)のような長尺の光電変換素子基板1を形成する。該基板1の端部には、図3(b)のように周辺画素部20と引き出し電極部10が設けられ、引き出し電極部10にはスタッドバンプ方式やめっき方式等で高さ20μのバンプ11が形成されている。
図4は、光電変換素子基板にリード線(インナーリード)を介してフレキシブル回路基板が接続された断面図(a)及び点線領域を拡大した上面図(b)である。
図3で説明した引き出し電極部10のバンプ11上にリード線12を配置し、超音波により金属間接合させる。ちなみにリード線12は銅箔をエッチングすることで形成し、ニッケル及び金を用いてめっきを施し20μの厚さとし、例えばポリイミドなどのフレキシブル回路基板13の保護樹脂層(図4(b)に示されている13の部分)を含め総厚が40μ程度としている。そして光電変換素子基板1に接続されたフレキシブル回路基板13を光電変換素子基板端部で図面下側に向けて90度程度折り曲げる。
図5は、複数の光電変換素子基板モジュールを2次元的に配列する様子を示した断面図(a)及び上面図(b)であり、図6は、フレキシブル回路基板が接続された光電変換素子基板モジュールとベース基板との接着工程を示す断面図(a)及び上面図(b)である。
図5(a)において、X,Y,Z,θ方向に稼動するアライメントヘッド26で光電変換素子基板モジュールの受光面とは反対側の面を吸着させ、アライメントカメラ27で受光面側のアライメントマークを認識させて位置調整し、位置が所定の場所に定まった時点で貼り合わせステージ28上に載せる。このように複数枚の光電変換素子基板モジュールをアライメントし、図5(b)のように2次元的にステージ28上に配列していく。次にベース基板3と光電変換素子基板モジュールを接合する。あらかじめドット形状で基板保持用接着剤2が印刷されたベース基板3(図6(b))を用意し、図6(a)のように接着面を下に向けたベース基板3を光電変換素子基板モジュール裏面に密着させ接合する。その際、ベース基板には長孔14が設けられており、その長孔14にフレキシブル回路基板13を通す。
図7は、フレキシブル回路基板封止工程を示す図である。
ベース基板3と光電変換素子基板モジュールの接合が完了したら、図7のようにベース基板裏面から長孔14にディスペンサー40により封止樹脂29を充填し、光電変換素子基板モジュールから引き出されたフレキシブル回路基板13をベース基板3に固定させる。以上の工程を経て大面積光電変換素子基板4が作製される。
次に、大面積光電変換素子基板4上に蛍光体基板を透光性接着剤9にて接合するプロセスを述べる。蛍光体基板と大面積光電変換素子基板4間に気泡を巻き込まないように接合方法にはノウハウがあり、接合方法として真空注入方式と真空貼り合わせ方式の2方式が挙げられる。
図8は、真空貼り合わせ方式を示した構造断面図である。(a)〜(e)は各工程を示す。
まず、図面を参照して説明する前に、真空貼り合わせ方式の概要について述べる。蛍光体の光出力面もしくは大面積光電変換素子基板の受光面のいずれかに透光性接着剤を塗布する。該透光性接着剤が硬化剤を添加する2液混合タイプの場合や、塗布厚みを制御するのにスペーサーを混合させた場合には、混合した際に生じた気泡を除去しなくてはならない。塗布前に必ず真空脱泡処理を行う必要があり、脱泡時の真空圧は、後述する真空注入の雰囲気より低い圧力で行う。もし高いと真空貼り合わせの時に接着剤から再び気泡が出てしまうからである。
接着剤の塗布方法としてスピンコート、スクリーン印刷、ディスペンサーによる手段が挙げられる。塗布に求められる要望とし、次の項目が挙げられる。
・5μ以上の厚膜塗布ができること。
・室温雰囲気で長時間経過すると硬化する接着剤も扱うため、硬化によって部品が使用できないケースもあるので、消耗部品が安価であること。
・装置自体が安価であること。
以上の要望を踏まえて塗布手段を考慮すると次のようになる。スピンコートは、厚膜塗布をするには何回もコーティングしなければならない。また、場所によって塗布厚みを変えることができないので本装置の製造方法としては適さない。スクリーン印刷は、消耗品となる印刷版が高価であることや、場所によって塗布厚みを変えるには印刷版を2種類用意しなくてはならないので手間を要することから、これも適さない。一方、ディスペンサーは、圧力とニードル径によって塗布厚みを大きくすることができ、かつ塗布位置はロボット制御できるので部分的に塗布量を変更するのは簡単である。また、消耗部品はニードルとシリンジになるが比較的安価に手に入れることができる。ディスペンサーはドット状もしくはライン状にしか塗布できないので膜厚ムラがスピンコートやスクリーン印刷に比べて大きい。蛍光体を貼り合わせた時に大きな気泡ができることが懸念されるが、後述する真空下での貼り合わせを行えば気泡は大気開放したときに小さくなるので問題はなくなる。
また、ディスペンサーは正確な量、塗布形状を実現するにはニードルと塗布基板の間隔が小さいほうが良く、本装置の製造条件では0.3mm以下に設定している。先ほど塗布する基板は蛍光体、大面積光電変換素子基板のいずれでも良いと述べたが、CFRP材質のベース基板は反りが45cm角サイズで約1mm程度あるので、光電変換素子基板上にニードルが接触して半導体層を破壊してしまう。
以上のことから、本実施形態では、図8(a)のようにスペーサー8を混合した透光性接着剤9をディスペンサー30で蛍光体基板32上にドット状に塗布する。
図8(b)のように、大面積光電変換素子基板4を受光面5が上側になるように置き、その上に蛍光体基板32が塗布面を下側にした状態で、透光性接着剤9が光電変換素子の受光面に接触しないような位置に固定する。この状態を維持したまま、外周雰囲気を大気圧P(1.2×10Pa)からP(Pa)まで減圧する。
所定の真空圧に達したら、図8(c)のように蛍光体基板32を大面積光電変換素子基板4に近づけて、上下の基板を貼り合わせる。その際、ドット状の透光性接着剤9の間に真空気泡31が発生する。あらかじめ所定の厚みになるように透光性接着剤9の量を決めて塗布しているが、透光性接着剤9が流れやすいように上下基板にプレス圧をかける。蛍光体にCsIを用いた場合は、CsIの強度は比較的弱く、耐圧が1kg/cm程度しかないため、これよりも低い圧力でプレスしなくてはならない。低圧プレスで貼り合わせるため、透光性接着剤9は粘度が低いほうが良く、50P以下が好ましい。
上下の基板を貼り合わせた後、外周雰囲気を大気圧に戻す。図8(d)のように、先ほど発生した真空気泡は大気圧によって縮小していく。完全に気泡が小さくなりきったら、図8(e)のキュア工程において、温度をかけて透光性接着剤9を硬化させる。硬化温度は、CsIの耐熱温度が100℃であることから90℃近辺で約1時間熱処理した。
次に、真空注入方式の概略を述べる。詳細は本発明者が既に提案した特許文献2に記載されている。
図9は、真空注入方式を示した構造断面図である。
大面積光電変換素子基板4の受光面の最外周部にシール材29を設け、蛍光体基板32を接合している。さらに、受光面内には大面積光電変換素子基板4と蛍光体基板32との間隔を一定に保つことができるよう両基板間に球状のスペーサー8を配置している。シール材29は受光面を全て囲うのではなく図9のように左右にシール材29のないエリア(開口部)を設ける。
加圧ユニット33及び吸引ユニット34は、ステンレスで作られた中空ハウジングの口の大きい面に軟らかいシリコーンゴム35を備え、対向方向には配管36が接続された構造である。加圧ユニット33及び吸引ユニット34のゴム部は大面積光電変換素子基板のシール材のないエリア近傍の蛍光体基板32側面とベース基板3上に強く突き当てられる。さらに加圧ユニット33にはスペーサー8が混合された透光性接着剤9が充填されたディスペンサー30を、吸引ユニット34には真空ポンプをそれぞれの配管に接続する。ユニットの準備が完了したら、吸引ユニット34で真空引きしながら、加圧ユニット33から透光性接着剤9を大面積光電変換素子基板4と蛍光体基板32間の隙間へ充填していく。充填が終えたら加圧及び吸引ユニット33,34を取り外し、大面積光電変換素子基板4と蛍光体基板32を組み合わせた装置を所定の温度に加熱し透光性接着剤9を硬化させる。
(実施形態2)
図10は、本発明の第2の実施形態である放射線撮像装置を示す図であり、(a)は構造断面図、(b)は上面図である。
第1の実施形態とほぼ同じ構造であるが、本実施形態では光電変換素子基板1上に保護層37が設けられている。図5の光電変換素子基板1をアライメントしステージ28上に配置する時に、ステージ28上にある異物との接触による素子破壊を起こさないように、光電変換素子基板1上に保護層37を設けている。但し、光電変換素子基板1全面に保護層37はなく、ダイシングストリート近傍は積極的に取り除いている。保護層37があるとダイシングによるチッピングが大きくなるからである。保護層37はポリイミド等の有機材料を用い、スピンコートなどで光電変換素子基板1上に形成する。
図11、図12は光電変換素子基板間を拡大した構造断面図である。保護層の厚みによって具体例を示したものである。
図11は、保護層37が非常に薄い場合を示したものである。実施形態1と同様に光電変換素子基板間の隙間(G2a)を20μとし、新たに追加した保護層37は厚み(D2a)を0.5μとしている。実施形態1の制約条件からスペーサーの径(φB2a)を9μとした。仮にスペーサーが硬質の材料である場合は、光電変換素子基板間近傍には保護層37がないので、蛍光体基板32をプレスしても、基板端にあるスペーサー8は蛍光体基板32と光電変換素子基板1に挟まれない。そのため、基板端の素子破壊は起こらない。ところが、実際は基板端以外の素子破壊も考慮して比較的軟らかいスペーサーを選定しているため、保護層37上にあるスペーサー8はプレス圧如何では図のように点線形状から実線形状へと歪んで、その歪み量が保護層の厚み分(0.5μ)に達すると、基板端にあるスペーサー8は蛍光体基板32と光電変換素子基板1に挟まれ素子破壊を起こす可能性も生じる。そのため、安全を考慮し、スペーサー8は光電変換素子基板間の隙間より小さな径のものを用いている。
図12は、保護層が厚い場合の構造断面図である。
実施形態1と同様に光電変換素子基板間(G2b)を20μとし、保護層は厚み(D2b)を5μとしている。実施形態1の3つの制約条件からスペーサー8の径(φB2b)を9μとした。スペーサー8が硬質の材料である場合は、先程と同様に基板端にあるスペーサー8は蛍光体基板32と光電変換素子基板1に挟まれることはない。さらに比較的軟らかいスペーサー8を選定しても、基板端にあるスペーサー8が蛍光体基板32と光電変換素子基板1に挟まれるには、保護層37上のスペーサー8は点線形状のように保護層の厚み分(5μ)歪まなければならない。本実施形態のスペーサーは樹脂製のもので、積水化学のミクロパール(商品名)を用いている。該スペーサーは50%圧縮されると破壊するので、9μ径のものを5μも歪ませると破壊してしまう。結局、保護層が厚い場合は、スペーサーの硬さにかかわらず、光電変換素子基板間距離とスペーサー径の制約はなくなり、スペーサー径は光電変換素子基板間距離よりも大きくても良いことになる。しかし、蛍光体を貼り合わせるプロセスにおいて、光電変換素子基板間距離とスペーサー径の制約が生じる。その理由を以下に記す。
図13は、真空注入方式を用いて蛍光体基板を接着するプロセスの途中経過を示す図である。
加圧ユニット33から出た透光性接着剤9は、蛍光体基板32と光電変換素子基板1の間及び光電変換素子基板1とベース基板としてのCFRP基板3の間へと流れ込んでいく。光電変換素子基板1とCFRP基板3の空間にはドット形状の基板保持用接着剤2が大半を占有しているため流れ抵抗が大きくなる。光電変換素子基板1とCFRP基板3間の流れ(i)は蛍光体基板32と光電変換素子基板間の流れ(ii)より遅くなる。図13(a)のように蛍光体基板32と光電変換素子基板間の流れが隣接した光電変換素子基板間に達すると、透光性接着剤9は引き続き(i)へ流れるルートと、新たにその隙間を通じて光電変換素子基板1とCFRP基板3間へと流れるルート(iii)に別れる。この際、透光性接着剤9の流れとともにスペーサー8も移動するので、光電変換素子基板間の隙間がスペーサー径より小さいと、図13(b)のようにその隙間にスペーサー8が溜まる現象が生じる。
スペーサー8は、透光性接着剤9と極力屈折率の近いものを選定してはいるが、多数個のスペーサー8が局所的にあると画像として見えてしまう。光電変換素子基板1とCFRP基板3間の距離を大きくしたり、基板保持用接着剤2の接着パターンの間隔を広げたりするなど設計を変更すれば、(i)の接着剤流れは(ii)より早くなり、光電変換素子基板間にスペーサー8が密集する現象はなくなる。但し、構造上、多くの制約条件を受けるので、設計の自由度を増すためにも安全を見る必要がある。したがって、スペーサー8が密集しないように光電変換素子基板間はスペーサー径より大きくすることが好ましい。
図14は、真空貼り合わせ方式により蛍光体基板を接着するプロセスの途中経過を示す図である。
真空下で蛍光体基板32と大面積光電変換素子基板4を貼り合わせると、蛍光体基板32と光電変換素子基板1の間及び光電変換素子基板1とCFRP基板3の間に透光性接着剤9のないエリア(通称:真空気泡)が生じる。蛍光体基板32と光電変換素子基板間の真空気泡は、蛍光体基板32に透光性接着剤9を塗布したパターンで大きさが決まる。例えば、透光性接着剤9をドット形状で2次元的に配列して塗布した場合(図8(a)参照)、ピッチが小さいと真空気泡も小さく、ピッチが大きいと真空気泡も大きくなる。一方、光電変換素子基板1とCFRP基板3間の真空気泡は光電変換素子基板間からの透光性接着剤9の回り込みにより発生する。そのため、光電変換素子基板1が大きくなればなるほど、真空気泡も大きくなる。本実施形態では、蛍光体基板32上の塗布ピッチは10mm、光電変換素子基板間は短手方向で20mmあるので、光電変換素子基板1とCFRP基板3の間の真空気泡が大きくなる。この状態で大気開放すると、真空気泡は圧縮され、圧縮された部分は透光性接着剤9で充填される。
図14(a)では、光電変換素子基板1とCFRP基板3間の真空気泡が大きいので、透光性接着剤9は、蛍光体基板32と光電変換素子基板間に充填されているものから供給される。光電変換素子基板間から供給されるので、真空注入方式と同様にその隙間にスペーサー8が溜まる現象が生じる。これも、光電変換素子基板1とCFRP基板3間の距離を短くすると、真空気泡の体積も小さくなるので、蛍光体基板32と光電変換素子基板間の透光性接着剤9を充填する量も少なくなる。逆に蛍光体基板32と光電変換素子基板間へ供給する場合も出てくる。これも多くの制約条件を受けるので、設計の自由度を増すためにも安全を見る必要がある。したがって、スペーサー8が密集しないように光電変換素子基板間はスペーサー径より大きくすることが好ましい。
(実施形態3)
図15は、本発明の第3の実施形態である放射線撮像装置を示す図であり、(a)は構造断面図、(b)は上面図である。
本実施形態では15枚の光電変換素子基板1が5行3列で配置される。これまでの実施形態は、引き出し電極部上には蛍光体基板32が存在しなかったが、本実施形態では2列目の光電変換素子基板1のものが蛍光体基板32直下に位置する。蛍光体基板32がリード線12と接触して断線しないように、光電変換素子基板1と蛍光体基板32間の距離は、リード線12の上面の高さよりも大きくなっている。
図16は、図15の点線部を拡大した図であり、 (a)は上面図、(b)は(a)のb−b線の構造断面図である。
図16(b)の構造断面図において、光電変換素子基板1の引き出し電極10上のバンプ11からリード線12を介してフレキシブル回路基板13が接続される。光電変換素子基板1の受光面からリード線12上面の高さをhとすると、蛍光体基板32がリード線12と接触しないためにはスペーサー径(φB3)と保護層厚み(D3)を合計した厚みがhより大きくなくてはならない。また、上面図(a)を見ると、光電変換素子基板間はフレキシブル回路基板13があるか否かで距離が変わる。当然、基板間距離はフレキシブル回路基板13を挟んだほうが(G3X)が大きくなる(G3X>G3Y)。スペーサー8は基板端に接触しないよう、フレキシブル回路基板を挟まない基板間距離(G3Y)より小さな径でなくてはならない。
実際、リード線12の高さは40μ、基板間距離G3Xは80μ、G3Yは20μある。解像度と熱応力による接着剥れを起さない接着膜厚を考慮すると、スペーサー径は、5≦φB3<20μの範囲に限定されるが、光電変換素子基板1を配列するアライメント精度を考慮すると5≦D<10μとなる。品質信頼性を重視し、接着剥れが起こらないよう接着厚みを上限近傍に絞り、本実施形態では、透光性接着剤9の厚みを制御するスペーサー8の径を、粒度分布が約0.5μあることを考慮し9μとした。スペーサー8と保護層37を含めた厚みがリード線12より高くなくてはならないので、保護層37の厚みは32μで設計した。
以上のように、蛍光体基板32と光電変換素子基板間が厚くなる場合は、基板端の素子破壊を防止するためスペーサー径が制限されるので、不足した部分は保護層によって補っている。そうすることで、リード線12及び基板端の素子破壊を未然に防ぐことができた。保護層37の厚みとスペーサー8の径の和が受光面からリード線12上面の高さより大きく、且つスペーサー8は、個別の光電変換素子基板と隣接した光電変換素子基板との隙間の幅よりも小さい径を有することで、基板端の素子破壊や蛍光体基板との接触によるリード線12の断線を未然に防ぎ、当然透光性接着剤の光学特性を均一にすることができる。
(実施形態4)
図17は、本発明の実施形態4において放射線撮像装置を放射線撮像システムとして応用した例を示す図である。
放射線撮像装置は、上記の実施形態1〜3の放射線撮像装置である。
本実施形態において、X線チューブ6050で発生したX線6060は、患者或いは被験者6061の胸部6062を透過し、放射線画像を撮影する放射線撮像装置6040に入射する。この入射したX線には患者6061の体内部の情報が含まれている。X線の入射に対応して放射線撮像装置6040のシンチレータ(蛍光体層)は発光し、これを光電変換して電気的情報を得る。この情報は、ディジタルに変換されイメージプロセッサ6070により画像処理されコントロールルームに有る表示手段としてのディスプレイ6080で観察できる。
また、この情報は電話回線6090等の伝送手段により遠隔地へ転送でき、別の場所のドクタールーム等でディスプレイ6081に表示するか又は光ディスク等の保存手段に保存することができ、遠隔地の医師が診断することも可能である。またフィルムプロセッサ6100によりフィルム6110に記録することもできる。
第1の実施形態である放射線撮像装置の上面図(a)及び構造断面図(b) 図1の点線部で囲まれた部分を拡大した、隣接した光電変換素子基板間の拡大断面図(a)及び蛍光体を省略した光電変換素子基板受光面の上面図(b) 光電変換素子基板の上面図(a)及び点線領域で囲まれた端部の拡大上面図(b) 光電変換素子基板にリード線を介してフレキシブル回路基板を接続した断面図(a)及び点線領域を拡大した上面図(b) 複数の光電変換素子基板モジュールを2次元的に配列する様子を示した断面図(a)及び上面図(b) フレキシブル回路基板が接続された光電変換素子基板モジュールとベース基板との接着工程を示す断面図(a)及び上面図(b) フレキシブル回路基板封止工程を示す図 真空貼り合わせ方式を示した構造断面図 真空注入方式を示した構造断面図 第2の実施形態である放射線撮像装置の構造断面図(a)及び上面図(b) 第2の実施形態である放射線撮像装置の光電変換素子基板間を拡大した断面図(保護層が薄い場合) 第2の実施形態である放射線撮像装置の光電変換素子基板間を拡大した断面図(保護層が厚い場合) 第2の実施形態において真空注入方式を用いて蛍光体基板を接着するプロセスの途中経過を示す図 第2の実施形態において真空貼り合わせ方式を用いて蛍光体基板を接着するプロセスの途中経過を示す図 第3の実施形態である放射線撮像装置の構造断面図(a)及び上面図(b) 第3の実施形態である放射線撮像装置の点線部を拡大した上面図(a)及び構造断面図(b) 第4の実施形態である放射線撮像装置を放射線撮像システムとして応用した例を示す図 特許文献2の放射線撮像装置の概略構成図 図18に示した個別の光電変換素子基板の端部を示した上面図 図18に示した隣接する光電変換素子基板間のつなぎ部近傍を示した上面図(a)及び構造断面図(b) 図18に示した隣接する光電変換素子基板間つなぎ部の拡大断面図 図18に示した隣接する光電変換素子基板間つなぎ部の蛍光体基板を含めた拡大断面図 図22の光電変換素子基板間(点線部)を拡大した断面図
符号の説明
1…光電変換素子基板
2…基板保持用接着剤
3…ベース基板(CFRP基板)
4…大面積光電変換素子基板
5…光電変換素子基板の受光面
6…蛍光体
7…光ファイバープレート
8…スペーサー
9…透光性接着剤
10…引き出し電極(電極パッド)
11…バンプ
12…リード線(インナーリード)
13…フレキシブル回路基板
14…ベース基板に設けられた長孔
18…通常画素
19…駆動回路
20…周辺画素
29…封止樹脂
30,40…ディスペンサー
31…真空気泡
32…蛍光体基板
33…加圧ユニット
34…吸引ユニット
35…シリコーンゴム
37…保護層

Claims (7)

  1. 平面的に配列された複数個の光電変換素子基板をベース基板上に保持し、該複数の光電変換素子基板の受光面上に、放射線を前記光電変換素子にて光電変換可能な波長域に波長変換する波長変換体を透光性接着剤にて固定した放射線撮像装置において、該透光性接着剤に混在し前記波長変換体と前記受光面間の距離を保持するための複数個のスペーサーが、隣接した光電変換素子基板間の隙間の幅よりも小さい径を有することを特徴とする放射線撮像装置。
  2. 前記光電変換素子基板の受光面に保護層が設けられていることを特徴とする請求項1に記載の放射線撮像装置。
  3. 前記光電変換素子基板上の電極とリード線を介して外部回路基板が接続され、該リード線が前記受光面より高い位置に形成され、且つ前記リード線及び外部回路基板が隣接した光電変換素子基板間の隙間に介在し、前記保護層の厚みとスペーサーの径の和が前記受光面から前記リード線上面の高さ寸法より大きいことを特徴とする請求項2に記載の放射線撮像装置。
  4. 前記スペーサーは、前記リード線及び外部回路基板が介在しない隣接した光電変換素子基板間の隙間の幅よりも小さい径を有することを特徴とする請求項3に記載の放射線撮像装置。
  5. 請求項1に記載の放射線撮像装置の製造方法であって、前記波長変換体上に複数個のスペーサーが混在した透光性接着剤をドット状に塗布する工程、外周雰囲気を真空にし前記複数の光電変換素子基板と前記波長変換体を貼り合わせる工程、外周雰囲気を大気圧とする工程、及び加熱する工程を有することを特徴とする放射線撮像装置の製造方法。
  6. 請求項1に記載の放射線撮像装置の製造方法であって、前記波長変換体と前記複数の光電変換素子基板を対向させ両端に開口を設ける工程、一方の開口から複数個のスペーサーが混在した透光性接着剤を加圧注入し、他方の開口から真空吸引する工程、及び加熱する工程を有することを特徴とする放射線撮像装置の製造方法。
  7. 請求項1〜4のいずれかに記載の放射線撮像装置と、前記放射線撮像装置からの信号を画像として処理する処理手段と、前記処理手段からの信号を記録する記録手段と、前記処理手段からの信号を表示する表示手段と、前記処理手段からの信号を伝送する伝送手段と、前記放射線を発生する放射線源とを備えたことを特徴とする放射線撮像システム。
JP2005098033A 2005-03-30 2005-03-30 放射線撮像装置及びその製造方法 Withdrawn JP2006278877A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098033A JP2006278877A (ja) 2005-03-30 2005-03-30 放射線撮像装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098033A JP2006278877A (ja) 2005-03-30 2005-03-30 放射線撮像装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2006278877A true JP2006278877A (ja) 2006-10-12

Family

ID=37213286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098033A Withdrawn JP2006278877A (ja) 2005-03-30 2005-03-30 放射線撮像装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2006278877A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044658A1 (ja) * 2007-10-01 2009-04-09 Hamamatsu Photonics K.K. 放射線検出器
WO2010001524A1 (ja) * 2008-07-03 2010-01-07 パナソニック株式会社 固体撮像素子、その製造方法、及び固体撮像装置
JP2011033562A (ja) * 2009-08-05 2011-02-17 Konica Minolta Medical & Graphic Inc 放射線画像検出装置
JP2012237596A (ja) * 2011-05-10 2012-12-06 Yasu Medical Imaging Technology Co Ltd 放射線イメージセンサ及び光電変換素子アレイユニット
JP2014239147A (ja) * 2013-06-07 2014-12-18 住友電気工業株式会社 赤外線センサ、及び、赤外線センサの製造方法
WO2015087636A1 (ja) * 2013-12-13 2015-06-18 キヤノン株式会社 放射線検出装置、放射線検出システム、及び、放射線検出装置の製造方法
JP2015230175A (ja) * 2014-06-03 2015-12-21 コニカミノルタ株式会社 放射線画像検出装置及びその製造方法
KR20160030454A (ko) * 2014-09-10 2016-03-18 캐논 가부시끼가이샤 방사선 촬상 장치 및 방사선 촬상 시스템
JP2016524152A (ja) * 2013-06-27 2016-08-12 ヴァリアン メディカル システムズ インコーポレイテッド Tftフラットパネルにcmosセンサを埋設したx線イメージャ
JP2020016478A (ja) * 2018-07-23 2020-01-30 キヤノン株式会社 放射線撮像装置、その製造方法及び放射線撮像システム
JP2021064864A (ja) * 2019-10-11 2021-04-22 キヤノン株式会社 撮像装置及びカメラ

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085845A (ja) * 2007-10-01 2009-04-23 Hamamatsu Photonics Kk 放射線検出器
WO2009044658A1 (ja) * 2007-10-01 2009-04-09 Hamamatsu Photonics K.K. 放射線検出器
WO2010001524A1 (ja) * 2008-07-03 2010-01-07 パナソニック株式会社 固体撮像素子、その製造方法、及び固体撮像装置
JP2011033562A (ja) * 2009-08-05 2011-02-17 Konica Minolta Medical & Graphic Inc 放射線画像検出装置
JP2012237596A (ja) * 2011-05-10 2012-12-06 Yasu Medical Imaging Technology Co Ltd 放射線イメージセンサ及び光電変換素子アレイユニット
JP2014239147A (ja) * 2013-06-07 2014-12-18 住友電気工業株式会社 赤外線センサ、及び、赤外線センサの製造方法
JP2016524152A (ja) * 2013-06-27 2016-08-12 ヴァリアン メディカル システムズ インコーポレイテッド Tftフラットパネルにcmosセンサを埋設したx線イメージャ
GB2536394A (en) * 2013-12-13 2016-09-14 Canon Kk Radiation detection apparatus, radiation detection system, and radiation detection apparatus manufacturing method
WO2015087636A1 (ja) * 2013-12-13 2015-06-18 キヤノン株式会社 放射線検出装置、放射線検出システム、及び、放射線検出装置の製造方法
JP2015114268A (ja) * 2013-12-13 2015-06-22 キヤノン株式会社 放射線検出装置、放射線検出システム、及び、放射線検出装置の製造方法
GB2536394B (en) * 2013-12-13 2020-12-09 Canon Kk Radiation detecting device, and radiation detecting system
JP2015230175A (ja) * 2014-06-03 2015-12-21 コニカミノルタ株式会社 放射線画像検出装置及びその製造方法
JP2016057204A (ja) * 2014-09-10 2016-04-21 キヤノン株式会社 放射線撮像装置および放射線撮像システム
KR101896748B1 (ko) 2014-09-10 2018-09-07 캐논 가부시끼가이샤 방사선 촬상 장치 및 방사선 촬상 시스템
KR20160030454A (ko) * 2014-09-10 2016-03-18 캐논 가부시끼가이샤 방사선 촬상 장치 및 방사선 촬상 시스템
JP2020016478A (ja) * 2018-07-23 2020-01-30 キヤノン株式会社 放射線撮像装置、その製造方法及び放射線撮像システム
CN110749915A (zh) * 2018-07-23 2020-02-04 佳能株式会社 放射线摄像装置及其制造方法和放射线摄像系统
US11086030B2 (en) 2018-07-23 2021-08-10 Canon Kabushiki Kaisha Radiation imaging apparatus, manufacturing method thereof, and radiation imaging system
CN110749915B (zh) * 2018-07-23 2023-09-29 佳能株式会社 放射线摄像装置及其制造方法和放射线摄像系统
JP2021064864A (ja) * 2019-10-11 2021-04-22 キヤノン株式会社 撮像装置及びカメラ
JP7427410B2 (ja) 2019-10-11 2024-02-05 キヤノン株式会社 撮像装置及びカメラ

Similar Documents

Publication Publication Date Title
JP2006278877A (ja) 放射線撮像装置及びその製造方法
JP4871629B2 (ja) 放射線撮像装置の製造方法及び放射線撮像システム
JP3595759B2 (ja) 撮像装置および撮像システム
US7564112B2 (en) Semiconductor device, radiographic imaging apparatus, and method for manufacturing the same
US6800836B2 (en) Image pickup device, radiation image pickup device and image processing system
US10283555B2 (en) Radiation detection apparatus, manufacturing method therefor, and radiation detection system
JP2007071836A (ja) 放射線検出装置及び放射線撮像システム
CN102110698B (zh) 闪烁体板、放射线成像装置和系统及其制造方法
JP2012112725A (ja) 放射線検出装置及び放射線検出システム
JP4346865B2 (ja) 画像入力装置及びその製造方法並びに画像入力装置を用いた放射線撮像システム
US6909173B2 (en) Flexible substrate, semiconductor device, imaging device, radiation imaging device and radiation imaging system
JP2014035293A (ja) 放射線検出器及びx線ct装置
JP4100965B2 (ja) 半導体装置の製造方法
US9986956B2 (en) Image sensor and oral sensor device using same
JP2019027950A (ja) 放射線検出装置、放射線検出システム、及び放射線出装置の製造方法
WO2011108156A1 (ja) 放射線検出パネル、放射線画像検出器、放射線検出パネルの製造方法および放射線画像検出器の製造方法
JP2004061116A (ja) 放射線検出装置及びシステム
US6965409B1 (en) Image input apparatus having photoelectric conversion devices bonded to a light guide member
JP2021056092A (ja) 放射線撮像装置
JP4819344B2 (ja) 半導体装置、放射線撮像装置、及びその製造方法
JP2021071378A (ja) 放射線検出装置の製造方法
JP2022092707A (ja) 放射線検出装置の製造方法
JP2022092706A (ja) 放射線検出装置の製造方法
KR100993005B1 (ko) 대면적 x선 검출장치의 제조방법
JP2021071380A (ja) 放射線検出装置の製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603