JP2006276278A - 画像形成装置、プロセスカートリッジ及び画像形成方法 - Google Patents

画像形成装置、プロセスカートリッジ及び画像形成方法 Download PDF

Info

Publication number
JP2006276278A
JP2006276278A JP2005092994A JP2005092994A JP2006276278A JP 2006276278 A JP2006276278 A JP 2006276278A JP 2005092994 A JP2005092994 A JP 2005092994A JP 2005092994 A JP2005092994 A JP 2005092994A JP 2006276278 A JP2006276278 A JP 2006276278A
Authority
JP
Japan
Prior art keywords
toner
mass
image forming
group
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005092994A
Other languages
English (en)
Other versions
JP4600116B2 (ja
Inventor
Noriyuki Yamashita
敬之 山下
Shuji Sato
修二 佐藤
Katsumi Nukada
克己 額田
Kazuhiro Koseki
一浩 小関
Wataru Yamada
渉 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005092994A priority Critical patent/JP4600116B2/ja
Publication of JP2006276278A publication Critical patent/JP2006276278A/ja
Application granted granted Critical
Publication of JP4600116B2 publication Critical patent/JP4600116B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】 高画質化、長寿命化及び高信頼性を実現可能な画像形成装置、プロセスカートリッジ及び画像形成方法を提供すること。
【解決手段】 上記課題を解決する画像形成装置は、導電性支持体とこの導電性支持体上に形成された感光層とを有する電子写真感光体、電子写真感光体を帯電させる帯電手段、帯電した電子写真感光体を露光して静電潜像を形成させる露光手段、静電潜像をトナーにより現像してトナー像を形成させる現像手段およびトナー像を被転写媒体に転写する転写手段を備える画像形成装置において、感光層が、導電性支持体から最も遠い側に、電荷輸送能を有し且つ架橋構造を有する最表面層を有し、トナーが、トナー粒子とフッ素含有酸化セリウム微粒子とを含むことを特徴とする。
【選択図】 図1

Description

本発明は、画像形成装置、プロセスカートリッジ及び画像形成方法に関する。
いわゆるゼログラフィー方式の画像形成装置は、電子写真感光体(以下、場合により「感光体」という)、帯電装置、露光装置、現像装置及び転写装置を備え、それらを用いた電子写真プロセスにより画像形成を行う。
近年、ゼログラフィー方式の画像形成装置(電子写真装置)の分野では、画像形成プロセスの高速化、高画質化及び長寿命化に対する要求が益々高まりつつある。特に、高速化を図る場合に画質や寿命が損なわれることが多い。より具体的には、画像形成プロセスを高速化すると、画像書き込みに使用される電子写真感光体が接触帯電装置の帯電部材やクリーニング装置のクリーニング部材などと摺動することによりストレスを受け、傷や摩耗が発生して画質欠陥が生じることが多い。
また、電子写真装置の帯電装置としては、エコロジーの観点から接触帯電方式の帯電装置が広く利用されているが、接触帯電方式の場合、コロトロンを用いた帯電方式の場合に比べて大幅に感光体の摩耗が増加してしまう。このような摺擦傷や磨耗の発生は、感光体の寿命を短くするだけでなく、感光体の感度低下による画像濃度の低下、帯電電位の低下によるカブリの発生などの原因となる。
そこで上記のような傷や磨耗を抑制するため、電子写真感光体では機械強度の高い樹脂が使用されており、さらに長寿命化も図られている。例えば、架橋型の表面層を備える感光体が提案されている(例えば、特許文献1〜3参照)。
特許2575536号 特開平9−190004号公報 特開2002−82469号公報
しかしながら、上記特許文献1〜3に記載の感光体を備える画像形成装置は以下のような信頼性における問題点を有している。
すなわち、上記特許文献1〜3に記載の感光体においては、機械強度の向上により感光体の表面の傷や磨耗は抑制されるものの、その一方で表面層が硬いため感光体表面が研磨されにくく、感光体表面に付着する放電生成物等が除去されにくい。特に、上記接触帯電方式の場合、より多くの放電生成物が発生する傾向にあり、さらに、高温高湿環境下では、感光体表面に蓄積した付着物が空気中の水分を取り込むため、画像流れやタルクディレッション等の画質欠陥が発生する。したがって、長期に亘って優れた画質を安定して形成できる信頼性が不十分となっている。
ここで、掻き取り効果を向上させるために、硬度の大きいクリーニング部材を有するクリーニング装置を設ける方法が考えられるが、長期に亘って繰り返し使用されると架橋型の表面層を備える感光体であっても表面層が偏磨耗し、感光体に付着した残存トナー等の異物がクリーニング装置をすり抜け、スジ状の画質欠陥が発生してしまう。
画像形成装置の高画質化及び長寿命化を図るためには架橋型の表面層を有する感光体を用いることが重要であるが、十分な信頼性を確保できる有効な方法が得られていないのが実情であり、架橋型の表面層を備える感光体を用いる画像形成装置には更なる改良が望まれている。
本発明は、上記実情に鑑みてなされたものであり、高画質化、長寿命化及び高信頼性を実現可能な画像形成装置、プロセスカートリッジ及び画像形成方法を提供することを目的とする。
上記課題を解決するため、本発明の画像形成装置は、導電性支持体と導電性支持体上に形成された感光層とを有する電子写真感光体、電子写真感光体を帯電させる帯電手段、帯電した電子写真感光体を露光して静電潜像を形成させる露光手段、静電潜像をトナーにより現像してトナー像を形成させる現像手段およびトナー像を被転写媒体に転写する転写手段を備える画像形成装置において、感光層が、導電性支持体から最も遠い側に、電荷輸送能を有し且つ架橋構造を有する最表面層を有し、トナーが、トナー粒子と、フッ素含有酸化セリウム微粒子と、を含むことを特徴とする。
本発明の画像形成装置によれば、上記の構成を有することにより、長期に亘って優れた画像を安定して形成することができ、高画質化、長寿命化及び高信頼性を達成することが可能となる。このような効果が得られる理由は明確ではないが、本発明者らは以下のとおり推察する。
すなわち、フッ素含有酸化セリウム微粒子は、滑性及び研磨性の双方が適度にバランスされているため、クリーニング部材の磨耗欠け等の発生を十分抑制しつつ、耐摩耗性の高い最表面層を均一磨耗させると考えられる。また、フッ素含有酸化セリウム微粒子と、電荷輸送能及び架橋構造を有する最表面層との組み合わせにより、クリーニング性及び耐磨耗性を維持するために必要なフッ素含有酸化セリウムの使用量を十分に少なくすることができ現像剤本来の帯電性への影響を十分少なくできるので、良好な帯電特性を維持することができる。これらの作用により、放電生成物の蓄積に起因する像流れ及びタルクディレッション、偏磨耗に起因する濃度ムラ、並びに、感光体表面の荒れに起因するクリーニング不良を長期に亘って防止でき、その結果、高画質化、長寿命化及び高信頼性を達成できたと考えられる。
また、近年、高画質化の観点から、小粒径化、粒度分布の均一化及び球形化が図られたトナーを使用する傾向にあり、かかるトナーを使用する際にはクリーニング性を確保する為の外添剤が用いられるが、本発明の画像形成装置はこのような外添剤を含むトナーの使用に好適である。その理由は、上記のようなトナーを使用すると、繰り返し使用によって上記外添剤が感光体表面に蓄積され、さらにクリーニング部材で押圧されることでフィルミングが発生する傾向にある。しかし、本発明の画像形成装置によれば、かかる外添剤の蓄積を防止できるので、フィルミングを十分に抑制でき、高画質化、長寿命化及び高信頼性を達成できる。
また、中間転写体を用いない直接転写方式においては、紙面中のタルク成分などが感光体に付着して引き起こされるディレッションが発生しやすい傾向にあるが、本発明の画像形成装置によれば、感光体表面の付着物を十分に除去できるので、このようなディレッションも長期に亘って防止でき、高画質化、長寿命化及び高信頼性を達成できる。
本発明の画像形成装置においては、上記フッ素含有酸化セリウム微粒子のフッ素含有量が0.1〜10質量%であること好ましい。かかるフッ素含有量が0.1質量%未満であると、濃度ムラやクリーニング不良を十分抑制することが困難となる傾向にある。一方、フッ素含有量が10質量%を超えると、フィルミング、像流れ及びディレッションを十分抑制することが困難となる傾向にある。
また、上記トナーが、フッ素含有酸化セリウム微粒子をトナー粒子100質量部に対して0.3〜10質量部含むことが好ましい。フッ素含有酸化セリウム微粒子の割合が、トナー粒子100質量部に対して0.3質量部未満であると、フィルミング、像流れ及びディレッションを十分抑制することが困難となる傾向にあり、一方、10質量部を越えると、濃度ムラやクリーニング不良を十分抑制することが困難となる傾向にある。
さらに、本発明の画像形成装置においては、フッ素含有量が0.1〜10.0質量%であるフッ素含有酸化セリウム微粒子を、上記の割合で含有するトナーを用いることにより、フィルミング、像流れ、ディレッション、濃度ムラ及びクリーニング不良をより長期に亘って防止できるとともに感光体の磨耗を極めて小さくすることが可能となる。
また、上記フッ素含有酸化セリウム微粒子の体積平均粒子径が、0.03〜6μmであることが好ましい。このようなフッ素含有酸化セリウム微粒子を用いることにより、感光体表面の荒れを抑え、クリーニング不良を防止する効果がより確実に得られる。
本発明の画像形成装置においては、上記最表面層が、メチロール基を有するフェノール誘導体と、水酸基、カルボキシル基、アルコキシシリル基、エポキシ基、チオール基及びアミノ基から選択される少なくとも1種を有する電荷輸送材料と、を含有することが好ましい。
また、上記最表面層が、メチロール基を有するフェノール誘導体と、下記一般式(V)又は(VI)で示される電荷輸送材料と、を含有することが好ましい。
Figure 2006276278


式(V)中、Fは正孔輸送性を有するn7価の有機基を、Tは2価の基を、Yは酸素原子又は硫黄原子を、R、R及びRはそれぞれ独立に水素原子又は1価の有機基を、Rは1価の有機基を、m1は0又は1を、n7は1〜4の整数を、それぞれ示す。但し、RとRは互いに結合してYをヘテロ原子とする複素環を形成してもよい。
Figure 2006276278


式(VI)中、Fは正孔輸送性を有するn8価の有機基を、Tは2価の基を、Rは1価の有機基を、m2は0又は1を、n8は1〜4の整数を、それぞれ示す。
なお、上記した電荷輸送材料は、上記フェノール誘導体と反応或いは上記フェノール誘導体を構成する化合物と反応して、電荷輸送能を有する構造単位として架橋構造に組み込まれていてもよい。
上記最表面層が、上記した電荷輸送材料のいずれかと、メチロール基を有するフェノール誘導体とを含むことにより、感光体の耐摩耗性をさらに向上させることが可能となるとともに、最表面層のクリーニング性が向上し、放電生成物による感光層の劣化を抑制する効果が向上され、高画質化の維持がさらに確実にでき、画像形成装置の信頼性及び寿命が飛躍的に向上する。
本発明の画像形成装置において、電子写真感光体の最表面層の1000回転当たりの磨耗量が0.1nm〜20nmであることが好ましい。本発明によれば、かかる磨耗量を示す機械的強度に優れた感光体を備える場合であっても、感光体表面に付着する放電生成物等の付着物に起因する画質欠陥を十分に抑制することが可能であり、極めて長期に亘って高画質及び高信頼性を維持できる長寿命の画像形成装置が実現可能となる。
また、本発明のプロセスカートリッジは、電子写真感光体と、電子写真感光体を帯電させる帯電装置、帯電した電子写真感光体を露光して静電潜像を形成させる露光装置、静電潜像を現像してトナー像を形成する現像装置、及び電子写真感光体上に残存するトナーを除去するクリーニング装置のうちの少なくとも電子写真感光体と現像装置とを備えるプロセスカートリッジであって、電子写真感光体は、導電性支持体と導電性支持体上に形成された感光層を備え、感光層の導電性支持体から最も遠い側に、電荷輸送能を有し且つ架橋構造を有する最表面層が設けられており、現像装置は、トナー粒子とフッ素含有酸化セリウム微粒子とを含むトナーにより静電潜像を現像するものであることを特徴とする。
本発明のプロセスカートリッジによれば、電荷輸送能を有し且つ架橋構造を有する最表面層が設けられた電子写真感光体と、フッ素含有酸化セリウム微粒子を含むトナーとの組み合わせにより、上述したように長期に亘って優れた画質を形成することが可能となる。そして、このプロセスカートリッジを画像形成装置に適用することにより、高画質化、長寿命化及び高信頼性を達成する画像形成装置が有効に実現可能となる。
また、本発明の画像形成方法は、導電性支持体と導電性支持体上に形成された感光層を備え、感光層の導電性支持体から最も遠い側に、電荷輸送能を有し且つ架橋構造を有する最表面層が設けられた電子写真感光体を準備する電子写真感光体準備工程と、トナー粒子とフッ素含有酸化セリウム微粒子とを含むトナーを準備するトナー準備工程と、電子写真感光体を帯電させる帯電工程と、帯電した電子写真感光体を露光して静電潜像を形成させる露光工程と、静電潜像を上記トナーにより現像してトナー像を形成させる現像工程と、トナー像を被転写媒体に転写する転写工程と、を有することを特徴とする。
本発明の画像形成方法によれば、電荷輸送能を有し且つ架橋構造を有する最表面層が設けられた電子写真感光体と、フッ素含有酸化セリウム微粒子を含むトナーとの組み合わせにより、上述したように長期に亘って優れた画質を形成することが可能となる。そして、この方法を画像形成装置に適用することにより、高画質化、長寿命化及び高信頼性を達成する画像形成装置が有効に実現可能となる。
本発明よれば、高画質化、長寿命化及び高信頼性を実現可能な画像形成装置、プロセスカートリッジ及び画像形成方法を提供することができる。
以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。
図1は、本発明の画像形成装置の好適な一実施形態を示す模式図である。図1に示す画像形成装置100は、画像形成装置本体(図示せず)に、電子写真感光体1を備えるプロセスカートリッジ20と、露光装置30と、転写装置40と、中間転写体50とを備える。なお、画像形成装置100において、露光装置30はプロセスカートリッジ20の開口部から電子写真感光体1に露光可能な位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体1に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体1に当接可能に配置されている。
プロセスカートリッジ20は、ケース内に電子写真感光体1とともに帯電装置21、現像装置25及びクリーニング装置27を取り付けレールにより組み合わせて一体化したものである。なお、ケースには、露光のための開口部が設けられている。
先ず、本実施形態の画像形成装置100が備える現像装置25について説明する。
現像装置25としては、例えば、磁性若しくは非磁性の一成分系現像剤又は二成分系現像剤等を接触又は非接触させて現像する一般的な現像装置を用いることができる。そのような現像装置としては、上述の機能を有している限り特に制限はなく、目的に応じて適宜選択することができる。例えば、上記一成分系現像剤又は二成分系現像剤をブラシ、ローラ等を用いて感光体1に付着させる機能を有する公知の現像器等が挙げられる。
以下、現像装置25に使用されるトナーについて説明する。
本実施形態の画像形成装置に用いられるトナーは、トナー粒子と、フッ素含有酸化セリウム微粒子とを含んで構成されている。
トナー粒子は、例えば、結着樹脂、着色剤及び離型剤、必要に応じて帯電制御剤等を加えて混練、粉砕、分級する混練粉砕法;混練粉砕法にて得られた粒子を機械的衝撃力又は熱エネルギーにて形状を変化させる方法;結着樹脂の重合性単量体を乳化重合させ、形成された分散液と、着色剤及び離型剤、必要に応じて帯電制御剤等の分散液とを混合し、凝集、加熱融着させ、トナー粒子を得る乳化重合凝集法;結着樹脂を得るための重合性単量体と、着色剤及び離型剤、必要に応じて帯電制御剤等の溶液を水系溶媒に懸濁させて重合する懸濁重合法;結着樹脂と、着色剤及び離型剤、必要に応じて帯電制御剤等の溶液とを水系溶媒に懸濁させて造粒する溶解懸濁法等により製造されるトナーが使用される。
また上記方法で得られたトナーをコアにして、さらに凝集粒子を付着、加熱融合してコアシェル構造をもたせる製造方法等、公知の方法を使用することができる。なお、トナーの製造方法としては、形状制御、粒度分布制御の観点から水系溶媒にて製造する懸濁重合法、乳化重合凝集法、溶解懸濁法が好ましく、乳化重合凝集法が特に好ましい。
トナー母粒子は、結着樹脂、着色剤及び離型剤からなり、必要であれば、シリカや帯電制御剤を含有して構成される。
トナー母粒子に使用される結着樹脂としては、スチレン、クロロスチレン等のスチレン類、エチレン、プロピレン、ブチレン、イソプレン等のモノオレフィン類、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル等のビニルエステル類、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ドデシル、アクリル酸オクチル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ドデシル等のα−メチレン脂肪族モノカルボン酸エステル類、ビニルメチルエーテル、ビニルエチルエーテル、ビニルブチルエーテル等のビニルエーテル類、ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロペニルケトン等のビニルケトン類等の単独重合体及び共重合体、ジカルボン酸類とジオール類との共重合によるポリエステル樹脂等が挙げられる。
特に代表的な結着樹脂としては、ポリスチレン、スチレン−アクリル酸アルキル共重合体、スチレン−メタクリル酸アルキル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエチレン、ポリプロピレン、ポリエステル樹脂等を挙げることができる。さらに、ポリウレタン、エポキシ樹脂、シリコーン樹脂、ポリアミド、変性ロジン、パラフィンワックス等を挙げることもできる。
また、着色剤としては、マグネタイト、フェライト等の磁性粉、カーボンブラック、アニリンブルー、カルイルブルー、クロムイエロー、ウルトラマリンブルー、デュポンオイルレッド、キノリンイエロー、メチレンブルークロリド、フタロシアニンブルー、マラカイトグリーンオキサレート、ランプブラック、ローズベンガル、C.I.ピグメント・レッド48:1、C.I.ピグメント・レッド122、C.I.ピグメント・レッド57:1、C.I.ピグメント・イエロー97、C.I.ピグメント・イエロー17、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:3等を代表的なものとして例示することができる。
離型剤としては、低分子ポリエチレン、低分子ポリプロピレン、フィッシャートロピィシュワックス、モンタンワックス、カルナバワックス、ライスワックス、キャンデリラワックス等を代表的なものとして例示することができる。
また、帯電制御剤としては、公知のものを使用することができるが、アゾ系金属錯化合物、サリチル酸の金属錯化合物、極性基を含有するレジンタイプの帯電制御剤を用いることができる。湿式製法でトナーを製造する場合、イオン強度の制御と廃水汚染の低減の点で水に溶解しにくい素材を使用することが好ましい。また、トナーとしては、磁性材料を内包する磁性トナー及び磁性材料を含有しない非磁性トナーのいずれであってもよい。
また、トナー粒子は、高い現像性及び転写性並びに高画質を得る観点から、平均形状係数(ML/A)が150未満であることが好ましく、110〜140であることがより好ましい。さらに、トナー粒子としては、体積平均粒子径が2〜12μmであることが好ましく、3〜9μmであることがより好ましい。このような平均形状係数及び体積平均粒子径を満たすトナーを用いることにより、現像性及び転写性が高まり、いわゆる写真画質と呼ばれる高画質の画像を得ることができる。
フッ素含有酸化セリウム微粒子は、例えば、フッ素を含有する原料鉱石(バストネサイト)から得ることができる。この場合、フッ素はR−O−F(R:レアアース、O:酸素原子、F:フッ素原子)の形で酸化セリウム中に含まれる。また、フッ素を含有しない原料鉱石(モナザイト)から得られたR−O−Fを含有しない酸化セリウムをフッ素含有表面処理剤で処理する方法を用いることもできる。この場合に用いられるフッ素含有表面処理剤としては、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリクロロシラン、トリデカフルオロデシルトリクロロシラン、トリデカフルオロオクチルトリメトキシシラン、ヘプタデカフルオロデシルトリクロロシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、ヘプタデカフルオロデシルメチルジクロロシラン等のフルオロアルキルシランおよびフッ素変性シリコーンオイル等が挙げられる。
フッ素含有酸化セリウム微粒子におけるフッ素含有量は、0.1〜10.0質量%の範囲であることが好ましい。かかるフッ素含有量が0.1質量%未満であると、濃度ムラやクリーニング不良を十分抑制することが困難となる傾向にある。一方、フッ素含有量が10質量%を超えると、フィルミング、像流れ及びディレッションを十分抑制することが困難となる傾向にある。
また、フッ素含有酸化セリウム微粒子の体積平均粒子径は、0.03〜6μmであることが好ましい。このようなフッ素含有酸化セリウム微粒子を用いることにより、感光体表面の荒れを抑え、クリーニング不良を防止する効果がより確実に得られる。
本実施形態の画像形成装置に用いられるトナーは、上記のトナー粒子と、上記のフッ素含有酸化セリウム微粒子とをヘンシェルミキサー等で混合することによって製造することができる。
トナーは、上記フッ素含有酸化セリウム微粒子を、上記トナー粒子100質量部に対して0.3〜10質量部の範囲で含むことが好ましい。フッ素含有酸化セリウム微粒子の割合が、トナー粒子100質量部に対して0.3質量部未満であると、フィルミング、像流れ及びディレッションを十分抑制することが困難となる傾向にあり、一方、10質量部を越えると、濃度ムラやクリーニング不良を十分抑制することが困難となる傾向にある。さらに、本実施形態においては、フッ素含有量が0.1〜10.0質量%であるフッ素含有酸化セリウム微粒子を、上記の割合で含有するトナーを用いることにより、フィルミング、像流れ、ディレッション、濃度ムラ及びクリーニング不良をより長期に亘って防止できるとともに感光体の磨耗を極めて小さくすることが可能となる。
また、トナーには、必要に応じて、滑性粒子を添加してもよい。滑性粒子としては、例えば、グラファイト、二硫化モリブデン、滑石、脂肪酸、脂肪酸金属塩等の固体潤滑剤や、ポリプロピレン、ポリエチレン、ポリブテン等の低分子量ポリオレフィン類、加熱により軟化点を有するシリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等のような脂肪族アミド類やカルナウバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等のような植物系ワックス、ミツロウのような動物系ワックス、モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等のような鉱物、石油系ワックス、及びそれらの変性物が挙げられる。これらは、1種を単独で又は2種以上組み合わせて用いることができる。
また、滑性粒子は、平均粒径が0.1〜10μmであることが好ましく、上記した滑性粒子を粉砕することにより粒径をそろえてもよい。また、滑性粒子のトナーへの添加量は、0.05〜2.0質量%であることが好ましく、0.1〜1.5質量%であることがより好ましい。
さらに、トナーには、電子写真感光体表面の付着物、劣化物除去の目的等で、無機微粒子、有機微粒子、有機微粒子に無機微粒子を付着させた複合微粒子等を加えることができる。
無機微粒子としては、シリカ、アルミナ、チタニア、ジルコニア、チタン酸バリウム、チタン酸アルミニウム、チタン酸ストロンチウム、チタン酸マグネシウム、酸化亜鉛、酸化クロム、酸化セリウム、酸化アンチモン、酸化タングステン、酸化スズ、酸化テルル、酸化マンガン、酸化ホウ素、炭化ケイ素、炭化ホウ素、炭化チタン、窒化ケイ素、窒化チタン、窒化ホウ素等の各種無機酸化物、窒化物、ホウ化物等が好適に使用される。
また、上記無機微粒子を、テトラブチルチタネート、テトラオクチルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート、ビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート等のチタンカップリング剤、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)γ−アミノプロピルトリメトキシシラン塩酸塩、ヘキサメチルジシラザン、メチルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ヘキシルトエリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、フェニルトリメトキシシラン、o−メチルフェニルトリメトキシシラン、p−メチルフェニルトリメトキシシラン等のシランカップリング剤等で処理を行ってもよい。また、シリコーンオイル、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸金属塩によって疎水化処理したものも好ましく使用される。
有機微粒子としては、スチレン樹脂粒子、スチレンアクリル樹脂粒子、ポリエステル樹脂粒子、ウレタン樹脂粒子等を挙げることができる。
粒子径としては、個数平均粒子径で好ましくは5nm〜1000nm、より好ましくは5nm〜800nm、さらに好ましくは5nm〜700nmでのものが使用される。平均粒子径が、上記下限値未満であると、研磨能力に欠ける傾向があり、他方、上記上限値を超えると、電子写真感光体表面に傷を発生しやすくなる傾向がある。また、上述した粒子と滑性粒子との添加量の和が0.6質量%以上であることが好ましい。
トナーに添加されるその他の無機酸化物としては、粉体流動性、帯電制御等の為、1次粒径が50nm以下の小径無機酸化物を用い、更に付着力低減や帯電制御の為、それより大径の無機酸化物を添加することが好ましい。これらの無機酸化物微粒子は公知のものを使用できるが、精密な帯電制御を行う為にはシリカと酸化チタンを併用することが好ましい。また、小径無機微粒子については表面処理することにより、分散性が高くなり、粉体流動性を上げる効果が大きくなる。さらに、炭酸カルシウム、炭酸マグネシウム等の炭酸塩や、ハイドロタルサイト等の無機鉱物を添加することも放電精製物を除去するために好ましい。
また、電子写真用カラートナーはキャリアと混合して使用されるが、キャリアとしては、鉄粉、ガラスビーズ、フェライト粉、ニッケル粉又はそれ等の表面に樹脂コーティングを施したものが使用される。また、キャリアとの混合割合は、適宜設定することができる。
次に、本実施形態の画像形成装置100が備える電子写真感光体1について説明する。
図2は、本発明に係る電子写真感光体1の好適な一実施形態を示す模式断面図である。図2に示すように、電子写真感光体1は、導電性支持体2と、感光層3とから構成されている。感光層3は、導電性支持体2上に、下引層4、電荷発生層5及び電荷輸送層6がこの順序で積層された構造を有している。図2に示す電子写真感光体1では、電荷輸送層6が最表面層である。
また、図3〜6はそれぞれ本発明に係る画像形成装置に設けられる電子写真感光体の他の好適な実施形態を示す模式断面図である。図3及び4に示す電子写真感光体は、図2に示す電子写真感光体と同様に電荷発生層5と電荷輸送層6とに機能が分離された感光層3を備えるものである。また、図5及び6は、電荷発生材料と電荷輸送材料とを同一の層(単層型感光層8)に含有するものである。
図3に示す電子写真感光体1は導電性支持体2上に下引層4、電荷発生層5、電荷輸送層6及び保護層7が順次積層された構造を有するものである。また、図4に示す電子写真感光体1は、導電性支持体2上に下引層4、電荷輸送層6、電荷発生層5、保護層7が順次積層された構造を有するものである。図3及び4に示す電子写真感光体1において、保護層7が最表面層である。また、図5に示す電子写真感光体1は、導電性支持体2上に下引層4、単層型感光層8が順次積層された構造を有するものであり、単層型感光層8が最表面層である。また、図6に示す電子写真感光体1は、導電性支持体2上に下引層4、単層型感光層8、保護層7が順次積層された構造を有するものであり、保護層7が最表面層である。なお、電子写真感光体1においては、下引層4は必ずしも設けられなくともよい。
以下、図3に示す電子写真感光体1に基づいて、各要素について説明する。
導電性支持体2としては、例えば、アルミニウム、銅、亜鉛、ステンレス、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等の金属又は合金を用いて構成される金属板、金属ドラム、金属ベルト等が挙げられる。また、導電性支持体2としては、導電性ポリマー、酸化インジウム等の導電性化合物やアルミニウム、パラジウム、金等の金属又は合金を塗布、蒸着又はラミネートした紙、プラスチックフィルム、ベルト等が挙げられる。
なお、感光体1がレーザープリンターに使用される場合には、レーザーの発振波長としては350nm〜850nmのものが好ましく、短波長のものほど解像度に優れるため好ましい。導電性支持体2表面は、レーザー光を照射する際に生じる干渉縞を防止するために、中心線平均粗さRaで0.04μm〜0.5μmに粗面化することが好ましい。Raが0.04μm未満であると、鏡面に近くなるので干渉防止効果が得られなくなる傾向があり、他方、Raが0.5μmを越えると、被膜を形成しても画質が粗くなる傾向がある。また、非干渉光を光源に用いる場合には、干渉縞防止の粗面化は特に必要なく、導電性支持体2表面の凹凸による欠陥の発生が防げるため、より長寿命化に適する。
粗面化の方法としては、研磨剤を水に懸濁させて支持体に吹き付けることによって行う湿式ホーニング処理、回転する砥石に支持体を圧接し、連続的に研削加工を行うセンタレス研削処理、陽極酸化処理、又は有機若しくは無機の半導電性微粒子を含有する層を形成する方法等が挙げられる。
陽極酸化処理は、アルミニウムを陽極とし電解質溶液中で陽極酸化することによりアルミニウム表面に酸化膜を形成するものである。電解質溶液としては、硫酸溶液、シュウ酸溶液等が挙げられる。しかし、処理後そのままの多孔質陽極酸化膜は化学的に活性であり、汚染され易く、環境による抵抗変動も大きい。そこで、陽極酸化膜は、加圧水蒸気又は沸騰水(ニッケル等の金属塩を加えてもよい)による処理を行い、微細孔水和反応による体積膨張でふさぎ、より安定な水和酸化物に変える封孔処理を行うことが好ましい。
陽極酸化膜の膜厚は、0.3〜15μmが好ましい。膜厚が0.3μm未満であると、注入に対するバリア性が乏しく効果が不十分となる傾向がある。また、15μmを超えると、繰り返し使用による残留電位の上昇を招く傾向がある。
また、導電性支持体2には、酸性処理液による処理、又はベーマイト処理を施してもよい。酸性処理液による処理は、リン酸、クロム酸及びフッ酸からなる酸性処理液を用いて以下の様に実施される。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、リン酸が10〜11質量%の範囲、クロム酸が3〜5質量%の範囲、フッ酸が0.5〜2質量%の範囲であって、これらの酸全体の濃度は13.5〜18質量%の範囲が好ましい。処理温度は、42〜48℃であるが、処理温度を高く保つことにより、一層速く、かつ厚い被膜を形成することができる。被膜の膜厚は、0.3〜15μmが好ましい。膜厚が0.3μm未満であると、注入に対するバリア性が乏しく効果が不十分となる傾向がある。また、15μmを超えると、繰り返し使用による残留電位の上昇を招く傾向がある。
ベーマイト処理は、90〜100℃の純水中に導電性支持体2を5〜60分間浸漬するか、90〜120℃の加熱水蒸気に5〜60分間接触させることにより行うことができる。被膜の膜厚は、0.1〜5μmが好ましい。これをさらにアジピン酸、硼酸、硼酸塩、燐酸塩、フタル酸塩、マレイン酸塩、安息香酸塩、酒石酸塩、クエン酸塩等の被膜溶解性の低い電解質溶液を用いて陽極酸化処理してもよい。
有機若しくは無機の半導電性微粒子を含有する層を形成する場合、有機又は無機の半導電性微粒子としては、特開昭47−30330号公報に記載のペリレン顔料、ビスベンズイミダゾールペリレン顔料、多環キノン顔料、インジゴ顔料、キナクリドン顔料等の有機顔料、また、シアノ基、ニトロ基、ニトロソ基、ハロゲン原子等の電子吸引性の置換基を有するビスアゾ顔料やフタロシアニン顔料等の有機顔料、酸化亜鉛、酸化チタン、酸化アルミ等の無機顔料が挙げられる。これらの顔料の中では、酸化亜鉛、酸化チタンが電荷輸送能が高く厚膜化に有効であり、好ましい。
これら顔料の表面は、分散性改善又はエネルギーレベルの調整等の目的でチタネートカップリング剤等の有機チタン化合物、アルミニウムキレート化合物、アルミニウムカップリング剤等で表面処理してもよい。特に、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス−2−メトキシエトキシシラン、ビニルトリアセトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−2−アミノエチルアミノプロピルトリメトキシシラン、γ−メルカプロプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、β−3,4−エポキシシクロヘキシルトリメトキシシラン等のシランカップリング剤で処理することが好ましい。
有機又は無機の半導電性微粒子は多すぎると層の強度が低下して塗膜欠陥を生じるため、好ましくは95質量%以下、より好ましくは90質量%以下で使用される。
有機又は無機の半導電性微粒子の混合/分散方法は、ボールミル、ロールミル、サンドミル、アトライター、超音波等を用いる方法が適用される。混合/分散は有機溶剤中で行われるが、有機溶剤としては、有期金属化合物や樹脂を溶解し、また、有機又は無機の半導電性微粒子を混合/分散したときにゲル化や凝集を起こさないものであればよい。
有機溶剤としては、例えば、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤を単独で又は2種以上混合して用いることができる。
下引層4は、有機金属化合物及び結着樹脂を含有して構成される。有機金属化合物としては、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物、ジルコニウムカップリング剤等の有機ジルコニウム化合物、チタンキレート化合物、チタンアルコキシド化合物、チタネートカップリング剤等の有機チタン化合物、アルミニウムキレート化合物、アルミニウムカップリング剤等の有機アルミニウム化合物のほか、アンチモンアルコキシド化合物、ゲルマニウムアルコキシド化合物、インジウムアルコキシド化合物、インジウムキレート化合物、マンガンアルコキシド化合物、マンガンキレート化合物、スズアルコキシド化合物、スズキレート化合物、アルミニウムシリコンアルコキシド化合物、アルミニウムチタンアルコキシド化合物、アルミニウムジルコニウムアルコキシド化合物等が挙げられる。有機金属化合物としては、特に、有機ジルコニウム化合物、有機チタニル化合物、有機アルミニウム化合物が残留電位が低く良好な電子写真特性を示すため、好ましく使用される。
結着樹脂としては、ポリビニルアルコール、ポリビニルメチルエーテル、ポリ−N−ビニルイミダゾール、ポリエチレノキシド、エチルセルロース、メチルセルロース、エチレン−アクリル酸共重合体、ポリアミド、ポリイミド、カゼイン、ゼラチン、ポリエチレン、ポリエステル、フェノール樹脂、塩化ビニル−酢酸ビニル共重合体、エポキシ樹脂、ポリビニルピロリドン、ポリビニルピリジン、ポリウレタン、ポリグルタミン酸、ポリアクリル酸等の公知の結着樹脂を用いることができる。これらの混合割合は、必要に応じて適宜設定することができる。
また、下引層4には、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス−2−メトキシエトキシシラン、ビニルトリアセトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−2−アミノエチルアミノプロピルトリメトキシシラン、γ−メルカプロプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、β−3,4−エポキシシクロヘキシルトリメトキシシラン等のシランカップリング剤を含有させることもできる。
また、下引層4中には、電子輸送性顔料を混合/分散することもできる。電子輸送性顔料としては、特開昭47−30330号公報に記載のペリレン顔料、ビスベンズイミダゾールペリレン顔料、多環キノン顔料、インジゴ顔料、キナクリドン顔料等の有機顔料、また、シアノ基、ニトロ基、ニトロソ基、ハロゲン原子等の電子吸引性の置換基を有するビスアゾ顔料やフタロシアニン顔料等の有機顔料、酸化亜鉛、酸化チタン等の無機顔料が上げられる。これらの顔料の中ではペリレン顔料、ビスベンズイミダゾールペリレン顔料と多環キノン顔料、酸化亜鉛、酸化チタンが、電子移動性が高いので好ましく使用される。
また、これらの顔料の表面は、分散性、電荷輸送性を制御する目的で上記カップリング剤や、結着樹脂等で表面処理しても良い。電子輸送性顔料は多すぎると下引層の強度を低下させ、塗膜欠陥を生じる原因となるため、好ましくは95質量%以下、より好ましくは90質量%以下で使用される。
下引層4は、上記各構成材料を含有する下引層形成用塗布液を用いて構成される。
下引層形成用塗布液の混合/分散方法は、ボールミル、ロールミル、サンドミル、アトライター、超音波等を用いる常法が適用される。混合/分散は有機溶剤中で行われるが、有機溶剤としては、有期金属化合物や結着樹脂を溶解し、また、電子輸送性顔料を混合/分散したときにゲル化や凝集を起こさないものであればよい。
有機溶剤としては、例えば、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤が挙げられる。これらは、1種を単独で又は2種以上を混合して用いることができる。
また、下引層4を設けるときに用いる塗布方法としては、ブレードコーティング法、マイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。
塗布後、塗膜を乾燥させて下引層を得るが、通常、乾燥は溶剤を蒸発させ、製膜可能な温度で行われる。特に、酸性溶液処理、ベーマイト処理を行った導電性支持体2は、その欠陥隠蔽力が不十分となり易いため、下引層4を形成することが好ましい。
下引層4の膜厚は、好ましくは0.1〜30μm、より好ましくは0.2〜25μmが適当である。
電荷発生層5は、電荷発生材料を含有して、又は電荷発生材料及び結着樹脂を含有して構成される。
電荷発生材料は、ビスアゾ、トリスアゾ等のアゾ顔料、ジブロモアントアントロン等の縮環芳香族顔料、ペリレン顔料、ピロロピロール顔料、フタロシアニン顔料等の有機顔料や、三方晶セレン、酸化亜鉛等の無機顔料等既知のもの全て使用することができる。電荷発生材料としては、380nm〜500nmの露光波長の光源を用いる場合には無機顔料が好ましく、700nm〜800nmの露光波長の光源を用いる場合には、金属及び無金属フタロシアニン顔料が好ましい。その中でも、特開平5−263007号公報及び特開平5−279591号公報に開示されたヒドロキシガリウムフタロシアニン、特開平5−98181号公報に開示されたクロロガリウムフタロシアニン、特開平5−140472号公報及び特開平5ー140473号公報に開示されたジクロロスズフタロシアニン、又は特開平4−189873号公報及び特開平5−43813号公報に開示されたチタニルフタロシアニンが特に好ましい。
また、電荷発生材料としては、CuKα特性X線に対するブラッグ角度(2θ±0.2°)の7.5°、9.9°、12.5°、16.3°、18.6°、25.1°、及び28.3°に回折ピークを有するヒドロキシガリウムフタロシアニン、CuKα特性X線に対するブラッグ角度(2θ±0.2°)の27.2°に強い回折ピークを持つチタニルフタロシアニン、CuKα特性X線に対するブラッグ角度(2θ±0.2°)の7.4°、16.6°、25.5°及び28.3°に強い回折ピークを持つクロロガリウムフタロシアニンも好ましい。
結着樹脂としては、広範な絶縁性樹脂から選択することができる。また、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシラン等の有機光導電性ポリマーから選択することもできる。好ましい結着樹脂としては、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノールAとフタル酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等の絶縁性樹脂を挙げることができるが、これらに限定されるものではない。これらの結着樹脂は、1種を単独で又は2種以上を混合して用いることができる。
電荷発生層5は、上記電荷発生材料を用いて蒸着により、又は上記電荷発生材料及び結着樹脂を含有する電荷発生層形成用塗布液を用いて形成される。
電荷発生層形成用塗布液は、電荷発生材料と結着樹脂の配合比(質量比)が、10:1〜1:10であることが好ましい。また、これらを分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法等の通常の方法を用いることができる。この際、分散によって該の結晶型が変化しない条件が必要とされる。ちなみに、上記の分散法のいずれについても分散前と結晶型が変化していないことが確認されている。
さらに、この分散の際、粒子を好ましくは0.5μm以下、より好ましくは0.3μm以下、さらに好ましくは0.15μm以下の粒子サイズにすることが有効である。
また、これらの分散に用いる溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤が挙げられる。これらは、1種を単独で又は2種以上を混合して用いることができる。
また、電荷発生層5を設けるときに用いる塗布方法としては、ブレードコーティング法、マイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。
電荷発生層5の膜厚は、好ましくは0.1〜5μm、より好ましくは0.2〜2.0μmである。
電荷輸送層6は、電荷輸送材料及び結着樹脂を含有して、又は高分子電荷輸送材を含有して構成される。
電荷輸送材料としては、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン等のフルオレノン化合物、キサントン系化合物、ベンゾフェノン系化合物、シアノビニル系化合物、エチレン系化合物等の電子輸送性化合物、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物等の正孔輸送性化合物が挙げられる。これらの電荷輸送材料は1種を単独で又は2種以上を混合して用いることができるが、これらに限定されるものではない。
また、電荷輸送材料としては、モビリティーの観点から、下記一般式(a−1)、(a−2)又は(a−3)で示される化合物が好ましい。
Figure 2006276278

上記式(a−1)中、R34は水素原子又はメチル基を、k10は1又は2を示す。また、Ar及びArは置換又は未置換のアリール基を示し、置換基としてはハロゲン原子、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、又は炭素数1〜3のアルキル基で置換された置換アミノ基が挙げられる。
Figure 2006276278

ここで、上記式(a−2)中、R35及びR35’はそれぞれ独立に水素原子、ハロゲン原子、炭素数1〜5のアルキル基又は炭素数1〜5のアルコキシ基を、R36、R36’、R37及びR37’はそれぞれ独立にハロゲン原子、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、炭素数1〜2のアルキル基で置換されたアミノ基、置換若しくは未置換のアリール基、−C(R38)=C(R39)(R40)、又は、−CH=CH−CH=C(Ar)を、R38、R39及びR40はそれぞれ独立に水素原子、置換若しくは未置換のアルキル基、又は置換若しくは未置換のアリール基を、Arは置換又は未置換のアリール基を示す。m3及びm4はそれぞれ独立に0〜2の整数を示す。
Figure 2006276278

ここで、上記式(a−3)中、R41は水素原子、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、置換若しくは未置換のアリール基、又は、−CH=CH−CH=C(Ar)を示す。Arは、置換又は未置換のアリール基を示す。R42、R42’、R43、及びR43’はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、炭素数1〜2のアルキル基で置換されたアミノ基、又は置換若しくは未置換のアリール基を示す。
結着樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコン樹脂、シリコン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂や、ポリ−N−ビニルカルバゾール、ポリシラン、特開平8−176293号公報や特開平8−208820号公報に示されているポリエステル系高分子電荷輸送材等高分子電荷輸送材を用いることもできる。これらの結着樹脂は、1種を単独で又は2種以上を混合して用いることができる。電荷輸送材料と結着樹脂との配合比(質量比)は10:1〜1:5が好ましい。
また、高分子電荷輸送材を単独で用いることもできる。高分子電荷輸送材としては、ポリ−N−ビニルカルバゾール、ポリシラン等の電荷輸送性を有する公知のものを用いることができる。特に、特開平8−176293号公報や特開平8−208820号公報に示されているポリエステル系高分子電荷輸送材は、高い電荷輸送性を有しており、とくに好ましいものである。高分子電荷輸送材はそれだけでも電荷輸送層として使用可能であるが、上記結着樹脂と混合して成膜してもよい。
電荷輸送層6は、上記構成材料を含有する電荷輸送層形成用塗布液を用いて構成される。電荷輸送層形成用塗布液に用いる溶剤としては、ベンゼン、トルエン、キシレン、クロルベンゼン等の芳香族炭化水素類、アセトン、2−ブタノン等のケトン類、塩化メチレン、クロロホルム、塩化エチレン等のハロンゲン化脂肪族炭化水素類、テトラヒドロフラン、エチルエーテル等の環状若しくは直鎖状のエーテル類等の通常の有機溶剤が挙げられる。これらは、1種を単独で又は2種以上を混合して用いることができる。また、上記各構成材料の分散方法としては、公知の方法を使用できる。
電荷輸送層形成用塗布液を電荷発生層5上に塗布する際の塗布方法としては、ブレードコーティング法、マイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。
電荷輸送層6の膜厚は、好ましくは5〜50μm、より好ましくは10〜30μmである。
感光層3には、画像形成装置中で発生するオゾンや酸化性ガス、又は光、熱による感光体の劣化を防止する目的で、酸化防止剤、光安定剤、熱安定剤等の添加剤を添加することができる。酸化防止剤としては、例えば、ヒンダードフェノール、ヒンダードアミン、パラフェニレンジアミン、アリールアルカン、ハイドロキノン、スピロクロマン、スピロインダノン及びそれらの誘導体、有機硫黄化合物、有機燐化合物等が挙げられる。
光安定剤としては、例えば、ベンゾフェノン、ベンゾトリアゾール、ジチオカルバメート、テトラメチルピペリジン等の誘導体が挙げられる。また、感度の向上、残留電位の低減、繰り返し使用時の疲労低減等を目的として、少なくとも1種の電子受容性物質を含有させることができる。
電子受容物質としては、例えば、無水コハク酸、無水マレイン酸、ジブロム無水マレイン酸、無水フタル酸、テトラブロム無水フタル酸、テトラシアノエチレン、テトラシアノキノジメタン、o−ジニトロベンゼン、m−ジニトロベンゼン、クロラニル、ジニトロアントラキノン、トリニトロフルオレノン、ピクリン酸、o−ニトロ安息香酸、p−ニトロ安息香酸、フタル酸等を挙げることができる。これらのうち、フルオレノン系、キノン系やCl,CN,NO等の電子吸引性置換基を有するベンゼン誘導体が特に好ましい。
保護層7は、電荷輸送能を有し且つ架橋構造を有することが必要である。このような保護層は、例えば、架橋構造を形成しうる樹脂と、電荷輸送材料とを含んで構成される。この場合、電荷輸送材料は、樹脂と反応或いは樹脂を構成する化合物と反応して、電荷輸送能を有する構造単位として架橋構造に組み込まれていてもよい。
架橋構造を形成しうる樹脂としては、種々の材料を用いることができるが、フェノール樹脂、ウレタン樹脂、メラミン樹脂、硬化性アクリル樹脂、シロキサン系樹脂等が好ましい。
電荷輸送材料としては、例えば、上記電荷輸送層の構成材料として挙げられたものを使用できる。
本実施形態においては、より長期に亘って画質欠陥のない画像を得る観点から、保護層7が、メチロール基を有するフェノール誘導体と、水酸基、カルボキシル基、アルコキシシリル基、エポキシ基、チオール基及びアミノ基から選択される少なくとも1種を有する電荷輸送材料とを含有することが好ましい。なお、これらの電荷輸送材料は、樹脂と反応或いは樹脂を構成する化合物と反応して、電荷輸送能を有する構造単位として架橋構造に組み込まれていてもよい。
メチロール基を有するフェノール誘導体としては、モノメチロールフェノール類、ジメチロールフェノール類若しくはトリメチロールフェノール類のモノマー、それらの混合物、それらがオリゴマー化されたもの、又はそれらモノマーとオリゴマーの混合物が挙げられる。このようなメチロール基を有するフェノール誘導体は、レゾルシン、ビスフェノール等、フェノール、クレゾール、キシレノール、パラアルキルフェノール、パラフェニルフェノール等の水酸基を1個含む置換フェノール類、カテコール、レゾルシノール、ヒドロキノン等の水酸基を2個含む置換フェノール類、ビスフェノールA、ビスフェノールZ等のビスフェノール類、ビフェノール類等、フェノール構造を有する化合物と、ホルムアルデヒド、パラホルムアルデヒド等とを、酸触媒又はアルカリ触媒下で反応させることで得られるもので、一般にフェノール樹脂として市販されているものも使用できる。なお、本明細書では、分子の構造単位の繰り返しが2〜20程度の比較的大きな分子をオリゴマーといい、それ以下のものをモノマーという。
上記酸触媒としては、硫酸、パラトルエンスルホン酸、リン酸等が用いられる。また、アルカリ触媒としては、NaOH、KOH、Ca(OH)、Ba(OH)等のアルカリ金属及びアルカリ土類金属の水酸化物やアミン系触媒が用いられる。
アミン系触媒としては、アンモニア、ヘキサメチレンテトラミン、トリメチルアミン、トリエチルアミン、トリエタノールアミン等が挙げられるが、これらに限定されるものではない。塩基性触媒を使用した場合には、残留する触媒によりキャリアが著しくトラップされ、電子写真特性を悪化させる傾向がある。そのため、酸で中和するか、シリカゲル等の吸着剤や、イオン交換樹脂等と接触させることにより不活性化又は除去することが好ましい。
また、メチロール基を有するフェノール誘導体としては、フェノール樹脂が好ましく、レゾール型フェノール樹脂がより好ましい。
水酸基、カルボキシル基、アルコキシシリル基、エポキシ基、チオール基及びアミノ基から選択される少なくとも1種を有する電荷輸送材料としては、下記一般式(I)、(II)、(III)又は(IV)で示される化合物であることが好ましい。エポキシ基を有する電荷輸送材料としては、複数のエポキシ基を有するものが好ましい。また、複数のエポキシ基を有する電荷輸送材料としては、下記一般式(IV)で示される化合物であることが好ましい。
F−[(Xm1−(Rm2−Y]m3 (I)
上記式(I)中、Fは正孔輸送能を有する化合物から誘導される有機基を、Xは酸素原子又は硫黄原子を、Rはアルキレン基(炭素数は1〜15が好ましく、1〜10がより好ましい)を、Yは水酸基、カルボキシル基(−COOH)、チオール基(−SH)又はアミノ基(−NH)を示し、m1及びm2はそれぞれ独立に0又は1を、m3は1〜4の整数を示す。
F−[(Xn1−(Rn2−(Z)n3G]n4 (II)
上記式(II)中、Fは正孔輸送能を有する化合物から誘導される有機基を、Xは酸素原子又は硫黄原子を、Rはアルキレン基(炭素数は1〜15が好ましく、1〜10がより好ましい)を、Zは酸素原子、硫黄原子、NH又はCOOを、Gはエポキシ基を、n1、n2及びn3はそれぞれ独立に0又は1を、n4は1〜4の整数を示す。
F−[D−Si(R(3-a) (III)
式(III)中、Fは正孔輸送能を有する化合物から誘導される有機基を、Dは可とう性を有する2価の基を、Rは水素原子、置換若しくは未置換のアルキル基(炭素数は1〜15が好ましく、1〜10がより好ましい)又は置換若しくは未置換のアリール基(炭素数は6〜20が好ましく、6〜15がより好ましい)を、Qは加水分解性基を、aは1〜3の整数を、bは1〜4の整数を示す。
また、上記可とう性を有する2価の基Dとしては、具体的には、光電特性を付与するためのFの部位と、3次元的な無機ガラス質ネットワークの構築に寄与する置換ケイ素基とを結びつける働きを担う2価の基である。また、Dは、堅い反面もろさも有する無機ガラス質ネットワークの部分に適度な可とう性を付与し、膜としての機械的強靱さを向上させる働きを担う有機基構造を表す。Dとして具体的には、−Cα2α−、−Cβ2β−2−、−Cγ2γ−4−で表わされる2価の炭化水素基(ここで、αは1〜15の整数を表し、βは2〜15の整数を表し、γは3〜15の整数を表す)、−COO−、−S−、−O−、−CH−C−、−N=CH−、−(C)−(C)−、及び、これらの特性基を任意に組み合わせた構造を有する特性基、更にはこれらの特性基の構成原子を他の置換基と置換したもの等が挙げられる。また、上記加水分解性基Qとしては、アルコキシ基が好ましく、炭素数1〜15のアルコキシ基がより好ましい。
F−[(Xn1−(Rn2−(Z)n3G]n4 (IV)
上記式(IV)中、Fは正孔輸送能を有する化合物から誘導される有機基を、Xは酸素原子又は硫黄原子を、Rはアルキレン基(炭素数は1〜15が好ましく、1〜10がより好ましい)を、Zは酸素原子、硫黄原子、NH又はCOOを、Gはエポキシ基を、n1、n2及びn3はそれぞれ独立に0又は1を、n4は2〜4の整数を示す。
さらに、本実施形態においては、より長期に亘ってフィルミング、像流れ、濃度ムラ、クリーニング不良及びディレッションを抑制する観点から、保護層7が、メチロール基を有するフェノール誘導体と、下記式(V)又は(VI)で示される電荷輸送材料とを含有することが好ましい。なお、これらの電荷輸送材料は、樹脂と反応或いは樹脂を構成する化合物と反応して、電荷輸送能を有する構造単位として架橋構造に組み込まれていてもよい。
Figure 2006276278


ここで、式(V)中、Fは正孔輸送性を有するn7価の有機基を、Tは2価の基を、Yは酸素原子又は硫黄原子を、R、R及びRはそれぞれ独立に水素原子又は1価の有機基を、Rは1価の有機基を、m1は0又は1を、n7は1〜4の整数を、それぞれ示す。但し、RとRは互いに結合してYをヘテロ原子とする複素環を形成してもよい。
Figure 2006276278


ここで、式(VI)中、Fは正孔輸送性を有するn8価の有機基を、Tは2価の基を、Rは1価の有機基を、m2は0又は1を、n8は1〜4の整数を、それぞれ示す。
上記一般式(I)、(II)、(III)、(IV)、(V)又は(VI)で示される化合物における正孔輸送能を有する化合物から誘導される有機基Fとしては、下記一般式(VII)で示される化合物が好ましい。
Figure 2006276278

ここで、式(VI)中、Ar、Ar、Ar及びArはそれぞれ独立に置換又は未置換のアリール基を、Arは置換若しくは未置換のアリール基又はアリーレン基を、kは0又は1を、それぞれ示す。但し、Ar、Ar、Ar、Ar及びArのうち1〜4個は、上記一般式(I)、(II)、(III)、(IV)、(V)又は(VI)で示される化合物における、−[(Xm1−(Rm2−Y]、−[(Xn1−(Rn2−(Z)n3G]、−[D−Si(R(3-a)]、下記式(V−1)で示される構造単位、又は下記式(VI−1)で示される構造単位で表される部位と結合するための結合手を有する。
Figure 2006276278

Figure 2006276278

一般式(VII)で示される化合物におけるAr〜Arで示される置換又は未置換のアリール基としては、具体的には、下記式(VII−1)〜(VII−7)に示されるアリール基が好ましい。
Figure 2006276278

上記式(VII−7)で示されるアリール基におけるArとしては、下記式(VII−8)又は(VII−9)で示されるアリール基が好ましい。
Figure 2006276278

また、上記式(VII−7)で示されるアリール基におけるZとしては、下記式(VII−10)又は(VII−17)で示される2価の基が好ましい。
Figure 2006276278

ここで、上記式(VII−1)〜(VII−17)中、R16は水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、それらで置換されたフェニル基若しくは未置換のフェニル基、又は炭素数7〜10のアラルキル基を、R17〜R23はそれぞれ独立に水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のアルコキシ基、それらで置換されたフェニル基若しくは未置換のフェニル基、炭素数7〜10のアラルキル基又はハロゲン原子を、m及びsはそれぞれ独立に0又は1を、q及びrはそれぞれ独立に1〜10の整数を、tはそれぞれ独立に1〜3の整数を示す。
また、上記式(VII−1)〜(VII−7)中、Xは上記式(I)〜(VI)で示される化合物における、−[(Xm1−(Rm2−Y]、−[(Xn1−(Rn2−(Z)n3G]、−[D−Si(R(3-a)]、上記式(V−1)で示される構造単位、又は上記式(VI−1)で示される構造単位で表される部位と結合するための結合手を有する。
また、上記式(VII−16)〜(VII−17)中、Wは下記式(VII−18)〜(VII−26)で示される2価の基を示す。なお、式(VII−25)中、uは0〜3の整数を示す。
Figure 2006276278

また、上記一般式(VII)におけるArの具体的構造としては、k=0の時は上記Ar〜Arの具体的構造におけるm=1の構造が、k=1の時は上記Ar〜Arの具体的構造におけるm=0の構造が挙げられる。
また、上記一般式(III)で示される化合物としては、より具体的には、下記化合物(III−1)〜(III−61)が挙げられる。なお、下記化合物(III−1)〜(III−61)は、一般式(VII)で示される化合物のAr〜Ar及びkを下記の表に示されるように組み合わせ、且つ、アルコキシシリル基(s)を下記の表に示される特定のものとしたものである。
Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

上記一般式(I)、(II)、(IV)、(V)又は(VI)で示される化合物の具体例としては、下記化合物(I−1)〜(I−38)、下記化合物(II−1)〜(II−2)、下記化合物(IV−1)〜(IV−45)、下記化合物(V−1)〜(V−40)、又は下記化合物(VI−1)〜(VI−13)を挙げることができる。なお、下記表中、Me又は結合手は記載されているが置換基が記載されていないものはメチル基を、Etはエチル基を示す。
Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

Figure 2006276278

また、保護層7には、保護層7の強度、膜抵抗等の種々の物性をコントロールするために、下記一般式(VIII−1)で示される化合物を添加することもできる。
Si(R50(4−c) (VIII−1)
上記式(VIII−1)中、R50は水素原子、アルキル基又は置換若しくは未置換のアリール基を、Qは加水分解性基を、cは1〜4の整数を示す。
上記一般式(VIII−1)で示される化合物の具体例としては以下のようなシランカップリング剤が挙げられる。シランカップリング剤としては、テトラメトキシシラン、テトラエトキシシラン等の四官能性アルコキシシラン(c=4);メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、メチルトリメトキシエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、3−(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、1H,1H,2H,2H−パーフルオロアルキルトリエトキシシラン、1H,1H,2H,2H−パーフルオロデシルトリエトキシシラン、1H,1H,2H,2H−パーフルオロオクチルトリエトシキシラン等の三官能性アルコキシシラン(c=3);ジメチルジメトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジメトキシシラン等の二官能性アルコキシシラン(c=2);トリメチルメトキシシラン等の1官能アルコキシシラン(c=1)等を挙げることができる。膜の強度を向上させるためには3及び4官能のアルコキシシランが好ましく、可とう性、成膜性を向上させるためには1及び2官能のアルコキシシランが好ましい。
また、主にこれらのカップリング剤より作製されるシリコン系ハードコート剤も用いることができる。市販のハードコート剤としては、KP−85、X−40−9740、X−40−2239(以上、信越シリコーン社製)、及びAY42−440、AY42−441、AY49−208(以上、東レダウコーニング社製)等を用いることができる。
また、保護層7には、その強度を高めるために、一般式(VIII−2)に示すような2つ以上のケイ素原子を有する化合物を用いることも好ましい。
B−(Si(R51(3−d) (VIII−2)
上記式(VIII−2)中、Bは2価の有機基を、R51は水素原子、アルキル基又は置換若しくは未置換のアリール基を、Qは加水分解性基を、aは1〜3の整数を示す。一般式(VIII−2)で示される化合物としては、より具体的には、下記化合物(VIII−2−1)〜(VIII−2−16)が好ましいものとして挙げることができる。
Figure 2006276278

さらに、膜特性のコントロール、液寿命の延長等のため、アルコール系、ケトン系溶剤に可溶な樹脂を添加してもよい。このような樹脂としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールやアセトアセタール等で変性された部分アセタール化ポリビニルアセタール樹脂等のポリビニルアセタール樹脂(たとえば積水化学社製エスレックB、K等)、ポリアミド樹脂、セルロ−ス樹脂、フェノール樹脂等が挙げられる。特に、電気特性上ポリビニルアセタール樹脂が好ましい。
また、放電ガス耐性、機械強度、耐傷性、粒子分散性、粘度コントロール、トルク低減、磨耗量コントロール、ポットライフの延長等の目的で種々の樹脂を添加することができる。特にシロキサン系樹脂の場合はアルコールに溶解する樹脂を加えることが好ましい。アルコール系溶剤に可溶な樹脂としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールやアセトアセタール等で変性された部分アセタール化ポリビニルアセタール樹脂等のポリビニルアセタール樹脂(たとえば積水化学社製エスレックB、K等)、ポリアミド樹脂、セルロ−ス樹脂、フェノール樹脂等が挙げられる。特に、電気特性上ポリビニルアセタール樹脂が好ましい。
上記樹脂の分子量は2000〜100000が好ましく、5000〜50000がさらに好ましい。分子量は2000より小さいと所望の効果が得られなくなる傾向があり、100000より大きいと溶解度が低くなり添加量が限られてしまったり、塗布時に製膜不良の原因になったりする傾向がある。添加量は1〜40%が好ましく、さらに好ましくは1〜30%であり、5〜20%が最も好ましい。1%よりも少ない場合は所望の効果が得られにくくなり、40%よりも多くなると高温高湿下での画像ボケが発生しやすくなる恐れがある。また、それらの樹脂は単独で用いてもよいが、それらを混合して用いてもよい。
また、ポットライフの延長、膜特性のコントロールのため、下記一般式(VIII−3)で示される繰り返し構造単位を持つ環状化合物、若しくはその化合物からの誘導体を含有させることが好ましい。
Figure 2006276278

上記式(VIII−3)中、A及びAは、それぞれ独立に一価の有機基を示す。
一般式(VIII−3)で示される繰り返し構造単位を持つ環状化合物としては、市販の環状シロキサンを挙げることができる。具体的には、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等の環状ジメチルシクロシロキサン類、1,3,5−トリメチル−1,3,5−トリフェニルシクロトリシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラフェニルシクロテトラシロキサン、1,3,5,7,9−ペンタメチル−1,3,5,7,9−ペンタフェニルシクロペンタシロキサン等の環状メチルフェニルシクロシロキサン類、ヘキサフェニルシクロトリシロキサン等の環状フェニルシクロシロキサン類、3−(3,3,3−トリフルオロプロピル)メチルシクロトリシロキサン等のフッ素原子含有シクロシロキサン類、メチルヒドロシロキサン混合物、ペンタメチルシクロペンタシロキサン、フェニルヒドロシクロシロキサン等のヒドロシリル基含有シクロシロキサン類、ペンタビニルペンタメチルシクロペンタシロキサン等のビニル基含有シクロシロキサン類等の環状のシロキサン等を挙げることができる。これらの環状シロキサン化合物は1種を単独で用いてもよいが、2種以上を混合して用いてもよい。
更に、電子写真感光体表面の耐汚染物付着性、潤滑性、硬度等を制御するために、各種微粒子を添加することもできる。それらは、単独で用いることもできるが、2種以上を併用してもよい。
微粒子の一例として、ケイ素原子含有微粒子又はフッ素原子含有樹脂粒子を挙げることができる。ケイ素原子含有微粒子とは、構成元素にケイ素を含む微粒子であり、具体的には、コロイダルシリカ及びシリコーン微粒子等が挙げられる。ケイ素原子含有微粒子として用いられるコロイダルシリカは、平均粒子径が好ましくは1〜100nm、より好ましくは10〜30nmであり、酸性若しくはアルカリ性の水分散液、或いはアルコール、ケトン、エステル等の有機溶媒中に分散させたものから選ばれ、一般に市販されているものを使用することができる。保護層7中のコロイダルシリカの固形分含有量は、特に限定されるものではないが、成膜性、電気特性、強度の面から保護層7の固形分全量を基準として好ましくは0.1〜50質量%の範囲、より好ましくは0.1〜30質量%の範囲で用いられる。
ケイ素原子含有微粒子として用いられるシリコーン微粒子は、球状で、平均粒子径が好ましくは1〜500nm、より好ましくは10〜100nmであり、シリコーン樹脂粒子、シリコーンゴム粒子及びシリコーン表面処理シリカ粒子から選ばれ、一般に市販されているものを使用することができる。
シリコーン微粒子は、化学的に不活性で、樹脂への分散性に優れる小径粒子であり、さらに十分な特性を得るために必要とされる含有量が低いため、架橋反応を阻害することなく、電子写真感光体の表面性状を改善することができる。即ち、強固な架橋構造中に均一に取り込まれた状態で、電子写真感光体表面の潤滑性、撥水性を向上させ、長期間にわたって良好な耐摩耗性、耐汚染物付着性を維持することができる。保護層7中のシリコーン微粒子の含有量は、保護層7の固形分全量を基準として好ましくは0.1〜30質量%の範囲であり、より好ましくは0.5〜10質量%の範囲である。
フッ素原子含有樹脂粒子としては、4弗化エチレン、3弗化エチレン、6弗化プロピレン、弗化ビニル、弗化ビニリデン等のフッ素系微粒子や”第8回ポリマー材料フォーラム講演予稿集 p89”に示される様な、フッ素樹脂と水酸基を有するモノマーを共重合させた樹脂からなる微粒子が挙げられる。
また、その他の微粒子としては、ZnO−Al、SnO−Sb、In−SnO、ZnO−TiO、ZnO−TiO、MgO−Al、FeO−TiO、TiO、SnO、In、ZnO、MgO等の半導電性金属酸化物を挙げることができる。
また、同様な目的でシリコーンオイル等のオイルを添加することもできる。シリコーンオイルとしては、例えば、ジメチルポリシロキサン、ジフェニルポリシロキサン、フェニルメチルシロキサン等のシリコーンオイル、アミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシル変性ポリシロキサン、カルビノール変性ポリシロキサン、メタクリル変性ポリシロキサン、メルカプト変性ポリシロキサン、フェノール変性ポリシロキサン等の反応性シリコーンオイル等を挙げることができる。これらは、保護層形成用塗布液に予め添加してもよいし、感光体を作製後、減圧、或いは加圧下等で含浸処理してもよい。
また、可塑剤、表面改質剤、酸化防止剤、光劣化防止剤等の添加剤を使用することもできる。可塑剤としては、例えば、ビフェニル、塩化ビフェニル、ターフェニル、ジブチルフタレート、ジエチレングリコールフタレート、ジオクチルフタレート、トリフェニル燐酸、メチルナフタレン、ベンゾフェノン、塩素化パラフィン、ポリプロピレン、ポリスチレン、各種フルオロ炭化水素等が挙げられる。保護層7にはヒンダートフェノール、ヒンダートアミン、チオエーテル又はホスファイト部分構造を持つ酸化防止剤を添加することができ、環境変動時の電位安定性・画質の向上に効果的である。
酸化防止剤としては以下のような化合物が挙げられる。例えば、ヒンダートフェノール系としては、「Sumilizer BHT−R」、「Sumilizer MDP−S」、「Sumilizer BBM−S」、「Sumilizer WX−R」、「Sumilizer NW」、「Sumilizer BP−76」、「Sumilizer BP−101」、「Sumilizer GA−80」、「Sumilizer GM」、「Sumilizer GS」以上住友化学社製、「IRGANOX1010」、「IRGANOX1035」、「IRGANOX1076」、「IRGANOX1098」、「IRGANOX1135」、「IRGANOX1141」、「IRGANOX1222」、「IRGANOX1330」、「IRGANOX1425WL」、「IRGANOX1520L」、「IRGANOX245」、「IRGANOX259」、「IRGANOX3114」、「IRGANOX3790」、「IRGANOX5057」、「IRGANOX565」以上チバスペシャリティーケミカルズ社製、「アデカスタブAO−20」、「アデカスタブAO−30」、「アデカスタブAO−40」、「アデカスタブAO−50」、「アデカスタブAO−60」、「アデカスタブAO−70」、「アデカスタブAO−80」、「アデカスタブAO−330」以上旭電化製。ヒンダートアミン系としては、「サノールLS2626」、「サノールLS765」、「サノールLS770」、「サノールLS744」、「チヌビン144」、「チヌビン622LD」、「マークLA57」、「マークLA67」、「マークLA62」、「マークLA68」、「マークLA63」、「スミライザーTPS」、チオエーテル系としては、「スミライザーTP−D」、ホスファイト系としては、「マーク2112」、「マークPEP・8」、「マークPEP・24G」、「マークPEP・36」、「マーク329K」、「マークHP・10」が挙げられ、特にヒンダートフェノール、ヒンダートアミン系酸化防止剤が好ましい。さらに、これらは架橋膜を形成する材料と架橋反応可能な例えばアルコキシシリル基等の置換基で変性してもよい。
また、保護層7には、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノールAとフタル酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等の絶縁性樹脂を含有させてもよい。この場合、絶縁性樹脂は、所望の割合で添加することができ、これにより、電荷輸送層6との接着性、熱収縮やハジキによる塗布膜欠陥等を抑制することができる。
保護層7は、上述した各構成材料を含有する保護層形成用塗布液を用いて形成される。
保護層形成用塗布液又は保護層形成用塗布液作成時には、触媒を添加又は用いることが好ましい。かかる触媒としては、塩酸、酢酸、リン酸、硫酸等の無機酸、蟻酸、プロピオン酸、シュウ酸、パラトルエンスルホン酸、安息香酸、フタル酸、マレイン酸等の有機酸、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、アンモニア、トリエチルアミン等のアルカリ触媒が挙げられる。
さらに、以下に示すような系に不溶な固体触媒を用いることもできる。アンバーライト15、アンバーライト200C、アンバーリスト15E(以上、ローム・アンド・ハース社製);ダウエックスMWC−1−H、ダウエックス88、ダウエックスHCR−W2(以上、ダウ・ケミカル社製);レバチットSPC−108、レバチットSPC−118(以上、バイエル社製);ダイヤイオンRCP−150H(三菱化成社製);スミカイオンKC−470、デュオライトC26−C、デュオライトC−433、デュオライト−464(以上、住友化学工業社製);ナフィオン−H(デュポン社製)等の陽イオン交換樹脂;アンバーライトIRA−400、アンバーライトIRA−45(以上、ローム・アンド・ハース社製)等の陰イオン交換樹脂;Zr(OPCHCHSOH),Th(OPCHCHCOOH)等のプロトン酸基を含有する基が表面に結合されている無機固体;スルホン酸基を有するポリオルガノシロキサン等のプロトン酸基を含有するポリオルガノシロキサン;コバルトタングステン酸、リンモリブデン酸等のヘテロポリ酸;ニオブ酸、タンタル酸、モリブデン酸等のイソポリ酸;シリカゲル、アルミナ、クロミア、ジルコニア、CaO、MgO等の単元系金属酸化物;シリカ−アルミナ、シリカ−マグネシア、シリカ−ジルコニア、ゼオライト類等複合系金属酸化物;酸性白土、活性白土、モンモリロナイト、カオリナイト等の粘土鉱物;LiSO,MgSO等の金属硫酸塩;リン酸ジルコニア、リン酸ランタン等の金属リン酸塩;LiNO,Mn(NO等の金属硝酸塩;シリカゲル上にアミノプロピルトリエトキシシランを反応させて得られた固体等のアミノ基を含有する基が表面に結合されている無機固体;アミノ変性シリコーン樹脂等のアミノ基を含有するポリオルガノシロキサン等が挙げられる。
また、保護層形成用塗布液の調製の際に、光機能性化合物、反応生成物、水、溶剤などに不溶な固体触媒を用いると、塗工液の安定性が向上する傾向にあるため好ましい。系に不溶な固体触媒とは、触媒成分が、架橋構造を有する樹脂を形成するための材料、他の添加剤、水、溶剤等に不溶であれば特に限定されない。これらの固体触媒の使用量は特に制限されないが、加水分解性基を有する化合物の合計100質量部に対して0.1〜100質量部が好ましい。また、これらの固体触媒は、前述の通り、原料化合物、反応生成物、溶剤などに不溶であるため、反応後、常法にしたがって容易に除去することができる。反応温度及び反応時間は原料化合物や固体触媒の種類及び使用量に応じて適宜選択されるものであるが、反応温度は通常0〜100℃、好ましくは10〜70℃、より好ましくは15〜50℃であり、反応時間は好ましくは10分〜100時間である。反応時間が前記上限値を超えるとゲル化が起こりやすくなる傾向にある。
保護層形成用塗布液の調製の際に、系に不溶な触媒を用いた場合は、強度、液保存安定性などを向上させる目的で、さらに系に溶解する触媒を併用することが好ましい。そのような触媒としては、前述のものに加え、アルミニウムトリエチレート、アルミニウムトリイソプロピレート、アルミニウムトリ(sec−ブチレート)、モノ(sec−ブトキシ)アルミニウムジイソプロピレート、ジイソプロポキシアルミニウム(エチルアセトアセテート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムビス(エチルアセトアセテート)モノアセチルアセトネート、アルミニウムトリス(アセチルアセトネート)、アルミニウムジイソプロポキシ(アセチルアセトネート)、アルミニウムイソプロポキシ−ビス(アセチルアセトネート)、アルミニウムトリス(トリフルオロアセチルアセトネート)、アルミニウムトリス(ヘキサフルオロアセチルアセトネート)等の有機アルミニウム化合物を使用することができる。
また、有機アルミニウム化合物以外には、ジブチルスズジラウリレート、ジブチルスズジオクチエート、ジブチルスズジアセテート等の有機スズ化合物;チタニウムテトラキス(アセチルアセトネート)、チタニウムビス(ブトキシ)ビス(アセチルアセトネート)、チタニウムビス(イソプロポキシ)ビス(アセチルアセトネート)等の有機チタニウム化合物;ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)、ジルコニウムビス(イソプロポキシ)ビス(アセチルアセトネート)等のジルコニウム化合物;等も使用することができるが、安全性、低コスト、ポットライフ長さの観点から、有機アルミニウム化合物を使用するのが好ましく、特にアルミニウムキレート化合物がより好ましい。これらの触媒の使用量は特に制限されないが、加水分解性基を有する化合物の合計100質量部に対して0.1〜20質量部が好ましく、0.3〜10質量部が特に好ましい。
また、本発明において有機金属化合物を触媒として用いた場合は、ポットライフ、硬化効率の面から、ともに多座配位子を添加することが好ましい。このような多座配位子としては、以下に示すようなもの及びそれらから誘導されるものを挙げることができるが、本発明はこれらに限定されるものではない。具体的には、アセチルアセトン、トリフルオロアセチルアセトン、ヘキサフルオロアセチルアセトン、ジピバロイルメチルアセトン等のβ−ジケトン類;アセト酢酸メチル、アセト酢酸エチル等のアセト酢酸エステル類;ビピリジン及びその誘導体;グリシン及びその誘導体;エチレンジアミン及びその誘導体;8−オキシキノリン及びその誘導体;サリチルアルデヒド及びその誘導体;カテコール及びその誘導体;2−オキシアゾ化合物等の2座配位子;ジエチルトリアミン及びその誘導体;ニトリロトリ酢酸及びその誘導体等の3座配位子;エチレンジアミンテトラ酢酸(EDTA)及びその誘導体等の6座配位子;等を挙げることができる。さらに、上記のような有機系配位子の他、ピロリン酸、トリリン酸等の無機系の配位子を挙げることができる。多座配位子としては、特に2座配位子が好ましく、中でも下記一般式(VIII−4)で表される2座配位子がより好ましく、下記一般式(VIII−4)中のR10とR11とが同一のものが特に好ましい。R10とR11とを同一にすることで、室温付近での配位子の配位力が強くなり、保護層形成用塗布液のさらなる安定化を図ることができる。
Figure 2006276278


ここで、式(VIII−4)中、R10及びR11は各々独立に、炭素数1〜10のアルキル基、フッ化アルキル基、又は炭素数1〜10のアルコキシ基を示す。
多座配位子の配合量は、任意に設定することができるが、用いる有機金属化合物の1モルに対し、0.01モル以上、好ましくは0.1モル以上、より好ましくは1モル以上とするのが好ましい。
保護層7の形成は、その塗布液が液状であれば無溶媒下で行うことも可能であるが、必要に応じてメタノール、エタノール、プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン;ジエチルエーテル、ジオキサン等のエーテル類;等の他、種々の溶媒を使用してもよい。このような溶媒としては、沸点が100℃以下のものが好ましく、任意に混合して使用することができる。塗布液に有機ケイ素化合物を含有させる場合、溶媒が少なすぎると有機ケイ素化合物が析出しやすくなるため、有機ケイ素化合物1質量部に対し0.5〜30質量部とするのが好ましく、1〜20質量部とするのがより好ましい。
さらに、架橋する際には、保護層形成用塗布液に硬化触媒を使用してもよい。硬化触媒としては、ビス(イソプロピルスルホニル)ジアゾメタンのようなビススルホニルジアゾメタン類、メチルスルホニルp−トルエンスルホニルメタンのようなビススルホニルメタン類、シクロヘキシルスルホニルシクロヘキシルカルボニルジアゾメタンのようなスルホニルカルボニルジアゾメタン類、2−メチル−2−(4−メチルフェニルスルホニル)プロピオフェノンのようなスルホニルカルボニルアルカン類、2−ニトロベンジルp−トルエンスルホネートのようなニトロベンジルスルホネート類、ピロガロールトリスメタンスルホネートのようなアルキル及びアリールスルホネート類(g)ベンゾイントシレートのようなベンゾインスルホネート類、N−(トリフルオロメチルスルホニルオキシ)フタルイミドのようなN−スルホニルオキシイミド類、(4−フルオロベンゼンスルホニルオキシ)−3,4,6−トリメチル−2−ピリドンのようなピリドン類、2,2,2−トリフルオロ−1−トリフルオロメチル−1−(3−ビニルフェニル)−エチル−4−クロロベンゼンスルホネートのようなスルホン酸エステル類、トリフェニルスルホニウムメタンスルホネート、ジフェニルヨードニウムトリフルオロメタンスルホネートのようなオニウム塩類などの光酸発生剤や、プロトン酸或いはルイス酸をルイス塩基で中和した化合物、ルイス酸とトリアルキルホスフェートの混合物、スルホン酸エステル類、リン酸エステル類、オニウム化合物、及び、無水カルボン酸化合物などが好ましく挙げられる。
プロトン酸或いはルイス酸をルイス塩基で中和した化合物としては、ハロゲノカルボン酸類、スルホン酸類、硫酸モノエステル類、リン酸モノ及びジエステル類、ポリリン酸エステル類、ホウ酸モノ及びジエステル類等を、アンモニア、モノエチルアミン、トリエチルアミン、ピリジン、ピペリジン、アニリン、モルホリン、シクロヘキシルアミン、n−ブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の各種アミン若しくはトリアルキルホスフィン、トリアリールホスフィン、トリアルキルホスファイト、トリアリールホスファイトで中和した化合物等が挙げられる。また、ルイス酸をルイス塩基で中和した化合物としては、例えばBF、FeCl、SnCl、AlCl、ZnCl等のルイス酸を上記のルイス塩基で中和した化合物が挙げられる。
オニウム化合物としては、トリフェニルスルホニウムメタンスルホネート、ジフェニルヨードニウムトリフルオロメタンスルホネートなどが挙げられる。
無水カルボン酸化合物としては、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水ラウリン酸、無水オレイン酸、無水ステアリン酸、無水n−カプロン酸、無水n−カプリル酸、無水n−カプリン酸、無水パルミチン酸、無水ミリスチン酸、無水トリクロロ酢酸、無水ジクロロ酢酸、無水モノクロロ酢酸、無水トリフルオロ酢酸、無水ヘプタフルオロ酪酸等が挙げられる。
ルイス酸の具体例としては、例えば、三フッ化ホウ素、三塩化アルミニウム、塩化第一チタン、塩化第二チタン、塩化第一鉄、塩化第二鉄、塩化亜鉛、臭化亜鉛、塩化第一スズ、塩化第二スズ、臭化第一スズ、臭化第二スズ等の金属ハロゲン化物、トリアルキルホウ素、トリアルキルアルミニウム、ジアルキルハロゲン化アルミニウム、モノアルキルハロゲン化アルミニウム、テトラアルキルスズ等の有機金属化合物、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナト)アルミニウム、ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトナト)チタニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトナト)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、ジブチル・ビス(アセチルアセトナト)スズ、トリス(アセチルアセトナト)鉄、トリス(アセチルアセトナト)ロジウム、ビス(アセチルアセトナト)亜鉛、トリス(アセチルアセトナト)コバルト等の金属キレート化合物、ジブチルスズジラウレート、ジオクチルスズエステルマレート、ナフテン酸マグネシウム、ナフテン酸カルシウム、ナフテン酸マンガン、ナフテン酸鉄、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸亜鉛、ナフテン酸ジルコニウム、ナフテン酸鉛、オクチル酸カルシウム、オクチル酸マンガン、オクチル酸鉄、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸ジルコニウム、オクチル酸スズ、オクチル酸鉛、ラウリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸コバルト、ステアリン酸亜鉛、ステアリン酸鉛等の金属石鹸が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
これらの触媒の使用量は特に制限されないが、保護層形成用塗布液中に含まれる固形分の合計100質量部に対して0.1〜20質量部が好ましく、0.3〜10質量部が特に好ましい。
保護層形成用塗布液を電荷輸送層6上に塗布する場合、塗布方法としては、ブレードコーティング法、マイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。そして、塗布後、塗膜を乾燥させることで保護層7が形成する。
なお、塗布の際には1回の塗布により必要な膜厚が得られない場合、複数回重ね塗布することにより必要な膜厚を得ることができる。複数回の重ね塗布を行なう場合、加熱処理は塗布の度に行なってもよいし、複数回重ね塗布した後でもよい。
保護層形成用塗布液中の硬化性成分を硬化させる際の反応温度及び反応時間は特に制限されないが、得られる樹脂の機械的強度及び化学的安定性の点から、反応温度は好ましくは60℃以上、より好ましくは80〜200℃であり、反応時間は好ましくは10分〜5時間である。また、塗工液の硬化により得られる有機層を高湿度状態に保つことは、有機層の特性の安定化を図る上で有効である。さらには、用途に応じてヘキサメチルジシラザンやトリメチルクロロシランなどを用いて、得られる保護層7に表面処理を施して疎水化することもできる。
保護層7の膜厚は、0.5〜15μmが好ましく、1〜10μmがより好ましく、1〜5μmがさらに好ましい。
また、上記の保護層形成用塗布液から形成される保護層7は、優れた機械強度を有する上に光電特性も十分であるため、これをそのまま積層型感光体の電荷輸送層として用いることもできる。
また、保護層7として、メチロール基を有するフェノール誘導体と、水酸基、カルボキシル基、アルコキシシリル基、エポキシ基、チオール基及びアミノ基から選択される少なくとも1種を有する上記電荷輸送材料、上記式(V)で示される電荷輸送材料又は上記式(VI)で示される電荷輸送材料と、を含有するフェノール誘導体含有層を形成する場合には、以下の方法によりかかるフェノール誘導体含有層を形成することが好ましい。
フェノール誘導体含有層は、上述した保護層7の形成方法と同様に、構成材料を含有する保護層形成用塗布液を電荷輸送層6上に塗布して硬化させることで形成される。ここで、フェノール誘導体含有層の赤外吸収スペクトルが、下記式(C)で示される条件を満たすことが好ましい。これにより、電気特性及び画質のさらなる向上を図ることが可能となる。
(P/P)≦0.2 (C)
ここで、式(C)中、Pは1560cm−1〜1640cm−1に存在する最大吸収ピークの吸光度を、Pは1645cm−1〜1700cm−1に存在する最大吸収ピークの吸光度を示す。
保護層形成用塗布液には、触媒を添加すること、又は保護層形成用塗布液作製時に触媒を用いることが好ましい。用いられる触媒としては、塩酸、酢酸、リン酸、硫酸等の無機酸、蟻酸、プロピオン酸、シュウ酸、パラトルエンスルホン酸、安息香酸、フタル酸、マレイン酸等の有機酸、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、アンモニア、トリエチルアミン等のアルカリ触媒、さらに系に不溶な固体触媒を用いることもできる。
また、メチロール基を有するフェノール誘導体から、合成時の触媒を除去するために、フェノール誘導体をメタノール、エタノール、トルエン、酢酸エチル等の適当な溶剤に溶解させ、水洗、貧溶剤を用いた再沈殿等の処理を行うか、イオン交換樹脂、又は無機固体を用いて処理を行うことが好ましい。イオン交換樹脂及び無機固体としては、上記したものと同様のものを用いることができる。
保護層形成用塗布液には、必要に応じてメタノール、エタノール、プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン;ジエチルエーテル、ジオキサン等のエーテル類等の他、種々の溶媒が使用できる。なお、電子写真感光体の生産に一般的に使用されるディップコーティング法を適用するためには、アルコール系溶剤、ケトン系溶剤、又はそれらの混合系溶剤が好ましい。また、使用される溶媒の沸点は50〜150℃のものが好ましく、それら任意に混合して使用することができる。
なお、溶剤としてアルコール系溶剤、ケトン系溶剤、又はそれらの混合系溶剤が好ましいことから、使用される保護層7の形成に使用される電荷輸送材料としては、それらの溶剤に可溶であることが好ましい。
また、溶媒量は任意に設定できるが、少なすぎると構成材料が析出しやすくなるため、保護層形成用塗布液中に含まれる固形分の合計1質量部に対し好ましくは0.5〜30質量部、より好ましくは1〜20質量部とすることが好ましい。
保護層形成用塗布液を用いて保護層7を形成する際の塗布方法としては、上記した方法と同様にできる。
電荷輸送層6上に保護層形成用塗布液を塗布後には、硬化処理を行う。通常、硬化処理の際には、フェノール誘導体の架橋反応を促進し、保護層7の機械強度を上げるためには硬化温度は高く、硬化時間長いほど好ましい。しかし、そうした場合には、吸光度比(P/P)が0.2を超えやすく、この場合電気特性が低下する傾向にある。そこで、保護層7のIRスペクトルが上記条件を満たすように、硬化温度、硬化時間、架橋雰囲気又は硬化触媒で制御することが好ましい。
すなわち、保護層7のIRスペクトルが上記式(C)で示される条件を満たすようにするために、硬化処理の際の硬化温度は100〜170℃が好ましく、100〜150℃がより好ましく、100〜140℃がさらに好ましい。また、硬化時間は、30分〜2時間が好ましく、30分〜1時間がより好ましい。
また、硬化処理(架橋反応)を行う雰囲気としては、窒素、ヘリウム、アルゴン等の、いわゆる酸化に対して不活性なガス雰囲気(不活性ガス雰囲気)下が吸光度比(P/P)を小さくするのに効果的である。不活性ガス雰囲気下で架橋反応を行う場合には、空気雰囲気(酸素含有雰囲気)下よりも硬化温度を高く設定することができ、硬化温度は100〜160℃(好ましくは110〜150℃)とすることが可能である。また、硬化時間は30分〜2時間(好ましくは30分〜1時間)とすることが可能である。また、一般式(I)で示される化合物において、(−(Xm1−(Rm2−Y)で示される部位が−CH−OHの場合が最も硬化温度による電気特性の影響が大きい傾向があり、酸化に対して敏感であるので、上記好ましい温度範囲で硬化処理を行うことが好ましい。
また、メチロール基を有するフェノール誘導体と、上記式(IV)で示される化合物のように複数のエポキシ基を有する電荷輸送材料とを含有する保護層7を形成する場合、架橋反応を十分に進行させる観点から、硬化処理の際の硬化温度は100〜170℃が好ましく、100〜160℃がより好ましい。また、硬化時間は、30分〜2時間が好ましく、30分〜1時間がより好ましい。なお、上記の保護層7を形成する際に、吸光度比(P/P)を0.2以下とする場合には、上述した条件で行うことが好ましい。
また、メチロール基を有するフェノール誘導体と、複数のエポキシ基を有する電荷輸送材料とを含有する保護層7を形成するに際し、不活性ガス雰囲気下で架橋反応を行う場合には、空気雰囲気(酸素含有雰囲気)下よりも硬化温度を高く設定することができ、硬化温度は100〜180℃(好ましくは110〜160℃)とすることが可能である。また、硬化時間は30分〜2時間(好ましくは30分〜1時間)とすることが可能である。
また、メチロール基を有するフェノール誘導体と、複数のエポキシ基を有する電荷輸送材料とを含有する保護層7を形成する場合には、硬度、接着性、可とう性などの膜特性の調整のために、保護形成用塗布液にさらに、ポリグリシジルメタクリレート、グリシジルビスフェノール類、フェノールエポキシ樹脂などのエポキシ含有化合物、テレフタル酸、マレイン酸、ピロメリット酸、ビフェニルテトラカルボン酸等、又は、それらの無水物を添加してもよい。添加量としては、電荷輸送材料1質量部に対し、0.05〜1質量部が好ましく、0.1〜0.7質量部がより好ましい。
さらに、硬化処理の際には、硬化触媒を使用することが好ましい。硬化触媒としては、上記した硬化触媒を用いることができる。
硬化触媒の使用量は特に制限されないが、保護層形成用塗布液に含まれる固形分の合計100質量部に対して0.1〜20質量部が好ましく、0.3〜10質量部が特に好ましい。
また、メチロール基を有するフェノール誘導体と、複数のエポキシ基を有する電荷輸送材料とを含有する保護層7を形成する際に、有機金属化合物を触媒として用いる場合においても、ポットライフ、硬化効率の面から、上記した多座配位子を添加することが好ましい。多座配位子の配合量は、任意に設定することができるが、有機金属化合物の使用量1モルに対し、好ましくは0.01モル以上、より好ましくは0.1モル以上、さらに好ましくは1モル以上である。
本実施形態において、保護層7の25℃における酸素透過係数は、4×1012fm/s・Pa以下であることが好ましく、3.5×1012fm/s・Pa以下であることがより好ましく、3×1012fm/s・Pa以下であることがさらに好ましい。
ここで、酸素透過係数は層の酸素ガス透過のし易さを表す尺度であるが、見方を変えると、層の物理的な隙間率の代用特性と捕らえることもできる。なお、ガスの種類が変われば透過率の絶対値は変わるものの、検体となる層間で大小関係の逆転は殆どない。したがって、酸素透過係数は、一般的なガス透過のし易さを表現する尺度と解釈して良い。
つまり、保護層7の25℃における酸素透過係数が上記条件を満たす場合には、保護層7においてガスが浸透しにくい。したがって、画像形成プロセスにより生じる放電生成物の浸透が抑制され、保護層7に含有される化合物の劣化が抑制され、電気特性を高水準に維持することができ、高画質化、長寿命化に有効である。
また、赤外吸収スペクトルの吸光度比(P/P)が上記条件を満たすように保護層7を形成しようとする場合には、空気雰囲気下では硬化温度を比較的低く設定することが必要である。そのため、保護層7の25℃における酸素透過係数を下げることは困難であるが、吸光度比(P/P)が上記条件を満たすようにすると共に、保護層7の25℃における酸素透過係数が上記条件を満たすようにすることで、電気特性がさらに向上し、さらに高画質を達成できる感光体が得られる。
なお、本実施形態において、電荷輸送能を有し且つ架橋構造を有する最表面層は保護層7としたが、かかる最表面層は例えば図2に示す電子写真感光体においては電荷輸送層6とすることもできる。
また、単層型感光層を構成する場合、単層型感光層は、電荷発生材料と結着樹脂を含有して形成される。電荷発生材料としては機能分離型感光層における電荷発生層に使用されるものと同様のものを、結着樹脂としては機能分離型感光層における電荷発生層及び電荷輸送層に用いられる結着樹脂と同様のものを用いることができる。単層型感光層中の電荷発生材料の含有量は、単層型感光層における固形分全量を基準として好ましくは10〜85質量%、より好ましくは20〜50質量%である。単層型感光層には、光電特性を改善する等の目的で電荷輸送材料や高分子電荷輸送材料を添加してもよい。その添加量は単層型感光層における固形分全量を基準として5〜50質量%とすることが好ましい。また、塗布に用いる溶剤や塗布方法は、上記各層と同様のものを用いることができる。単層型感光層の膜厚は、5〜50μm程度が好ましく、10〜40μmとすることがさらに好ましい。
次に、電子写真感光体1及び現像装置25以外の画像形成装置100の各構成要素について説明する。
帯電装置21としては、例えば、導電性又は半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器を使用することができる。また、帯電ローラを感光体10近傍で用いる非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も使用することができる。
露光装置30としては、例えば、感光体1表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、所望の像様に露光できる光学系機器等が挙げられる。光源の波長は感光体の分光感度領域にあるものが使用される。半導体レーザーの波長としては、780nm付近に発振波長を有する近赤外が主流である。しかし、この波長に限定されず、600nm台の発振波長レーザーや青色レーザーとして400〜450nm近傍に発振波長を有するレーザーも利用できる。また、カラー画像形成のためにはマルチビーム出力が可能なタイプの面発光型のレーザー光源も有効である。
転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等のベルト状のもの(中間転写ベルト)が使用される。また、中間転写体50の形態としては、ベルト状以外にドラム状のものを用いることもできる。
画像形成装置100は、上述した各装置の他に、例えば、感光体1に対して光除電を行う光除電装置を備えていてもよい。
図7は、本発明の画像形成装置の他の実施形態を示す模式図である。図7に示す画像形成装置110は、電子写真感光体1が画像形成装置本体に固定され、帯電装置22、現像装置25及びクリーニング装置27がそれぞれカートリッジ化されており、それぞれ帯電カートリッジ、現像カートリッジ、クリーニングカートリッジとして独立して備えられている。なお、帯電装置22は、コロナ放電方式により帯電させる帯電装置を備えている。
画像形成装置110においては、電子写真感光体1とそれ以外の各装置が分離されており、帯電装置22、現像装置25及びクリーニング装置27が画像形成装置本体にビス、かしめ、接着又は溶接により固定されることなく、引き出し、押しこみによる操作にて脱着可能である。ただし、使用される際には、現像装置25によって必ず上述のトナーによる現像が行われる。
本発明の画像形成装置は、電子写真感光体が架橋構造を有する最表面層を有しており、且つ、上述のトナーによる現像が行われるので、感光体表面の磨耗が十分抑制される。これにより、カートリッジ化することが不要となる場合がある。したがって、帯電装置22、現像装置25又はクリーニング装置27をそれぞれ本体にビス、かしめ、接着又は溶接により固定されることなく、引き出し、押しこみによる操作にて脱着可能な構成とすることで、1プリント当りの部材コストを低減することができる。また、これらの装置のうち2つ以上を一体化したカートリッジとして着脱可能とすることもでき、それにより1プリント当りの部材コストをさらに低減することができる。
なお、画像形成装置110は、帯電装置22、現像装置25及びクリーニング装置27がそれぞれカートリッジ化されている以外は、画像形成装置100と同様の構成を有している。
図8は、本発明の画像形成装置の他の実施形態を示す模式図である。画像形成装置120は、プロセスカートリッジ20を4つ搭載したタンデム方式のフルカラー画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ20がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用できる構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。
タンデム方式の画像形成装置120では、各色の使用割合により各電子写真感光体の磨耗量が異なってくるために、各電子写真感光体の電気特性が異なってくる傾向がある。これに伴い、トナー現像特性が初期の状態から除々に変化してプリント画像の色合いが変化し、安定な画像を得ることができなくなる傾向にある。特に、画像形成装置を小型化するために、小径の電子写真感光体が使用される傾向にあり、30mmΦ以下のものを用いたときにはこの傾向が顕著になる。ここで、電子写真感光体に上述の電子写真感光体の構成を採用し、且つ、上述のトナーを使用すると、その直径を30mmΦ以下とした場合にも長期に亘って安定な画質が得られるとともにその表面の磨耗が十分に抑制される。したがって、本発明の画像形成装置は、タンデム方式とすることが特に有効である。
図9は、本発明の画像形成装置の他の実施形態を示す模式図である。図9に示した画像形成装置130は、1つの電子写真感光体で複数の色のトナー画像を形成させる、所謂4サイクル方式の画像形成装置である。画像形成装置130は、駆動装置(図示せず)により所定の回転速度で図中の矢印Aの方向に回転される感光体ドラム1を備えており、感光体ドラム1の上方には、感光体ドラム1の外周面を帯電させる帯電装置22が設けられている。
また、帯電装置22の上方には面発光レーザーアレイを露光光源として備える露光装置30が配置されている。露光装置30は、光源から射出される複数本のレーザービームを、形成すべき画像に応じて変調すると共に、主走査方向に偏向し、感光体ドラム1の外周面上を感光体ドラム1の軸線と平行に走査させる。これにより、帯電した感光体ドラム1の外周面上に静電潜像が形成される。
感光体ドラム1の側方には現像装置25が配置されている。現像装置25は回転可能に配置されたローラ状の収容体を備えている。この収容体の内部には4個の収容部が形成されており、各収容部には現像器25Y,25M,25C,25Kが設けられている。現像器25Y,25M,25C,25Kは各々現像ローラ26を備え、内部に各々Y,M,C,Kの色のトナーを貯留している。なお、これらのトナーは、上述のフッ素含有酸化セリウム微粒子を含むものである。
画像形成装置130でのフルカラーの画像の形成は、感光体ドラム1が4回転する間に行われる。すなわち、感光体ドラム1が4回転する間、帯電装置22は感光体ドラム1の外周面の帯電、露光装置20は形成すべきカラー画像を表すY,M,C,Kの画像データのうちの何れかに応じて変調したレーザービームを感光体ドラム1の外周面上で走査させることを、感光体ドラム1が1回転する毎にレーザービームの変調に用いる画像データを切替えながら繰り返す。また現像装置25は、現像器25Y,25M,25C,25Kの何れかの現像ローラ26が感光体ドラム1の外周面に対応している状態で、外周面に対応している現像器を作動させ、感光体ドラム1の外周面に形成された静電潜像を特定の色に現像し、感光体ドラム1の外周面上に特定色のトナー像を形成させることを、感光体ドラム1が1回転する毎に、静電潜像の現像に用いる現像器が切り替わるように収容体を回転させながら繰り返す。これにより、感光体ドラム1が1回転する毎に、感光体ドラム1の外周面上には、Y,M,C,Kのトナー像が形成されることになる。
また、感光体ドラム1の略下方には無端の中間転写ベルト50が配設されている。中間転写ベルト50はローラ51,53,55に巻掛けられており、外周面が感光体ドラム1の外周面に接触するように配置されている。ローラ51,53,55は図示しないモータの駆動力が伝達されて回転し、中間転写ベルト50を図1矢印B方向に回転させる。
中間転写ベルト50を挟んで感光体ドラム1の反対側には転写装置(転写器)40が配置されており、感光体ドラム1の外周面上に形成されたトナー像は転写装置40によって中間転写ベルト50の画像形成面に転写される。そして、感光体ドラム1の回転にあわせて、中間転写ベルト50も回転し、感光体ドラム1が4回転した時点で中間転写ベルト50上にフルカラーのトナー像が形成されることになる。
また、感光体ドラム1を挟んで現像装置25の反対側には、感光体ドラム1の外周面に潤滑剤供給装置31及びクリーニング装置27が配置されている。感光体ドラム12の外周面上に形成されたトナー像が中間転写ベルト50に転写されると、潤滑剤供給装置31により感光体ドラム1の外周面に潤滑剤が供給され、当該外周面のうち転写されたトナー像を担持していた領域がクリーニング装置27により清浄化される。
中間転写ベルト50よりも下方側にはトレイ60が配置されており、トレイ60内には記録材料としての用紙Pが多数枚積層された状態で収容されている。トレイ60の左斜め上方には取り出しローラ61が配置されており、取り出しローラ61による用紙Pの取り出し方向下流側にはローラ対63、ローラ65が順に配置されている。積層状態で最も上方に位置している記録紙は、取り出しローラ61が回転されることによりトレイ60から取り出され、ローラ対63、ローラ65によって搬送される。
また、中間転写ベルト50を挟んでローラ55の反対側には転写装置42が配置されている。ローラ対63、ローラ65によって搬送された用紙Pは、中間転写ベルト50と転写器42の間に送り込まれ、中間転写ベルト50の画像形成面に形成されたトナー像が転写装置42によって転写される。転写装置42よりも用紙Pの搬送方向下流側には、定着ローラ対を備えた定着装置44が配置されており、トナー像が転写された用紙Pは、転写されたトナー像が定着装置44によって溶融定着された後に画像形成装置130の機体外へ排出され、排紙トレイ(図示せず)上に載置される。
定着装置44としては、例えば、熱ロール定着器、オーブン定着器等の通常使用される装置を使用できる。定着装置44により、被転写媒体上に転写したトナー像を定着することができる。
(プロセスカートリッジ)
次に、本発明のプロセスカートリッジについて説明する。図8は、本発明のプロセスカートリッジの好適な一実施形態の基本構成を示す模式図である。
プロセスカートリッジ300は、ケース311内に、電子写真感光体1とともに帯電装置21、露光装置30、現像装置25、及びクリーニング装置27、並びに、取り付けレール313を用いて組み合わせて一体化したものである。かかるプロセスカートリッジ300は、転写装置40と、定着装置44と、図示しない他の構成部分とからなる画像形成装置本体に対して着脱可能としたものであり、画像形成装置本体とともに画像形成装置を構成するものである。
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[現像剤の調製]
現像剤は、先ずトナー母粒子及びキャリアを製造し、そして、それらを用いて製造した。以下の説明において、トナー及び複合粒子の粒度分布は、マルチサイザー(日科機社製)を用い、アパーチャー径100μmのもので測定した。また、トナー及び複合粒子の平均形状係数ML/Aは、下記式で計算された値を意味し、真球の場合、ML/A=100となる。
ML/A=(最大長)×π×100/(面積×4)。
なお、平均形状係数は、トナー投影画像を光学顕微鏡から画像解析装置(LUZEX(III)、ニレコ社製)に取り込み、円相当径を測定して、個々の粒子について最大長及び面積を上記式に当てはめることで求めることができる。
<トナー母粒子の調製>
トナーを製造する際には、先ず、樹脂微粒子分散液、着色剤分散液及び離型剤分散液を製造し、それらを用いてトナー母粒子を製造した。次に、それを用いてトナーは製造した。
(樹脂微粒子分散液)
スチレンを370質量部、n−ブチルアクリレートを30質量部、アクリル酸を8質量部、ドデカンチオールを24質量部、四臭化炭素を4質量部混合して溶解した。その溶液を、非イオン性界面活性剤(ノニポール400:三洋化成(株)製)を6質量部、アニオン性界面活性剤(ネオゲンSC:第一工業製薬(株)製)を10質量部、及びイオン交換水550質量部混合したフラスコに添加して乳化重合させ、10分間ゆっくり混合しながら、これに過硫酸アンモニウム4質量部を溶解したイオン交換水50質量部を投入した。窒素置換を行った後、上記フラスコ内を攪拌しながら内容物が70℃になるまでオイルバスで加熱し、5時間そのまま乳化重合を継続した。その結果、平均粒径が150nmであり、Tgが58℃であり、質量平均分子量(Mw)が12000である樹脂粒子が分散された樹脂微粒子分散液を得た。この分散液の固形分濃度は、40質量%であった。
(着色剤分散液)
カーボンブラック(モーガルL、キャボット製)60質量部、ノニオン性界面活性剤(ノニポール400、三洋化成(株)製)6質量部及びイオン交換水240質量部を混合・溶解した。この混合液をホモジナイザー(ウルトラタラックスT50、IKA社製)を用いて10分間攪拌し、その後、アルティマイザーにて分散処理して平均粒子径が250nmである着色剤(カーボンブラック)粒子が分散された着色剤分散剤を調製した。
(離型剤分散液)
パラフィンワックス(HNP0190、日本精蝋(株)製、融点85℃)100質量部、カチオン性界面活性剤(サニゾールB50、花王(株)製)5質量部及びイオン交換水240質量部を混合し、丸型ステンレス鋼製フラスコ中でホモジナイザー(ウルトラタラックスT50、IKA社製)を用いて10分間分散処理した。さらに、圧力吐出型ホモジナイザーで分散処理し、平均粒子径が550nmである離型剤粒子が分散された離型剤分散液を調製した。
(トナー母粒子)
上記で得られた樹脂微粒子分散液234質量部、着色剤分散液30質量部、離型剤分散液40質量部、ポリ水酸化アルミニウム(Paho2S、浅田化学社製)0.5質量部及びイオン交換水600質量部を混合し、丸型ステンレス鋼鉄フラスコ中でホモジナイザー(ウルトラタラックスT50、IKA社製)を用いて分散処理した後、加熱用オイルバス中でフラスコ内を攪拌しながら40℃まで加熱した。40℃で30分保持した後、D50が4.5μmの凝集粒子が生成していることを確認した。さらに、加熱用オイルバスの温度を上げて56℃で1時間保持したところ、D50は5.3μmとなった。その後、この凝集体粒子を含む分散液に樹脂微粒子分散液26質量部を追加した後、加熱用オイルバスの温度を50℃として30分間保持した。この凝集体粒子を含む分散液に1N水酸化ナトリウムを追加して系のpHを5.0に調整した後、ステンレス製フラスコを密閉し、磁気シールを用いて攪拌を継続しながら95℃まで加熱して4時間保持した。冷却後、トナー母粒子を濾別し、イオン交換水で4回洗浄した後、凍結乾燥してトナー母粒子を得た。トナー母粒子のD50は5.8μm、平均形状係数ML/Aは109であった。
<キャリアの調製>
まず、トルエン14質量部、スチレン−メタクリレート共重合体(成分比90/10)2質量部及びカーボンブラック(R330、キャボット社製)0.2質量部を10分間スターラーで撹拌させて、分散処理した被覆液を調製した。次に、この被覆液とフェライト粒子(平均粒子径50μm)100質量部とを真空脱気型ニーダーに入れて、60℃で30分撹拌した後、さらに加温しながら減圧して脱気し、乾燥させることによりキャリアを得た。このキャリアは、1000V/cmの印加電界時の体積固有抵抗値が1011Ωcmであった。
<現像剤1>
上記で得られたトナー母粒子100質量部に対して、ルチル型酸化チタン(平均粒径:20nm、表面処理:n−デシルトリメトキシラン処理)1質量部、シリカ(粒径:40nm、表面処理:シリコーンオイル処理、粒子作製法:気相酸化法)2.0質量部と、疎水性シリカ(商品名:アエロジル、粒径:45nm、表面処理:シリコンオイル処理)1質量部、及び、高級脂肪酸アルコール(分子量700の高級脂肪酸アルコール)とステアリン酸亜鉛とを質量で5:1の割合でジェットミルで粉砕し、平均粒径8.0μmとしたものを0.3質量部混合し、さらにその混合物を5Lヘンシェルミキサーで周速30m/s×15分間ブレンドを行った。その後、45μmの目開きのシーブを用いて粗大粒子を除去し、トナー(複合粒子)を得た。次に、このトナー(複合粒子)5質量部に、上記で得られたキャリア100質量部を加え、V−ブレンダーを用いて40rpmで20分間攪拌した。その後、212μmの目開きを有するシーブで篩分することにより現像剤1を得た。
<現像剤2>
上記で得られたトナー母粒子100質量部に対して、ルチル型酸化チタン(平均粒径:20nm、表面処理:n−デシルトリメトキシラン処理)1質量部、シリカ(粒径:40nm、表面処理:シリコーンオイル処理、粒子作製法:気相酸化法)2.0質量部と、疎水性シリカ(商品名:アエロジル、粒径:45nm、表面処理:シリコンオイル処理)1質量部、フッ素含有酸化セリウム(フッ素含有量:1.0質量%、平均粒径:0.7μm)0.5質量部、及び、高級脂肪酸アルコール(分子量700の高級脂肪酸アルコール)とステアリン酸亜鉛とを質量で5:1の割合でジェットミルで粉砕し、平均粒径8.0μmとしたものを0.3質量部混合し、さらにその混合物を5Lヘンシェルミキサーで周速30m/s×15分間ブレンドを行った。その後、45μmの目開きのシーブを用いて粗大粒子を除去し、トナー(複合粒子)を得た。次に、このトナー(複合粒子)5質量部に、上記で得られたキャリア100質量部を加え、V−ブレンダーを用いて40rpmで20分間攪拌した。その後、212μmの目開きを有するシーブで篩分することにより現像剤2を得た。
<現像剤3>
上記で得られたトナー母粒子100質量部に対して、ルチル型酸化チタン(平均粒径:20nm、表面処理:n−デシルトリメトキシラン処理)1質量部、シリカ(粒径:40nm、表面処理:シリコーンオイル処理、粒子作製法:気相酸化法)2.0質量部と、疎水性シリカ(商品名:アエロジル、粒径:45nm、表面処理:シリコンオイル処理)1質量部、フッ素含有酸化セリウム(フッ素含有量:0.5質量%、平均粒径:0.7μm)0.5質量部、及び、高級脂肪酸アルコール(分子量700の高級脂肪酸アルコール)とステアリン酸亜鉛とを質量で5:1の割合でジェットミルで粉砕し、平均粒径8.0μmとしたものを0.3質量部混合し、さらにその混合物を5Lヘンシェルミキサーで周速30m/s×15分間ブレンドを行った。その後、45μmの目開きのシーブを用いて粗大粒子を除去し、トナー(複合粒子)を得た。次に、このトナー(複合粒子)5質量部に、上記で得られたキャリア100質量部を加え、V−ブレンダーを用いて40rpmで20分間攪拌した。その後、212μmの目開きを有するシーブで篩分することにより現像剤3を得た。
<現像剤4>
上記で得られたトナー母粒子100質量部に対して、ルチル型酸化チタン(平均粒径:20nm、表面処理:n−デシルトリメトキシラン処理)1質量部、シリカ(粒径:40nm、表面処理:シリコーンオイル処理、粒子作製法:気相酸化法)2.0質量部と、疎水性シリカ(商品名:アエロジル、粒径:45nm、表面処理:シリコンオイル処理)1質量部、酸化セリウム(平均粒径:0.7μm)0.5質量部、及び、高級脂肪酸アルコール(分子量700の高級脂肪酸アルコール)とステアリン酸亜鉛とを質量で5:1の割合でジェットミルで粉砕し、平均粒径8.0μmとしたものを0.3質量部混合し、さらにその混合物を5Lヘンシェルミキサーで周速30m/s×15分間ブレンドを行った。その後、45μmの目開きのシーブを用いて粗大粒子を除去し、トナー(複合粒子)を得た。次に、このトナー(複合粒子)5質量部に、上記で得られたキャリア100質量部を加え、V−ブレンダーを用いて40rpmで20分間攪拌した。その後、212μmの目開きを有するシーブで篩分することにより現像剤4を得た。
<現像剤5>
上記で得られたトナー母粒子100質量部に対して、ルチル型酸化チタン(平均粒径:20nm、表面処理:n−デシルトリメトキシラン処理)1質量部、シリカ(粒径:40nm、表面処理:シリコーンオイル処理、粒子作製法:気相酸化法)2.0質量部と、疎水性シリカ(商品名:アエロジル、粒径:45nm、表面処理:シリコンオイル処理)1質量部、フッ素含有酸化セリウム(フッ素含有量:12質量%、平均粒径:0.7μm)0.5質量部、及び、高級脂肪酸アルコール(分子量700の高級脂肪酸アルコール)とステアリン酸亜鉛とを質量で5:1の割合でジェットミルで粉砕し、平均粒径8.0μmとしたものを0.3質量部混合し、さらにその混合物を5Lヘンシェルミキサーで周速30m/s×15分間ブレンドを行った。その後、45μmの目開きのシーブを用いて粗大粒子を除去し、トナー(複合粒子)を得た。次に、このトナー(複合粒子)5質量部に、上記で得られたキャリア100質量部を加え、V−ブレンダーを用いて40rpmで20分間攪拌した。その後、212μmの目開きを有するシーブで篩分することにより現像剤5を得た。
<現像剤6>
上記で得られたトナー母粒子100質量部に対して、ルチル型酸化チタン(平均粒径:20nm、表面処理:n−デシルトリメトキシラン処理)1質量部、シリカ(粒径:40nm、表面処理:シリコーンオイル処理、粒子作製法:気相酸化法)2.0質量部と、疎水性シリカ(商品名:アエロジル、粒径:45nm、表面処理:シリコンオイル処理)1質量部、フッ素含有酸化セリウム(フッ素含有量:0.5質量%、平均粒径:0.7μm)15質量部、及び、高級脂肪酸アルコール(分子量700の高級脂肪酸アルコール)とステアリン酸亜鉛とを質量で5:1の割合でジェットミルで粉砕し、平均粒径8.0μmとしたものを0.3質量部混合し、さらにその混合物を5Lヘンシェルミキサーで周速30m/s×15分間ブレンドを行った。その後、45μmの目開きのシーブを用いて粗大粒子を除去し、トナー(複合粒子)を得た。次に、このトナー(複合粒子)5質量部に、上記で得られたキャリア100質量部を加え、V−ブレンダーを用いて40rpmで20分間攪拌した。その後、212μmの目開きを有するシーブで篩分することにより現像剤6を得た。
<感光体の作製>
(感光体1)
先ず、ホーニング処理を施した84mmΦの円筒状アルミニウム基材を準備した。次に、ジルコニウム化合物(商品名:オルガチックスZC540、マツモト製薬社製)を20質量部、シラン化合物(商品名:A1100、日本ユニカー社製)を2.5質量部、ポリビニルブチラール樹脂(商品名:エスレックスBM−S、積水化学社製)を2.5質量部、及びブタノールを45質量部混合し、下引層形成用塗布液を得た。この塗布液をアルミニウム基材上に浸漬塗布し、150℃で10分間加熱乾燥し、1.5μmの下引層を形成した。
次に、X線回折スペクトルにおけるブラッグ角(2θ±0.2°)が、7.4°、16.6°、25.5°及び28.3°に強い回折ピークを持つクロロガリウムフタロシアニンを1質量部、ポリビニルブチラール(商品名:エスレックBM−S、積水化学社製)を1質量部、及び酢酸n−ブチルを100質量部混合し、さらにガラスビーズとともにペイントシェーカーで1時間処理して分散し、電荷発生層形成用塗布液を得た。この塗布液を下引層上に浸漬塗布し100℃で10分間加熱乾燥し、膜厚約0.15μmの電荷発生層を形成した。
次に、下記式(CT−1)で示される電荷輸送材料を2質量部、下記式(B−1)で示される構造単位を有する高分子化合物(粘度平均分子量:56000)を2.5質量部、及びクロロベンゼンを20質量部混合し、電荷輸送層形成用塗布液を得た。
Figure 2006276278

Figure 2006276278





この塗布液を、電荷発生層上に浸漬コーティング法で塗布し、130℃で45分の加熱を行ない、膜厚23μmの電荷輸送層を形成した。このように、アルミニウム基材上に、電荷発生層及び電荷輸送層が形成された感光体を「感光体1」とした。
(感光体2)
先ず、上記と同様にして感光体1を準備した。次に、メチルトリメトキシシラン2.5質量部、コロイダルシリカ0.3質量部、Me(MeO)−Si−(CH−Si−Me(OMe)0.5質量部、(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)メチルジメトキシシラン0.1質量部、及びヘキサメチルシクロトリシロキサン0.3質量部を、メチルアルコール5質量部に溶解させた。この溶液にイオン交換樹脂(アンバーリスト15E、ローム・アンド・ハース社製)0.5質量部を加え、室温で攪拌することにより24時間保護基の交換反応を行った。
その後、この溶液に、n−ブタノールを10質量部、及び蒸留水を0.3質量部添加し、15分加水分解を行なった。加水分解したものからイオン交換樹脂をデカンテーションした溶液に対し、アルミニウムトリスアセチルアセトナート(Al(aqaq))を0.1質量部、アセチルアセトンを0.1質量部、3,5−ジ−t−ブチル−4−ヒドロキシトルエン(BHT)を0.4質量部、及び下記式(CT−2)で示される化合物を2質量部加え、保護層形成用塗布液を得た。この塗布液を感光体1の電荷輸送層上に浸漬塗布法により塗布し、室温で30分風乾した。その後、170℃で1時間加熱処理して硬化し、膜厚約3.5μmの保護層を形成した。この感光体を感光体2とした。
Figure 2006276278

(感光体3)
先ず、上記と同様にして感光体1を準備した。次に、下記式(CT−3)で示される化合物2質量部、及び下記式(C−1)で示される化合物2質量部を、イソプロピルアルコール5質量部、テトラヒドロフラン3質量部及び蒸留水0.3質量部の混合溶媒に溶解させた。この溶液にイオン交換樹脂(アンバーリスト15E、ローム・アンド・ハース社製)0.05質量部を加え、室温で攪拌することにより24時間加水分解を行った。
Figure 2006276278

Figure 2006276278

その後、加水分解したものからイオン交換樹脂を濾過分離した溶液2質量部に対し、アルミニウムトリスアセチルアセトナート(Al(aqaq))を0.04質量部、及びポリビニルブチラール(商品名:エスレックBX−L、積水化学社製)を1質量部加え、保護層形成用塗布液を得た。この塗布液を感光体1の電荷輸送層上に浸漬塗布法により塗布し、170℃で1時間熱風乾燥し、膜厚4.5μmの保護層を形成した。この感光体を感光体3とした。
(感光体4)
先ず、上記と同様にして感光体1を準備した。次に、下記式(CT−4)で示される化合物5質量部、レゾール型フェノール樹脂(商品名:PL−2211、群栄化学社製)6質量部、及びメチルフェニルポリシロキサン0.03質量部を、イソプロピルアルコール10質量部に溶解させ、保護層形成用塗布液を得た。この塗布液を感光体1の電荷輸送層上にリング型浸漬塗布法により塗布し、160℃で45分間乾燥させ、膜厚4.0μmの保護層を形成した。この感光体を感光体4とした。
Figure 2006276278

(感光体5)
先ず、上記と同様にして感光体1を準備した。次に、下記式(CT−5)で示される化合物5質量部、レゾール型フェノール樹脂(商品名:PL−2211、群栄化学社製)6質量部、及びメチルフェニルポリシロキサン0.03質量部を、イソプロピルアルコール10質量部に溶解させ、保護層形成用塗布液を得た。この塗布液を感光体1の電荷輸送層上にリング型浸漬塗布法により塗布し、160℃で45分間乾燥させ、膜厚4.0μmの保護層を形成した。この感光体を感光体5とした。
Figure 2006276278

(感光体6)
先ず、上記と同様にして感光体1を準備した。次に、下記式(CT−6)で示される化合物5質量部、レゾール型フェノール樹脂(商品名:PL−2211、群栄化学社製)6質量部、及びメチルフェニルポリシロキサン0.03質量部を、イソプロピルアルコール10質量部に溶解させ、保護層形成用塗布液を得た。この塗布液を感光体1の電荷輸送層上にリング型浸漬塗布法により塗布し、160℃で45分間乾燥させ、膜厚4.0μmの保護層を形成した。この感光体を感光体6とした。
Figure 2006276278

(実施例1〜20、比較例1〜10)
上記の感光体1〜6と、現像剤1〜6とを、下記表54及び55のように組み合わせて、図9に示す画像形成装置と同様の構成(ただし、図中の潤滑剤供給装置31は無く、転写装置40及び42はロール形状(BTR))を有するフルカラーレーザプリンタ(富士ゼロックス社製、「Docu Centre Color 500」、中間転写体あり)に装着した。次いで、高温高湿(30℃、80%RH)の環境下、A4用紙で50万枚の連続プリント試験を行った。この試験後、感光体表面の観察し、次いで、A3用紙で20%濃度の全面ハーフトーン出力試験を行い、フィルミング、像流れ及び濃度ムラについて評価した。なお、これらの評価は下記基準にしたがって行った。
<フィルミング>
A:感光体表面に付着は確認されない(出力した画質が非常に良好であり且つレーザー顕微鏡での観察で付着が見られない)
B:感光体表面に付着が目視では確認されない(出力した画質が良好であるが、レーザー顕微鏡での観察で付着が見られる)
C:感光体表面に半透明の物が付着しているのが目視で確認できる(出力した画質は実用上問題ないレベル)
D:感光体表面に褐色の付着が目視で確認できる(画質上の欠陥となるレベル)
<画像流れ>
A:出力した画像に白抜け及び画像流れが確認されない(細線の高倍CCDカメラの観察でにじみが確認されず非常に良好)
B:出力した画像に白抜け及び画像流れが確認されない(細線の高倍CCDカメラの観察で細線の細りが生じていることが確認される)
C:出力した画像にわずかな濃度低下(白抜け)が確認されるが、実用上問題ないレベル
D:出力した画像が濃度低下を起こし、白抜けが確認される
<濃度ムラ>
A:出力した画像に濃度ムラが確認されない(非常に良好)
B:出力した画像にわずかな濃度ムラが確認されるが、実用上問題ないレベル
C:出力した画像に濃度差が確認される
また、上記と同様に行ったA4用紙での50万枚の連続プリント試験後、低温低湿(10℃、10%RH)下、A3用紙で全面100%濃度の画像を未転写で10枚分出力させることによりクリーニング性を評価した。なお、クリーニング性は下記基準で評価した。
<クリーニング性>
A:20枚分の出力でもトナーのすり抜けは確認されない
B:トナーのすり抜けは確認されない
C:部分的にトナーのすり抜けが見られるが、実用上問題なし。
D:全面にわたるトナーのすり抜けが見られる
また、上記フルカラーレーザプリンタ(富士ゼロックス社製、「Docu Centre Color 500」、中間転写体あり)の代わりにモノクロレーザプリンタ(富士ゼロックス社製、「Docu Center 550」、中間転写体なし)を用いて、高温高湿(30℃、80%RH)の環境下、A4用紙で50万枚の連続プリント試験を行った。この試験後、A3用紙で20%濃度の全面ハーフトーン出力試験を行い、タルクディレッションについて評価した。なお、タルクディレッションは下記基準で評価した。
<タルクディレッション>
A:出力した画像に白抜け及び画像流れが確認されない(細線の高倍CCDカメラの観察でにじみが確認されず非常に良好)
B:出力した画像に白抜け及び画像流れが確認されない(細線の高倍CCDカメラの観察で細線の細りが生じていることが確認される)
C:出力した画像にわずかな濃度低下(白抜け)が確認されるが、実用上問題ないレベル
D:出力した画像が濃度低下を起こし、白抜けが確認される
得られた結果を表54及び55に示す。
Figure 2006276278

Figure 2006276278

表54及び55に示すように、実施例1〜20では50万枚出力後においても、フィルミング、像流れ、濃度ムラ、クリーニング不良及びタルクディレッションのすべてが十分に抑制されており、長期に亘って高画質を維持できることが確認された。したがって、本発明によれば、高画質化、長寿命化及び高信頼性のすべてを達成できる画像形成装置の実現が可能となる。
さらに、本実施例のうちから、高画質化、長寿命化及び高信頼性に対してより有効な組み合わせを確認するため、実施例1〜20の組み合わせに対してより厳しい条件での評価を行った。上記実施例1〜20の50万枚出力試験において、出力枚数を100万枚としたこと以外は同様にして上記特性の評価を行った。さらに、本テストにおいては、電子写真感光体の磨耗レートも評価した。また、磨耗レートは、画像形成装置ごとに、はじめの各電子写真感光体の膜厚と、1500kcycle終了後の各電子写真感光体の膜厚とを測定して「摩耗により減少した感光体の膜厚」(以下、「摩耗しろ」という)を算出した。また、この摩耗しろに基づいて、各電子写真感光体の摩耗レート[nm/kcycle]を算出した。ここで、1kcycleは1000cycleを意味する。得られた結果を表56に示す。
Figure 2006276278

表56に示すように、トナー母粒子100質量部に対してフッ素含有量0.5又は1.0質量%であるフッ素含有酸化セリウムを0.5質量部配合したトナーと、架橋構造を有する最表面層を備える感光体とを組み合わせた実施例1〜6では、100万枚出力試験後であってもフィルミング、像流れ、濃度ムラ、クリーニング不良及びタルクディレッションのすべてが十分に抑制されていることが分かった。さらに、摩耗レートも極めて小さいことが確認された。また、レゾール型フェノール樹脂と上記式(V)又は(VI)で示される化合物とを含む最表面層を有する感光体と、フッ素含有酸化セリウムを含むトナーとを組み合わせた実施例13〜20においても、100万枚出力試験後であってもフィルミング、像流れ、濃度ムラ、クリーニング不良及びタルクディレッションのすべてが十分に抑制されていることが分かった。さらに、現像剤2、3又は5を使用した実施例13〜15及び実施例17〜19では、摩耗レートも極めて小さいことが確認された。
本発明の画像形成装置の好適な一実施形態を示す模式図である。 本発明に係る電子写真感光体の好適な一実施形態を示す模式断面図である。 本発明に係る電子写真感光体の好適な他の実施形態を示す模式断面図である。 本発明に係る電子写真感光体の好適な他の実施形態を示す模式断面図である。 本発明に係る電子写真感光体の好適な他の実施形態を示す模式断面図である。 本発明に係る電子写真感光体の好適な他の実施形態を示す模式断面図である。 本発明の画像形成装置の好適な他の実施形態を示す模式図である。 本発明の画像形成装置の好適な他の実施形態を示す模式図である。 本発明の画像形成装置の好適な他の実施形態を示す模式図である。 本発明のプロセスカートリッジの好適な一実施形態を示す模式図である。
符号の説明
1…電子写真感光体、2…導電性支持体、3…感光層、4…下引層、5…電荷発生層、6…電荷輸送層、7…保護層、8…単層型感光層、21,22…帯電装置、24…現像装置、27…クリーニング装置、30…露光装置、40…転写装置、50…中間転写体、100,110,120,130…画像形成装置、300…プロセスカートリッジ。

Claims (8)

  1. 導電性支持体と該導電性支持体上に形成された感光層とを有する電子写真感光体、前記電子写真感光体を帯電させる帯電手段、帯電した前記電子写真感光体を露光して静電潜像を形成させる露光手段、前記静電潜像をトナーにより現像してトナー像を形成させる現像手段および前記トナー像を被転写媒体に転写する転写手段を備える画像形成装置において、
    前記感光層が、前記導電性支持体から最も遠い側に、電荷輸送能を有し且つ架橋構造を有する最表面層を有し、
    前記トナーが、トナー粒子と、フッ素含有酸化セリウム微粒子と、を含むことを特徴とする画像形成装置。
  2. 前記フッ素含有酸化セリウム微粒子のフッ素含有量が、0.1〜10質量%であることを特徴とする請求項1に記載の画像形成装置。
  3. 前記トナーが、前記フッ素含有酸化セリウム微粒子を前記トナー粒子100質量部に対して0.3〜10質量部含むことを特徴とする請求項1又は2に記載の画像形成装置。
  4. 前記フッ素含有酸化セリウム微粒子の体積平均粒子径が、0.03〜6μmであることを特徴とする請求項1〜3のいずれか1項に記載の画像形成装置。
  5. 前記最表面層が、メチロール基を有するフェノール誘導体と、水酸基、カルボキシル基、アルコキシシリル基、エポキシ基、チオール基及びアミノ基から選択される少なくとも1種を有する電荷輸送材料と、を含有することを特徴とする請求項1〜4のいずれか1項に記載の画像形成装置。
  6. 前記最表面層が、メチロール基を有するフェノール誘導体と、下記一般式(V)又は(VI)で示される電荷輸送材料と、を含有することを特徴とする請求項1〜4のいずれか1項に記載の画像形成装置。
    Figure 2006276278


    [式(V)中、Fは正孔輸送性を有するn7価の有機基を、Tは2価の基を、Yは酸素原子又は硫黄原子を、R、R及びRはそれぞれ独立に水素原子又は1価の有機基を、Rは1価の有機基を、m1は0又は1を、n7は1〜4の整数を、それぞれ示す。但し、RとRは互いに結合してYをヘテロ原子とする複素環を形成してもよい。]
    Figure 2006276278


    [式(VI)中、Fは正孔輸送性を有するn8価の有機基を、Tは2価の基を、Rは1価の有機基を、m2は0又は1を、n8は1〜4の整数を、それぞれ示す。]
  7. 電子写真感光体と、前記電子写真感光体を帯電させる帯電装置、帯電した前記電子写真感光体を露光して静電潜像を形成させる露光装置、前記静電潜像を現像してトナー像を形成する現像装置、及び前記電子写真感光体上に残存するトナーを除去するクリーニング装置のうちの少なくとも前記電子写真感光体と前記現像装置とを備えるプロセスカートリッジであって、
    前記電子写真感光体は、導電性支持体と該導電性支持体上に形成された感光層を備え、前記感光層の前記導電性支持体から最も遠い側に、電荷輸送能を有し且つ架橋構造を有する最表面層が設けられており、
    前記現像装置は、トナー粒子と、フッ素含有酸化セリウム微粒子と、を含むトナーにより前記静電潜像を現像するものであることを特徴とするプロセスカートリッジ。
  8. 導電性支持体と該導電性支持体上に形成された感光層を備え、前記感光層の前記導電性支持体から最も遠い側に、電荷輸送能を有し且つ架橋構造を有する最表面層が設けられた電子写真感光体を準備する電子写真感光体準備工程と、
    トナー粒子と、フッ素含有酸化セリウム微粒子と、を含むトナーを準備するトナー準備工程と、
    前記電子写真感光体を帯電させる帯電工程と、
    帯電した前記電子写真感光体を露光して静電潜像を形成させる露光工程と、
    前記静電潜像を前記トナーにより現像してトナー像を形成させる現像工程と、
    前記トナー像を被転写媒体に転写する転写工程と、
    を有することを特徴とする画像形成方法。
JP2005092994A 2005-03-28 2005-03-28 画像形成装置、プロセスカートリッジ及び画像形成方法 Active JP4600116B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092994A JP4600116B2 (ja) 2005-03-28 2005-03-28 画像形成装置、プロセスカートリッジ及び画像形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092994A JP4600116B2 (ja) 2005-03-28 2005-03-28 画像形成装置、プロセスカートリッジ及び画像形成方法

Publications (2)

Publication Number Publication Date
JP2006276278A true JP2006276278A (ja) 2006-10-12
JP4600116B2 JP4600116B2 (ja) 2010-12-15

Family

ID=37211132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092994A Active JP4600116B2 (ja) 2005-03-28 2005-03-28 画像形成装置、プロセスカートリッジ及び画像形成方法

Country Status (1)

Country Link
JP (1) JP4600116B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194305A (ja) * 2011-03-16 2012-10-11 Ricoh Co Ltd 電子写真感光体、それを用いた画像形成方法、画像形成装置及びプロセスカートリッジ
JP2013073056A (ja) * 2011-09-28 2013-04-22 Ricoh Co Ltd 電子写真感光体及び画像形成装置
JP2020040962A (ja) * 2014-03-27 2020-03-19 日産化学株式会社 N,n,n′,n′−テトラフェニルベンジジン化合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882949A (ja) * 1994-09-12 1996-03-26 Fuji Xerox Co Ltd 静電荷現像用トナー組成物および画像形成方法
JP2001117251A (ja) * 1999-10-20 2001-04-27 Fuji Xerox Co Ltd 有機電子デバイス及び画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882949A (ja) * 1994-09-12 1996-03-26 Fuji Xerox Co Ltd 静電荷現像用トナー組成物および画像形成方法
JP2001117251A (ja) * 1999-10-20 2001-04-27 Fuji Xerox Co Ltd 有機電子デバイス及び画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194305A (ja) * 2011-03-16 2012-10-11 Ricoh Co Ltd 電子写真感光体、それを用いた画像形成方法、画像形成装置及びプロセスカートリッジ
JP2013073056A (ja) * 2011-09-28 2013-04-22 Ricoh Co Ltd 電子写真感光体及び画像形成装置
JP2020040962A (ja) * 2014-03-27 2020-03-19 日産化学株式会社 N,n,n′,n′−テトラフェニルベンジジン化合物

Also Published As

Publication number Publication date
JP4600116B2 (ja) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4885535B2 (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2006084711A (ja) 電子写真感光体用添加物、電子写真感光体、画像形成装置及びプロセスカートリッジ
JP2007133344A (ja) 電荷輸送性化合物、電子写真感光体、画像形成装置及びプロセスカートリッジ
JP2006072293A (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP2008257143A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2008216812A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP4581926B2 (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP4544096B2 (ja) 画像形成装置、電子写真用トナー、および電子写真用現像剤
JP4696894B2 (ja) コーティング剤組成物、電子写真感光体、画像形成装置、及びプロセスカートリッジ
JP4674447B2 (ja) 画像形成装置
JP2006267467A (ja) 電子写真感光体及びその製造方法、並びに、プロセスカートリッジ及び画像形成装置
JP4600116B2 (ja) 画像形成装置、プロセスカートリッジ及び画像形成方法
JP2007114749A (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP2004287075A (ja) 画像形成装置及びプロセスカートリッジ
JP4506582B2 (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP2006243642A (ja) 画像形成装置
JP2005234140A (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP4788168B2 (ja) 電子写真感光体と現像剤との適合性評価方法
JP2006259154A (ja) 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2006178005A (ja) 画像形成装置
JP4839651B2 (ja) 硬化体、硬化体形成用塗布液、電子写真感光体、最表面層形成用塗布液、プロセスカートリッジ及び画像形成装置
JP4840064B2 (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP4696866B2 (ja) 電子写真感光体及びその製造方法、プロセスカートリッジ、並びに、画像形成装置
JP2006047869A (ja) 電子写真感光体及びその製造方法、電子写真装置、プロセスカートリッジ
JP4631502B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4600116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350