JP2006270064A - High-frequency device mounting substrate and characteristics evaluating method of high frequency device - Google Patents

High-frequency device mounting substrate and characteristics evaluating method of high frequency device Download PDF

Info

Publication number
JP2006270064A
JP2006270064A JP2006039496A JP2006039496A JP2006270064A JP 2006270064 A JP2006270064 A JP 2006270064A JP 2006039496 A JP2006039496 A JP 2006039496A JP 2006039496 A JP2006039496 A JP 2006039496A JP 2006270064 A JP2006270064 A JP 2006270064A
Authority
JP
Japan
Prior art keywords
frequency device
device mounting
mounting substrate
ground electrode
coaxial connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006039496A
Other languages
Japanese (ja)
Other versions
JP4873958B2 (en
Inventor
Wataru Koga
亘 古賀
Hiroki Kan
紘己 韓
Hiroko Yokota
裕子 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006039496A priority Critical patent/JP4873958B2/en
Publication of JP2006270064A publication Critical patent/JP2006270064A/en
Application granted granted Critical
Publication of JP4873958B2 publication Critical patent/JP4873958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency device mounting substrate capable of attaching/detaching a coaxial connector in a short time without applying an excessive aging on a high-frequency device which is mounted, or without damaging a central conductor of the coaxial connector and a signal electrode, while assuring rigid connection during measurement. <P>SOLUTION: In a high-frequency device mounting substrate 1, a plurality of through holes 5 penetrating a circuit board 10 are formed, being arranged along the outer periphery at the part of outer peripheral side of the circuit board 10 of the high-frequency device mounting substrate 1, on a ground electrode 4 of the high-frequency device mounting substrate 1 to which the outer peripheral conductor of the coaxial connector is connected using solder, which are connected to an internal ground conductor layer 13 by way of a conductor layer 7 coating the inner surface of the through hole 5. Since the parasitic inductance of the ground electrode 4 can be decreased while the solder continues from the inside of the through hole 5 to the outer periphery conductor of the coaxial connector, the high frequency device mounting substrate 1 is rigidly connected to the coaxial connector. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高周波デバイスを実装する基板に関するものであり、特に移動体通信機器に使用される高周波デバイスであるフィルタ又は送受信分波回路(以下、分波器又はデュプレクサと呼ぶ)を実装するのに好適な高周波デバイス実装基板、及び前記高周波デバイス実装基板に実装された高周波デバイスの特性を評価する方法に関するものである。   The present invention relates to a substrate on which a high-frequency device is mounted, and is particularly suitable for mounting a filter or a transmission / reception demultiplexing circuit (hereinafter referred to as a demultiplexer or duplexer) that is a high-frequency device used in mobile communication equipment. The present invention relates to a high frequency device mounting substrate and a method for evaluating characteristics of a high frequency device mounted on the high frequency device mounting substrate.

近年、携帯電話等の移動体通信機器に使用される弾性表面波フィルタなどの高周波フィルタに対して、小型・軽量で、通過帯域内では低損失であり、通過帯域外での減衰量が大きく、かつ通過帯域から通過帯域外にかけての特性変化が急峻であるという特性を満たすことへの要求が強くなっている。   In recent years, high-frequency filters such as surface acoustic wave filters used in mobile communication devices such as mobile phones are small and lightweight, have low loss in the passband, and have a large attenuation outside the passband. In addition, there is a strong demand for satisfying the characteristic that the characteristic change from the passband to the outside of the passband is steep.

また、送信側周波数帯(例えば比較的低周波側の周波数帯)の信号と受信側周波数帯(例えば比較的高周波側の周波数帯)の信号とを分離するデュプレクサに対しても、小型・軽量で、デュプレクサに用いられる送信用フィルタにおいては送信帯域では低損失でかつ受信帯域では高減衰であり、受信用フィルタにおいては受信帯域では低損失でかつ送信帯域では高減衰であることが求められている。また、デュプレクサに対しては、送信信号が送信端子から受信端子へ漏れるのを防ぐために、送信端子から受信端子へのアイソレーション特性が良好なことが求められている。また、デュプレクサとして、送信用高周波フィルタである例えば低周波数帯域側高周波フィルタ及び受信用高周波フィルタである例えば高周波数帯域側高周波フィルタが一体化された、さらに小型の素子が要求されている。   In addition, the duplexer that separates a signal in a transmission side frequency band (for example, a frequency band on a relatively low frequency side) and a signal in a reception side frequency band (for example, a frequency band on a relatively high frequency side) is also small and lightweight. The transmission filter used in the duplexer is required to have low loss in the transmission band and high attenuation in the reception band, and the reception filter must have low loss in the reception band and high attenuation in the transmission band. . Also, the duplexer is required to have good isolation characteristics from the transmission terminal to the reception terminal in order to prevent the transmission signal from leaking from the transmission terminal to the reception terminal. Further, as a duplexer, there is a demand for a smaller element in which a transmission high-frequency filter such as a low-frequency band side high-frequency filter and a reception high-frequency filter such as a high-frequency band side high-frequency filter are integrated.

前記要求を満たさない高周波デバイスを通信機器に用いれば、不要な無線信号を送信したり、又は受信したりすることとなり、受信した無線信号の品質が低下したり、他の無線通信機器への妨害等の問題が発生したりする可能性がある。   If a high-frequency device that does not satisfy the above requirements is used for communication equipment, unnecessary radio signals will be transmitted or received, and the quality of the received radio signals will deteriorate, or interference with other radio communication equipment will occur. Or other problems may occur.

その中でデュプレクサには、従来、誘電体を用いたものが使用されてきた。しかし、誘電体分波器は現状の通信規格の周波数帯では原理的に小型にすることができなかった。   Among them, conventionally, a duplexer using a dielectric has been used. However, the dielectric duplexer could not be made small in principle in the frequency band of the current communication standard.

そこで近年、弾性表面波素子を用いたフィルタをデュプレクサに利用する試みがなされている。   Therefore, in recent years, attempts have been made to use a filter using a surface acoustic wave element for a duplexer.

弾性表面波素子は通常、圧電基板上に櫛歯状電極を有する複数の励振電極が形成されて構成される。櫛歯状電極の電極指の周期は、圧電基板の圧電材料の音速と弾性表面波素子が使用される周波数帯とによってほぼ決定される。例えば、タンタル酸リチウム単結晶を圧電基板として用いて800MHz帯で使用される弾性表面波フィルタを作製する場合であれば、電極指の周期は約4μmとなり、櫛歯状電極の電極指の1本当りの幅及び隣接する電極指との距離(ギャップ)は共に約1μm程度となる。   A surface acoustic wave element is usually configured by forming a plurality of excitation electrodes having comb-like electrodes on a piezoelectric substrate. The period of the electrode fingers of the comb-like electrode is substantially determined by the sound speed of the piezoelectric material of the piezoelectric substrate and the frequency band in which the surface acoustic wave element is used. For example, in the case of producing a surface acoustic wave filter used in the 800 MHz band using a lithium tantalate single crystal as a piezoelectric substrate, the period of the electrode fingers is about 4 μm, and one of the electrode fingers of the comb-like electrode Both the contact width and the distance (gap) between adjacent electrode fingers are about 1 μm.

従来から、櫛歯状電極の電極材料には、製造上の扱い易さ及び導電率の高さからアルミニウムを主体とする材料が使用されていた。これに対し、近年では、アルミニウムへの添加元素の種類を工夫したり、アルミニウムを主体とした材料と他の導体材料との積層構造としたりすることによって、細くてもデュプレクサに必要な耐電力性を有している電極指を実現することができるようになった。   Conventionally, a material mainly composed of aluminum has been used as the electrode material of the comb-like electrode because of ease of handling in manufacturing and high conductivity. On the other hand, in recent years, it is necessary to devise a kind of additive element to aluminum, or to make a laminated structure of a material mainly composed of aluminum and another conductor material, so that the power durability necessary for a duplexer is thin even if it is thin. It has become possible to realize an electrode finger having

一方、弾性表面波素子の小型化・軽量化も進められている。従来は、パッケージ本体の凹部の中に弾性表面波デバイスを実装し、ワイヤボンディング技術により弾性表面波デバイスの電極パターンとパッケージの端子部とを接続した後、その凹部をキャップ等により気密封止することにより弾性表面波素子を作製することが一般的であった。これに対し、近年さらに小型化・軽量化を進めるためにCSP(Chip Size Package:チップサイズパッケージ)技術を積極的に活用し、弾性表面波デバイスを回路基板上にフリップチップ実装することにより、従来のワイヤボンディングに必要なスペースや高さを削減することも提案されている。   On the other hand, surface acoustic wave elements are being reduced in size and weight. Conventionally, a surface acoustic wave device is mounted in a recess of a package body, the electrode pattern of the surface acoustic wave device and the terminal portion of the package are connected by wire bonding technology, and then the recess is hermetically sealed with a cap or the like. Thus, it is common to produce a surface acoustic wave device. On the other hand, in order to further reduce the size and weight in recent years, CSP (Chip Size Package) technology has been actively utilized, and surface acoustic wave devices have been mounted on a circuit board by flip chip mounting. It has also been proposed to reduce the space and height required for wire bonding.

以上のような弾性表面波フィルタやデュプレクサ等の高周波デバイスの特性を評価するためには、実際にそれら高周波デバイスを搭載する携帯電話等に使用される回路基板において帯域外減衰特性やアイソレーション特性を満たさなければならないため、それら高周波デバイスを評価用の実装基板に搭載して、所望の特性が得られているかどうかを測定し評価することが行なわれる。そして、そのための高周波デバイス実装基板には、所望の特性の測定・評価に当たって、その実装基板に起因して正しく測定・評価が行なえなくなるような影響を与えるものでないことが要求されている。   In order to evaluate the characteristics of high-frequency devices such as surface acoustic wave filters and duplexers as described above, the out-of-band attenuation characteristics and isolation characteristics of circuit boards used in mobile phones and other devices that are actually equipped with these high-frequency devices are measured. Since these must be satisfied, these high frequency devices are mounted on a mounting substrate for evaluation, and it is measured and evaluated whether or not desired characteristics are obtained. The high-frequency device mounting substrate for that purpose is required not to affect the measurement / evaluation of desired characteristics so that the measurement / evaluation cannot be performed correctly due to the mounting substrate.

測定・評価は正確に行なわれなければならないので、通常、高周波デバイスと高周波デバイス実装基板との間の接続や、高周波デバイス実装基板と測定器に接続された同軸ケーブルとを接続するための同軸コネクタと高周波デバイス実装基板との間は半田を用いて強固に確実な導電性を確保して接続される必要がある。   Since the measurement and evaluation must be performed accurately, the coaxial connector is usually used to connect the high-frequency device and the high-frequency device mounting board, or the high-frequency device mounting board and the coaxial cable connected to the measuring instrument. And a high-frequency device mounting substrate need to be firmly and securely connected using solder.

図10に、一般的な高周波デバイス実装基板と、それに接続された高周波デバイス及び同軸コネクタとの概略斜視図を示す。   FIG. 10 shows a schematic perspective view of a general high-frequency device mounting substrate, a high-frequency device connected thereto, and a coaxial connector.

高周波デバイス実装基板1は複数の絶縁体層12(図示せず)が積層され内部に接地導体層(図示せず)が形成された回路基板10の表面に必要な電気回路を導体で形成したものである。   The high-frequency device mounting substrate 1 is formed by forming a necessary electric circuit with a conductor on the surface of a circuit board 10 in which a plurality of insulator layers 12 (not shown) are stacked and a ground conductor layer (not shown) is formed inside. It is.

この電気回路は、評価したい高周波デバイス11を実装するための端子電極(図示せず)と、測定器に接続されたケーブルと高周波デバイス実装基板1とを接続するために取り付ける同軸コネクタを接続するための信号電極3及び接地電極4と、高周波デバイス11の端子電極と信号電極3とを接続する信号線6とによって構成される。   This electric circuit is used to connect a terminal electrode (not shown) for mounting the high-frequency device 11 to be evaluated and a coaxial connector attached to connect the cable connected to the measuring instrument and the high-frequency device mounting substrate 1. The signal electrode 3 and the ground electrode 4, and the signal line 6 that connects the terminal electrode of the high-frequency device 11 and the signal electrode 3.

また、回路基板10の絶縁体層を貫通する貫通孔17を設け、貫通孔17の内面にも導体層を設けることにより内部の接地導体層を互いに電気的に接続し、接地電極4の寄生インダクタンスを小さくすることにより接地効果を大きくすることもある。   Further, by providing a through hole 17 penetrating the insulator layer of the circuit board 10 and providing a conductor layer on the inner surface of the through hole 17, the internal ground conductor layers are electrically connected to each other, and the parasitic inductance of the ground electrode 4 The grounding effect may be increased by decreasing the height.

同軸コネクタは通常、信号を伝えるための中心導体14と、これを取り囲み接地される外周導体15と、これらを絶縁する絶縁部材とからなり、中心導体14は高周波デバイス実装基板1の信号電極3と接続できるよう、絶縁部材から突出した形状となっており、信号電極3の幅に合わせた太さのものが用いられる。   The coaxial connector normally includes a central conductor 14 for transmitting a signal, an outer peripheral conductor 15 surrounding and grounding the central conductor 14, and an insulating member for insulating them. The central conductor 14 is connected to the signal electrode 3 of the high-frequency device mounting substrate 1. A shape that protrudes from the insulating member so as to be connected and has a thickness that matches the width of the signal electrode 3 is used.

それぞれの部材を図10のように組み立てるには、まず、回路基板10上に形成された端子電極にクリーム半田を塗布し、その上に端子電極に対応する位置に電極を設けた高周波デバイス11を搭載し、リフローすることにより高周波デバイス実装基板1と高周波デバイス11とを接続した後、信号電極3及び接地電極4と、同軸コネクタの中心導体14及び外周導体15とを、それぞれ糸半田及び半田ごてを用いて半田で接続する。   In order to assemble each member as shown in FIG. 10, first, a cream solder is applied to a terminal electrode formed on the circuit board 10, and a high frequency device 11 in which an electrode is provided at a position corresponding to the terminal electrode is provided. After the high-frequency device mounting substrate 1 and the high-frequency device 11 are connected by mounting and reflowing, the signal electrode 3 and the ground electrode 4, and the central conductor 14 and the outer peripheral conductor 15 of the coaxial connector are respectively connected to the thread solder and the soldering iron. Use soldering to connect with solder.

そして、同軸コネクタを測定器に接続された同軸ケーブルに接続し、高周波デバイス11の特性を測定する。
特開2002−257878号公報
Then, the coaxial connector is connected to the coaxial cable connected to the measuring instrument, and the characteristics of the high-frequency device 11 are measured.
JP 2002-257878 A

ところで、図10に示す例で用いた同軸コネクタの導体部分(中心導体14,外周導体15)の表面は、酸化してしまうとその分電気抵抗が増加してしまうため高周波デバイス11の特性を実際より悪く見せてしまうので、通常は金メッキすることによって酸化を防いでいる。このためこのような部品は高価であり、1度測定が終わっても使い捨てにせずに高周波デバイス実装基板から取り外し、破損するまで再利用したいという要求があった。   By the way, the surface of the conductor portion (the central conductor 14 and the outer conductor 15) of the coaxial connector used in the example shown in FIG. Since it looks worse, it is usually protected by oxidation by gold plating. For this reason, such a component is expensive, and there has been a demand for removing it from the high-frequency device mounting substrate instead of being disposable even after one measurement and reusing it until it is damaged.

また、高周波デバイス実装基板1は通常、搭載する高周波デバイス11の特性に合わせて電気的な設計がなされているが(例えば、特許文献1を参照)、より高周波デバイス11の特性を引き出すために異なる設計の高周波デバイス実装基板1を評価する必要がある場合には、高周波デバイス11の特性ばらつきが評価結果に影響を与えないようにするために高周波デバイス11を取り外して高周波デバイス実装基板1を使い回したいという要求があった。   The high-frequency device mounting substrate 1 is usually designed electrically according to the characteristics of the high-frequency device 11 to be mounted (see, for example, Patent Document 1). When it is necessary to evaluate the designed high frequency device mounting substrate 1, the high frequency device 11 is removed and the high frequency device mounting substrate 1 is reused so that the characteristic variation of the high frequency device 11 does not affect the evaluation result. There was a request to do.

また逆に、異なる設計の高周波デバイス11の特性差を高周波デバイス実装基板1の特性ばらつきに影響されずに評価したい場合には、同じく高周波デバイス11を取り外して高周波デバイス実装基板1を使い回したいという要求があった。   Conversely, when it is desired to evaluate the characteristic difference between the high-frequency devices 11 of different designs without being affected by the characteristic variation of the high-frequency device mounting substrate 1, it is also desired to remove the high-frequency device 11 and reuse the high-frequency device mounting substrate 1. There was a request.

これらの要求を実施するためには、高周波デバイス実装基板1を半田が溶融する温度(200℃〜300℃)にまで加熱し、ピンセット等で高周波デバイス11を取り外す必要がある。このとき同軸コネクタが高周波デバイス実装基板1に接続された状態のままであると、高周波デバイス11を取り外すためには図10で示した構成全体を半田が溶融する温度にまで加熱する必要があり、作業の安全性に問題がある。また、高周波デバイス11が外れる温度では同軸コネクタの接続も非常に不安定になってしまい、作業性が悪い。   In order to implement these requirements, it is necessary to heat the high frequency device mounting substrate 1 to a temperature (200 ° C. to 300 ° C.) at which the solder melts, and to remove the high frequency device 11 with tweezers or the like. At this time, if the coaxial connector remains connected to the high frequency device mounting substrate 1, in order to remove the high frequency device 11, it is necessary to heat the entire configuration shown in FIG. 10 to a temperature at which the solder melts. There is a problem with work safety. Further, at a temperature at which the high-frequency device 11 is detached, the connection of the coaxial connector becomes very unstable, and workability is poor.

従って、通常、高周波デバイス11を高周波デバイス実装基板1から取り外す際には、一旦同軸コネクタを半田ごてを用いて取り外し、その後、高周波デバイス実装基板1をホットプレート等の上で半田が溶融する温度まで加熱し、ピンセット等で高周波デバイス11を取り外すという作業が行なわれる。   Therefore, normally, when removing the high frequency device 11 from the high frequency device mounting substrate 1, the coaxial connector is once removed using a soldering iron, and then the solder melts the high frequency device mounting substrate 1 on a hot plate or the like. And the high frequency device 11 is removed with tweezers or the like.

ここで、同軸コネクタを高周波デバイス実装基板1から半田ごてを用いて取り外す際に長い時間がかかってしまったり、半田ごての先端が高周波デバイス11の近傍に近づいたりすると、高周波デバイス11に熱が伝わってしまい、望ましくないエージングがなされてしまうことになる。   Here, if it takes a long time to remove the coaxial connector from the high-frequency device mounting substrate 1 using a soldering iron, or if the tip of the soldering iron approaches the vicinity of the high-frequency device 11, the high-frequency device 11 is heated. Will be transmitted and undesirable aging will occur.

例えば高周波デバイス11が弾性表面波素子である場合は、前述のような細い電極指が狭いギャップで多数配置されてなる櫛歯状電極を使用しているため、加熱によって櫛歯状電極の電極材料であるアルミニウムがマイグレーションを起こし、アルミニウム原子が結晶粒界を移動して電極に突起(ヒロック)及び空隙(ボイド)を発生させるため、IDT電極の櫛歯状電極間で短絡不良を発生させる場合があった。また、マイグレーションが起こるほどではなくとも、アルミニウムは融点が低い材料であるため、半田の溶融温度程度でも長時間の加熱により再結晶化やアルミニウムと接触する材料との合金化が進み、予期しなかった抵抗の増大や耐電力性の低下が起こる場合があった。   For example, when the high-frequency device 11 is a surface acoustic wave element, since the comb-like electrode in which many thin electrode fingers as described above are arranged with a narrow gap is used, the electrode material of the comb-like electrode by heating is used. May cause migration, and aluminum atoms move through the grain boundaries to generate protrusions (hillocks) and voids (voids) in the electrodes, which may cause short-circuit defects between comb-like electrodes of IDT electrodes. there were. In addition, even though migration does not occur, aluminum is a material with a low melting point. Therefore, recrystallization and alloying with materials that come into contact with aluminum have progressed due to heating for a long time even at the melting temperature of the solder. In some cases, the resistance increased and the power durability decreased.

また、圧電基板は焦電性を伴うため、半田ごてが接近したことにより急激な温度変化があると、狭い電極指間でスパークが発生し素子を破壊してしまう場合があった。特に弾性表面波素子などの高周波デバイス11自体に半田ごてが接近しなくとも、高周波デバイス11の端子電極は半田ごてが直接接する信号電極3と信号線6とを介して接続されているため、導電率が高いため熱伝導率が高い信号線6を熱が伝搬し、さらに高周波デバイス11内の接続導体を伝搬した熱が圧電基板上の電極に至り、その電極と周りとの間に温度差が生じ焦電効果によってスパークが発生してしまう場合があった。   In addition, since the piezoelectric substrate has pyroelectricity, if there is a rapid temperature change due to the approach of the soldering iron, sparks may be generated between the narrow electrode fingers and the element may be destroyed. In particular, even if the soldering iron does not approach the high-frequency device 11 itself such as a surface acoustic wave element, the terminal electrode of the high-frequency device 11 is connected via the signal electrode 3 and the signal line 6 that are in direct contact with the soldering iron. The heat propagates through the signal line 6 having a high thermal conductivity because of its high conductivity, and further the heat propagated through the connection conductor in the high-frequency device 11 reaches the electrode on the piezoelectric substrate, and the temperature between the electrode and the surroundings. There was a case where a spark occurred due to the pyroelectric effect.

また、近年、高周波デバイス11、特に弾性表面波素子は小型化・軽量化が進められており、それに伴いデバイス自体の熱容量が小さくなるため、より耐熱性が劣化してしまうという問題があることから、前述のように同軸コネクタを取り外す必要があるときには、従来の作業時間に比べてより短時間の加熱時間で取り外しを完了したいという要求があった。   In recent years, the high-frequency device 11, particularly the surface acoustic wave element, has been reduced in size and weight, and the heat capacity of the device itself is reduced accordingly, so that the heat resistance is further deteriorated. When it is necessary to remove the coaxial connector as described above, there has been a demand to complete the removal in a shorter heating time than the conventional work time.

このように高周波デバイス実装基板1に搭載した高周波デバイス11に対してなるべく熱による影響を与えないようにして、高周波デバイス実装基板1に接続していた同軸コネクタを取り外したいという要求があった。しかし、高周波デバイス実装基板1と同軸コネクタとは、図10に示したとおり高周波デバイス実装基板1の主面と同軸コネクタの外周導体15とがほぼ垂直に接するように接続されるため、接続箇所には溶融した半田は流れ込むが半田ごてが届き難い部分があり、その部分には半田ごての温度を伝えにくいためにどうしても長時間その近辺を加熱する必要があった。   Thus, there has been a demand for removing the coaxial connector connected to the high frequency device mounting substrate 1 so as not to affect the high frequency device 11 mounted on the high frequency device mounting substrate 1 by heat as much as possible. However, the high-frequency device mounting board 1 and the coaxial connector are connected so that the main surface of the high-frequency device mounting board 1 and the outer peripheral conductor 15 of the coaxial connector are in contact with each other almost vertically as shown in FIG. The molten solder flows in, but there is a part where the soldering iron is difficult to reach, and it is difficult to convey the temperature of the soldering iron, so it was necessary to heat the vicinity for a long time.

また、同軸コネクタの外周導体15と高周波デバイス実装基板1との接続を確実に取ることにより接触抵抗を小さくするためや、長時間バイアスを印加して高周波デバイス11の特性変化を見るような測定をする際に同軸コネクタと高周波デバイス実装基板1とが測定中に外れることがないようにするために、高周波デバイス実装基板1の裏面にも接地電極を設け、この部分も同軸コネクタの外周導体15と半田で接合することにより強固で確実な接続を確保する必要があることがある。   Further, in order to reduce the contact resistance by reliably connecting the outer peripheral conductor 15 of the coaxial connector and the high-frequency device mounting substrate 1, or to measure the characteristics of the high-frequency device 11 by applying a bias for a long time. In order to prevent the coaxial connector and the high-frequency device mounting substrate 1 from coming off during measurement, a ground electrode is also provided on the back surface of the high-frequency device mounting substrate 1, and this portion is also connected to the outer peripheral conductor 15 of the coaxial connector. It may be necessary to ensure a strong and reliable connection by joining with solder.

このような場合には、同軸コネクタを取り外す際には高周波デバイス実装基板1の主面(表面)と裏面との両面の半田を除去しなければならない。しかし、主面の接地電極4と裏面の接地電極との間には熱伝導率の小さい絶縁体層があるため両面の半田を同時に除去することができず、片方の面の半田を除去した後、もう片方の面の半田を除去しようとすると、もう片方の面の半田を除去する時に、溶融した半田が同軸コネクタと高周波デバイス実装基板1の外周部の接触部分との隙間から先に半田を除去した面に流れ込み、その面の接地電極4と同軸コネクタの外周導体15とが再び接続されてしまう場合があった。特に、測定のために同軸コネクタと高周波デバイス実装基板1とを最初に接続した際に前記隙間に半田が流れ込んでいると、片方の面の半田を除去しようとしてももう片方の面の半田がじわじわと供給され続けることとなり、同軸コネクタを取り外すのに非常に長い時間がかかってしまう場合があった。これらのような場合、何度も高周波デバイス実装基板1を裏返して取り外し作業を行なうことになるが、その際には片方の面の接続はわずかな量の半田で接続された不安定な状態であるため同軸コネクタの細い中心導体14に負荷がかかることとなるので、中心導体14が折れてしまったり、高周波デバイス実装基板1の信号電極3が中心導体14に引っ張られて剥がれてしまったりする場合があった。   In such a case, when removing the coaxial connector, the solder on both the main surface (front surface) and the back surface of the high-frequency device mounting substrate 1 must be removed. However, since there is an insulator layer having a low thermal conductivity between the ground electrode 4 on the main surface and the ground electrode on the back surface, the solder on both surfaces cannot be removed at the same time, and after the solder on one surface is removed If the solder on the other surface is to be removed, when the solder on the other surface is removed, the melted solder firstly passes through the gap between the coaxial connector and the contact portion of the outer peripheral portion of the high-frequency device mounting substrate 1. In some cases, it flows into the removed surface, and the ground electrode 4 on the surface and the outer peripheral conductor 15 of the coaxial connector are connected again. In particular, when solder is flowing into the gap when the coaxial connector and the high-frequency device mounting substrate 1 are first connected for measurement, the solder on the other side is gradually removed even if the solder on one side is removed. In some cases, it takes a very long time to remove the coaxial connector. In such cases, the high frequency device mounting substrate 1 is turned over and removed many times, but in that case, the connection on one side is in an unstable state with a small amount of solder connected. For this reason, a load is applied to the thin center conductor 14 of the coaxial connector, so that the center conductor 14 is broken or the signal electrode 3 of the high-frequency device mounting substrate 1 is pulled by the center conductor 14 and peeled off. was there.

さらに、前記のように測定・評価を行う場合のみならず、高周波デバイス実装基板を基地局や端末などの通信機器に搭載して、実運用する場合でも、高周波デバイス実装基板と他の回路部品とを接続するための同軸コネクタと高周波デバイス実装基板との間は、半田を用いて強固に接続することが要求されている。接続が弱いと、導電性の確実性が失われ、高周波デバイスの動作の信頼度が低下してしまう。   Furthermore, not only when performing measurement / evaluation as described above, but also when mounting a high-frequency device mounting board in a communication device such as a base station or a terminal and actually operating it, the high-frequency device mounting board and other circuit components It is required that the coaxial connector for connecting the connector and the high-frequency device mounting substrate be firmly connected using solder. If the connection is weak, the certainty of conductivity is lost, and the reliability of the operation of the high-frequency device is lowered.

本発明は以上のような従来の技術における問題点に鑑みて案出されたものであり、その目的は、搭載された高周波デバイスに過度のエージングを与えたり高周波デバイス実装基板の信号電極や同軸コネクタの中心導体にダメージを与えたりすることなく短時間に同軸コネクタを取り外すことができ、かつ、測定中は強固な接続を確保することができる高周波デバイス実装基板を提供することにある。   The present invention has been devised in view of the above-described problems in the prior art, and its purpose is to give excessive aging to the mounted high-frequency device or to provide signal electrodes and coaxial connectors on the high-frequency device mounting substrate. It is an object of the present invention to provide a high-frequency device mounting substrate that can remove a coaxial connector in a short time without damaging the central conductor of the semiconductor device and that can ensure a strong connection during measurement.

本発明の他の目的は、同軸コネクタとの強固な接続を確保することができ、かつ取り外すときには、簡単に同軸コネクタを取り外すことができる高周波デバイス実装基板を提供することにある。   Another object of the present invention is to provide a high-frequency device mounting substrate that can ensure a strong connection with a coaxial connector and that can be easily removed when removed.

本発明のさらに他の目的は、前記高周波デバイス実装基板に実装された高周波デバイスの特性を、高い信頼度で評価することのできる高周波デバイスの特性評価方法を提供することにある。   Still another object of the present invention is to provide a method for evaluating the characteristics of a high-frequency device that can evaluate the characteristics of the high-frequency device mounted on the high-frequency device mounting substrate with high reliability.

本発明の高周波デバイス実装基板は、絶縁体層の裏面又は内部に導体層を有する回路基板と、前記回路基板の表面に設置された、高周波デバイスを搭載するための端子電極と、前記回路基板の表面に設置され、前記端子電極につながる信号線と、前記回路基板の表面の周辺部に配置され、前記信号線につながり、同軸コネクタの中心導体が接続される信号電極と、前記回路基板の表面の周辺部に配置され、前記同軸コネクタの外周導体を半田を用いて接続するための接地電極であって、前記半田が付着する領域に、前記回路基板を貫通するとともに内面に導体層が被着された貫通孔が形成された接地電極と、を具備する。   The high-frequency device mounting substrate of the present invention includes a circuit board having a conductor layer on the back surface or inside of an insulator layer, a terminal electrode mounted on the surface of the circuit board for mounting a high-frequency device, and the circuit board. A signal line installed on the surface and connected to the terminal electrode, a signal electrode arranged at a peripheral portion of the surface of the circuit board, connected to the signal line and connected to a central conductor of the coaxial connector, and a surface of the circuit board A ground electrode for connecting the outer peripheral conductor of the coaxial connector using solder, penetrating the circuit board in a region to which the solder adheres and having a conductor layer deposited on the inner surface And a ground electrode having a through hole formed therein.

本発明の高周波デバイス実装基板は、上記構成において、前記回路基板は、複数の絶縁体層が積層された積層基板であり、その内部に内部導体層が形成され、前記貫通孔の内面に形成された導体層は、前記内部導体層に接続されているものである。   The high-frequency device mounting substrate of the present invention has the above-described configuration, and the circuit substrate is a laminated substrate in which a plurality of insulator layers are laminated, and an internal conductor layer is formed therein, and is formed on the inner surface of the through hole. The conductor layer is connected to the inner conductor layer.

本発明の高周波デバイス実装基板は、上記構成において、前記回路基板は、その裏面の前記接地電極と対応する部位に第2の接地電極が形成され、前記第2の接地電極は、前記貫通孔の内面に形成された前記導体層を介して前記回路基板の表面の前記接地電極に接続されているものである。   The high-frequency device mounting board of the present invention has the above-described configuration, wherein the circuit board is formed with a second ground electrode at a portion corresponding to the ground electrode on the back surface, and the second ground electrode is formed of the through hole. It is connected to the ground electrode on the surface of the circuit board through the conductor layer formed on the inner surface.

本発明の高周波デバイス実装基板は、上記構成において、前記貫通孔は、前記接地電極の、前記回路基板の外周に沿った部位に複数配置されているものである。   The high-frequency device mounting substrate of the present invention has the above-described configuration, in which a plurality of the through holes are arranged in a portion of the ground electrode along the outer periphery of the circuit board.

本発明の高周波デバイス実装基板は、上記構成において、前記貫通孔は、前記接地電極の前記信号線と反対側の部位に、前記回路基板の外周から中央部に向かって配置されているものである。   The high-frequency device mounting substrate of the present invention has the above-described configuration, wherein the through hole is disposed at a portion of the ground electrode opposite to the signal line from the outer periphery to the center portion of the circuit substrate. .

本発明の高周波デバイス実装基板は、前記接地電極に、前記回路基板の表面に前記信号線に沿って形成された表面接地導体層が接続されているものである。   In the high-frequency device mounting board of the present invention, a surface ground conductor layer formed along the signal line on the surface of the circuit board is connected to the ground electrode.

本発明の高周波デバイスの特性評価方法は、高周波デバイス実装基板に実装された高周波デバイスの特性を評価する方法であって、高周波デバイスを、上記構成の本発明の高周波デバイス実装基板に実装する工程と、半田を用いて前記高周波デバイス実装基板に同軸コネクタを接続する同軸コネクタ接続工程と、前記高周波デバイス実装基板に実装された前記高周波デバイスの特性検査を行う特性検査工程とを含むものである。   The method for evaluating the characteristics of a high-frequency device according to the present invention is a method for evaluating the characteristics of a high-frequency device mounted on a high-frequency device mounting substrate, the step of mounting the high-frequency device on the high-frequency device mounting substrate according to the present invention having the above-described configuration, And a coaxial connector connecting step of connecting a coaxial connector to the high frequency device mounting substrate using solder, and a characteristic inspection step of performing a characteristic inspection of the high frequency device mounted on the high frequency device mounting substrate.

本発明の高周波デバイス実装基板によれば、絶縁体層の裏面又は内部に導体層を有する回路基板と、前記回路基板の表面に設置された、高周波デバイスを搭載するための端子電極と、前記回路基板の表面に設置され、前記端子電極につながる信号線と、前記回路基板の表面の周辺部に配置され、前記信号線につながり、同軸コネクタの中心導体が接続される信号電極と、前記回路基板の表面の周辺部に配置され、前記同軸コネクタの外周導体を、半田を用いて接続するための接地電極とを備え、前記接地電極には、前記半田が付着する領域に、前記回路基板を貫通する貫通孔が形成されており、該貫通孔の内面には導体層が被着されているものである。   According to the high-frequency device mounting substrate of the present invention, a circuit board having a conductor layer on the back surface or inside of the insulator layer, a terminal electrode for mounting a high-frequency device installed on the surface of the circuit board, and the circuit A signal line installed on the surface of the substrate and connected to the terminal electrode; a signal electrode disposed in a peripheral portion of the surface of the circuit board; connected to the signal line and connected to a central conductor of a coaxial connector; and the circuit board And a ground electrode for connecting the outer peripheral conductor of the coaxial connector using solder, and the ground electrode penetrates the circuit board in a region to which the solder adheres. A through hole is formed, and a conductor layer is deposited on the inner surface of the through hole.

この高周波デバイス実装基板によれば、同軸コネクタの外周導体を、半田を用いて取り付ける際に、接地電極に形成された貫通孔内に半田が流入する。これによって、同軸コネクタの外周導体を、回路基板の接地電極に対して強固に接合することができる。   According to this high-frequency device mounting substrate, when the outer peripheral conductor of the coaxial connector is attached using solder, the solder flows into the through hole formed in the ground electrode. As a result, the outer peripheral conductor of the coaxial connector can be firmly joined to the ground electrode of the circuit board.

また、従来の図10のように回路基板10のより高周波デバイス11に近い部分に貫通孔17を設けるよりも、より寄生インダクタンスが小さい状態で内部の接地導体層を測定器の接地電位と接続することができるため、より正確に高周波デバイスの特性を測定することができる。   Further, the internal ground conductor layer is connected to the ground potential of the measuring instrument in a state where the parasitic inductance is smaller than when the through hole 17 is provided in the portion closer to the high frequency device 11 of the circuit board 10 as shown in FIG. Therefore, the characteristics of the high frequency device can be measured more accurately.

前記回路基板は、複数の絶縁体層が積層された積層基板であり、その内部に内部導体層が形成され、前記貫通孔の内面に形成された導体層は、前記内部導体層に接続されていてもよい。   The circuit board is a laminated board in which a plurality of insulator layers are laminated, an internal conductor layer is formed therein, and the conductor layer formed on the inner surface of the through hole is connected to the internal conductor layer. May be.

また、前記回路基板の裏面の前記接地電極と対応する部位に第2の接地電極が形成されており、該第2の接地電極は、前記貫通孔の内面に形成された前記導体層を介して前記接地電極に接続されていることが好ましい。   Further, a second ground electrode is formed at a portion corresponding to the ground electrode on the back surface of the circuit board, and the second ground electrode is interposed through the conductor layer formed on the inner surface of the through hole. It is preferable to be connected to the ground electrode.

この構造では、前述のように回路基板の裏面の第2の接地電極も同軸コネクタの外周導体と接続する場合に、表面の接地電極と裏面の第2の接地電極とのそれぞれ上部に存在する半田と接地電極間を貫通している貫通孔内の半田が連続に存在して同軸コネクタの外周導体と接続された状態とすることができるため、同軸コネクタがより強固に接続される。それとともに、半田接続する際に、貫通孔内の半田を介して半田ごての熱が片方の面(例えば表面)に存在する半田からもう片方の面(例えば裏面)に存在する半田へと速やかに伝搬するため両面の半田を同時に溶融することができ、このため、貫通孔を介して両面の半田量が均等化されるため、同軸コネクタの中心導体や高周波デバイス実装基板の信号電極にかかる負荷を小さくすることができる。   In this structure, as described above, when the second ground electrode on the back surface of the circuit board is also connected to the outer peripheral conductor of the coaxial connector, the solder existing on the upper surface of the ground electrode on the front surface and the second ground electrode on the back surface, respectively. Since the solder in the through hole penetrating between the ground electrode and the ground electrode can be continuously connected to the outer peripheral conductor of the coaxial connector, the coaxial connector is more firmly connected. At the same time, when soldering, the heat of the soldering iron quickly passes from the solder existing on one surface (for example, the front surface) to the solder existing on the other surface (for example, the back surface) through the solder in the through hole. Since the solder on both sides can be melted at the same time through the through-holes, the amount of solder on both sides is equalized through the through-holes. Therefore, the load applied to the central conductor of the coaxial connector and the signal electrode of the high-frequency device mounting board Can be reduced.

また、同軸コネクタを取り外す際も同様に両面の半田を同時に溶融することができるため、従来のような様々な問題を生じさせることなく、短時間で容易に取り外し作業を完了することができる。従って、搭載された高周波デバイスをその特性を劣化させることなく取り外すことができる。また、同軸コネクタや高周波デバイス実装基板に熱によるダメージを与えることなくこれらを再利用するこができる。   Similarly, when removing the coaxial connector, the solder on both sides can be melted at the same time, so that the removal operation can be completed easily in a short time without causing various problems as in the prior art. Therefore, the mounted high frequency device can be removed without deteriorating its characteristics. Further, they can be reused without damaging the coaxial connector or the high-frequency device mounting substrate by heat.

また、接地電極と接地導体層とを導体層を介して接続する貫通孔が、接地電極の半田が付着する領域の回路基板の外周側の部位に回路基板の外周に沿って複数配置されている場合には、半田によって接続される同軸コネクタの外周導体−貫通孔内の導体層−内層導体という電気的経路を最も短くすることができるので、貫通孔内の導体層に起因する寄生インダクタンスを最も小さくすることができる。加えて、接地電極の貫通孔内から同軸コネクタの外周導体まで半田が連続して存在する状態にできるため、より強固に高周波デバイス実装基板と同軸コネクタとを接続することができ、測定中に同軸コネクタが高周波デバイス実装基板から外れる確率を非常に小さくすることができる。   A plurality of through-holes for connecting the ground electrode and the ground conductor layer through the conductor layer are disposed along the outer periphery of the circuit board in a portion on the outer peripheral side of the circuit board in a region where the solder of the ground electrode adheres. In this case, the electrical path of the outer peripheral conductor of the coaxial connector connected by solder, the conductor layer in the through-hole, and the inner-layer conductor can be minimized, so that the parasitic inductance caused by the conductor layer in the through-hole is minimized. Can be small. In addition, since solder can be continuously present from the through hole of the ground electrode to the outer peripheral conductor of the coaxial connector, the high-frequency device mounting board and the coaxial connector can be connected more firmly and coaxially during measurement. The probability that the connector is detached from the high-frequency device mounting board can be extremely reduced.

また、前記貫通孔が、前記接地電極の前記信号線と反対側の部位に前記回路基板の外周から中央部に向かってさらに配置されているときには、次のような効果がある。   Further, when the through hole is further arranged from the outer periphery of the circuit board toward the central portion at a portion of the ground electrode opposite to the signal line, the following effects are obtained.

従来の高周波デバイス実装基板では同軸コネクタの接続に際して強固な接合とするために半田量を多くすると、接近して配置されている信号電極と接地電極とが半田を介して短絡する場合があったが、本発明の高周波デバイス実装基板によれば、前記貫通孔が、前記接地電極の前記信号線と反対側の部位に前記回路基板の外周から中央部に向かってさらに配置されているときには、同軸コネクタを接合する際に、表面の接地電極に対する余分な半田がそのさらに配置された貫通孔を通して裏面の第2の接地電極に流動するため、半田の形状がやや接地電極の信号線と反対側寄りとなる。このため、使用される半田を信号電極側に流れ難くすることができるので、信号電極と接地電極とが半田を介して短絡するのを有効に防止することができる。   In conventional high-frequency device mounting boards, if the amount of solder is increased in order to achieve a strong joint when connecting the coaxial connector, the signal electrode and the ground electrode that are placed close to each other may be short-circuited via the solder. According to the high-frequency device mounting substrate of the present invention, when the through hole is further arranged from the outer periphery of the circuit board toward the central portion at a portion opposite to the signal line of the ground electrode, When soldering, the excessive solder with respect to the ground electrode on the front surface flows to the second ground electrode on the back surface through the further disposed through hole, so that the shape of the solder is slightly opposite to the signal line of the ground electrode. Become. For this reason, it is possible to make it difficult for the solder to be used to flow to the signal electrode side, so that it is possible to effectively prevent the signal electrode and the ground electrode from being short-circuited via the solder.

さらに、前記接地電極に、前記回路基板の表面に前記信号線に沿って形成された表面接地導体層が接続されている場合は、表面接地導体層を寄生インダクタンスが最も小さい状態で測定器の接地電極と接続することができるので、高周波デバイスの信号端子のうち、接地される電極の電位をより測定器の接地電位に近づけることができる。   Furthermore, when a surface ground conductor layer formed along the signal line is connected to the surface of the circuit board to the ground electrode, the surface ground conductor layer is grounded with the smallest parasitic inductance. Since it can be connected to an electrode, the potential of the grounded electrode among the signal terminals of the high-frequency device can be made closer to the ground potential of the measuring instrument.

本発明の高周波デバイスの特性評価方法は、高周波デバイスを、前記同軸コネクタの取り付けが可能になっている高周波デバイス実装基板に実装する工程と、半田を用いて前記高周波デバイス実装基板に同軸コネクタを接続する工程と、前記高周波デバイス実装基板に実装された前記高周波デバイスの特性検査を行う特性検査工程とを含む。この方法によれば、前記高周波デバイス実装基板に同軸コネクタを確実に接続して、高周波デバイスの特性評価を行うことができるとともに、高周波デバイスを取り外すときも、簡単に取り外すことができる。   The method for evaluating characteristics of a high-frequency device according to the present invention includes a step of mounting a high-frequency device on a high-frequency device mounting board on which the coaxial connector can be attached, and connecting the coaxial connector to the high-frequency device mounting board using solder. And a characteristic inspection step of performing a characteristic inspection of the high-frequency device mounted on the high-frequency device mounting substrate. According to this method, the coaxial connector can be securely connected to the high-frequency device mounting substrate to evaluate the characteristics of the high-frequency device, and can be easily removed when removing the high-frequency device.

以上説明したような本発明の高周波デバイス実装基板における同軸コネクタを高周波デバイス実装基板に取り付ける際の効果は、同軸コネクタと高周波デバイス実装基板とを一時的に接続し、測定後に同軸コネクタを取り外す場合はもちろんのこと、恒久的な接続を必要とするいわゆるマザーボード(メインボード)と、このマザーボードと外部回路とを接続するコネクタとを接続する際にも有効であり、本発明の技術的範囲内である。また、同軸コネクタを高周波デバイス実装基板から取り外す際の効果についても、恒久的な接続を必要とするそのマザーボードとコネクタとの接続において、リペアが必要なときに有効である。   The effect of attaching the coaxial connector in the high-frequency device mounting board of the present invention as described above to the high-frequency device mounting board is that the coaxial connector and the high-frequency device mounting board are temporarily connected and the coaxial connector is removed after measurement. Of course, it is also effective when connecting a so-called motherboard (main board) that requires a permanent connection and a connector that connects this motherboard to an external circuit, and is within the technical scope of the present invention. . The effect of removing the coaxial connector from the high-frequency device mounting board is also effective when repair is required in the connection between the motherboard and the connector that requires permanent connection.

以下に、本発明の高周波デバイス実装基板の実施の形態の例を、模式的に図示した図面に基づき詳細に説明する。なお、以下に説明する図面においては、同一部品及び同一部分には同じ符号を付すものとする。   Below, the example of embodiment of the high frequency device mounting substrate of this invention is demonstrated in detail based on drawing shown typically. In the drawings described below, the same parts and the same parts are denoted by the same reference numerals.

<実施の形態の例1>
図1は本発明の高周波デバイス実装基板の実施の形態の一例を示す上面図である。また、図2は図1のA−A′線で切断した要部断面図である。
<Example 1 of embodiment>
FIG. 1 is a top view showing an example of an embodiment of a high-frequency device mounting substrate of the present invention. FIG. 2 is a cross-sectional view of the main part taken along the line AA ′ of FIG.

高周波デバイス実装基板1は、絶縁体層12,19及び21と、接地導体層13及び20とが積層された構造の回路基板10の表面(上面)の中央部に、高周波デバイスが実装される端子電極2を設けている。また、回路基板10の表面には、抵抗、コンデンサ、集積回路などの電子部品30が搭載されている。   The high-frequency device mounting substrate 1 is a terminal on which a high-frequency device is mounted at the center of the surface (upper surface) of the circuit board 10 having a structure in which insulator layers 12, 19 and 21 and ground conductor layers 13 and 20 are laminated. An electrode 2 is provided. An electronic component 30 such as a resistor, a capacitor, or an integrated circuit is mounted on the surface of the circuit board 10.

回路基板10の表面の周辺部には、同軸コネクタの中心導体(図示せず)が接続される信号電極3及び同軸コネクタの外周導体(図示せず)が半田を用いて接続される接地電極4が形成されている。   A signal electrode 3 to which a central conductor (not shown) of the coaxial connector is connected and a ground electrode 4 to which an outer peripheral conductor (not shown) of the coaxial connector is connected using solder at the periphery of the surface of the circuit board 10. Is formed.

端子電極2と信号電極3とは、回路基板10の中央部から放射状に延びた信号線によって接続されている。   The terminal electrode 2 and the signal electrode 3 are connected by signal lines that extend radially from the center of the circuit board 10.

ここで、接地電極4の回路基板10の外周側の部位には、回路基板10の外周に沿って貫通孔5が形成されている。貫通孔5の内面は、図2に示したとおり、導体層7が被着されている。導体層7は接地電極4と接地導体層13,20とを電気的に接続している。   Here, a through hole 5 is formed along the outer periphery of the circuit board 10 at a portion of the ground electrode 4 on the outer periphery side of the circuit board 10. As shown in FIG. 2, a conductor layer 7 is attached to the inner surface of the through hole 5. The conductor layer 7 electrically connects the ground electrode 4 and the ground conductor layers 13 and 20.

また、端子電極2のうち、接地される所定の端子は、その直下の接地導体層13に導体を充填したビア導体(図示せず)を形成して接続している。   A predetermined terminal to be grounded among the terminal electrodes 2 is connected by forming a via conductor (not shown) filled with a conductor in the ground conductor layer 13 immediately below the terminal electrode 2.

このような本発明の高周波デバイス実装基板1を用いて、高周波デバイス(図示せず)の特性を測定する場合は、まず、端子電極2にクリーム半田等を塗布し、これに高周波デバイスの対応する端子(図示せず)を接触させ、クリーム半田の溶融温度以上に加熱する。これによって、高周波デバイスは高周波デバイス実装基板1上に実装される。   When measuring the characteristics of a high-frequency device (not shown) using the high-frequency device mounting substrate 1 of the present invention, first, cream solder or the like is applied to the terminal electrode 2 and this corresponds to the high-frequency device. A terminal (not shown) is brought into contact and heated above the melting temperature of the cream solder. As a result, the high frequency device is mounted on the high frequency device mounting substrate 1.

その次に、同軸コネクタ(図示せず)を糸半田及び半田ごてを用いて、同軸コネクタの中心導体を信号電極3に、同軸コネクタの外周導体を接地電極4に接合する。   Next, a coaxial connector (not shown) is joined to the signal electrode 3 and the outer peripheral conductor of the coaxial connector to the ground electrode 4 using a thread solder and a soldering iron.

その際、貫通孔5の存在により、溶融した半田は接地電極4から貫通孔5内に流動し、貫通孔25内に入り込む。このようにして、貫通孔5の内部から同軸コネクタの外周導体15に至って、半田が連続して形成される。   At that time, due to the presence of the through hole 5, the melted solder flows from the ground electrode 4 into the through hole 5 and enters the through hole 25. In this way, solder is continuously formed from the inside of the through hole 5 to the outer peripheral conductor 15 of the coaxial connector.

このため、高周波デバイス実装基板1と同軸コネクタとの強固な接続を確保することができるため、測定中に接続したケーブル等から物理的な負荷がかかっても同軸コネクタの中心導体と信号電極3とが外れる確率を極めて小さくすることができる。   For this reason, since the strong connection between the high frequency device mounting substrate 1 and the coaxial connector can be ensured, even if a physical load is applied from a cable or the like connected during measurement, the central conductor of the coaxial connector and the signal electrode 3 The probability of deviating can be made extremely small.

また、高周波デバイス実装基板1の中で接地電極4及び貫通孔5内の導体層7を介して、測定器の接地電極と最も近い位置で同軸コネクタの外周導体と接地導体層13とを接続することができるため、測定器の接地電極から接地導体層13との間の物理的な距離に起因する寄生インダクタンスを小さくでき、従って、より正確に高周波デバイスの特性を測定することができる。   Further, the outer peripheral conductor of the coaxial connector and the ground conductor layer 13 are connected to each other at a position closest to the ground electrode of the measuring instrument through the ground electrode 4 and the conductor layer 7 in the through hole 5 in the high-frequency device mounting substrate 1. Therefore, the parasitic inductance caused by the physical distance between the ground electrode of the measuring instrument and the ground conductor layer 13 can be reduced. Therefore, the characteristics of the high frequency device can be measured more accurately.

<実施の形態の例2>
次に、本発明の実施形態のさらに他の例を説明する。本例では、高周波デバイス実装基板1の上面図は図1と同様であるが、回路基板10の裏面の接地電極4と対応する部位に第2の接地電極8を設けたものである。
<Example 2 of embodiment>
Next, still another example of the embodiment of the present invention will be described. In this example, the top view of the high-frequency device mounting substrate 1 is the same as that in FIG. 1, but the second ground electrode 8 is provided in a portion corresponding to the ground electrode 4 on the back surface of the circuit board 10.

図3に本例の高周波デバイス実装基板1の裏面の上面図を示す。また、本例について図1のA−A′線で切断した要部断面図を図4に示す。図4と図2との相違は、図4では、高周波デバイス実装基板1の裏面に、第2の接地電極8が設けられていることである。   FIG. 3 shows a top view of the back surface of the high-frequency device mounting substrate 1 of this example. Further, FIG. 4 shows a cross-sectional view of the main part of this example cut along the line AA ′ of FIG. 4 is different from FIG. 2 in that the second ground electrode 8 is provided on the back surface of the high-frequency device mounting substrate 1 in FIG.

この裏面の第2の接地電極8は、貫通孔5の内面の導体層7を介して、主面(表面)の接地電極4及び内部の接地導体層13と電気的に接続されている。   The second ground electrode 8 on the back surface is electrically connected to the ground electrode 4 on the main surface (front surface) and the ground conductor layer 13 inside through the conductor layer 7 on the inner surface of the through hole 5.

また、本例の高周波デバイス実装基板1と同軸コネクタとを半田で接続した場合の図1のB−B′線で切断した要部断面図を図5に示す。   Further, FIG. 5 shows a cross-sectional view of the main part taken along the line BB ′ of FIG. 1 when the high-frequency device mounting substrate 1 of this example and the coaxial connector are connected by solder.

図5に示すように、同軸コネクタの外周導体(図示せず)に対して高周波デバイス実装基板1の裏面側から貫通孔5を通って主面側の外周導体にまで連続して半田16を存在させることができるため、より強固に高周波デバイス実装基板1の接地電極4と同軸コネクタの外周導体とを接続することができる。   As shown in FIG. 5, the solder 16 is continuously present from the back surface side of the high-frequency device mounting substrate 1 through the through hole 5 to the outer peripheral conductor on the main surface side with respect to the outer peripheral conductor (not shown) of the coaxial connector. Therefore, the ground electrode 4 of the high-frequency device mounting substrate 1 and the outer peripheral conductor of the coaxial connector can be connected more firmly.

また、接地電極4と同軸コネクタの外周導体とを半田16で接続する際、貫通孔5内の半田16を介して半田ごての熱が、片方の面に存在する半田16からもう片方の面に存在する半田16へと速やかに伝搬するため、両面の半田16を同時に溶融することができる。これによって両面の半田量が均等化されるため、同軸コネクタの中心導体14や高周波デバイス実装基板1の信号電極3にかかる応力・負荷を小さくすることができる。   Further, when the ground electrode 4 and the outer peripheral conductor of the coaxial connector are connected by the solder 16, the heat of the soldering iron is transferred from the solder 16 existing on one surface to the other surface via the solder 16 in the through hole 5. Therefore, the solder 16 on both sides can be melted at the same time. As a result, the amount of solder on both sides is equalized, so that the stress and load applied to the central conductor 14 of the coaxial connector and the signal electrode 3 of the high-frequency device mounting substrate 1 can be reduced.

また、同軸コネクタを取り外す際も同様に両面の半田16を同時に溶融することができるため、短時間で容易に取り外し作業を完了することができる。従って、搭載された高周波デバイスを、その特性を劣化させることなく取り外すことができる。また、同軸コネクタや高周波デバイス実装基板1にダメージを与えることなくこれらを再利用することができる。   Also, when removing the coaxial connector, the solder 16 on both sides can be melted at the same time, so that the removal operation can be completed easily in a short time. Therefore, the mounted high frequency device can be removed without deteriorating its characteristics. Moreover, these can be reused without damaging the coaxial connector or the high-frequency device mounting substrate 1.

また、高周波デバイス実装基板1の中で接地電極4,第2の接地電極8及び貫通孔5内の導体層7を介して、測定器の接地電極と最も近い位置で同軸コネクタの外周導体と接地導体層13とを接続することができるため、測定器の接地電極から接地導体層13との間の物理的な距離に起因する寄生インダクタンスを小さくでき、従って、より正確に高周波デバイスの特性を測定することができるのは実施の形態の例1と同様である。   Further, the outer peripheral conductor of the coaxial connector is grounded at a position closest to the ground electrode of the measuring instrument via the ground electrode 4, the second ground electrode 8 and the conductor layer 7 in the through hole 5 in the high-frequency device mounting substrate 1. Since the conductor layer 13 can be connected, the parasitic inductance due to the physical distance between the ground electrode of the measuring instrument and the ground conductor layer 13 can be reduced. Therefore, the characteristics of the high-frequency device can be measured more accurately. This can be done in the same manner as in Example 1 of the embodiment.

<実施の形態の例3>
次に、本発明の実施形態のさらに他の例を説明する。
<Example 3 of embodiment>
Next, still another example of the embodiment of the present invention will be described.

図6(a)及び図6(b)に本例の高周波デバイス実装基板1の主面の上面図(平面図)を示す。図6(a)の本例では、高周波デバイス実装基板1の表面の接地電極4の回路基板10の外周側の部位に、貫通孔5を形成するとともに、接地電極4の信号線6と反対側の部位に、回路基板10の外周から中央部に向かってさらに貫通孔5′を配置した。図6(b)の本例では、貫通孔5を形成せず、それに代えて、接地電極4の信号線6と反対側の部位に、回路基板10の外周から中央部に向かって貫通孔5′を配置した。   6A and 6B are top views (plan views) of the main surface of the high-frequency device mounting substrate 1 of this example. In this example of FIG. 6A, the through hole 5 is formed in the outer peripheral side portion of the circuit board 10 of the ground electrode 4 on the surface of the high-frequency device mounting substrate 1, and the side opposite to the signal line 6 of the ground electrode 4. A through hole 5 ′ is further arranged at the part from the outer periphery of the circuit board 10 toward the center. In this example of FIG. 6B, the through hole 5 is not formed, and instead, the through hole 5 is formed on the opposite side of the ground electrode 4 from the signal line 6 from the outer periphery of the circuit board 10 toward the center. ′ Was placed.

また、本例の高周波デバイス実装基板1に同軸コネクタを強固な接続を行なうため多めの半田16で接続した場合の図6(a),図6(b)のC−C′線で切断した要部断面図を図7に示す。   In addition, when the coaxial connector is connected to the high-frequency device mounting substrate 1 of this example with a large amount of solder 16 in order to make a strong connection, it is necessary to cut along the CC 'line in FIGS. 6 (a) and 6 (b). A partial cross-sectional view is shown in FIG.

さらに、比較例として貫通孔5′を設けない場合の、図7と同様の要部断面図を図8に示す。   Further, FIG. 8 shows a cross-sectional view of the main part similar to FIG. 7 when the through hole 5 ′ is not provided as a comparative example.

接地電極4に対して貫通孔5′を設けない場合は、図8に示すように接地電極4の上面と信号電極3の上面とに存在する半田16のそれぞれの分布が半田16の表面張力のために接近しており、半田量によっては短絡する場合がある。   When the through hole 5 ′ is not provided for the ground electrode 4, the distribution of the solder 16 existing on the upper surface of the ground electrode 4 and the upper surface of the signal electrode 3 is represented by the surface tension of the solder 16 as shown in FIG. Therefore, there is a case where a short circuit occurs depending on the amount of solder.

これに対して、本例の場合は、半田16の分布が図7に示すように、貫通孔5′に半田16が流れ込むため、接地電極4の上面に存在する半田16を信号電極3からやや遠ざかるように分布させることができ、信号電極3と接地電極4とを半田16を介して短絡し難くすることができる。   On the other hand, in the case of this example, as the distribution of the solder 16 is as shown in FIG. 7, the solder 16 flows into the through hole 5 ′, so that the solder 16 existing on the upper surface of the ground electrode 4 is slightly removed from the signal electrode 3. The signal electrode 3 and the ground electrode 4 can be made difficult to be short-circuited via the solder 16.

なお、ここでは裏面の第2の接地電極8が無い場合を示したが、図3〜5に示す例と同様に、高周波デバイス実装基板1の裏面に第2の接地電極8を設けても構わない。   In addition, although the case where there is no second ground electrode 8 on the back surface is shown here, the second ground electrode 8 may be provided on the back surface of the high-frequency device mounting substrate 1 as in the examples shown in FIGS. Absent.

<実施の形態の例4>
次に、本発明の実施形態のさらに他の例を説明する。
<Example 4 of embodiment>
Next, still another example of the embodiment of the present invention will be described.

図9は、回路基板10の主面(表面)の信号線6に沿って表面接地導体層9を設け、これと接地電極4とを接続した本例の高周波デバイス実装基板1の主面の上面図(平面図)である。   FIG. 9 shows an upper surface of the main surface of the high-frequency device mounting substrate 1 of this example in which the surface ground conductor layer 9 is provided along the signal line 6 on the main surface (front surface) of the circuit board 10 and is connected to the ground electrode 4. It is a figure (plan view).

このような構成とすることにより、表面接地導体層9を寄生インダクタンスが最も小さい状態で測定器の接地電極と接続することができるので、高周波デバイスの信号端子の内、接地される端子の電位を、より寄生インダクタンスの小さい状態で測定器の接地電位に近づけることができる。   By adopting such a configuration, the surface ground conductor layer 9 can be connected to the ground electrode of the measuring instrument with the smallest parasitic inductance, so that the potential of the grounded terminal among the signal terminals of the high frequency device can be Thus, it can be brought close to the ground potential of the measuring instrument with a smaller parasitic inductance.

本発明の高周波デバイス実装基板1は、通信機器に適用することができる。すなわち、受信回路又は送信回路の一方又は両方を備える通信機器において、本発明の高周波デバイス実装基板1を用いることができる。前記送信回路は、例えば、送信信号をミキサでキャリア周波数にのせて、不要信号をバンドパスフィルタで減衰させ、その後、パワーアンプで送信信号を増幅して、デュプレクサを通ってアンテナより送信する回路である。前記受信回路は、受信信号をアンテナで受信し、デュプレクサを通った受信信号をローノイズアンプで増幅し、その後、バンドパスフィルタで不要信号を減衰して、ミキサでキャリア周波数から信号を分離し、この信号を取り出す回路である。前記デュプレクサやバンドパスフィルタを本発明の高周波デバイス実装基板1に実装し、通信機器に組み込むことにより、本発明の高周波デバイス実装基板1が搭載された、優れた特性を有する通信機器が実現できる。   The high-frequency device mounting substrate 1 of the present invention can be applied to communication equipment. That is, the high-frequency device mounting substrate 1 of the present invention can be used in a communication device including one or both of a receiving circuit and a transmitting circuit. The transmission circuit is, for example, a circuit that places a transmission signal on a carrier frequency with a mixer, attenuates an unnecessary signal with a bandpass filter, then amplifies the transmission signal with a power amplifier, and transmits it from an antenna through a duplexer. is there. The receiving circuit receives the received signal with an antenna, amplifies the received signal that has passed through the duplexer with a low noise amplifier, then attenuates an unnecessary signal with a bandpass filter, and separates the signal from the carrier frequency with a mixer. A circuit for extracting a signal. By mounting the duplexer or band-pass filter on the high-frequency device mounting substrate 1 of the present invention and incorporating the duplexer or the band-pass filter into the communication device, a communication device having excellent characteristics on which the high-frequency device mounting substrate 1 of the present invention is mounted can be realized.

次に、高周波デバイス実装基板1を用いて高周波デバイスを評価する方法を説明する。   Next, a method for evaluating a high frequency device using the high frequency device mounting substrate 1 will be described.

この高周波デバイス実装基板1は、高周波デバイスの量産工程の特性検査工程にて良品判定を行う目的や、開発品の特性を評価する目的のために使用される。   The high-frequency device mounting substrate 1 is used for the purpose of performing non-defective product determination in the characteristic inspection process of the high-frequency device mass production process and for the purpose of evaluating the characteristics of the developed product.

具体的には、高周波デバイスとして圧電体フィルタを用いたデュプレクサである場合には、圧電体から成るウェハ上に多数の圧電体フィルタを一括して形成した後、圧電体フィルタをそれぞれ個片に切断し、個々の圧電体フィルタを所定の回路基板にフェースダウンでフリップチップ実装してデュプレクサを得、得られたデュプレクサを高周波デバイス実装基板1に実装して良品判定する。前記良品判定をするための特性検査工程では、デュプレクサを高周波デバイス実装基板1に半田で接着することができないため、デュプレクサと高周波デバイス実装基板1との接続は、高周波デバイス実装基板1上の端子電極に配置されたコンタクトピンなどを介して行なわれる。この場合、安定して特性を測るために、高周波デバイス実装基板1は、コンタクトピンを固定する治具やデュプレクサの搭載位置を固定するガイドと共に真鍮やアルミなどの台座上に固定され、デュプレクサの上部より一定の圧力で押さえつけることによって、コンタクトピンとの接続を一定にする。   Specifically, in the case of a duplexer using a piezoelectric filter as a high-frequency device, a large number of piezoelectric filters are collectively formed on a wafer made of a piezoelectric material, and then the piezoelectric filter is cut into individual pieces. Then, each piezoelectric filter is flip-chip mounted on a predetermined circuit board in a flip-chip manner to obtain a duplexer, and the obtained duplexer is mounted on the high-frequency device mounting board 1 to determine non-defective products. Since the duplexer cannot be bonded to the high frequency device mounting substrate 1 with solder in the characteristic inspection process for determining the non-defective product, the connection between the duplexer and the high frequency device mounting substrate 1 is a terminal electrode on the high frequency device mounting substrate 1. This is done via a contact pin or the like. In this case, in order to stably measure the characteristics, the high frequency device mounting substrate 1 is fixed on a base such as brass or aluminum together with a jig for fixing the contact pin and a guide for fixing the mounting position of the duplexer, and the upper part of the duplexer. By pressing with a more constant pressure, the connection with the contact pin is made constant.

この状態で、上に説明したように、高周波デバイス実装基板1の信号電極23及び接地電極24に、半田付けにより同軸ケーブルを接続して、高周波デバイスの特性評価を行う。   In this state, as described above, the coaxial cable is connected to the signal electrode 23 and the ground electrode 24 of the high-frequency device mounting substrate 1 by soldering, and the characteristics of the high-frequency device are evaluated.

上述した本発明の高周波デバイスの特性評価方法によれば、高周波デバイス実装基板1に同軸コネクタを確実に接続して、高周波デバイスの特性評価を行うことができるとともに、高周波デバイスを取り外すときも、簡単に取り外すことができる。   According to the above-described method for evaluating the characteristics of a high-frequency device of the present invention, the coaxial connector can be securely connected to the high-frequency device mounting substrate 1 to evaluate the characteristics of the high-frequency device, and even when the high-frequency device is removed, Can be removed.

<第1の実施例>
次に、本発明の高周波デバイス実装基板をより具体化した第1の実施例について説明する。
高周波デバイス実装基板1の信号線6や信号電極3や接地電極4の位置と形状は図9に示す例と同様である。すなわち、信号線6は端子電極2から放射状に延びており、同軸コネクタを接続する領域Dの構造も、図9に示すとおりである。なお、貫通孔5の数及び位置は図11に示したものとした。図11は図9の破線で示した領域Dの拡大図である。同軸コネクタを接続する部分は、図9に示すとおり領域Dを含み3箇所あるが、その全てについて図11に示した形状とした。
<First embodiment>
Next, a first embodiment in which the high-frequency device mounting substrate of the present invention is more concrete will be described.
The positions and shapes of the signal line 6, the signal electrode 3, and the ground electrode 4 of the high-frequency device mounting substrate 1 are the same as the example shown in FIG. That is, the signal line 6 extends radially from the terminal electrode 2, and the structure of the region D to which the coaxial connector is connected is as shown in FIG. The number and positions of the through holes 5 are as shown in FIG. FIG. 11 is an enlarged view of a region D indicated by a broken line in FIG. As shown in FIG. 9, there are three portions to which the coaxial connector is connected, including the region D, and all of them have the shape shown in FIG.

また、回路基板10の図11に対応する部位の裏面の拡大図を図12に示す。表面の2つの接地電極4に対応する部位の第2の接地電極8は、一続きのものとして形成した。図12において9′は回路基板10の裏面に形成された裏面接地導体層である。なお、本実施例では高周波デバイス実装基板1に同軸コネクタを接続する部分を図9に示すとおり3箇所設けたが、その全てについて図11に示した形状とした。また、要部断面図は図4と同様である。   Further, FIG. 12 shows an enlarged view of the back surface of the portion corresponding to FIG. 11 of the circuit board 10. The second ground electrode 8 at a portion corresponding to the two ground electrodes 4 on the surface was formed as a continuous one. In FIG. 12, reference numeral 9 ′ denotes a back surface ground conductor layer formed on the back surface of the circuit board 10. In this embodiment, three portions for connecting the coaxial connector to the high-frequency device mounting substrate 1 are provided as shown in FIG. 9, but all of them are formed in the shape shown in FIG. Moreover, the principal part sectional view is the same as FIG.

回路基板10の絶縁体層12,19,21の材料としては、FR−4(ガラスエポキシ樹脂)を、接地導体層13,20、接地電極4、第2の接地電極8、及び裏面接地導体層9′の材料としては銅を用いた。   As a material of the insulator layers 12, 19, and 21 of the circuit board 10, FR-4 (glass epoxy resin), ground conductor layers 13 and 20, the ground electrode 4, the second ground electrode 8, and the back surface ground conductor layer are used. Copper was used as the material for 9 '.

絶縁体層12及び絶縁体層21の厚みはそれぞれ0.1mmであり、絶縁体層19の厚みは1mmである。また、接地導体層13及び接地導体層20の厚みはそれぞれ0.035mmである。接地電極4及び第2の接地電極8の厚みはそれぞれ0.06mmである。回路基板10の主面の信号線6の幅は0.13mm、同軸コネクタの中心導体14が接続される信号電極3の幅wは0.6mm、接地電極4の横幅wは5mm、信号電極3と接地電極4とのギャップwは0.85mmとした。 The thickness of the insulator layer 12 and the insulator layer 21 is 0.1 mm, respectively, and the thickness of the insulator layer 19 is 1 mm. Moreover, the thickness of the ground conductor layer 13 and the ground conductor layer 20 is 0.035 mm, respectively. The thicknesses of the ground electrode 4 and the second ground electrode 8 are each 0.06 mm. The width of the signal line 6 on the main surface of the circuit board 10 is 0.13 mm, the width w 1 of the signal electrode 3 to which the central conductor 14 of the coaxial connector is connected is 0.6 mm, the lateral width w 2 of the ground electrode 4 is 5 mm, and the signal The gap w 3 between the electrode 3 and the ground electrode 4 was 0.85 mm.

なお、信号線6の特性インピーダンスは50Ωとなるように設計した。接地電極4の縦幅wは3mmとした。また、回路基板10の裏面の第2の接地電極8の横幅wは13mm、縦幅wは3mmとした。また、接地電極4に、回路基板10と回路基板10の裏面の第2の接地電極8とを貫通する半径0.3mmの貫通孔5を、接地電極4の内側から0.6mm、接地電極4の外周部(回路基板10の外周側)から0.3mmの位置から、0.8mmの間隔で6個設けた。各貫通孔5には内面に銅からなる導体層7を設け、接地電極4に接続されている表面接地導体層9及び第2の接地電極8に接続されている表面接地導体層9′の接地電位の安定化を図った。 The characteristic impedance of the signal line 6 was designed to be 50Ω. Vertical width w 4 of the ground electrode 4 was set to 3mm. Further, the lateral width w 5 of the second ground electrode 8 on the back surface of the circuit board 10 was 13 mm, and the longitudinal width w 6 was 3 mm. Further, a through hole 5 having a radius of 0.3 mm that penetrates the circuit board 10 and the second ground electrode 8 on the back surface of the circuit board 10 is formed in the ground electrode 4 by 0.6 mm from the inside of the ground electrode 4. 6 pieces were provided at intervals of 0.8 mm from a position of 0.3 mm from the outer peripheral portion (the outer peripheral side of the circuit board 10). Each through-hole 5 is provided with a conductor layer 7 made of copper on the inner surface, and the surface ground conductor layer 9 connected to the ground electrode 4 and the surface ground conductor layer 9 ′ connected to the second ground electrode 8 are grounded. The potential was stabilized.

また、比較例として、貫通孔5を設けないこと以外の設計が全て本実施例と同じである従来の高周波デバイス実装基板を作製した。   Further, as a comparative example, a conventional high-frequency device mounting substrate having the same design as this example except that the through hole 5 is not provided was manufactured.

このようにして作製した本発明の実施例と比較例について、それぞれ高周波デバイスを搭載し、同軸コネクタを取り付けた後、信号線6を介して高周波特性を測定し、次いで同軸コネクタを取り外した後、再び高周波特性を測定した。   For the examples and comparative examples of the present invention thus produced, each mounted with a high frequency device, and after attaching a coaxial connector, after measuring the high frequency characteristics via the signal line 6, and then removing the coaxial connector, The high frequency characteristics were measured again.

このときの測定は、高周波デバイスの端子電極に直接、高周波プローブ(GGB社製、商品名:ピコプローブ40A−GS−600−DP)を接触させることにより行なった。   The measurement at this time was performed by bringing a high-frequency probe (product name: Picoprobe 40A-GS-600-DP) directly into contact with the terminal electrode of the high-frequency device.

なお、高周波デバイスとしては、端子電極2と接続される面のサイズが2.5mm×2.0mmであり、高さが0.6mmである小型の高周波フィルタ(弾性表面波フィルタ)を用いた800MHz帯デュプレクサを用いた。   In addition, as a high frequency device, the size of the surface connected to the terminal electrode 2 is 2.5 mm × 2.0 mm, and a 800 MHz using a small high frequency filter (surface acoustic wave filter) having a height of 0.6 mm. A band duplexer was used.

まず、実施例と比較例に対してともに、端子電極2にクリーム半田を塗布し、この高周波デバイスを搭載した。そして、ホットプレートを用いてクリーム半田を溶融させ、高周波デバイスの端子と端子電極2とを接続した。   First, for both the example and the comparative example, cream solder was applied to the terminal electrode 2 and this high frequency device was mounted. And the cream solder was melted using a hot plate, and the terminal of the high frequency device and the terminal electrode 2 were connected.

次に、同軸コネクタを取り付けた。実施例と比較例に対してともに信号電極3と接地電極4と第2の接地電極8とに糸半田(Sn−Cu−Ag:融点217℃)を、半田ごてを用いて溶融させ、高周波デバイス実装基板1に同軸コネクタを取り付けた。   Next, a coaxial connector was attached. In both the example and the comparative example, thread solder (Sn—Cu—Ag: melting point 217 ° C.) is melted to the signal electrode 3, the ground electrode 4, and the second ground electrode 8 using a soldering iron, and high frequency A coaxial connector was attached to the device mounting board 1.

比較例を用いた場合は、糸半田に同じ時間だけ熱を加えても溶融する量が一定ではなく、また、接地電極4と第2の接地電極8との半田が直接流動できないため、接地電極4と接地電極8との半田の量を均一にすることは非常に困難であった。   In the case where the comparative example is used, even if heat is applied to the thread solder for the same time, the amount of melting is not constant, and the solder between the ground electrode 4 and the second ground electrode 8 cannot directly flow. It was very difficult to make the amount of solder between 4 and the ground electrode 8 uniform.

それに対し、実施例では、信号電極3と接地電極4との半田16を、半田ごてを用いて溶融させると、貫通孔5を介して第2の接地電極8上にある半田16にも熱が伝導するため、第2の接地電極8上の半田16も同時に溶融させることができ、また溶融した半田16が貫通孔5を通ってお互いに流動するため、接地電極4と第2の接地電極8とにおける半田量の偏りをなくすことができた。   On the other hand, in the embodiment, when the solder 16 of the signal electrode 3 and the ground electrode 4 is melted by using a soldering iron, the solder 16 on the second ground electrode 8 is also heated through the through hole 5. Therefore, the solder 16 on the second ground electrode 8 can be melted at the same time, and the melted solder 16 flows to each other through the through hole 5, so that the ground electrode 4 and the second ground electrode The deviation of the solder amount between 8 and 8 could be eliminated.

次に、高周波デバイス実装基板1に接続した同軸コネクタと測定器とをケーブルによって接続し、高周波デバイスの高周波特性を測定した。   Next, the coaxial connector connected to the high frequency device mounting substrate 1 and the measuring device were connected by a cable, and the high frequency characteristics of the high frequency device were measured.

この測定中に、比較例では同軸コネクタと測定装置とをつなげるケーブルによって加わる力によって同軸コネクタが外れたものがあったが、実施例では、図5に示したように、同軸コネクタの外周導体に対して高周波デバイス実装基板1の裏面の第2の接地電極8側から貫通孔5を通って主面の接地電極4側の外周導体にまで連続して半田16を存在させることができたため、強固に高周波デバイス実装基板1と同軸コネクタを接続することができ、同軸コネクタが外れることはなかった。   During this measurement, in the comparative example, the coaxial connector was disconnected due to the force applied by the cable connecting the coaxial connector and the measuring device, but in the example, as shown in FIG. On the other hand, the solder 16 can be continuously present from the second ground electrode 8 side on the back surface of the high-frequency device mounting substrate 1 through the through hole 5 to the outer peripheral conductor on the ground electrode 4 side of the main surface. The high frequency device mounting substrate 1 and the coaxial connector could be connected to each other, and the coaxial connector was never detached.

次に、同軸コネクタを高周波デバイス実装基板1から取り外した。   Next, the coaxial connector was removed from the high frequency device mounting substrate 1.

比較例の場合は、同軸コネクタを取り外すためには、まず第2の接地電極8の半田を半田吸い取り器(製造元:ハッコー社製、商品名:半田除去ステーション24V474)を用いて除去し、同軸コネクタと高周波デバイス実装基板1との接合が信号電極3及び接地電極4上の半田のみによって保持される状態とした後に、信号電極3と接地電極4との半田を溶融して同軸コネクタを高周波デバイス実装基板1から取り外した。   In the case of the comparative example, in order to remove the coaxial connector, first, the solder of the second ground electrode 8 is removed using a solder sucker (manufacturer: manufactured by Hakko Co., Ltd., product name: solder removal station 24V474). And the high-frequency device mounting substrate 1 are held only by the solder on the signal electrode 3 and the ground electrode 4, the solder between the signal electrode 3 and the ground electrode 4 is melted, and the coaxial connector is mounted on the high-frequency device. It was removed from the substrate 1.

これに対して実施例の場合は、信号電極3と接地電極4との半田16を、半田ごてを用いて溶融させると、貫通孔5を介して第2の接地電極8上にある半田16にも熱が伝導するため、第2の接地電極8上の半田16も同時に溶融させることができた。このため、比較例に比べて非常に容易に短時間で同軸コネクタを取り外すことができた。   On the other hand, in the case of the embodiment, when the solder 16 of the signal electrode 3 and the ground electrode 4 is melted by using a soldering iron, the solder 16 on the second ground electrode 8 through the through hole 5. Further, since heat is conducted, the solder 16 on the second ground electrode 8 can be melted at the same time. For this reason, the coaxial connector was able to be removed very easily in a short time as compared with the comparative example.

このように、実施例は比較例に比べて、半田吸い取り器を使用する必要がなく、片面の半田16に半田ごてを用いて熱を加えるだけでもう片面の半田16も溶融させて同軸コネクタを取り外すことができ、高周波デバイス実装基板1及び高周波デバイスに熱が加わる時間を極めて短くすることができた。   In this way, the embodiment does not require the use of a solder sucker as compared with the comparative example, and by simply applying heat to the solder 16 on one side using a soldering iron, the solder 16 on the other side is melted to form a coaxial connector. And the time during which heat is applied to the high-frequency device mounting substrate 1 and the high-frequency device can be extremely shortened.

次に、高周波デバイスを取り外した。実施例と比較例とをともにホットプレート上に載置し、加熱することによりクリーム半田を溶融させ、ピンセットを用いて高周波デバイスを取り外した。   Next, the high frequency device was removed. Both the example and the comparative example were placed on a hot plate and heated to melt the cream solder, and the high frequency device was removed using tweezers.

その後に、取り外された高周波デバイスの高周波特性を測定した。その結果、本発明の実施例の高周波デバイス実装基板1を用いた場合では上記の一連の作業の前後で特性の劣化した高周波デバイスは無かったが、比較例の高周波デバイス実装基板を用いた場合には同軸コネクタの取り付け及び取り外し時に加えられた熱によって、高周波特性の劣化した高周波デバイスが発生した。   Thereafter, the high frequency characteristics of the removed high frequency device were measured. As a result, when the high-frequency device mounting substrate 1 of the example of the present invention was used, there was no high-frequency device whose characteristics deteriorated before and after the above series of operations, but when the high-frequency device mounting substrate of the comparative example was used. High-frequency devices with deteriorated high-frequency characteristics were generated by heat applied during installation and removal of the coaxial connector.

<第2の実施例>
次に、本発明の高周波デバイス実装基板をより具体化した第2の実施例について説明する。高周波デバイス実装基板1の主面の上面図は第1の実施例と同様であるが、図13に図11と同様の拡大図で示すように、接地電極4の信号電極3と反対側の端部に位置する貫通孔5Aから、回路基板10の外周部から中央部に向かって貫通孔5と同様の寸法の2個の貫通孔5′を設置した点が異なっている。また、断面図は第1の実施例と同様である。
<Second embodiment>
Next, a second embodiment in which the high-frequency device mounting substrate of the present invention is embodied more specifically will be described. Although the top view of the main surface of the high-frequency device mounting substrate 1 is the same as that of the first embodiment, the end of the ground electrode 4 opposite to the signal electrode 3 is shown in FIG. 13 as an enlarged view similar to FIG. The difference is that two through-holes 5 ′ having the same dimensions as the through-holes 5 are installed from the outer peripheral part of the circuit board 10 toward the center part from the through-holes 5 </ b> A located in the part. The sectional view is the same as that of the first embodiment.

第1の実施例では、図8に示すように、接地電極4の上面と信号電極3の上面とに存在する半田16の分布が半田16の表面張力のために接近しており、半田量によってはこれら半田16を介して短絡する場合があった。   In the first embodiment, as shown in FIG. 8, the distribution of the solder 16 existing on the upper surface of the ground electrode 4 and the upper surface of the signal electrode 3 is close due to the surface tension of the solder 16. Sometimes short-circuited through these solders 16.

本実施例のように、接地電極4に貫通孔5′を設けることで、半田16が図7に示すように貫通孔5′に流れ込むため、接地電極4の上部に存在する半田16を信号電極3からやや遠ざかるように分布させることができたため、信号電極3と接地電極4とが半田16を介して短絡することがなかった。   By providing the through hole 5 'in the ground electrode 4 as in this embodiment, the solder 16 flows into the through hole 5' as shown in FIG. 7, so that the solder 16 existing above the ground electrode 4 is used as the signal electrode. Therefore, the signal electrode 3 and the ground electrode 4 were not short-circuited through the solder 16.

なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。また、本発明の範囲は、各請求項の構成を任意に組み合わせたものにも及ぶ。   In addition, this invention is not limited to the example of the above embodiment, A various change may be added in the range which does not deviate from the summary of this invention. The scope of the present invention also extends to any combination of the configurations of the claims.

例えば、回路基板の絶縁体層の材料としては、実施例に挙げた材料に限定されるものではなく、例えばテトラフルオロエチレンやBTレジン等の有機材料や、アルミナ等のセラミックス、あるいはアルミナを主成分とするガラスセラミックス等の無機材料を用いてもよい。   For example, the material of the insulator layer of the circuit board is not limited to the materials given in the examples, and for example, organic materials such as tetrafluoroethylene and BT resin, ceramics such as alumina, or alumina as a main component Inorganic materials such as glass ceramics may be used.

また、絶縁体層、絶縁体層の裏面を覆う導体層及び接地導体層の積層数は任意でよい。以上の例では接地導体層13の他にも裏面側にさらに接地導体層20を設けた例を示したが、この接地導体層20は省略しても構わない。   Further, the number of laminated layers of the insulator layer, the conductor layer covering the back surface of the insulator layer, and the ground conductor layer may be arbitrary. In the above example, the ground conductor layer 20 is further provided on the back side in addition to the ground conductor layer 13, but the ground conductor layer 20 may be omitted.

また、貫通孔5の形状は図1等では円形で示したが、形状は任意でよい。また、位置についても回路基板10の外周から中心部に向かって中心部側に多少入った領域に設けたが、回路基板10の外周に貫通孔を長さ方向に開口させて形成し、その内面に導体層7を被着していわゆるキャスタレーション導体として、回路基板10の外周側面を介して接地電極4と接地導体層13,20及び第2の接地電極8とを接続するようにしてもよい。   Moreover, although the shape of the through-hole 5 is circular in FIG. 1 and the like, the shape may be arbitrary. In addition, the position is provided in a region slightly entering the central portion side from the outer periphery of the circuit board 10 toward the central portion. The inner surface of the circuit board 10 is formed by opening a through hole in the length direction. The conductor layer 7 may be attached to the ground electrode 4 as a so-called castellation conductor, and the ground electrode 4, the ground conductor layers 13, 20 and the second ground electrode 8 may be connected via the outer peripheral side surface of the circuit board 10. .

また、信号線6の特性インピーダンスとしては50Ωに限定されるものではなく、高周波デバイスを用いるシステムの特性インピーダンスに合わせて設定すればよい。   Further, the characteristic impedance of the signal line 6 is not limited to 50Ω, and may be set according to the characteristic impedance of the system using the high frequency device.

また、以上の説明では信号線6は高周波デバイス実装基板1の表面に配置されている場合を示したが、図14に示すように、信号線のうち何本かが絶縁体層の内部に配置されていても構わない。この場合には、互いに異なる層に信号線を設けることにより、厚み方向にも信号線が対向しなくなるので、それら信号線間のアイソレーション特性をより向上させることができ、それによって、高周波デバイスの特性への影響をより低減でき、あるいはその特性をより良好に発揮させることができる。   In the above description, the signal lines 6 are arranged on the surface of the high-frequency device mounting substrate 1, but as shown in FIG. 14, some of the signal lines are arranged inside the insulator layer. It does not matter. In this case, by providing the signal lines in different layers, the signal lines do not face each other in the thickness direction, so that it is possible to further improve the isolation characteristics between the signal lines. The influence on the characteristics can be further reduced, or the characteristics can be exhibited better.

また、説明に用いた図では高周波デバイス実装基板1と同軸コネクタとが接続される端子(信号電極3と接地電極4との組)が3組ある場合を示したが、その数は高周波デバイスの端子数に合わせて任意でよい。   In the figure used for explanation, the case where there are three terminals (a set of the signal electrode 3 and the ground electrode 4) to which the high-frequency device mounting substrate 1 and the coaxial connector are connected is shown. It may be arbitrary according to the number of terminals.

また、高周波デバイス実装基板1の表面のうち、半田と接触する必要がない部分をソルダーレジスト等で保護しても構わない。このようにすることにより、半田を接触させたい部分のみに半田を存在させることができるとともに、信号線6等の導体同士が余分な半田を介して短絡することを防止することができる。   Moreover, you may protect the part which does not need to contact solder among the surfaces of the high frequency device mounting substrate 1 with a soldering resist etc. By doing so, it is possible to make the solder exist only in the portion where the solder is desired to be in contact, and it is possible to prevent the conductors such as the signal line 6 from being short-circuited through the extra solder.

さらに、高周波デバイスとしては、圧電体フィルタやデュプレクサに限定されるものではなく、移動体通信機器や無線LAN,ETC等の高周波信号処理用途やメインボード(マザーボード)で用いられる高周波デバイスの全てに適用が可能である。   Furthermore, high frequency devices are not limited to piezoelectric filters and duplexers, but are applicable to high frequency signal processing applications such as mobile communication devices, wireless LAN, ETC, and main boards (motherboards). Is possible.

本発明の高周波デバイス実装基板の実施の形態の一例を示す平面図である。It is a top view which shows an example of embodiment of the high frequency device mounting board | substrate of this invention. 図1に示す例のA−A′線で切断した要部断面図である。It is principal part sectional drawing cut | disconnected by the AA 'line of the example shown in FIG. 本発明の高周波デバイス実装基板の実施の形態の他の例を示す裏面図である。It is a back view which shows the other example of embodiment of the high frequency device mounting board | substrate of this invention. 図3に示す例の、図1のA−A′線で切断した要部断面図である。FIG. 4 is a cross-sectional view of a main part taken along the line AA ′ of FIG. 1 in the example shown in FIG. 3. 図3に示す例を同軸コネクタと半田で接続した場合の、図1のB−B′線で切断した要部断面図である。FIG. 4 is a cross-sectional view of an essential part taken along line BB ′ of FIG. 1 when the example shown in FIG. 3 is connected to a coaxial connector by solder. (a),(b)は、本発明の高周波デバイス実装基板の実施の形態のさらに他の例を示す主面の上面図である。(A), (b) is the top view of the main surface which shows the further another example of embodiment of the high frequency device mounting board | substrate of this invention. 図6に示す例のC−C′線で切断した要部断面図である。It is principal part sectional drawing cut | disconnected by CC 'line of the example shown in FIG. 比較例の高周波デバイス実装基板の図7と同様の要部断面図である。It is principal part sectional drawing similar to FIG. 7 of the high frequency device mounting board | substrate of a comparative example. 本発明の高周波デバイス実装基板の実施の形態のさらに他の例を示す平面図である。It is a top view which shows the further another example of embodiment of the high frequency device mounting board | substrate of this invention. 従来の一般的な高周波デバイス実装基板と、それに接続された高周波デバイス及び同軸コネクタとの概略斜視図である。It is a schematic perspective view of the conventional general high frequency device mounting substrate, the high frequency device connected to it, and a coaxial connector. 図9における領域Dの拡大図である。FIG. 10 is an enlarged view of a region D in FIG. 9. 本発明の高周波デバイス実装基板の例における領域Dの裏面の拡大図である。It is an enlarged view of the back surface of the area | region D in the example of the high frequency device mounting substrate of this invention. 本発明の高周波デバイス実装基板の例における領域Dの拡大図である。It is an enlarged view of the area | region D in the example of the high frequency device mounting board | substrate of this invention. 回路基板の中に信号線を形成した本発明の高周波デバイス実装基板を示す断面図である。It is sectional drawing which shows the high frequency device mounting substrate of this invention which formed the signal wire | line in the circuit board.

符号の説明Explanation of symbols

1:高周波デバイス実装基板
2:端子電極
3:信号電極
4:接地電極
5,5′,5A:貫通孔
6:信号線
7:導体層
8:第2の接地電極
9:表面接地導体層
9′:裏面接地導体層
10:回路基板
11:高周波デバイス
12,19,21:絶縁体層
13,20:接地導体層
14:同軸コネクタの中心導体
15:同軸コネクタの外周導体
16:半田
17:貫通孔
23:信号電極
24:接地電極
25:貫通孔
30:電子部品
1: High-frequency device mounting substrate 2: Terminal electrode 3: Signal electrode 4: Ground electrode 5, 5 ′, 5A: Through hole 6: Signal line 7: Conductor layer 8: Second ground electrode 9: Surface ground conductor layer 9 ′ : Back surface ground conductor layer 10: Circuit board 11: High frequency device 12, 19, 21: Insulator layer 13, 20: Ground conductor layer 14: Center conductor of coaxial connector 15: Outer conductor of coaxial connector 16: Solder 17: Through hole 23: Signal electrode 24: Ground electrode 25: Through hole 30: Electronic component

Claims (8)

絶縁体層の裏面又は内部に導体層を有する回路基板と、
前記回路基板の表面に設置された、高周波デバイスを搭載するための端子電極と、
前記回路基板の表面に設置され、前記端子電極につながる信号線と、
前記回路基板の表面の周辺部に配置され、前記信号線につながり、同軸コネクタの中心導体が接続される信号電極と、
前記回路基板の表面の周辺部に配置され、前記同軸コネクタの外周導体を半田を用いて接続するための接地電極であって、前記半田が付着する領域に、前記回路基板を貫通するとともに内面に導体層が被着された貫通孔が形成された接地電極と、を具備する、高周波デバイス実装基板。
A circuit board having a conductor layer on the back surface or inside of the insulator layer;
Terminal electrodes installed on the surface of the circuit board for mounting a high-frequency device;
A signal line installed on the surface of the circuit board and connected to the terminal electrode;
A signal electrode disposed in a peripheral portion of the surface of the circuit board, connected to the signal line, and connected to a central conductor of a coaxial connector;
A ground electrode disposed on a peripheral portion of the surface of the circuit board for connecting the outer peripheral conductor of the coaxial connector using solder, penetrating the circuit board in an area where the solder adheres and on the inner surface A high-frequency device mounting substrate comprising: a ground electrode having a through hole formed with a conductor layer deposited thereon.
前記回路基板は、複数の絶縁体層が積層された積層基板であり、その内部に内部導体層が形成され、
前記貫通孔の内面に形成された導体層は、前記内部導体層に接続されている、請求項1に記載の高周波デバイス実装基板。
The circuit board is a laminated board in which a plurality of insulator layers are laminated, and an internal conductor layer is formed therein,
The high frequency device mounting substrate according to claim 1, wherein a conductor layer formed on an inner surface of the through hole is connected to the inner conductor layer.
前記回路基板は、その裏面の前記接地電極と対応する部位に第2の接地電極が形成され、
前記第2の接地電極は、前記貫通孔の内面に形成された前記導体層を介して前記回路基板の表面の前記接地電極に接続されている、請求項1又は請求項2に記載の高周波デバイス実装基板。
The circuit board has a second ground electrode formed in a portion corresponding to the ground electrode on the back surface thereof,
3. The high-frequency device according to claim 1, wherein the second ground electrode is connected to the ground electrode on the surface of the circuit board through the conductor layer formed on the inner surface of the through hole. Mounting board.
前記貫通孔は、前記接地電極の、前記回路基板の外周に沿った部位に複数配置されている、請求項1乃至請求項3のいずれか一項に記載の高周波デバイス実装基板。   4. The high-frequency device mounting substrate according to claim 1, wherein a plurality of the through holes are arranged in a portion of the ground electrode along a periphery of the circuit board. 前記貫通孔は、前記接地電極の前記信号線と反対側の部位に、前記回路基板の外周から中央部に向かってさらに配置されている、請求項4に記載の高周波デバイス実装基板。   5. The high-frequency device mounting substrate according to claim 4, wherein the through-hole is further disposed from a periphery of the circuit substrate toward a central portion at a portion of the ground electrode opposite to the signal line. 前記貫通孔は、前記接地電極の前記信号線と反対側の部位に、前記回路基板の外周から中央部に向かって配置されている、請求項1乃至請求項3のいずれか一項に記載の高周波デバイス実装基板。   The said through-hole is arrange | positioned from the outer periphery of the said circuit board toward the center part in the site | part on the opposite side to the said signal wire | line of the said ground electrode. High frequency device mounting board. 前記接地電極に、前記回路基板の表面に前記信号線に沿って形成された表面接地導体層が接続されている請求項1乃至請求項6のいずれか一項に記載の高周波デバイス実装基板。   The high-frequency device mounting substrate according to claim 1, wherein a surface ground conductor layer formed along the signal line is connected to the surface of the circuit substrate to the ground electrode. 高周波デバイス実装基板に実装された高周波デバイスの特性を評価する方法であって、
高周波デバイスを、請求項1乃至請求項7のいずれか一項に記載の高周波デバイス実装基板に実装する工程と、
半田を用いて前記高周波デバイス実装基板に同軸コネクタを接続する同軸コネクタ接続工程と、
前記高周波デバイス実装基板に実装された前記高周波デバイスの特性検査を行う特性検査工程と、を含む、高周波デバイスの特性評価方法。

A method for evaluating characteristics of a high-frequency device mounted on a high-frequency device mounting substrate,
A step of mounting the high-frequency device on the high-frequency device mounting substrate according to any one of claims 1 to 7,
A coaxial connector connecting step of connecting a coaxial connector to the high-frequency device mounting substrate using solder;
A characteristic evaluation method for a high frequency device, comprising: a characteristic inspection step for performing a characteristic inspection of the high frequency device mounted on the high frequency device mounting substrate.

JP2006039496A 2005-02-24 2006-02-16 High frequency device mounting board Active JP4873958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039496A JP4873958B2 (en) 2005-02-24 2006-02-16 High frequency device mounting board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005049191 2005-02-24
JP2005049191 2005-02-24
JP2006039496A JP4873958B2 (en) 2005-02-24 2006-02-16 High frequency device mounting board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008169258A Division JP4818321B2 (en) 2005-02-24 2008-06-27 Manufacturing method of high-frequency device

Publications (2)

Publication Number Publication Date
JP2006270064A true JP2006270064A (en) 2006-10-05
JP4873958B2 JP4873958B2 (en) 2012-02-08

Family

ID=37205626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039496A Active JP4873958B2 (en) 2005-02-24 2006-02-16 High frequency device mounting board

Country Status (1)

Country Link
JP (1) JP4873958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8622754B2 (en) 2011-07-31 2014-01-07 General Electric Company Flexible power connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149403A (en) * 1984-12-25 1986-07-08 Nippon Kokan Kk <Nkk> Method for carrying out low-s operation of blast furnace
JP2001320208A (en) * 2000-05-09 2001-11-16 Nec Corp High frequency circuit, module and communication equipment using the same
JP2002139547A (en) * 2000-10-30 2002-05-17 Hitachi Ltd Probing device and probing sheet structure in electric characteristic inspection device, and manufacturing method of printed wiring board with pyramid bump
JP2003258142A (en) * 2002-02-28 2003-09-12 Hitachi Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149403A (en) * 1984-12-25 1986-07-08 Nippon Kokan Kk <Nkk> Method for carrying out low-s operation of blast furnace
JP2001320208A (en) * 2000-05-09 2001-11-16 Nec Corp High frequency circuit, module and communication equipment using the same
JP2002139547A (en) * 2000-10-30 2002-05-17 Hitachi Ltd Probing device and probing sheet structure in electric characteristic inspection device, and manufacturing method of printed wiring board with pyramid bump
JP2003258142A (en) * 2002-02-28 2003-09-12 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8622754B2 (en) 2011-07-31 2014-01-07 General Electric Company Flexible power connector

Also Published As

Publication number Publication date
JP4873958B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5257088B2 (en) package
JP5686943B2 (en) Elastic wave device and manufacturing method thereof
JP6242597B2 (en) Elastic wave device and manufacturing method thereof
EP3477693A1 (en) High-frequency ceramic substrate and high-frequency semiconductor element housing package
JP6282410B2 (en) module
US7477118B2 (en) High frequency device mounting substrate and communications apparatus
JP6643714B2 (en) Electronic devices and equipment
JP5340756B2 (en) Electronic component and manufacturing method thereof
JP2007258776A (en) High-frequency module
JP4837998B2 (en) High frequency device mounting substrate and communication equipment
US20140131853A1 (en) Electronic component, method of manufacturing same, composite module including electronic component, and method of manufacturing same
JP2006304145A (en) High frequency module
JP5725876B2 (en) Electronic component storage package and electronic device
US20130106530A1 (en) Acoustic wave device
JP4873958B2 (en) High frequency device mounting board
JP4818321B2 (en) Manufacturing method of high-frequency device
US9166559B2 (en) Circuit module and composite circuit module
JP7358371B2 (en) Thin film surface mountable high frequency coupler
JP2006211620A (en) Filter and duplexer
JP4903738B2 (en) Electronic component storage package and electronic device
JP4883010B2 (en) Electronic component package
JP6253306B2 (en) Electronic devices
CN100559913C (en) High-frequency equipments assembly base plate and communicating machine
JP5716875B2 (en) Electronic components and electronic modules
JP2012182174A (en) Electronic circuit, and method of manufacturing electronic circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150