JP2006265065A - Method for abstracting hydrogen - Google Patents

Method for abstracting hydrogen Download PDF

Info

Publication number
JP2006265065A
JP2006265065A JP2005088325A JP2005088325A JP2006265065A JP 2006265065 A JP2006265065 A JP 2006265065A JP 2005088325 A JP2005088325 A JP 2005088325A JP 2005088325 A JP2005088325 A JP 2005088325A JP 2006265065 A JP2006265065 A JP 2006265065A
Authority
JP
Japan
Prior art keywords
hydrogen
reactor
liquid phase
stirring
extracting hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005088325A
Other languages
Japanese (ja)
Other versions
JP4817691B2 (en
Inventor
Fukuzen Yoshihara
福全 吉原
Junji Torii
淳史 鳥井
Yuichi Ikeda
裕一 池田
Yoshisuke Moriya
由介 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005088325A priority Critical patent/JP4817691B2/en
Publication of JP2006265065A publication Critical patent/JP2006265065A/en
Application granted granted Critical
Publication of JP4817691B2 publication Critical patent/JP4817691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for abstracting hydrogen by which a larger amount of hydrogen can be abstracted from a hydrogenated aromatic compound than heretofore. <P>SOLUTION: A hydrogenated compound such as cyclohexane or methylcyclohexane is supplied to a reactor 13, then the compound is heated by a heater 14 in the presence of a dehydrogenation catalyst 15 while keeping the inside in a liquid phase state, and the formed hydrogen gas is taken out by a hydrogen separation means 16. The thermal conductivity is enhanced and the dehydrogenation reaction can be accelerated by keeping the inside of the reactor 13 including the catalyst 15 in the liquid phase state. The formed hydrogen is supplied, for example, to a fuel cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば燃料電池等に水素を供給するために、水素化物から効率よく水素を取り出す方法に関するものである。   The present invention relates to a method for efficiently extracting hydrogen from a hydride in order to supply hydrogen to, for example, a fuel cell.

自動車や住宅用の燃料電池に対する水素供給方法として、従来は水素吸蔵合金を用いる方法や、メタノールの水蒸気改質による方法などが知られていたが、これらの方法では大型の設備が必要となる。そこで特許文献1には、シクロヘキサン、メチルシクロヘキサン等の常温で液体の水素化芳香族化合物を脱水素触媒の存在下に加熱し、水素を生成分離する方法が提案されている。   Conventionally known methods for supplying hydrogen to automobile and residential fuel cells include a method using a hydrogen storage alloy and a method using steam reforming of methanol, but these methods require large-scale equipment. Thus, Patent Document 1 proposes a method of generating and separating hydrogen by heating a hydrogenated aromatic compound such as cyclohexane or methylcyclohexane at room temperature in the presence of a dehydrogenation catalyst.

この特許文献1に記載のシステムは、図3に示すように貯蔵タンク1と触媒反応装置2と水素分離装置3とを備えている。貯蔵タンク1には常温で液体の水素化芳香族化合物が貯蔵されており、ポンプ4によって触媒反応装置2に供給される。触媒反応装置2には脱水素触媒5と加熱器6とが設けられており、触媒反応装置2の内部は好ましくは80〜250℃、0.1〜0.5MPaに保持される。   The system disclosed in Patent Document 1 includes a storage tank 1, a catalytic reaction device 2, and a hydrogen separation device 3, as shown in FIG. A hydrogenated aromatic compound that is liquid at room temperature is stored in the storage tank 1, and is supplied to the catalytic reaction device 2 by a pump 4. The catalytic reaction apparatus 2 is provided with a dehydrogenation catalyst 5 and a heater 6, and the inside of the catalytic reaction apparatus 2 is preferably maintained at 80 to 250 ° C. and 0.1 to 0.5 MPa.

水素化芳香族化合物はこの触媒反応装置2において脱水素触媒5により水素を分離し、芳香族化合物に変換される。分離生成された水素は水素分離膜などの水素分離装置3を通過して水素化芳香族化合物及び脱水素生成物を除去されたうえ、0.3MPa以下の圧力で燃料電池に供給される。一方、芳香族化合物は冷却器7により冷却され、回収タンク8に回収される。   The hydrogenated aromatic compound is separated into hydrogen by the dehydrogenation catalyst 5 in the catalytic reactor 2 and converted to an aromatic compound. The separated and produced hydrogen passes through a hydrogen separation device 3 such as a hydrogen separation membrane to remove the hydrogenated aromatic compound and the dehydrogenated product, and is supplied to the fuel cell at a pressure of 0.3 MPa or less. On the other hand, the aromatic compound is cooled by the cooler 7 and collected in the collection tank 8.

上記のように触媒反応装置2を加熱器6により加熱するのは、水素化芳香族化合物からの脱水素反応が吸熱反応であり、外部から熱を与える必要があるためである。しかし触媒反応装置2の内部において水素化芳香族化合物は蒸発して気体状態にあり、その周囲に設置された加熱器6からの熱は主として伝導によって水素化芳香族化合物に与えられる。一般に気体の熱伝導率は液体や固体に比較して非常に小さいため、脱水素反応の進行速度が熱伝導により制限され、水素転換速度が高くならないという問題を残している。
特開2001−110437号公報
The reason why the catalytic reaction apparatus 2 is heated by the heater 6 as described above is that the dehydrogenation reaction from the hydrogenated aromatic compound is an endothermic reaction and it is necessary to apply heat from the outside. However, the hydrogenated aromatic compound evaporates inside the catalytic reaction apparatus 2 and is in a gaseous state, and heat from the heater 6 installed around the hydrogenated aromatic compound is mainly given to the hydrogenated aromatic compound by conduction. In general, the thermal conductivity of a gas is much smaller than that of a liquid or a solid, so that the rate of progress of the dehydrogenation reaction is limited by thermal conduction, and the hydrogen conversion rate does not increase.
JP 2001-110437 A

本発明は上記した従来の問題点を解決し、従来よりも水素転換速度を大幅に高め、多量の水素を水素化物から取り出すことができる水素取り出し方法を提供するためになされたものである。   The present invention has been made to solve the above-described conventional problems, and to provide a hydrogen extraction method that can significantly increase the hydrogen conversion rate compared to the conventional method and extract a large amount of hydrogen from the hydride.

上記の課題を解決するためになされた本発明は、水素化物を反応器に供給し、液相状態に保持しながら脱水素触媒の存在下で加熱し、生成した水素ガスを水素分離手段で分離して取り出すことを特徴とするものである。なお、脱水素触媒が、金属元素を坦持した活性炭であることが好ましく、液相状態に保持する手段が、0.1MPa以上の加圧であることが好ましい。また反応器が、内部の液相または、脱水素触媒を攪拌する手段を備えていることが好ましく、攪拌する手段は、反応器内部に設置された攪拌翼を運動させることによる攪拌手段、内部の液相の強制又は自然対流による攪拌手段、反応器全体の振動による攪拌手段、反応器外部から内部の攪拌子を磁力により駆動させることによる攪拌手段から選択することができる。水素分離手段の出側の水素ガス圧力は、大気圧以下とすることが好ましい。また、水素化物が、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、デカリン、メチルデカリン、ジシクロヘキシル、テトラデカヒドロアントラセン、アンモニア、エタン、プロパン、ブタン、ペンタン、ヘキサンのいずれかであることが好ましい。水素分離手段としては、水素分離膜を使用することができる。   In order to solve the above problems, the present invention provides a hydride to a reactor, heats it in the presence of a dehydrogenation catalyst while maintaining the liquid phase, and separates the generated hydrogen gas by a hydrogen separation means. It is characterized by taking out. In addition, it is preferable that a dehydrogenation catalyst is activated carbon which carry | supported the metal element, and it is preferable that the means to hold | maintain in a liquid phase state is the pressurization of 0.1 Mpa or more. The reactor is preferably provided with a means for stirring the internal liquid phase or the dehydrogenation catalyst. The stirring means is a stirring means by moving a stirring blade installed inside the reactor, It can be selected from stirring means by forced liquid phase or natural convection, stirring means by vibration of the whole reactor, and stirring means by driving an internal stirring bar from the outside of the reactor by magnetic force. The hydrogen gas pressure on the outlet side of the hydrogen separation means is preferably set to atmospheric pressure or lower. The hydride is preferably any of cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, decalin, methyldecalin, dicyclohexyl, tetradecahydroanthracene, ammonia, ethane, propane, butane, pentane and hexane. A hydrogen separation membrane can be used as the hydrogen separation means.

本発明によれば、水素化物を反応器に供給し、液相状態に保持しながら脱水素触媒の存在下で加熱するので、触媒反応器内部の熱伝導率が気相状態の場合よりも大きくなり、外周から加えられる熱が速やかに反応系内まで伝導される。このため水素化物からの水素回収速度を高めることができる。また、生成した水素ガスを水素分離手段で分離して取り出すのであるが、水素分離手段の出側の水素ガス圧力を大気圧以下とすることにより、水素回収率を向上させることができる。   According to the present invention, since the hydride is supplied to the reactor and heated in the presence of the dehydrogenation catalyst while being maintained in the liquid phase state, the thermal conductivity inside the catalyst reactor is larger than that in the gas phase state. Thus, heat applied from the outer periphery is quickly conducted into the reaction system. For this reason, the hydrogen recovery rate from the hydride can be increased. Further, the produced hydrogen gas is separated and taken out by the hydrogen separation means, and the hydrogen recovery rate can be improved by setting the hydrogen gas pressure on the outlet side of the hydrogen separation means to atmospheric pressure or less.

以下に本発明の好ましい実施形態を示す。
図1は本発明の第1の実施形態を示すもので、11は水素化芳香族化合物の貯蔵タンク、12は加圧ポンプ、13は触媒反応装置である。貯蔵タンク11には、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、デカリン、メチルデカリン、テトラデカヒドロアントラセン等の水素化芳香族化合物が収納されている。これらは常温で液体であるため、容易に貯蔵したり運搬することができる。
Preferred embodiments of the present invention are shown below.
FIG. 1 shows a first embodiment of the present invention, in which 11 is a hydrogenated aromatic compound storage tank, 12 is a pressure pump, and 13 is a catalytic reactor. The storage tank 11 contains hydrogenated aromatic compounds such as cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, decalin, methyldecalin, and tetradecahydroanthracene. Since these are liquids at room temperature, they can be easily stored and transported.

本発明で用いられる触媒反応装置13は外周に電熱ヒータのような加熱器14を備えている。またその内部には脱水素触媒15が充填されている。脱水素触媒15としては白金、パラジウム、ルテニウム、ロジウム、イリジウム、ニッケル、コバルト、タングステン、モリブデンなどの公知の触媒を用いることができる。脱水素触媒15は粉末状として図示のように分散させても、ハニカム等の触媒担体に担持させてもよい。   The catalytic reaction apparatus 13 used in the present invention includes a heater 14 such as an electric heater on the outer periphery. Further, the inside is filled with a dehydrogenation catalyst 15. As the dehydrogenation catalyst 15, a known catalyst such as platinum, palladium, ruthenium, rhodium, iridium, nickel, cobalt, tungsten, and molybdenum can be used. The dehydrogenation catalyst 15 may be dispersed as a powder as illustrated, or may be supported on a catalyst carrier such as a honeycomb.

水素化芳香族化合物は加圧ポンプ12によって触媒反応装置13に供給され、脱水素触媒15の存在下で80〜250℃に加熱される。加熱により水素化芳香族化合物は気体状態となるが、本発明では触媒反応装置13の内部を0.1MPa以上の高圧、望ましくは1MPa以上に加圧することにより、水素化芳香族化合物が加熱されてもなお液相状態を保持させる。例えば水素化芳香族化合物がシクロヘキサンである場合には、大気圧中の沸点は83℃であるが、圧力を3MPaに保持すれば250℃に加熱しても液相状態を保持することができる。必要な圧力は水素化芳香族化合物の種類と温度により異なるが、液相状態を保持するに要する圧力として決定することができる。さらに、触媒反応装置に供給される水素化化合物と触媒反応装置の内容積の体積比率は、水素化化合物を効率的に加熱するために、0.2以上とすることが好ましく、0.5以上にすることが更に好ましい。   The hydrogenated aromatic compound is supplied to the catalytic reactor 13 by the pressure pump 12 and heated to 80 to 250 ° C. in the presence of the dehydrogenation catalyst 15. Although the hydrogenated aromatic compound is in a gaseous state by heating, in the present invention, the hydrogenated aromatic compound is heated by pressurizing the inside of the catalytic reactor 13 to a high pressure of 0.1 MPa or more, preferably 1 MPa or more. The liquid phase state is still maintained. For example, when the hydrogenated aromatic compound is cyclohexane, the boiling point in atmospheric pressure is 83 ° C., but if the pressure is maintained at 3 MPa, the liquid phase can be maintained even when heated to 250 ° C. The required pressure varies depending on the type and temperature of the hydrogenated aromatic compound, but can be determined as the pressure required to maintain the liquid phase state. Further, the volume ratio of the internal volume of the hydrogenation compound supplied to the catalytic reactor and the catalytic reactor is preferably 0.2 or more, in order to efficiently heat the hydrogenation compound, 0.5 or more More preferably.

このように本発明では触媒反応装置13の内部を高圧とし水素化芳香族化合物が液相状態を保持するようにしたので、触媒反応装置13内部の熱伝導率を気相状態における熱伝導率よりも大幅に高めることができる。水素化芳香族化合物の種類により異なるが、液相状態とすることにより熱伝導率を4倍以上とすることができる。この結果、外周に設置された加熱器14からの熱は触媒反応装置13の中心部まで速やかに伝導され、脱水素反応が進行する。   As described above, in the present invention, the inside of the catalytic reactor 13 is set to a high pressure so that the hydrogenated aromatic compound maintains the liquid phase state. Therefore, the thermal conductivity in the catalytic reactor 13 is determined from the thermal conductivity in the gas phase state. Can also be greatly increased. Although it changes with kinds of hydrogenated aromatic compound, thermal conductivity can be made into 4 times or more by setting it as a liquid phase state. As a result, the heat from the heater 14 installed on the outer periphery is quickly conducted to the central part of the catalytic reaction device 13 and the dehydrogenation reaction proceeds.

上記のようにして生成した水素ガスは、水素分離手段16で未反応の水素化芳香族化合物及び脱水素生成物である芳香族化合物を分離したうえ、燃料電池等に供給される。水素分離手段16としては、パラジウム膜、ゼオライト膜、多孔質シリカガラス膜のような公知の水素分離膜を使用することができる。なお、吸引ポンプ17により触媒反応装置13の出側の水素ガス圧力を大気圧以下、例えば絶対圧で0.01MPa以下とすれば、水素回収率を向上させることができるので好ましい。   The hydrogen gas generated as described above is supplied to a fuel cell or the like after separating unreacted hydrogenated aromatic compounds and aromatic compounds as dehydrogenated products by the hydrogen separation means 16. As the hydrogen separation means 16, a known hydrogen separation membrane such as a palladium membrane, a zeolite membrane, or a porous silica glass membrane can be used. In addition, it is preferable that the hydrogen gas pressure on the outlet side of the catalytic reaction device 13 is set to atmospheric pressure or lower, for example, 0.01 MPa or lower in terms of absolute pressure by the suction pump 17, since the hydrogen recovery rate can be improved.

以上に説明した図1の実施形態では、脱水素生成物が触媒反応装置13の内部にそのまま残留し、反応が進行するに連れて反応器内の水素化物の濃度が低下してくるため、次第に水素の発生量が低下する。この問題を解消したのが図2に示す第2の実施形態である。この第2の実施形態では触媒反応装置13の出側に、水素と脱水素生成物とは通過させるが水素化芳香族化合物は通過させない分離膜18を設置し、水素とともに脱水素生成物をも触媒反応装置13から取出す。このような分離膜18としては、例えばゼオライト膜を使用することができる。   In the embodiment of FIG. 1 described above, the dehydrogenation product remains inside the catalytic reactor 13 and the hydride concentration in the reactor decreases as the reaction proceeds. The amount of hydrogen generated decreases. This problem is solved in the second embodiment shown in FIG. In the second embodiment, a separation membrane 18 that allows hydrogen and a dehydrogenated product to pass but not a hydrogenated aromatic compound to pass through is installed on the exit side of the catalytic reaction device 13, and the dehydrogenated product is also contained with hydrogen. It is taken out from the catalytic reactor 13. As such a separation membrane 18, for example, a zeolite membrane can be used.

そしてさらにその後段に、水素と脱水素生成物との分離手段19を設置する。この分離手段19としては例えば冷却器を用いることができる。この分離手段19によって脱水素生成物は凝結させて回収タンク20に回収し、水素のみを燃料電池等に供給する。このような構成を採用すれば、触媒反応装置13の内部に脱水素生成物が蓄積されることがないため、連続的に水素を取出すことが可能となる。この場合にも、吸引ポンプ17により触媒反応装置13の出側の水素ガス圧力を大気圧以下とすることが好ましい。   Further, a separation means 19 for separating hydrogen from the dehydrogenated product 19 is installed in the subsequent stage. As the separation means 19, for example, a cooler can be used. The dehydrogenation product is condensed by the separation means 19 and recovered in the recovery tank 20, and only hydrogen is supplied to the fuel cell or the like. By adopting such a configuration, the dehydrogenation product is not accumulated in the catalytic reaction device 13, so that hydrogen can be continuously taken out. Also in this case, it is preferable that the hydrogen gas pressure on the outlet side of the catalytic reaction device 13 is made atmospheric pressure or less by the suction pump 17.

以下に本発明の実施例を示す。内容積1Lの圧力容器に、活性炭の質量に対して1.5wt%の白金を坦持した活性炭触媒を嵩体積で0.8L、水素化物としてシクロヘキサンを0.6L充填した。圧力容器の後段には、臨界圧力を考慮して逃がし圧力を4MPaに設定した圧力逃がし弁を設けて、発生ガスを回収できるようにした。反応器外周に設置した電気ヒータによって加熱することで、反応器内部温度を400℃に昇温したところ、最大14Lの水素が回収された。   Examples of the present invention are shown below. A pressure vessel having an internal volume of 1 L was charged with 0.8 L by volume of activated carbon catalyst carrying 1.5 wt% of platinum with respect to the mass of the activated carbon and 0.6 L of cyclohexane as a hydride. A pressure relief valve having a relief pressure set to 4 MPa is provided at the subsequent stage of the pressure vessel in consideration of the critical pressure so that the generated gas can be recovered. When the internal temperature of the reactor was raised to 400 ° C. by heating with an electric heater installed on the outer periphery of the reactor, a maximum of 14 L of hydrogen was recovered.

本発明の第1の実施形態を示す系統説明図である。It is system | strain explanatory drawing which shows the 1st Embodiment of this invention. 本発明の第2の実施形態を示す系統説明図である。It is system | strain explanatory drawing which shows the 2nd Embodiment of this invention. 従来例を示す系統説明図である。It is system | strain explanatory drawing which shows a prior art example.

符号の説明Explanation of symbols

11 水素化芳香族化合物の貯蔵タンク
12 加圧ポンプ
13 触媒反応装置
14 加熱器
15 脱水素触媒
16 水素分離手段
17 吸引ポンプ
18 分離膜
19 水素と脱水素生成物との分離手段
20 回収タンク
11 Hydrogenated aromatic compound storage tank 12 Pressure pump 13 Catalytic reactor 14 Heater 15 Dehydrogenation catalyst 16 Hydrogen separation means 17 Suction pump 18 Separation membrane 19 Hydrogen and dehydrogenation product separation means 20 Recovery tank

Claims (9)

水素化物を反応器に供給し、液相状態に保持しながら脱水素触媒の存在下で加熱し、生成した水素ガスを水素分離手段で分離して取り出すことを特徴とする水素の取り出し方法。   A method for extracting hydrogen, comprising supplying a hydride to a reactor, heating the hydride in the presence of a dehydrogenation catalyst while maintaining the liquid phase, and separating and removing the generated hydrogen gas by a hydrogen separation means. 脱水素触媒が、金属元素を坦持した活性炭であることを特徴とする請求項1記載の水素の取り出し方法。   The method for extracting hydrogen according to claim 1, wherein the dehydrogenation catalyst is activated carbon carrying a metal element. 液相状態に保持する手段が、0.1MPa以上の加圧であることを特徴とする請求項1〜2の何れかに記載の水素の取り出し方法。   3. The method for extracting hydrogen according to claim 1, wherein the means for maintaining the liquid phase is a pressure of 0.1 MPa or more. 反応器が、内部の液相または、脱水素触媒を攪拌する手段を備えていることを特徴とする、請求項1〜3の何れかに記載の水素取り出し方法。   The method for extracting hydrogen according to any one of claims 1 to 3, wherein the reactor is provided with a means for stirring an internal liquid phase or a dehydrogenation catalyst. 水素分離手段が、水素分離膜であることを特徴とする請求項1〜4の何れかに記載の水素の取り出し方法。   The method for extracting hydrogen according to claim 1, wherein the hydrogen separation means is a hydrogen separation membrane. 水素分離手段の出側の水素ガス圧力を、大気圧以下とすることを特徴とする請求項1〜5の何れかに記載の水素の取り出し方法。   6. The method for extracting hydrogen according to claim 1, wherein the hydrogen gas pressure on the outlet side of the hydrogen separation means is set to atmospheric pressure or lower. 金属元素が、白金、パラジウム、ルテニウム、ロジウム、イリジウム、コバルト、ニッケル、鉄、マンガン、バナジウム、タングステン、モリブデン、カリウム、バリウムの一部、または全部であることを特徴とする請求項2〜6の何れかに記載の水素の取り出し方法。   The metal element is platinum, palladium, ruthenium, rhodium, iridium, cobalt, nickel, iron, manganese, vanadium, tungsten, molybdenum, potassium, part of or all of barium, The method for extracting hydrogen according to any one of the above. 攪拌する手段が、反応器内部に設置された攪拌翼を運動させることによる攪拌手段、内部の液相の強制又は自然対流による攪拌手段、反応器全体の振動による攪拌手段、反応器外部から内部の攪拌子を磁力により駆動させることによる攪拌手段の一部、または全部であることを特徴とする請求項4〜8の何れかに記載の水素取り出し方法。   The stirring means is a stirring means by moving a stirring blade installed inside the reactor, a stirring means by forced internal liquid phase or natural convection, a stirring means by vibration of the whole reactor, and from the outside of the reactor to the inside. The method for extracting hydrogen according to any one of claims 4 to 8, wherein the stirring means is part or all of the stirring means by driving the stirrer by magnetic force. 水素化物が、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、デカリン、メチルデカリン、ジシクロヘキシル、テトラデカヒドロアントラセン、アンモニア、エタン、プロパン、ブタン、ペンタン、ヘキサン、の一部、または全部であることを特徴とする請求項1〜8の何れかに記載の水素の取り出し方法。   The hydride is a part or all of cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, decalin, methyldecalin, dicyclohexyl, tetradecahydroanthracene, ammonia, ethane, propane, butane, pentane, hexane. The method for extracting hydrogen according to any one of claims 1 to 8.
JP2005088325A 2005-03-25 2005-03-25 How to remove hydrogen Active JP4817691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088325A JP4817691B2 (en) 2005-03-25 2005-03-25 How to remove hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088325A JP4817691B2 (en) 2005-03-25 2005-03-25 How to remove hydrogen

Publications (2)

Publication Number Publication Date
JP2006265065A true JP2006265065A (en) 2006-10-05
JP4817691B2 JP4817691B2 (en) 2011-11-16

Family

ID=37201410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088325A Active JP4817691B2 (en) 2005-03-25 2005-03-25 How to remove hydrogen

Country Status (1)

Country Link
JP (1) JP4817691B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006659A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Apparatus for producing hydrogen
JP2010006653A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for producing hydrogen
JP2015057774A (en) * 2013-09-16 2015-03-26 ハミルトン・サンドストランド・コーポレイションHamilton Sundstrand Corporation System, method of actuating fuel cell in enclosed vehicle, and method of operating fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169101A (en) * 1998-12-02 2000-06-20 Agency Of Ind Science & Technol Production of hydrogen from 2-propanol
JP2001110437A (en) * 1999-10-12 2001-04-20 Kansai Research Institute Hydrogen fuel supply system for fuel cell
JP2003260360A (en) * 2002-03-13 2003-09-16 Toyota Motor Corp Dehydrogenation catalyst and hydrogen gas generating device
JP2004203679A (en) * 2002-12-25 2004-07-22 Tokyo Electric Power Co Inc:The Hydrogen donor and hydrogen storage and transport method using the same
JP2004313974A (en) * 2003-04-17 2004-11-11 Sekisui Chem Co Ltd Dropping nozzle, and hydrogen generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169101A (en) * 1998-12-02 2000-06-20 Agency Of Ind Science & Technol Production of hydrogen from 2-propanol
JP2001110437A (en) * 1999-10-12 2001-04-20 Kansai Research Institute Hydrogen fuel supply system for fuel cell
JP2003260360A (en) * 2002-03-13 2003-09-16 Toyota Motor Corp Dehydrogenation catalyst and hydrogen gas generating device
JP2004203679A (en) * 2002-12-25 2004-07-22 Tokyo Electric Power Co Inc:The Hydrogen donor and hydrogen storage and transport method using the same
JP2004313974A (en) * 2003-04-17 2004-11-11 Sekisui Chem Co Ltd Dropping nozzle, and hydrogen generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006659A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Apparatus for producing hydrogen
JP2010006653A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for producing hydrogen
JP2015057774A (en) * 2013-09-16 2015-03-26 ハミルトン・サンドストランド・コーポレイションHamilton Sundstrand Corporation System, method of actuating fuel cell in enclosed vehicle, and method of operating fuel cell

Also Published As

Publication number Publication date
JP4817691B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
Iulianelli et al. An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part I: Temperature and sweep-gas flow configuration effects
JP4684069B2 (en) Production method of high purity hydrogen
JP4801359B2 (en) Hydrogen production method
Iulianelli et al. An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part II: Reaction pressure, sweep factor and WHSV effects
Murmura et al. Directing selectivity of ethanol steam reforming in membrane reactors
BRPI0712044A2 (en) process for hydrogen production
JP2010006653A (en) Method for producing hydrogen
JP4817691B2 (en) How to remove hydrogen
JP5934649B2 (en) Hydrocarbon production
Iulianelli et al. Partial oxidation of ethanol in a membrane reactor for high purity hydrogen production
CA2856802C (en) Oil well product treatment
AU2015228270B2 (en) Hydrogen production system and hydrogen production method
JP2007076982A (en) Hydrogen production system and power generation system
JP5102932B2 (en) High purity hydrogen production method
JP2006225169A (en) Hydrogen production apparatus and method
JP2008290927A (en) Method and apparatus for refining hydrogen by using organic hydride
Hiyoshi et al. Enhanced selectivity to decalin in naphthalene hydrogenation under supercritical carbon dioxide
Andersen et al. Hydrogen acceptor and membrane concepts for direct methane conversion
WO2019197514A1 (en) A method for generating synthesis gas for use in hydroformylation reactions
Pasel et al. Combination of autothermal reforming with water-gas-shift reaction—small-scale testing of different water-gas-shift catalysts
JP2007084378A (en) Method for producing hydrogen and apparatus used in the same
JP2007076992A (en) Apparatus for producing hydrogen and fuel cell system using the same
JP2004059336A (en) Process for producing hydrogen gas
WO2018037315A1 (en) Integrated method and system for hydrogen and ethylene production
Seiiedhoseiny et al. Hydrogen production system combined with a membrane reactor from ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250