JP2004059336A - Process for producing hydrogen gas - Google Patents

Process for producing hydrogen gas Download PDF

Info

Publication number
JP2004059336A
JP2004059336A JP2002216188A JP2002216188A JP2004059336A JP 2004059336 A JP2004059336 A JP 2004059336A JP 2002216188 A JP2002216188 A JP 2002216188A JP 2002216188 A JP2002216188 A JP 2002216188A JP 2004059336 A JP2004059336 A JP 2004059336A
Authority
JP
Japan
Prior art keywords
hydrogen
organic compound
containing organic
reaction
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002216188A
Other languages
Japanese (ja)
Inventor
Shinichi Oyama
大山 眞一
Atsushi Sakai
阪井 敦
Toyo Okubo
大久保 都世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2002216188A priority Critical patent/JP2004059336A/en
Publication of JP2004059336A publication Critical patent/JP2004059336A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing a hydrogen gas at a relatively low temperature by dehydrogenating a hydrogen-containing organic compound. <P>SOLUTION: In the process, a hydrogen gas is produced by lowering the hydrogen partial pressure while dehydrogenating a hydrogen-containing organic compound in the presence of a dehydrogenation catalyst. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水素を含有する有機化合物から脱水素反応により水素ガスを製造する水素ガス製造方法に関する。
【0002】
【従来の技術】
従来の水素製造方法としては、石炭、石油、天然ガスなどの炭化水素化合物を水蒸気改質又は部分酸化する方法、水を電気分解する方法等が知られている。しかし、石炭、石油、天然ガスを原料とする水蒸気改質プロセスでは800℃を超える高温、部分酸化プロセスでは1200℃以上の高温を必要と必要とする。また、水を電気分解するプロセスでは電気エネルギーを必要し、低温で水素を発生させることは非常に困難である。
【0003】
【発明が解決しようとする課題】
本発明の主な目的は、比較的低温で水素を製造する方法を提供することである。
【0004】
【課題を解決するための手段】
本発明者は、従来技術の現状に留意しつつ鋭意研究を重ねた結果、水素分圧を下げることによって、比較的低温でも水素を製造できることを見出し、本発明を完成するに至った。
【0005】
即ち、本発明は、下記の水素製造方法を提供するものである。
【0006】
1.脱水素触媒の存在下、水素含有有機化合物を脱水素反応させることにより水素ガスを生成させることを特徴とする水素ガスの製造方法。
【0007】
2.反応系の水素分圧を下げながら脱水素反応を行うことを特徴とする上記項1記載の方法。
【0008】
3.反応系に不活性ガスを存在させることを特徴とする上記項1又は2に記載の方法。
【0009】
4.脱水素反応により生成した反応生成物から未反応の水素含有有機化合物を回収し、当該未反応の化合物をさらに脱水素反応させる上記項1〜3のいずれかに記載の方法。
【0010】
5.脱水素反応により生成した反応生成物から水素ガスを水素分離膜を介して回収する上記項1〜4のいずれかに記載の製造方法。
【0011】
6.15〜800℃の温度下で脱水素反応させることを特徴とする上記項1〜5のいずれかに記載の方法。
【0012】
【発明の実施の形態】
本発明において、水素を得るための原料として使用される水素含有有機化合物としては特に限定されず、パラフィン類、アルコール類、環状炭化水素類を例示できる。また、使用する水素含有有機化合物は1種類又は2種類以上の併用のいずれでも良い。
【0013】
パラフィン類としては、エタン、プロパン、ブタン、ペンタン、ヘキサン等を例示できる。アルコール類としては、メタノール、エタノール、プロパノール、ブタノール等を例示できる。環状炭化水素としては、シクロブタン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、シクロヘプタン、シクロオクタン、デカリン等を例示できる。
【0014】
水素含有有機化合物の脱水素反応においては、パラフィン類のプロパンを例に取るならば、次式:
CHCHCH → CH=CHCH + H
で示されるように、オレフィン類であるプロピレンと水素が形成される。
【0015】
また、アルコール類の2−プロパノールを例に取るならば、次式:
CHCH(OH)CH → CHCOCH + H
示されるように、ケトン類であるアセトンと水素が形成される。
【0016】
また、環状炭化水素のシクロヘキサンを例に取るならば、次式:
12 → C + 3H
で示されるように、芳香族化合物のベンゼンと水素が形成される。
【0017】
前記水素含有有機化合物の中でも、脱水素反応で多くの水素を発生する化合物が好適であり、シクロヘキサン、メチルシクロヘキサン、エチルチクロヘキサン、シクロヘプタン、シクロオクタン及びデカリンの少なくとも1種が好ましい。
【0018】
本発明において使用される水素含有有機化合物の脱水素反応に用いる触媒としては、特に限定されず、公知の触媒を使用できる。例えば、白金、ルテニウム、パラジウム、ロジウム、イリジウム、ニッケル、銅、クロム等の金属及びそれらの酸化物の少なくとも1種を、アルミナ、シリカ、ゼオライト、活性炭、チタニア、ジルコニア、マグネシア等の担体に担持したものを触媒として使用することもできる。
【0019】
また、本発明の水素製造方法においては、不活性ガスを反応系に存在させることによって反応系内の水素分圧を下げるのが好ましい。水素分圧を下げることによって、脱水素反応が水素発生に傾き、また、通常水素の製造を行っている温度よりも低い温度で水素を製造することができる。
【0020】
本発明において使用される不活性ガスとしては特に限定されず、窒素、二酸化炭素、ヘリウム、ネオン、アルゴン、キセノン等を例示し得る。経済的観点から、不活性ガスとしては窒素及び二酸化炭素の少なくとも1種を用いることが好ましい。
【0021】
以下、本発明の実施様態例を示す図面を参照しつつ、本発明をより詳細に説明する。
【0022】
図1は、本発明の概要の1例を示すフローチャートである。本発明の反応操作は連続方式、バッチ方式のどちらも可能であるが、経済的な観点からは、連続式の方が好ましい。以下、連続方式を例にして説明する。
【0023】
水素含有有機化合物は、貯蔵槽(図示せず)から水素含有有機化合物供給ライン1を介して水素含有有機化合物供給ポンプ2で所定の反応圧力まで加圧できる。水素含有有機化合物は、ポンプで連続的に移送するためには液状であることが好ましく、水素含有有機化合物の貯蔵槽にて液状となるように、適宜、加熱又は冷却するのが好ましい。
【0024】
水素含有有機化合物の貯蔵槽は、漏洩なく貯蔵できる構造のものであれば特に限定されず、円筒槽、コーンルーフ槽、球形槽などが例示できる。また、水素含有有機化合物が直接配管で供給される場合は、貯蔵槽はなくてもよい。水素含有有機化合物供給ポンプ2は、所定圧力まで昇圧できるポンプであれば特に限定されず、渦巻式、キャンド式、ダイヤフラム式、プランジャー式、ギアー式、ロータリー式等のポンプを使用し得る。
【0025】
ポンプで昇圧された水素含有有機化合物は、水素含有有機化合物加熱器4で所定温度まで昇温され、水素含有有機化合物供給ライン3を介して、脱水素反応器5に供給され得る。水素含有有機化合物加熱器は、流体の圧力に耐え、所定温度まで昇温できるものであれば特に限定されず、二重管式、シェル&チューブ式、プレート式、スパイラル式の熱交換器、加熱炉等を使用し得る。加熱媒体も特に限定されず、蒸気、熱媒体オイル、溶融塩、燃焼ガス、電気ヒーター、誘導加熱等を利用し得る。また、反応生成物である脱水素有機化合物と熱交換しても良い。
【0026】
脱水素反応器5は、脱水素反応を行うための触媒が充填され、水素含有有機化合物の脱水素反応が生じる。脱水素反応は吸熱反応であり、モル数の増加反応であるため、反応平衡の観点からは、温度は高いほど、圧力は低いほど、水素生成系側にシフトし、脱水素反応には好ましい。
【0027】
しかしながら、反応温度が高すぎる場合には、副生成物が多くなり、水素発生量が低減するので好ましくない。また、圧力が低い場合は、ガス相の体積が大きくなり、単位体積触媒あたりの処理能力が低下し、更に、設備が大型化するので好ましくない。
【0028】
従って、脱水素反応は、通常15〜800℃程度、好ましくは150〜600℃程度、より好ましくは200〜350℃の温度で行うのが好ましい。また、圧力は、大気圧〜1.0MPa(ゲージ圧)程度、好ましくは0.1〜0.8MPaである。
【0029】
反応ガス中に不活性ガスを存在させることにより、水素分圧が低下し、脱水素反応の平衡が水素生成側にシフトするので好ましい。反応系に存在させる不活性ガスの量が多すぎると、単位体積触媒あたりの処理能力が低下するとともに、設備が大型化するので好ましくない。従って、不活性ガスの含有量は、10〜90mol%程度、好ましくは20〜70mol%程度とする。
【0030】
脱水素反応器の構造は特に限定されず、円筒充填層型、円筒流動層型、多管式、ループ式などを使用し得る。また、脱水素反応の吸熱を補うため、脱水素反応器は加熱できる構造のものが好ましい。加熱媒体は特に限定されず、蒸気、熱媒体オイル、溶融塩、燃焼ガス、電気ヒーター、誘導加熱等が利用できる。
【0031】
図2に示すように、脱水素反応器内に水素分離膜10を設置した場合は、水素ライン9を介して、脱水素反応系から連続的に水素を分離除去できるため、水素分圧が低下し、脱水素反応の平衡が水素生成側にずれるので好ましい。脱水素反応器中に設置する水素分離膜は、脱水素反応の温度および圧力に耐え得るものであれば特に限定されないが、金属膜、ゼオライト膜、セラミック膜、高分子膜等を例示し得る。
【0032】
脱水素反応器5で生成する脱水素有機化合物、未反応の水素含有有機化合物、及び水素の混合物は、脱水素反応混合物ライン6を介して、水素分離器7に送られ、水素を分離することができる。
【0033】
水素分離器7で行う水素の分離方法は特に限定されず、公知の方法により行うことができる。例えば、水素分離膜方式(金属膜方式、ゼオライト膜方式、セラミック膜、高分子膜方式)、吸着剤を用いる圧力スイング方式(PSA方式)、温度スイング方式(TSA方式)、圧力温度スイング方式(PTSA方式)、冷却分離方式等を例示できる。これらは、水素分離器の容量、設備条件等を総合的に勘案して、適宜選択される。単独で行っても良く、あるいは2以上の方式を併用して行っても良い。
【0034】
水素分離器7で分離された脱水素有機化合物は、脱水素有機化合物ライン8を介して、貯蔵槽(図示せず)に貯蔵することができる。脱水素有機化合物の貯蔵槽は、漏洩なく貯蔵できる構造のものであれば特に限定されず、円筒槽、コーンルーフ槽、球形槽等を例示し得る。また、脱水素有機化合物が直接配管にて移送される場合は、特に貯蔵槽は使用しなくてもよい。
【0035】
脱水素有機化合物中に含まれる未反応の水素含有有機化合物が少ない場合は、図1又は図2に示すように、未反応の水素含有有機化合物を循環させなくてもよいが、未反応の水素含有有機化合物が多い場合は、図3に示すように、未反応水素含有化合物分離器11を設け、未反応水素含有有機化合物循環ライン12を介して、未反応の水素含有有機化合物を循環させることもできる。未反応水素含有化合物分離器11は、特に限定されず、公知の方法により行うことができる。未反応水素含有化合物分離方法としては、蒸留分離、抽出分離、吸着分離等を例示し得る。
【0036】
水素分離器7で分離された水素は、水素ライン9を介して、所定の水素利用施設(図示せず)、例えば、燃料電池施設、水素エンジン施設、水素燃焼ガスタービン設備、水素を用いる二次電池施設等で使用される。この際、必要に応じて、水素の貯蔵設備(図示せず)において、一時的に貯蔵した後に、所定の水素利用施設に送り、使用しても良い。
【0037】
【実施例】
以下、本発明を実施例及び比較例を用いてより詳細に説明する。
【0038】
実施例
脱水素反応触媒10g(10wt%Ptをアルミナに担持した触媒)を充填した管状リアクターに充填した。シクロヘキサンを伝熱ヒーターで加熱して250℃まで昇温させ、50g/hの供給量で、窒素ガスは伝熱ヒーターで加熱し250℃まで昇温させ、100Nml/minの供給量で流通させた。
脱水素反応器は250℃の温度に制御され、圧力は全圧0.5MPa(ゲージ圧)に制御された。流通開始後、30分後に脱水素反応器から流出するガスを−20℃まで冷却し、未反応のシクロヘキサン及び反応生成物であるベンゼンを凝縮させた。
未凝縮ガスは流量計でガス流量を測定した。このとき、未凝縮ガス流量は250Nml/min(水素ガス流量は160Nml/min)であり、シクロヘキサンのベンゼンへの転化率は25%であった。
【0039】
実施例
脱水素反応に窒素を流通させず、脱水素反応器に水素分離膜(90%Pd−10%Ag)を設置した以外は、実施例1の方法を用いた。脱水素反応により生成した水素ガスは、水素分離膜を通して選択透過し、330Nml/minの水素流量を得た。このこのときのシクロヘキサンのベンゼンへの転化率は73%であった。
【0040】
比較例
脱水素反応に窒素を流通させない以外は、実施例1の方法を用いた。このとき、未凝縮水素ガス流量は70Nml/minであり、シクロヘキサンのベンゼンへの転化率は10%であった。
【0041】
【発明の効果】
本発明によれば、比較的低温で効率よく水素を製造することができる。省エネにもつながり、環境に優しい方法といえる。
【図面の簡単な説明】
【図1】水素ガス製造装置のフローチャートを示す。
【図2】水素分離膜を有する水素ガス製造装置のフローチャートを示す。
【図3】未反応の水素含有機化合物を循環する水素ガス製造装置のフローチャートを示す。
【符号の説明】
1  水素含有有機化合物供給ライン
2  水素含有有機化合物供給ポンプ
3  水素含有有機化合物供給ライン
4  水素含有有機化合物加熱器
5  脱水素反応器
6  脱水素反応混合物ライン
7  水素分離器
8  脱水素有機化合物ライン
9  水素ライン
10 水素分離膜
11 未反応水素含有有機化合物分離器
12 未反応水素含有有機化合物循環ライン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen gas producing method for producing hydrogen gas from a hydrogen-containing organic compound by a dehydrogenation reaction.
[0002]
[Prior art]
As a conventional hydrogen production method, a method of steam reforming or partially oxidizing a hydrocarbon compound such as coal, petroleum, and natural gas, and a method of electrolyzing water are known. However, a steam reforming process using coal, petroleum, or natural gas as a raw material requires a high temperature exceeding 800 ° C, and a partial oxidation process requires a high temperature of 1200 ° C or more. Further, the process of electrolyzing water requires electric energy, and it is very difficult to generate hydrogen at a low temperature.
[0003]
[Problems to be solved by the invention]
A main object of the present invention is to provide a method for producing hydrogen at a relatively low temperature.
[0004]
[Means for Solving the Problems]
The present inventor has conducted intensive studies while paying attention to the current state of the prior art, and as a result, has found that hydrogen can be produced at a relatively low temperature by lowering the hydrogen partial pressure, thereby completing the present invention.
[0005]
That is, the present invention provides the following hydrogen production method.
[0006]
1. A method for producing hydrogen gas, comprising producing hydrogen gas by subjecting a hydrogen-containing organic compound to a dehydrogenation reaction in the presence of a dehydrogenation catalyst.
[0007]
2. 2. The method according to the above item 1, wherein the dehydrogenation reaction is carried out while lowering the hydrogen partial pressure of the reaction system.
[0008]
3. Item 3. The method according to Item 1 or 2, wherein an inert gas is present in the reaction system.
[0009]
4. Item 4. The method according to any one of Items 1 to 3, wherein an unreacted hydrogen-containing organic compound is recovered from a reaction product generated by the dehydrogenation reaction, and the unreacted compound is further subjected to a dehydrogenation reaction.
[0010]
5. Item 5. The method according to any one of Items 1 to 4, wherein hydrogen gas is recovered from a reaction product generated by the dehydrogenation reaction through a hydrogen separation membrane.
[0011]
6. The method according to any one of the above items 1 to 5, wherein the dehydrogenation reaction is performed at a temperature of 15 to 800 ° C.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the hydrogen-containing organic compound used as a raw material for obtaining hydrogen is not particularly limited, and examples thereof include paraffins, alcohols, and cyclic hydrocarbons. The hydrogen-containing organic compound to be used may be either one kind or a combination of two or more kinds.
[0013]
Examples of paraffins include ethane, propane, butane, pentane, hexane and the like. Examples of alcohols include methanol, ethanol, propanol, butanol and the like. Examples of the cyclic hydrocarbon include cyclobutane, cyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, cycloheptane, cyclooctane, decalin and the like.
[0014]
In the dehydrogenation reaction of a hydrogen-containing organic compound, taking the paraffin propane as an example, the following formula:
CH 3 CH 2 CH 3 → CH 2 CHCHCH 3 + H 2
As shown by, olefins propylene and hydrogen are formed.
[0015]
Further, taking the alcohol 2-propanol as an example, the following formula:
CH 3 CH (OH) CH 3 → CH 3 COCH 3 + H 2
As shown, ketones acetone and hydrogen are formed.
[0016]
Further, taking the cyclic hydrocarbon cyclohexane as an example, the following formula:
C 6 H 12 → C 6 H 6 + 3H 2
As shown in the above, benzene and hydrogen of the aromatic compound are formed.
[0017]
Among the hydrogen-containing organic compounds, compounds that generate a large amount of hydrogen by a dehydrogenation reaction are preferable, and at least one of cyclohexane, methylcyclohexane, ethylcyclohexane, cycloheptane, cyclooctane, and decalin is preferable.
[0018]
The catalyst used in the dehydrogenation reaction of the hydrogen-containing organic compound used in the present invention is not particularly limited, and a known catalyst can be used. For example, platinum, ruthenium, palladium, rhodium, iridium, nickel, copper, at least one of oxides thereof and metals such as chromium, alumina, silica, zeolite, activated carbon, titania, zirconia, supported on a carrier such as magnesia Those can also be used as catalysts.
[0019]
Further, in the hydrogen production method of the present invention, it is preferable to reduce the hydrogen partial pressure in the reaction system by causing an inert gas to be present in the reaction system. By lowering the hydrogen partial pressure, the dehydrogenation reaction tends to generate hydrogen, and hydrogen can be produced at a temperature lower than the temperature at which hydrogen is normally produced.
[0020]
The inert gas used in the present invention is not particularly limited, and examples thereof include nitrogen, carbon dioxide, helium, neon, argon, and xenon. From an economic viewpoint, it is preferable to use at least one of nitrogen and carbon dioxide as the inert gas.
[0021]
Hereinafter, the present invention will be described in more detail with reference to the drawings showing an embodiment of the present invention.
[0022]
FIG. 1 is a flowchart showing an example of the outline of the present invention. The reaction operation of the present invention can be either a continuous system or a batch system, but from an economic viewpoint, the continuous system is preferred. Hereinafter, the continuous method will be described as an example.
[0023]
The hydrogen-containing organic compound can be pressurized from a storage tank (not shown) to a predetermined reaction pressure by a hydrogen-containing organic compound supply pump 2 through a hydrogen-containing organic compound supply line 1. The hydrogen-containing organic compound is preferably in a liquid state in order to be continuously transferred by a pump, and is preferably appropriately heated or cooled so as to be in a liquid state in a storage tank for the hydrogen-containing organic compound.
[0024]
The storage tank for the hydrogen-containing organic compound is not particularly limited as long as it has a structure capable of storing without leakage, and examples thereof include a cylindrical tank, a cone roof tank, and a spherical tank. In addition, when the hydrogen-containing organic compound is directly supplied via a pipe, the storage tank may not be provided. The hydrogen-containing organic compound supply pump 2 is not particularly limited as long as it can raise the pressure to a predetermined pressure, and a pump of a spiral type, a cand type, a diaphragm type, a plunger type, a gear type, a rotary type, or the like can be used.
[0025]
The hydrogen-containing organic compound pressurized by the pump can be heated to a predetermined temperature by the hydrogen-containing organic compound heater 4 and supplied to the dehydrogenation reactor 5 through the hydrogen-containing organic compound supply line 3. The hydrogen-containing organic compound heater is not particularly limited as long as it can withstand the pressure of the fluid and can raise the temperature to a predetermined temperature. A double tube type, shell and tube type, plate type, spiral type heat exchanger, heating A furnace or the like may be used. The heating medium is not particularly limited, and steam, heat medium oil, molten salt, combustion gas, electric heater, induction heating, or the like can be used. Further, heat exchange may be performed with a dehydrogenated organic compound which is a reaction product.
[0026]
The dehydrogenation reactor 5 is filled with a catalyst for performing a dehydrogenation reaction, and a dehydrogenation reaction of the hydrogen-containing organic compound occurs. Since the dehydrogenation reaction is an endothermic reaction and an increase in the number of moles, from the viewpoint of reaction equilibrium, the higher the temperature and the lower the pressure, the closer to the hydrogen generating system side, which is preferable for the dehydrogenation reaction.
[0027]
However, if the reaction temperature is too high, undesirably, the amount of by-products increases and the amount of hydrogen generated decreases. On the other hand, when the pressure is low, the volume of the gas phase becomes large, the processing capacity per unit volume catalyst is reduced, and the equipment is undesirably increased in size.
[0028]
Therefore, the dehydrogenation reaction is preferably performed at a temperature of usually about 15 to 800 ° C, preferably about 150 to 600 ° C, and more preferably 200 to 350 ° C. The pressure is about atmospheric pressure to about 1.0 MPa (gauge pressure), preferably 0.1 to 0.8 MPa.
[0029]
The presence of an inert gas in the reaction gas is preferable because the hydrogen partial pressure decreases and the equilibrium of the dehydrogenation reaction shifts to the hydrogen generation side. If the amount of the inert gas to be present in the reaction system is too large, the processing capacity per unit volume catalyst decreases, and the equipment becomes large, which is not preferable. Therefore, the content of the inert gas is about 10 to 90 mol%, preferably about 20 to 70 mol%.
[0030]
The structure of the dehydrogenation reactor is not particularly limited, and a cylindrical packed bed type, a cylindrical fluidized bed type, a multi-tube type, a loop type, or the like can be used. Further, in order to compensate for the endothermic heat of the dehydrogenation reaction, the dehydrogenation reactor preferably has a structure capable of heating. The heating medium is not particularly limited, and steam, heat medium oil, molten salt, combustion gas, electric heater, induction heating and the like can be used.
[0031]
As shown in FIG. 2, when the hydrogen separation membrane 10 is installed in the dehydrogenation reactor, hydrogen can be continuously separated and removed from the dehydrogenation reaction system via the hydrogen line 9, so that the hydrogen partial pressure decreases. However, this is preferable because the equilibrium of the dehydrogenation reaction shifts to the hydrogen generation side. The hydrogen separation membrane installed in the dehydrogenation reactor is not particularly limited as long as it can withstand the temperature and pressure of the dehydrogenation reaction, and examples thereof include a metal membrane, a zeolite membrane, a ceramic membrane, and a polymer membrane.
[0032]
A mixture of the dehydrogenated organic compound, the unreacted hydrogen-containing organic compound, and hydrogen generated in the dehydrogenation reactor 5 is sent to a hydrogen separator 7 via a dehydrogenation reaction mixture line 6 to separate hydrogen. Can be.
[0033]
The method of separating hydrogen by the hydrogen separator 7 is not particularly limited, and can be performed by a known method. For example, a hydrogen separation membrane system (metal membrane system, zeolite membrane system, ceramic membrane, polymer membrane system), a pressure swing system using an adsorbent (PSA system), a temperature swing system (TSA system), a pressure temperature swing system (PTSA) System), a cooling separation system, and the like. These are appropriately selected in consideration of the capacity of the hydrogen separator, equipment conditions, and the like. It may be performed alone or in combination of two or more methods.
[0034]
The dehydrogenated organic compound separated by the hydrogen separator 7 can be stored in a storage tank (not shown) via the dehydrogenated organic compound line 8. The storage tank for the dehydrogenated organic compound is not particularly limited as long as it has a structure capable of storing without leakage, and examples thereof include a cylindrical tank, a cone roof tank, and a spherical tank. Further, when the dehydrogenated organic compound is directly transferred by a pipe, the storage tank may not be particularly used.
[0035]
When the amount of the unreacted hydrogen-containing organic compound contained in the dehydrogenated organic compound is small, the unreacted hydrogen-containing organic compound does not have to be circulated as shown in FIG. 1 or FIG. When the content of the organic compound is large, an unreacted hydrogen-containing compound separator 11 is provided as shown in FIG. 3, and the unreacted hydrogen-containing organic compound is circulated through the unreacted hydrogen-containing organic compound circulation line 12. You can also. The unreacted hydrogen-containing compound separator 11 is not particularly limited, and can be performed by a known method. Examples of the method for separating unreacted hydrogen-containing compounds include distillation separation, extraction separation, and adsorption separation.
[0036]
Hydrogen separated by the hydrogen separator 7 is passed through a hydrogen line 9 to a predetermined hydrogen utilization facility (not shown), for example, a fuel cell facility, a hydrogen engine facility, a hydrogen combustion gas turbine facility, and a secondary using hydrogen. Used in battery facilities. At this time, if necessary, the hydrogen may be temporarily stored in a hydrogen storage facility (not shown) and then sent to a predetermined hydrogen utilization facility for use.
[0037]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[0038]
Example 1
It was packed in a tubular reactor filled with 10 g of a dehydrogenation reaction catalyst (a catalyst in which 10 wt% Pt was supported on alumina). Cyclohexane was heated with a heat transfer heater to raise the temperature to 250 ° C., and at a supply rate of 50 g / h, nitrogen gas was heated with a heat transfer heater to raise the temperature to 250 ° C., and circulated at a supply rate of 100 Nml / min. .
The temperature of the dehydrogenation reactor was controlled at 250 ° C., and the pressure was controlled at a total pressure of 0.5 MPa (gauge pressure). After 30 minutes from the start of the flow, the gas flowing out of the dehydrogenation reactor was cooled to -20 ° C to condense unreacted cyclohexane and benzene as a reaction product.
The gas flow rate of the uncondensed gas was measured with a flow meter. At this time, the uncondensed gas flow rate was 250 Nml / min (the hydrogen gas flow rate was 160 Nml / min), and the conversion of cyclohexane to benzene was 25%.
[0039]
Example 2
The method of Example 1 was used except that nitrogen was not circulated in the dehydrogenation reaction and a hydrogen separation membrane (90% Pd-10% Ag) was installed in the dehydrogenation reactor. Hydrogen gas generated by the dehydrogenation reaction was selectively permeated through the hydrogen separation membrane, and a hydrogen flow rate of 330 Nml / min was obtained. At this time, the conversion of cyclohexane to benzene was 73%.
[0040]
Comparative Example 1
The method of Example 1 was used except that nitrogen was not passed in the dehydrogenation reaction. At this time, the uncondensed hydrogen gas flow rate was 70 Nml / min, and the conversion of cyclohexane to benzene was 10%.
[0041]
【The invention's effect】
According to the present invention, hydrogen can be efficiently produced at a relatively low temperature. It also leads to energy savings and is an environmentally friendly method.
[Brief description of the drawings]
FIG. 1 shows a flowchart of a hydrogen gas producing apparatus.
FIG. 2 shows a flowchart of a hydrogen gas producing apparatus having a hydrogen separation membrane.
FIG. 3 shows a flowchart of a hydrogen gas producing apparatus for circulating unreacted hydrogen-containing compound.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 hydrogen-containing organic compound supply line 2 hydrogen-containing organic compound supply pump 3 hydrogen-containing organic compound supply line 4 hydrogen-containing organic compound heater 5 dehydrogenation reactor 6 dehydrogenation reaction mixture line 7 hydrogen separator 8 dehydrogenation organic compound line 9 Hydrogen line 10 Hydrogen separation membrane 11 Unreacted hydrogen-containing organic compound separator 12 Unreacted hydrogen-containing organic compound circulation line

Claims (6)

脱水素触媒の存在下、水素含有有機化合物を脱水素反応させることにより水素ガスを生成させることを特徴とする水素ガスの製造方法。A method for producing hydrogen gas, comprising producing hydrogen gas by subjecting a hydrogen-containing organic compound to a dehydrogenation reaction in the presence of a dehydrogenation catalyst. 反応系の水素分圧を下げながら脱水素反応を行うことを特徴とする請求項1記載の方法。The method according to claim 1, wherein the dehydrogenation reaction is carried out while lowering the hydrogen partial pressure of the reaction system. 反応系に不活性ガスを存在させることを特徴とする請求項1又は2に記載の方法。3. The method according to claim 1, wherein an inert gas is present in the reaction system. 脱水素反応により生成した反応生成物から未反応の水素含有有機化合物を回収し、当該未反応の化合物をさらに脱水素反応させる請求項1〜3のいずれかに記載の方法。The method according to any one of claims 1 to 3, wherein an unreacted hydrogen-containing organic compound is recovered from a reaction product generated by the dehydrogenation reaction, and the unreacted compound is further subjected to a dehydrogenation reaction. 脱水素反応により生成した反応生成物から水素ガスを水素分離膜を介して回収する請求項1〜4のいずれかに記載の製造方法。The method according to any one of claims 1 to 4, wherein hydrogen gas is recovered from a reaction product generated by the dehydrogenation reaction through a hydrogen separation membrane. 15〜800℃の温度下で脱水素反応させることを特徴とする請求項1〜5のいずれかに記載の方法。The method according to any one of claims 1 to 5, wherein the dehydrogenation reaction is performed at a temperature of 15 to 800 ° C.
JP2002216188A 2002-07-25 2002-07-25 Process for producing hydrogen gas Pending JP2004059336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216188A JP2004059336A (en) 2002-07-25 2002-07-25 Process for producing hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216188A JP2004059336A (en) 2002-07-25 2002-07-25 Process for producing hydrogen gas

Publications (1)

Publication Number Publication Date
JP2004059336A true JP2004059336A (en) 2004-02-26

Family

ID=31938008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216188A Pending JP2004059336A (en) 2002-07-25 2002-07-25 Process for producing hydrogen gas

Country Status (1)

Country Link
JP (1) JP2004059336A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062887A (en) * 2004-08-24 2006-03-09 Kansai Electric Power Co Inc:The Apparatus for supplying hydrogen
JP2006102632A (en) * 2004-10-05 2006-04-20 Japan Energy Corp Catalyst for manufacturing hydrogen, and hydrogen manufacturing method
JP2006225169A (en) * 2005-02-15 2006-08-31 National Institute Of Advanced Industrial & Technology Hydrogen production apparatus and method
JP2007039312A (en) * 2005-06-30 2007-02-15 National Institute Of Advanced Industrial & Technology Apparatus and method for producing hydrogen
JP2007076982A (en) * 2005-09-16 2007-03-29 Nippon Oil Corp Hydrogen production system and power generation system
JP2010006659A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Apparatus for producing hydrogen
JP2010006653A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for producing hydrogen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062887A (en) * 2004-08-24 2006-03-09 Kansai Electric Power Co Inc:The Apparatus for supplying hydrogen
JP2006102632A (en) * 2004-10-05 2006-04-20 Japan Energy Corp Catalyst for manufacturing hydrogen, and hydrogen manufacturing method
JP2006225169A (en) * 2005-02-15 2006-08-31 National Institute Of Advanced Industrial & Technology Hydrogen production apparatus and method
JP2007039312A (en) * 2005-06-30 2007-02-15 National Institute Of Advanced Industrial & Technology Apparatus and method for producing hydrogen
JP2007076982A (en) * 2005-09-16 2007-03-29 Nippon Oil Corp Hydrogen production system and power generation system
JP2010006659A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Apparatus for producing hydrogen
JP2010006653A (en) * 2008-06-27 2010-01-14 Japan Energy Corp Method for producing hydrogen

Similar Documents

Publication Publication Date Title
Farooqi et al. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts
JP5215057B2 (en) Hydrogen production method
JP4801359B2 (en) Hydrogen production method
JP4684069B2 (en) Production method of high purity hydrogen
MX2010012875A (en) Hydrogenation of multi-brominated alkanes.
Rahimpour et al. Enhancement of simultaneous hydrogen production and methanol synthesis in thermally coupled double-membrane reactor
US20170240488A1 (en) Method for converting methane to ethylene and in situ transfer of exothermic heat
Bakhtyari et al. Simultaneous production of dimethyl ether (DME), methyl formate (MF) and hydrogen from methanol in an integrated thermally coupled membrane reactor
WO2005085127A1 (en) Method for producing hydrogen and system therefor
CN112105593A (en) High energy efficiency carbon dioxide conversion system and method
Bakhtyari et al. Optimal conditions in converting methanol to dimethyl ether, methyl formate, and hydrogen utilizing a double membrane heat exchanger reactor
CN116018317A (en) Process for synthesizing hydrocarbons
Bakhtyari et al. Investigation of thermally double coupled double membrane heat exchanger reactor to produce dimethyl ether and methyl formate
KR101816787B1 (en) Storage method of activated catalysts for Fischer-Tropsch synthesis
JP2004059336A (en) Process for producing hydrogen gas
JP2008081385A (en) Method for producing hydrogen and reaction tube for it
KR102168375B1 (en) Hydrogen production system and hydrogen production method
JP5243860B2 (en) Hydrogen production method
JP5243859B2 (en) Hydrogen production apparatus and hydrogen production method
JP2005289652A (en) Method for producing hydrogen and reaction tube
JP2007084378A (en) Method for producing hydrogen and apparatus used in the same
JPH10291803A (en) Production method of synthetic gas and device therefor
WO2013061040A2 (en) Gas-to-liquid technology
JP2007076992A (en) Apparatus for producing hydrogen and fuel cell system using the same
JP5127516B2 (en) Raw material composition for hydrogen generation and method for producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080702