JP2006264804A - Flotation unit for large flat panel, and non-contact carrying device using the same - Google Patents

Flotation unit for large flat panel, and non-contact carrying device using the same Download PDF

Info

Publication number
JP2006264804A
JP2006264804A JP2005081633A JP2005081633A JP2006264804A JP 2006264804 A JP2006264804 A JP 2006264804A JP 2005081633 A JP2005081633 A JP 2005081633A JP 2005081633 A JP2005081633 A JP 2005081633A JP 2006264804 A JP2006264804 A JP 2006264804A
Authority
JP
Japan
Prior art keywords
base body
glass substrate
air
substrate
base member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005081633A
Other languages
Japanese (ja)
Inventor
Osamu Shinohara
統 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Institution Industry Co Ltd
Original Assignee
Daiichi Institution Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Institution Industry Co Ltd filed Critical Daiichi Institution Industry Co Ltd
Priority to JP2005081633A priority Critical patent/JP2006264804A/en
Publication of JP2006264804A publication Critical patent/JP2006264804A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flotation unit, capable of coping with carrying of a large glass substrate by avoiding flexure of the large glass substrate while increasing flotation quantity to the whole surface of the large glass substrate, for example. <P>SOLUTION: This flotation unit 1 is provided with a base member 2 of a prescribed size corresponding to the large glass substrate G to be carried, an air feed part 21 provided on a bottom surface 20 of the base member 2, a porous part 23 provided in an upper surface 22 of the base member 2, an air discharge part 24 to feed air from the air feed part 21 into the base member 2, and out of the porous part 23 to flow out from the upper surface 22 of the base member 2 toward the bottom surface 20, while sending it out of the base member 2, a flow regulator 25 provided on the air discharge part 24, an edge hole part 27 formed in an edge part 26 in the upper surface 22 of the base member 2 to make the substrate G float by dynamic pressure air, and a flow speed regulator 28 to adjust the flow speed of air flowing from the edge hole part 27. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LCD,PDP等に用いられる大型フラットパネルを浮上させて非接触で搬送する浮上ユニット及びこれを用いた非接触搬送装置に関する。   The present invention relates to a floating unit that floats and transports a large flat panel used in an LCD, PDP, or the like in a non-contact manner, and a non-contact transport apparatus using the same.

近年のフラットパネルディスプレイの大型化に伴い、製造工程における大型ガラス基板の搬送は、従来のローラー式、ベルト式等の接触式では、斑痕、擦傷等によるガラス基板の損傷が問題となりつつある。
このようなガラス基板の損傷を避けることができる空気による浮上搬送の技術分野においては、特許文献1の空気浮上装置をはじめ、各種非接触搬送装置が開発されている。
特開2004−262608
With the recent increase in the size of flat panel displays, large glass substrates are transported in the manufacturing process. Conventional contact methods such as a roller method and a belt method are causing damage to the glass substrate due to spots, scratches, and the like.
In the technical field of levitation conveyance by air that can avoid such damage to the glass substrate, various non-contact conveyance apparatuses such as the air levitation apparatus of Patent Document 1 have been developed.
JP-A-2004-262608

しかし、このような非接触搬送装置において、ガラス基板の大型化、薄板化が急激に進むに従い、ガラス基板の「撓み」等が大きな問題となってきた。
以下では、ガラス基板の大型化に伴う撓みの問題点、その他の問題点及びこれらの原因を説明する。
However, in such a non-contact conveying apparatus, as the glass substrate becomes larger and thinner, the “deflection” of the glass substrate has become a big problem.
Below, the problem of the bending accompanying the enlargement of a glass substrate, another problem, and these causes are demonstrated.

ガラス基板が大型化すればする程、撓み量は大きくなり、それに伴ってガラス基板の浮上量(浮上ユニットの搬送面からガラス基板までの浮上高さ)を大きくすることが求められる。因みに、第6世代(1500×1800)以降の大型ガラス基板では、約3ミリメートル以上の浮上量が必要になることが予想される。
浮上量を大きくするには、より多くの空気を浮上ユニットに供給する必要があり、大風量ゆえに空気のガラス基板に対する吹出し、ガラス基板からの排出の方法によっては空気流による撓みの発生も起こり得る。
The larger the glass substrate, the larger the amount of deflection, and accordingly, it is required to increase the flying height of the glass substrate (the flying height from the conveying surface of the flying unit to the glass substrate). Incidentally, it is expected that a large glass substrate of the sixth generation (1500 × 1800) or later will require a flying height of about 3 millimeters or more.
In order to increase the flying height, it is necessary to supply more air to the flying unit. Due to the large air volume, air can be blown out to the glass substrate, and depending on the method of discharging from the glass substrate, the air flow may cause deflection. .

この現象の原因を図4に基いて説明する。
図4において浮上ユニット100から多孔板101の吹出口102を通じて吹出された空気は、ガラス基板Gと浮上ユニット100間に空気膜103を形成し、これか浮上量となる。
この浮上量は、一般に吹出風量が大きければそれに相応して大きくなる。
しかし、これに比例して吹出し空気がガラス基板Gの周辺から流出するときの風速Vが大きくなると、ガラス基板Gのオーバーハング部分G1において、下部の静圧Ps2が上部の静圧Ps1より小さくなり、その結果、図4の矢印Fに示すような上からの押下げ力が働き、ガラス基板Gが撓むことになる。
この撓み現象を防ぐためには、流出風速Vを低く抑える必要があり、これは大風量化の必要性と相反することになり、両者をバランスする工夫が求められることになる。
The cause of this phenomenon will be described with reference to FIG.
In FIG. 4, the air blown from the floating unit 100 through the outlet 102 of the perforated plate 101 forms an air film 103 between the glass substrate G and the floating unit 100, and this becomes a floating amount.
In general, the flying height increases correspondingly when the blowing air volume is large.
However, in proportion to this, when the wind speed V when the blown air flows out from the periphery of the glass substrate G increases, the lower static pressure Ps2 becomes lower than the upper static pressure Ps1 in the overhang portion G1 of the glass substrate G. As a result, a pressing force from above as shown by an arrow F in FIG. 4 works and the glass substrate G bends.
In order to prevent this bending phenomenon, it is necessary to keep the outflow wind speed V low, which is in contradiction with the necessity of increasing the air volume, and a device that balances both is required.

次に、ガラス基板Gに撓みが生じて接触事故を起こす場所は、主として浮上ユニット搬送面(多孔板101の表面)からガラス基板Gがオーバーハングしている部分G1である。そしてこの部分と隣接する製造ライン110間の乗移り部分Sでの事故は、製造装置のレイアウト等で柔軟性が要求される製造ラインでは構造的に避けられない問題である。
即ち、図5に示したように乗移り部分Sのオーバーハング距離が大きくなるとガラス基板Gの自重により撓みを生じ、接触事故につながる。
よって、オーバーハング距離に応じて、部分的にガラス基板Gの浮上量を上げる必要がある。
Next, the place where the glass substrate G bends and causes a contact accident is a portion G1 where the glass substrate G is overhanging mainly from the floating unit conveyance surface (the surface of the porous plate 101). An accident at the transfer portion S between the adjacent manufacturing line 110 and this portion is a problem that cannot be avoided structurally in a manufacturing line that requires flexibility in the layout of the manufacturing apparatus.
That is, as shown in FIG. 5, when the overhang distance of the transfer portion S increases, the glass substrate G is bent due to its own weight, leading to a contact accident.
Therefore, it is necessary to partially increase the flying height of the glass substrate G according to the overhang distance.

次に、ガラス基板Gに対する成膜等の製造工程においては、ガラス表面の状況が変化し、工程毎に異なる撓みが発生する可能性があり、これにも対処する必要がある。   Next, in the manufacturing process such as film formation on the glass substrate G, the state of the glass surface changes, and there is a possibility that different bending occurs in each process, and it is necessary to cope with this.

次の問題点としては、製造ラインを構成する複数の浮上ユニット100・・・のうち、ガラス基板Gが乗っている浮上ユニット100とガラス基板Gが乗っていない浮上ユニット100では、それらの吹出風量に差が生じてしまうことである。
これはガラス基板Gの重みによる抵抗のため、図6に示しようにガラス基板Gが搬送される工程において、ガラス基板Gが乗っていない浮上ユニット100からはより多くの空気(吹出風量A)が吹出され、肝心なガラス基板Gが乗っている浮上ユニット100から吹出される空気(吹出風量B)は、逆に減ってしまうという現象が起こる。
ガラス基板Gの浮上量をどの浮上ユニット100でも一定にするためには、ガラス基板Gの有無に係わらず各浮上ユニット100から一定の空気が吹出される機能を備える必要がある。
The next problem is that among the plurality of floating units 100... Constituting the production line, the floating unit 100 on which the glass substrate G is mounted and the floating unit 100 on which the glass substrate G is not mounted A difference will occur.
This is resistance due to the weight of the glass substrate G, and therefore, in the process of transporting the glass substrate G as shown in FIG. 6, more air (blowing air volume A) is generated from the floating unit 100 on which the glass substrate G is not mounted. A phenomenon occurs in which the air blown out and the air blown out from the levitation unit 100 on which the essential glass substrate G is placed (the amount of blown air B) decreases.
In order to make the flying height of the glass substrate G constant in any floating unit 100, it is necessary to have a function of blowing constant air from each floating unit 100 regardless of the presence or absence of the glass substrate G.

以上の問題点及び課題を纏めると、大型ガラス基板全面に対する浮上量を高めつつガラス基板の撓みを回避するための浮上ユニットの新規な構成と、大型ガラス基板の一部に撓みがある場合に、ガラス基板全体の浮上量の嵩上げでは非現実的であることから、部分的な浮上量の嵩上げを行うための浮上ユニットの新規な構成と、これらの浮上ユニットにより構成される搬送路での大型ガラス基板の効率的な浮上量を確保するための非接触搬送装置の新規な構成である。   Summarizing the above problems and issues, a new configuration of a floating unit for avoiding the bending of the glass substrate while increasing the floating amount with respect to the entire surface of the large glass substrate, and when there is a deflection in a part of the large glass substrate, Since it is impractical to raise the floating amount of the entire glass substrate, a new structure of a floating unit for raising the partial floating amount, and a large glass in a conveyance path constituted by these floating units This is a novel configuration of a non-contact transfer device for ensuring an efficient flying height of the substrate.

所定サイズのベース体と、このベース体の底面に設けられた給気部と、前記ベース体の上面に設けられた多孔部と、前記給気部からベース体内に流入し、前記多孔部から吹出してガラス基板を浮上させる空気を、前記ベース体上面からベース体底面に流出させ、且つ、ベース体外に排気させる排気部と、この排気部に設けられた流量調整器と、前記ベース体のエッジ部に取り付けられ、且つ、前記ベース体上面から前記ガラス基板を浮上させる空気を吹出すエッジ孔部を備えたことを特徴とする浮上ユニットとした(請求項1に記載の発明)。   A base body of a predetermined size, an air supply portion provided on the bottom surface of the base body, a porous portion provided on the upper surface of the base body, and flows into the base body from the air supply portion and blows out from the porous portion The air that floats the glass substrate from the top surface of the base body to the bottom surface of the base body and exhausts the outside of the base body, a flow rate regulator provided in the exhaust section, and an edge portion of the base body The levitation unit is provided with an edge hole portion that blows out air that levitates the glass substrate from the upper surface of the base body (the invention according to claim 1).

前記ガラス基板のサイズは特に限定されるものではないが、大型のガラス基板が想定されている。   The size of the glass substrate is not particularly limited, but a large glass substrate is assumed.

上記発明において、前記給気部の設置数は、前記排気部の設置数に略対応し、且つ、前記ガラス基板の搬送方向に沿って設けられていることを特徴とする浮上ユニットとした(請求項2に記載の発明)。   In the above invention, the number of installed air supply units substantially corresponds to the number of installed exhaust units, and is provided along the conveying direction of the glass substrate. Item 2).

上記発明において、前記多孔部を形成する孔の開口率は、前記ガラス基板の搬送方向に交差する前記エッジ部から中央部に従い除除に密状態から疎状態になっていることを特徴とする浮上ユニットとした(請求項3に記載の発明)。   In the above invention, the opening ratio of the holes forming the porous portion is from a dense state to a sparse state except for the central portion from the edge portion intersecting the transport direction of the glass substrate. It was set as the unit (Invention of Claim 3).

上記浮上ユニットにより搬送路が構成される非接触搬送装置において、各浮上ユニット毎に定風量装置を設置したことを特徴とする非接触搬送装置とした(請求項4に記載の発明)。   In the non-contact conveyance apparatus in which the conveyance path is configured by the levitation unit, a constant air volume device is provided for each levitation unit (the invention according to claim 4).

本発明に係る浮上ユニットによれば、所定の浮上量、例えば3ミリメートル以上の浮上量を保ちながら、ガラス基板のオーバーハング部分の撓みに対しては、空気流のコントロールや、動圧による部分的な浮上量の増強対策により、大型ガラス全面が平均に浮上する機能を持つ浮上ユニットによる非接触搬送装置を提供することができる。   According to the levitation unit of the present invention, it is possible to control the air flow or to partially apply the dynamic pressure to the deflection of the overhang portion of the glass substrate while maintaining a predetermined levitation amount, for example, a levitation amount of 3 mm or more. By taking a countermeasure for increasing the floating amount, it is possible to provide a non-contact conveyance device using a floating unit having a function of floating the entire large glass surface on average.

上記各発明の実施の形態について、図面に基づいて説明する。
図1は実施形態に係る浮上ユニットの斜視図、図2は同ユニットの縦断面図及び平面図、図3は同ユニットにより組み立てられた非接触搬送装置の縦断面図である。
これらの各図において、同一の構成については同一の符号を付して重複した説明を省略する。
浮上ユニットの浮上対象物として液晶ディスプレイ(LCD),プラズマディスプレイ(PDP),フィールドエミッションディスプレイ(FED),電界発光ディスプレイ(EL)等のフラットパネルディスプレイ用の大型のフラットパネルを想定している。これらパネルにはガラス基板、プラスチック等の合成樹脂基板が含まれるが、以下の説明ではガラス基板を代表実施例とする。
Embodiments of the above inventions will be described with reference to the drawings.
FIG. 1 is a perspective view of a floating unit according to the embodiment, FIG. 2 is a longitudinal sectional view and a plan view of the unit, and FIG. 3 is a longitudinal sectional view of a non-contact conveying apparatus assembled by the unit.
In these drawings, the same components are denoted by the same reference numerals, and redundant description is omitted.
A large flat panel for a flat panel display such as a liquid crystal display (LCD), a plasma display (PDP), a field emission display (FED), and an electroluminescence display (EL) is assumed as a floating object of the floating unit. These panels include a glass substrate and a synthetic resin substrate such as a plastic. In the following description, a glass substrate is used as a representative example.

実施形態に係る浮上ユニット1は、図1及び図2に示したように、搬送する大型ガラス基板(以下では単に基板ともいう)に対応させた所定サイズのベース体2と、このベース体2の底面20に設けられた給気部21と、前記ベース体2の上面22に設けられた多孔部23と、前記給気部21からベース体2内に流入し、前記多孔部23から流出して基板Gを浮上させる空気(以下ではエアともいう)を、前記ベース体2の上面22から底面20に流出させ、且つ、ベース体2外に排気させる排気部24と、この排気部24に設けられた流量調整器25と、前記ベース体2の上面22のエッジ部26に形成され、且つ、基板Gを動圧空気により浮上させるエッジ孔部27を備えている。
このエッジ孔部27から流出する空気について、その風速を調整する風速調整器28を取付けてもよい。
As shown in FIGS. 1 and 2, the levitation unit 1 according to the embodiment includes a base body 2 having a predetermined size corresponding to a large glass substrate to be transported (hereinafter also simply referred to as a substrate), and the base body 2. An air supply portion 21 provided on the bottom surface 20, a porous portion 23 provided on the upper surface 22 of the base body 2, and flows into the base body 2 from the air supply portion 21 and flows out of the porous portion 23. Air that floats the substrate G (hereinafter also referred to as air) flows out from the top surface 22 of the base body 2 to the bottom surface 20 and exhausts out of the base body 2, and is provided in the exhaust section 24. The flow rate adjuster 25 and the edge hole portion 27 formed on the edge portion 26 of the upper surface 22 of the base body 2 and floating the substrate G by dynamic pressure air are provided.
A wind speed adjuster 28 for adjusting the wind speed of the air flowing out from the edge hole 27 may be attached.

前記給気部21に対しては、HEPAフィルタ等で浄化された清浄な空気が送風ダクトを介して供給され、前記多孔部23から吹出る空気により上面22とその上方の基板Gと間に広範囲に気体膜が形成され、基板Gが前記ベース体2の両サイドに配置される搬送ローラ(図示せず)により搬送方向Xに力を与えられることで搬送路が構成される。   Clean air purified by a HEPA filter or the like is supplied to the air supply unit 21 through a blower duct, and a wide range is formed between the upper surface 22 and the substrate G above it by the air blown from the porous unit 23. A gas film is formed on the substrate body G, and a conveyance path is configured by applying a force in the conveyance direction X by a conveyance roller (not shown) disposed on both sides of the base body 2.

前記ベース体2は、立方体状であって前記給気部21の孔、前記多孔部23の各孔、前記排気部24の孔及びエッジ孔部27の孔を除き気密に構成されている。そして、ベース体2の内部に所定容積の空気を貯留させて前記多孔部23から略均一化された圧力の空気を吹出させるようになっている。
このベース体2の材質は例えばステンレス、アルミ等の金属が用いられるが、気密性を保つことができればどのような材質でもよい。
The base body 2 has a cubic shape and is airtight except for the holes of the air supply part 21, the holes of the porous part 23, the holes of the exhaust part 24 and the holes of the edge hole part 27. A predetermined volume of air is stored inside the base body 2 and air having a substantially uniform pressure is blown out from the porous portion 23.
For example, a metal such as stainless steel or aluminum is used as the material of the base body 2, but any material can be used as long as airtightness can be maintained.

前記ベース体2の縦寸法及び横寸法の具体的な所定サイズは、浮上及び搬送対象となる基板Gのサイズに対応させればよく、このようなサイズであれば、搬送路のレイアウトに対して柔軟に対処できる。   The specific predetermined sizes of the vertical dimension and the horizontal dimension of the base body 2 may correspond to the size of the substrate G to be levitated and transported. With such a size, the layout of the transport path Can be handled flexibly.

前記給気部21は、前記ベース体2の底面20において基板Gの搬送方向Xに略沿うように、且つ、その前後の2箇所に形成されている。
この給気部21は、基板Gの浮上量に必要なエアをベース体2内に流入させることができればよく、その口径、配置位置及び配置個数は上記構成に限定されるものではない。
The air supply portion 21 is formed at two locations on the bottom surface 20 of the base body 2 so as to be substantially along the transport direction X of the substrate G and before and after the substrate G.
The air supply unit 21 only needs to allow air necessary for the flying height of the substrate G to flow into the base body 2, and the diameter, the arrangement position, and the number of arrangement are not limited to the above configuration.

前記多孔部23は上面22に多数形成された孔により形成されている。
これらの孔は、例えば上面22を打抜き加工して形成されたもので、このようなパンチング孔とすることで空気の吹出抵抗を弱め、浮上量の増加を図ることができる。
これら多数の孔は、図1等に示したように基板Gの搬送方向Xに対し略交差する方向に配列され、且つ、搬送方向Xの前後の上面22において行及び列のピッチが狭く打ち抜かれ、上面の中央に近づくに従い、除除に行及び列のピッチが広げられて打ち抜かれている。即ち、搬送方向Xに交差するエッジ部26において開口率が密状態に打ち抜かれ、上面22の中央部に近づくに従い除除に開口率が疎状態に打ち抜かれている。
これは、気体膜は基板Gの中央部で膨らむ傾向にある等、基板Gの搬送時の特性に合わせたものである。
The porous portion 23 is formed by a plurality of holes formed in the upper surface 22.
These holes are formed, for example, by punching the upper surface 22. By using such punching holes, the air blowing resistance can be weakened and the flying height can be increased.
These numerous holes are arranged in a direction substantially intersecting the transport direction X of the substrate G as shown in FIG. 1 and the like, and the pitch of the rows and columns is punched out narrowly on the upper surface 22 before and after the transport direction X. As it approaches the center of the upper surface, the pitch of rows and columns is increased and punched out. That is, the aperture ratio is punched in a dense state at the edge portion 26 that intersects the transport direction X, and the aperture ratio is punched into a sparse state as it approaches the central portion of the upper surface 22.
This is because the gas film tends to swell at the center of the substrate G, and so on, in accordance with the characteristics at the time of transporting the substrate G.

なお、前記多孔部23の孔の上記配列を始め、孔形状、孔径等は、基板Gに対して所定の浮上量を得ることができるように、設計し決定すれば良い。   In addition to the arrangement of the holes in the porous portion 23, the hole shape, the hole diameter, and the like may be designed and determined so that a predetermined flying height can be obtained with respect to the substrate G.

前記排気部24は、前記上面22に形成された流入口240と、前記底面20に形成された排出口241と、これら流入口240と排出口241間に設けられた連接筒242からなる。
この排気部24は、前記給気部21と同様に、基板Gの搬送方向Xに略沿うように設置され、前記給気部21に挟まれて形成されている。
これらの排気部24、24は、後に詳述するように基板Gに所定の浮上量を与えことができるエアを調整可能にベース体2外に排気させることができればよく、流入口240、排出口241、連接筒242の形状、サイズ、位置及び個数等は上記構成に限定されるものではない。
また、前記排気部24の設置数2は、前記給気部21の設置数2に対応しており、給気と排気のバランスが図られているが、これらの設置数に限定されるものでもない。
The exhaust part 24 includes an inflow port 240 formed in the upper surface 22, an exhaust port 241 formed in the bottom surface 20, and a connecting cylinder 242 provided between the inflow port 240 and the exhaust port 241.
Similar to the air supply unit 21, the exhaust unit 24 is installed so as to substantially follow the transport direction X of the substrate G, and is formed between the air supply units 21.
These exhaust parts 24, 24 only need to be able to adjustably exhaust air that can give a predetermined flying height to the substrate G to the outside of the base body 2 as will be described in detail later. The shape, size, position, number, and the like of the 241 and the connecting cylinder 242 are not limited to the above configuration.
Further, the number 2 of the exhaust units 24 corresponds to the number 2 of the air supply units 21 and the balance between the air supply and the exhaust is achieved. However, the number of the exhaust units 24 may be limited to these numbers. Absent.

前記流量調整器25は前記排気部24からの空気の排出量を調整するもので、前記排出口241に取付けられている。この流量調整器25により排出口241の開口面積を調整でき、例えば各製造工程毎に変化するガラス基板の撓み或いは基板G中央部が膨らむ状態に適宜対処できるようになっている。   The flow rate regulator 25 adjusts the amount of air discharged from the exhaust part 24 and is attached to the exhaust port 241. The flow regulator 25 can adjust the opening area of the discharge port 241. For example, it can appropriately cope with the bending of the glass substrate or the state where the central portion of the substrate G swells, which changes for each manufacturing process.

前記エッジ孔部27は、隣接する浮上ユニット1、製造装置等に乗移ろうとする基板Gのオーバーハング部分(端部G1)に対し、浮上量を局所的に増加させるための空気を流出させるもので、その空気の風速V1は風速調整器28により調整され、浮上量を制御できるようになっている。   The edge hole 27 allows air to flow out locally to increase the flying height to the overhanging portion (end G1) of the substrate G to be transferred to the adjacent floating unit 1, manufacturing apparatus or the like. Thus, the wind speed V1 of the air is adjusted by the wind speed adjuster 28 so that the flying height can be controlled.

以上のように構成された浮上ユニット1の作用効果を図2に基いて説明する。
前記給気口21からベース体2内に流入する給気量Q1の空気は、前記多孔部23から基板Gに向って吹出され、気体膜を形成すると共に前記基板Gの四方の端部から排出量Q2と、前記排気部24から排出される排出量Q3に分かれて流出する(Q1=Q2+Q3)。
前記排出量Q2が多くなると流出する風速が早くなり、前述のように基板Gの端部G1に撓みが生じやすいので、前記排出量Q3を増やして排出量Q2を低減させる。この調整は前記流量調整器25により行う。
よって、基板G全面に対する浮上量を高めつつ、基板Gの撓みを回避することができる浮上ユニット1となっている。
また、製造工程毎に変化する基板Gの撓み、歪みに柔軟に対処できる浮上ユニット1になっている。
The operational effects of the levitation unit 1 configured as described above will be described with reference to FIG.
Air of an air supply amount Q1 flowing into the base body 2 from the air supply port 21 is blown out from the porous portion 23 toward the substrate G, forms a gas film, and is discharged from the four end portions of the substrate G. The quantity Q2 and the discharge quantity Q3 discharged from the exhaust section 24 are divided and flow out (Q1 = Q2 + Q3).
When the discharge amount Q2 increases, the flow velocity of the wind increases, and the end portion G1 of the substrate G tends to be bent as described above. Therefore, the discharge amount Q3 is increased to reduce the discharge amount Q2. This adjustment is performed by the flow rate regulator 25.
Therefore, the flying unit 1 can avoid the bending of the substrate G while increasing the flying height with respect to the entire surface of the substrate G.
In addition, the floating unit 1 can flexibly cope with the bending and distortion of the substrate G that changes in each manufacturing process.

これに加え、基板Gの自重による撓みや製造工程によって生じる撓み、歪みに対しては、エッジ孔部27からの風速V1を加えることにより、空気流の動圧によって撓み、歪み個所をより多く浮上させることができる浮上ユニット1になっている。この風速の調整は前記風速調整器28により行う。   In addition to the bending due to the dead weight of the substrate G and the bending and distortion caused by the manufacturing process, by adding the wind velocity V1 from the edge hole 27, the bending is caused by the dynamic pressure of the air flow, and more distortion points are lifted The levitation unit 1 can be made to operate. The wind speed is adjusted by the wind speed adjuster 28.

次に浮上ユニット1により構成される非接触搬送装置を図3に例示する。
上述のように前記多孔部23の孔の空気通過抵抗は比較的小さいので基板Gの重みにより抵抗の増加比率は大きく、複数の浮上ユニット1により非接触搬送装置を構成する場合に、基板Gの有無により吹出空気量は大きく上下する場合がある。
この問題を解決するために、各浮上ユニット1A〜1Dに連結する送風ダクト3に定風量装置4A〜4Dをつけて、基板Gの有無に係わらず一定の風量が各ユニット1A〜1Dから吹出させる構成とする。
各定風量装置4A〜4Dはそれぞれの浮上ユニット1A〜1Dが必要とする風量にあわせて予め風量設定をしておき、常に設定風量を送風する機能を持たせるようにして、浮上ユニット1A〜1Dにより構成される搬送路での大型ガラス基板に対し、効率的な風量設定が可能な非接触搬送装置とすることができる。
Next, a non-contact conveying apparatus constituted by the floating unit 1 is illustrated in FIG.
As described above, since the air passage resistance of the hole of the porous portion 23 is relatively small, the increase ratio of the resistance is large due to the weight of the substrate G. When the non-contact transfer apparatus is configured by the plurality of floating units 1, Depending on the presence or absence, the amount of blown air may increase or decrease greatly.
In order to solve this problem, constant air volume devices 4A to 4D are attached to the air duct 3 connected to the floating units 1A to 1D so that a constant air volume is blown out from each unit 1A to 1D regardless of the presence or absence of the substrate G. The configuration.
The constant air volume devices 4A to 4D set the air volume in advance according to the air volume required by the respective floating units 1A to 1D, and always have a function of blowing the set air volume so that the floating units 1A to 1D. It can be set as the non-contact conveyance apparatus which can set an air volume efficiently with respect to the large sized glass substrate in the conveyance path comprised by these.

実施形態に係る浮上ユニットの斜視図、The perspective view of the levitation unit concerning an embodiment, 同ユニットの断面図及び平面図、Sectional view and plan view of the unit, 同ユニットによる非接触搬送装置の側面図、Side view of non-contact transfer device by the unit, 従来例の説明図、Explanatory drawing of a conventional example, 従来例の説明図、Explanatory drawing of a conventional example, 従来例の説明図。Explanatory drawing of a prior art example.

符号の説明Explanation of symbols

1 浮上ユニット 2 ベース体
20 底面 21 給気部
22 上面 23 多孔部
G 基板 24 排気部
25 流量調整器 26 エッジ部
27 エッジ孔部 28 風速調整器
240 流入口 241 排出口
242 連接筒 X 搬送方向
G1 基板の端部 Q1 給気量
Q2 排出量 Q3 排出量
V1 風速 1A〜1D 浮上ユニット
4A〜4D 定風量装置
DESCRIPTION OF SYMBOLS 1 Floating unit 2 Base body 20 Bottom surface 21 Supply part 22 Upper surface 23 Porous part G Substrate 24 Exhaust part 25 Flow controller 26 Edge part 27 Edge hole part 28 Air speed regulator 240 Inlet 241 Outlet 242 Connecting cylinder X Conveying direction G1 End of board Q1 Air supply amount Q2 Discharge amount Q3 Discharge amount V1 Air velocity 1A to 1D Levitation unit 4A to 4D Constant air amount device

Claims (4)

所定サイズのベース体と、
このベース体の底面に設けられた給気部と、
前記ベース体の上面に設けられた多孔部と、
前記給気部からベース体内に流入し、前記多孔部から吹出してガラス基板を浮上させる空気を、前記ベース体上面からベース体底面に流出させ、且つ、ベース体外に排気させる排気部と、
この排気部に設けられた流量調整器と、
前記ベース体のエッジ部に取り付けられ、且つ、前記ベース体上面から前記ガラス基板を浮上させる空気を吹出すエッジ孔部と、
を備えたことを特徴とする浮上ユニット。
A base body of a predetermined size,
An air supply portion provided on the bottom surface of the base body;
A porous portion provided on the upper surface of the base body;
An exhaust part that flows into the base body from the air supply part, blows out from the porous part and floats the glass substrate, flows out from the top surface of the base body to the bottom surface of the base body, and exhausts outside the base body;
A flow rate regulator provided in the exhaust section;
An edge hole portion that is attached to an edge portion of the base body and blows out air that floats the glass substrate from the upper surface of the base body;
A levitation unit characterized by comprising
前記給気部の設置数は、前記排気部の設置数に略対応し、且つ、前記ガラス基板の搬送方向に沿って設けられていることを特徴とする請求項1に記載の浮上ユニット。   2. The levitation unit according to claim 1, wherein the number of installed air supply units substantially corresponds to the number of installed exhaust units and is provided along a conveyance direction of the glass substrate. 前記多孔部を形成する孔の開口率は、前記ガラス基板の搬送方向に交差する前記エッジ部から中央部に近づくに従い密状態から疎状態になっていることを特徴とする請求項1に記載の浮上ユニット。   2. The aperture ratio of the holes forming the porous portion is changed from a dense state to a sparse state as the center portion is approached from the edge portion intersecting the transport direction of the glass substrate. Levitation unit. 請求項1に記載の浮上ユニットにより搬送路が構成される非接触搬送装置において、各浮上ユニット毎に定風量装置を設置したことを特徴とする非接触搬送装置。   The non-contact conveyance apparatus by which a conveyance path is comprised by the levitation unit of Claim 1, The constant air volume apparatus was installed for every levitation unit, The non-contact conveyance apparatus characterized by the above-mentioned.
JP2005081633A 2005-03-22 2005-03-22 Flotation unit for large flat panel, and non-contact carrying device using the same Pending JP2006264804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081633A JP2006264804A (en) 2005-03-22 2005-03-22 Flotation unit for large flat panel, and non-contact carrying device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081633A JP2006264804A (en) 2005-03-22 2005-03-22 Flotation unit for large flat panel, and non-contact carrying device using the same

Publications (1)

Publication Number Publication Date
JP2006264804A true JP2006264804A (en) 2006-10-05

Family

ID=37201179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081633A Pending JP2006264804A (en) 2005-03-22 2005-03-22 Flotation unit for large flat panel, and non-contact carrying device using the same

Country Status (1)

Country Link
JP (1) JP2006264804A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135430A (en) * 2007-10-10 2009-06-18 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
WO2011152587A1 (en) * 2010-06-04 2011-12-08 Kim Young-Tae Non-contact conveying device using vacuum pad
US8314012B2 (en) 2007-10-10 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
US8324086B2 (en) 2008-01-16 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor substrate by laser irradiation
CN103717517A (en) * 2011-07-26 2014-04-09 翁令司工业股份有限公司 Non-contact conveying device
CN104495391A (en) * 2014-11-07 2015-04-08 江苏科技大学 Air floatation conveyer
KR20160068377A (en) * 2014-12-05 2016-06-15 주식회사 선익시스템 Mask attaching device and ink deposition device including the same
CN108569562A (en) * 2017-03-10 2018-09-25 盟立自动化股份有限公司 Thin plate conveying device
CN111071798A (en) * 2018-10-19 2020-04-28 伸和控制工业股份有限公司 Air conditioner and floating type conveying unit for substrate with air conditioner
CN112520411A (en) * 2020-12-03 2021-03-19 苏州润弘安创自动化科技有限公司 Get blowing device fast
KR102458915B1 (en) * 2022-05-17 2022-10-26 주식회사 아라(Ara) Glass substrate transfer system including glass substrate transfer devices to prevent damage that occurs during transfer of glass substrate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135430A (en) * 2007-10-10 2009-06-18 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US8314012B2 (en) 2007-10-10 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
US8772128B2 (en) 2007-10-10 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8324086B2 (en) 2008-01-16 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor substrate by laser irradiation
WO2011152587A1 (en) * 2010-06-04 2011-12-08 Kim Young-Tae Non-contact conveying device using vacuum pad
KR101293289B1 (en) * 2010-06-04 2013-08-09 김영태 Noncontact feed apparatus using vacuum pad
CN103717517A (en) * 2011-07-26 2014-04-09 翁令司工业股份有限公司 Non-contact conveying device
CN104495391A (en) * 2014-11-07 2015-04-08 江苏科技大学 Air floatation conveyer
KR20160068377A (en) * 2014-12-05 2016-06-15 주식회사 선익시스템 Mask attaching device and ink deposition device including the same
KR102308642B1 (en) * 2014-12-05 2021-10-06 주식회사 선익시스템 Mask attaching device and ink deposition device including the same
CN108569562A (en) * 2017-03-10 2018-09-25 盟立自动化股份有限公司 Thin plate conveying device
CN111071798A (en) * 2018-10-19 2020-04-28 伸和控制工业股份有限公司 Air conditioner and floating type conveying unit for substrate with air conditioner
KR20200044687A (en) * 2018-10-19 2020-04-29 신와 콘트롤즈 가부시키가이샤 Air conditioner, unit for floating conveying substrate with air conditioner and method of supplying air for floating conveying substrate
KR102436917B1 (en) * 2018-10-19 2022-08-25 신와 콘트롤즈 가부시키가이샤 Air conditioner, unit for floating conveying substrate with air conditioner and method of supplying air for floating conveying substrate
US11605549B2 (en) * 2018-10-19 2023-03-14 Shinwa Controls Co., Ltd. Air conditioner, unit for floating conveying substrate with air conditioner, and method of supplying air for floating conveying substrate
TWI802740B (en) * 2018-10-19 2023-05-21 日商伸和控制工業股份有限公司 Air conditioner, unit for floating conveying substrate with air conditioner and method of supplying air for floating conveying substrate
CN112520411A (en) * 2020-12-03 2021-03-19 苏州润弘安创自动化科技有限公司 Get blowing device fast
KR102458915B1 (en) * 2022-05-17 2022-10-26 주식회사 아라(Ara) Glass substrate transfer system including glass substrate transfer devices to prevent damage that occurs during transfer of glass substrate

Similar Documents

Publication Publication Date Title
JP2006264804A (en) Flotation unit for large flat panel, and non-contact carrying device using the same
JP4501713B2 (en) Air levitation transfer device
CN101489893B (en) Sheet-like material conveying device
US8690489B2 (en) Method and system for locally controlling support of a flat object
WO2016136495A1 (en) Gas floated workpiece support device and non-contact workpiece support method
KR101142959B1 (en) Precision plate flotation system
CN101284602A (en) Conveying device and method for sheet material
US20050214078A1 (en) Contact-free plate conveyor
JP2003063643A (en) Thin plate conveying system and apparatus
JPWO2010058689A1 (en) Non-contact transfer device
CN101121466B (en) Air table for conveying sheet material and conveyer with the same
KR101064893B1 (en) Plate flotation system
JP2008172046A (en) Substrate lifting and conveying device
JP4229670B2 (en) Method and apparatus for conveying thin plate material
TWI389240B (en) The support of the workpiece
JP4171293B2 (en) Method and apparatus for conveying thin plate material
JP2006264891A (en) Noncontact substrate conveying device
JP4376641B2 (en) Air floating conveyor
CN113387132A (en) Substrate operation platform and control method thereof
JP2004307152A (en) Reclinable non-contact carrier
JP6456904B2 (en) Gas floating work support device
JP2003321119A (en) Floating equipment for floating flat panel by relatively high pressure zone between plate and flat panel
JP2012101897A (en) Conveying device
JP2001048330A (en) Air-levitation-type belt conveyer device
JP2010126357A (en) Floating device and fluid jet body unit