JP2006264891A - Noncontact substrate conveying device - Google Patents

Noncontact substrate conveying device Download PDF

Info

Publication number
JP2006264891A
JP2006264891A JP2005085201A JP2005085201A JP2006264891A JP 2006264891 A JP2006264891 A JP 2006264891A JP 2005085201 A JP2005085201 A JP 2005085201A JP 2005085201 A JP2005085201 A JP 2005085201A JP 2006264891 A JP2006264891 A JP 2006264891A
Authority
JP
Japan
Prior art keywords
substrate
air
air ejection
shape
ejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005085201A
Other languages
Japanese (ja)
Inventor
Toshio Kamigaki
敏雄 神垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP2005085201A priority Critical patent/JP2006264891A/en
Publication of JP2006264891A publication Critical patent/JP2006264891A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably convey a substrate floating by air. <P>SOLUTION: A number of air blowout parts 2 are formed in a base 1 at mounting intervals L, and an upper face part 7 of each air blowout part 2 is in a shape of curved face corresponding to a projection part 8 of the substrate G which is deformed in a wave form curve by air blown out of each air blowout part 2, so as to prevent an leading edge part of the substrate G in a conveyance direction from hanging low. A constant floating distance δ1 between the substrate G and the upper face part 7 is maintained to keep a floating state of the substrate G constant and thereby stably convey the substrate G with a state where the possibility of contact of the substrate G with each corner part 7a of the air blowout part 8 is eliminated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基板の搬送方向と直交する水平方向に沿って所定間隔をおいて多数の空気噴出部が配置され、各空気噴出部の空気噴出孔から噴出される空気の圧力により基板を空気浮上させて搬送する非接触式基板搬送装置に関するものである。   In the present invention, a large number of air ejection portions are arranged at predetermined intervals along a horizontal direction orthogonal to the substrate transport direction, and the substrate is floated by the pressure of air ejected from the air ejection holes of each air ejection portion. The present invention relates to a non-contact type substrate transport apparatus that transports them in a controlled manner.

液晶パネルや半導体等の製造工程で使用されるガラス基板(以下、単に基板と記載する)を空気浮上させ、非接触状態で搬送させるための装置が公知である(例えば、特許文献1参照)。そして、近時の基板には、大型のサイズ(例えば、1800mm×1600mm×0.7mm)のものが存している。   An apparatus for floating a glass substrate (hereinafter simply referred to as a substrate) used in a manufacturing process of a liquid crystal panel, a semiconductor, or the like and conveying it in a non-contact state is known (for example, see Patent Document 1). Further, recent substrates have a large size (for example, 1800 mm × 1600 mm × 0.7 mm).

特許文献1には、「基板の搬送方向と直交する水平方向に沿って所定の間隔をおいて多数の空気噴出部が配置されて、各空気噴出部の空気噴出孔から噴出される空気の圧力により基板を空気浮上させて搬送する装置において、空気浮上力により基板を上又は下に凸の単純曲線形状(弓形状)に強制変形させて、搬送方向に沿った曲げ強度(曲げ剛性)を高めることにより、空気噴出部の存在しない部分において、基板の先端部が垂れ下がって空気噴出部と接触させることなく搬送する技術」が開示されている。そして、上記の技術の実現には、(イ)噴出空気の圧力及び流量を一定にしたままで、各空気噴出部の上面の高さ及び形状と、必要に応じて空気噴出方向とを変化させて、基板を上記した目的形状に強制変形させる方法と、(ロ)多数の空気噴出部の高さを一定にしたままで、各空気噴出部から噴出される空気の圧力及び流量を変化させて、基板を上記した目的形状に強制変形させる方法とがある。   Patent Document 1 states that “the pressure of air ejected from the air ejection holes of each air ejection section, with a large number of air ejection sections arranged at predetermined intervals along a horizontal direction orthogonal to the substrate transport direction. In a device that floats and transports a substrate by air, the substrate is forcedly deformed into a convex shape that is convex upward or downward by an air levitation force, thereby increasing the bending strength (bending rigidity) along the transport direction. Thus, a technique is disclosed in which the tip of the substrate hangs down in a portion where the air ejection portion does not exist and is conveyed without being brought into contact with the air ejection portion. In order to realize the above-described technology, (a) the height and shape of the upper surface of each air ejection portion and the air ejection direction are changed as necessary while keeping the pressure and flow rate of the ejection air constant. And (b) changing the pressure and flow rate of the air ejected from each air ejecting portion while keeping the height of many air ejecting portions constant. There is a method of forcibly deforming the substrate into the above-described target shape.

このため、特許文献1の技術には以下の欠点がある。(イ)空気噴出部の高さを漸次変化させるか、或いは各空気噴出部から噴出される空気の圧力及び流量を変化させる必要があって、いずれにしても装置の面から見ると、空気噴出部の設計・製作が面倒であるか、或いは噴出空気の圧力及び流量の制御が面倒となる。(ロ)基板の前垂れによる空気噴出部との接触は回避できても、基板を上又は下に凸の単純曲線形状に強制変形させているため、基板がストレスを受けると共に、基板に残留歪等を発生させ、基板自体の品質の低下をもたらす。
特開2004−244186号公報
For this reason, the technique of Patent Document 1 has the following drawbacks. (B) It is necessary to gradually change the height of the air ejection part or to change the pressure and flow rate of the air ejected from each air ejection part. The design and production of the part is troublesome, or the control of the pressure and flow rate of the blown air becomes troublesome. (B) Even if contact with the air ejection part due to the drooping of the substrate can be avoided, the substrate is forced to be deformed into a simple curved shape that is convex upward or downward, so that the substrate is stressed and residual strain is applied to the substrate. And the quality of the substrate itself is degraded.
JP 2004-244186 A

本発明は、上記した不具合に鑑み、空気浮上させた基板にストレスを与えたり、空気噴出部と接触して損傷させたりすることなく、該基板が安定して搬送されるようにすることを課題としている。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and it is an object of the present invention to provide a substrate that is stably conveyed without giving stress to the substrate that has been air-lifted or contacting and damaging the substrate. It is said.

上記課題を解決するための請求項1の発明は、基板の搬送方向と直交する水平方向に沿って所定の間隔をおいて多数の空気噴出部が配置され、各空気噴出部の空気噴出孔から噴出される空気の圧力により基板を空気浮上させて搬送する非接触式基板搬送装置であって、前記各空気噴出部の上面は、多数の空気噴出孔から噴出される空気の圧力による浮上力、基板の自重、空気噴出部の取付間隔及び基板自体の特性等により自然に定められる基板の搬送方向と直交する方向の形状である波形曲線形状のうち、少なくとも上に凸の部分の形状に対応した曲面となっていることを特徴としている。   In the invention of claim 1 for solving the above-described problem, a large number of air ejection portions are arranged at predetermined intervals along a horizontal direction orthogonal to the substrate transport direction, and the air ejection holes of each air ejection portion are arranged. A non-contact type substrate transport apparatus that floats and transports a substrate by the pressure of air to be ejected, and the upper surface of each of the air ejection portions has a levitation force due to the pressure of air ejected from a number of air ejection holes, Corresponding to the shape of the convex part at least among the waveform curve shape that is the shape orthogonal to the substrate transport direction, which is naturally determined by the weight of the substrate, the mounting interval of the air ejection part, the characteristics of the substrate itself, etc. It is characterized by a curved surface.

空気浮上されて搬送される基板の幅方向(基板の搬送方向と直交する方向)の変形形状は、上記した複数の要因により、自然に決定される波形曲線形状であって、各空気噴出部の上面の形状は、基板の波形曲線形状のうち、少なくとも上に凸の部分の形状に対応させてある。換言すると、前記波形曲線形状は、同一高さの複数の支持部で基板を非拘束状態で支持したときに基板が変形されるのと実質的に等価となって、各支持部(空気噴出部)の間の基板は、下に凸になるように変形される。基板の幅方向の形状が自然変形による波形曲線形状に変形されることにより、基板の搬送方向の曲げ強度が高まって、基板の先端部の垂下がり量を少なくできて、後述のように基板の品質の低下を最小限に抑制するか、或いは殆ど低下させずに、基板と空気噴出部との接触が回避され易くなる。   The deformed shape in the width direction of the substrate that is transported by being floated on air (in the direction orthogonal to the transport direction of the substrate) is a waveform curve shape that is naturally determined by the above-described multiple factors. The shape of the upper surface is made to correspond to the shape of at least the upwardly convex portion of the waveform curve shape of the substrate. In other words, the corrugated curve shape is substantially equivalent to the deformation of the substrate when the substrate is supported in a non-constrained state by a plurality of support portions having the same height, and each support portion (air ejection portion) ) Is deformed to be convex downward. The shape in the width direction of the substrate is deformed into a wave-like curve shape by natural deformation, so that the bending strength in the transport direction of the substrate can be increased, and the amount of sag at the tip of the substrate can be reduced. It is easy to avoid contact between the substrate and the air ejection portion while minimizing or hardly reducing degradation of quality.

また、空気浮上された基板と各空気噴出部の上面との間隔(以下、「浮上間隔」という)は一定に保持されて、噴出後の圧力空気の流れを含めて各空気噴出部における基板の浮上状態が一定となって、空気噴出部における幅方向のコーナー部に基板が接触することなく、最も安定した空気浮上状態で基板を搬送できる。ここで、「最も安定した空気浮上状態」とは、各空気噴出部における噴出空気の圧力及び流量を個別に制御することなく、これらが一定のままで、前記「浮上間隔」を一定にできて基板を空気浮上させて搬送できることである。また、空気浮上された基板と各空気噴出部の上面との間隔は一定に保持されるため、基板の浮上量、並びに浮上に要する空気の圧力及び流量は最少で済む。これに対して、空気噴出部の上面が平面状であると、接触を回避するために空気噴出部の両端から同一量だけ基板を浮上させるのに、本発明の場合と比較して、空気噴出部の中央部における基板の浮上間隔を大幅に大きくする必要がある。このことは、空気噴出部の上面が平面状であると、本発明に比較して、空気の圧力及び流量の少なくとも一方を大幅に大きくしてはじめて本発明と同一の効果が得られることを意味する。そして、本発明では、各空気噴出部の取付間隔が一定であるならば、各空気噴出部の上面形状はすべて同一にできると共に、各空気噴出部における噴出空気の圧力及び流量を個別に制御することなく、一定のままで基板を空気浮上搬送できる。   In addition, the distance between the air levitation substrate and the upper surface of each air ejection portion (hereinafter referred to as “the levitation interval”) is kept constant, and the flow rate of the substrate in each air ejection portion including the flow of pressure air after ejection is maintained. The floating state is constant, and the substrate can be transported in the most stable air floating state without contacting the substrate at the corner portion in the width direction of the air ejection portion. Here, “the most stable air levitation state” means that the above-mentioned “levitation interval” can be made constant without controlling the pressure and flow rate of the air blown at each air jetting part individually. That is, the substrate can be transported with air floating. Further, since the distance between the substrate that has been air-floated and the upper surface of each air ejection portion is kept constant, the amount of floating of the substrate, and the pressure and flow rate of air required for flying can be minimized. On the other hand, when the upper surface of the air ejection portion is planar, the substrate is lifted by the same amount from both ends of the air ejection portion in order to avoid contact, compared with the case of the present invention. It is necessary to significantly increase the floating interval of the substrate at the center of the part. This means that if the upper surface of the air ejection portion is planar, the same effect as the present invention can be obtained only when at least one of the pressure and flow rate of air is significantly increased compared to the present invention. To do. And in this invention, if the attachment space | interval of each air ejection part is constant, while the upper surface shape of each air ejection part can be made the same, the pressure and flow volume of the ejection air in each air ejection part are controlled separately. Therefore, the substrate can be floated and transported with air kept constant.

更に、前記基板は、上記した複数の要因により決定される自然形状である波形曲線形状に変形されるため、受けるストレスが少なくなると共に、搬送後においては原形状である平面状に復元され易いため、基板の特性が害されるおそれが少ない。   Furthermore, since the substrate is deformed into a waveform curve shape that is a natural shape determined by the above-described plurality of factors, stress is reduced, and after transportation, the substrate is easily restored to the original flat shape. There is little risk of harming the characteristics of the substrate.

請求項2の発明は、請求項1の発明を前提として、前記多数の空気噴出部の上面は、基板の搬送方向に連続して設けられていることを特徴としている。空気噴出部における基板の搬送方向には、その前端部と後端部を除いてコーナー部が形成されなくなるため、基板の先端部と空気噴出部とが衝突することを確実に防止できる。   According to a second aspect of the present invention, on the premise of the first aspect of the present invention, the upper surfaces of the plurality of air ejection portions are provided continuously in the substrate transport direction. Since the corner portion is not formed in the air ejecting portion except for the front end portion and the rear end portion in the transport direction of the substrate, it is possible to reliably prevent the front end portion of the substrate and the air ejecting portion from colliding with each other.

請求項3の発明は、請求項1又は2の発明を前提として、前記各空気噴出部は、内部に空気通路となる空洞を有することを特徴としている。基板を浮上させるための空気は、内部に設けられた空洞から噴出される。このため、空気を空洞に供給するだけで済み、複雑な空気通路が不要となる。   According to a third aspect of the present invention, on the premise of the first or second aspect of the invention, each of the air ejection portions has a cavity serving as an air passage inside. Air for levitating the substrate is ejected from a cavity provided inside. For this reason, it is only necessary to supply air to the cavity, and a complicated air passage is unnecessary.

請求項4の発明は、請求項1ないし3のいずれかの発明を前提として、前記各空気噴出部の上面の曲面形状が微調整可能になっていることを特徴としている。このため、予め実験や計算によって空気噴出部の曲面形状を求めることが不要になると共に、異なる厚みや特性の基板に対しても容易に対応できる。   According to a fourth aspect of the invention, on the premise of any one of the first to third aspects, the curved shape of the upper surface of each of the air ejection portions can be finely adjusted. For this reason, it is not necessary to obtain the curved surface shape of the air ejection portion by experiments and calculations in advance, and it is possible to easily cope with substrates having different thicknesses and characteristics.

請求項5の発明は、請求項1ないし4のいずれかの発明を前提として、前記各空気噴出部の上面に、弾性を有する板状部材が取付けられていることを特徴としている。噴出されて基板に当たった空気が、空気噴出部の左右方向の側部から逃げるとき、板状部材を弾性変形させる。これにより、板状部材の上面部が、基板の波形曲線形状に対応する形状となる。本発明では、空気噴出部の曲面形状が自動で調整されるため、調整の手間が省ける。   According to a fifth aspect of the present invention, on the premise of any one of the first to fourth aspects, an elastic plate member is attached to the upper surface of each of the air ejection portions. When the air that has been ejected and hits the substrate escapes from the lateral sides of the air ejection portion, the plate-like member is elastically deformed. Thereby, the upper surface part of a plate-shaped member becomes a shape corresponding to the waveform curve shape of a board | substrate. In the present invention, since the curved surface shape of the air ejection portion is automatically adjusted, the labor of adjustment can be saved.

本発明は、基板の搬送方向と直交する水平方向に沿って所定の間隔をおいて多数の空気噴出部が配置され、各空気噴出部の空気噴出孔から噴出される空気の圧力により基板を空気浮上させて搬送する非接触式基板搬送装置であって、前記各空気噴出部の上面は、多数の空気噴出孔から噴出される空気の圧力による浮上力、基板の自重、空気噴出部の取付間隔及び基板自体の特性等により自然に定められる基板の搬送方向と直交する方向の形状である波形曲線形状のうち、少なくとも上に凸の部分の形状に対応した曲面となっていることを特徴としている。このため、搬送中の基板は自然形状である波形曲線形状となり、基板と多数の空気噴出部との浮上間隔が一定に保持される。これにより、基板に大きなストレスを与えたり、噴出される空気の圧力や流量を変化させたりすることなく、搬送中における基板の先端部の前垂れを防止した上で、該基板を安定した空気浮上状態で搬送させることができる。   In the present invention, a large number of air ejection portions are arranged at predetermined intervals along a horizontal direction orthogonal to the substrate transport direction, and the substrate is air-conditioned by the pressure of air ejected from the air ejection holes of each air ejection portion. A non-contact type substrate transport apparatus that floats and transports, wherein the upper surface of each air ejection section has a levitation force due to the pressure of air ejected from a number of air ejection holes, the weight of the substrate, and the mounting interval of the air ejection section And a curved surface corresponding to at least the shape of the upwardly convex portion of the waveform curve shape which is a shape perpendicular to the substrate transport direction, which is naturally determined by the characteristics of the substrate itself, etc. . For this reason, the board | substrate in conveyance becomes a waveform curve shape which is a natural shape, and the floating space | interval of a board | substrate and many air ejection parts is kept constant. This prevents the tip of the substrate from sagging during transportation without giving a large stress to the substrate or changing the pressure or flow rate of the ejected air, and stably floating the substrate. It can be conveyed with.

以下、本発明の最良実施例を挙げて、本発明を更に詳細に説明する。本実施例の非接触式基板搬送装置は基板を空気浮上させて搬送する形態のものであり、以下、単に「基板搬送装置」と記載する。図1は第1実施例の基板搬送装置A1 の全体斜視図、図2は同じく平面図、図3は図2のX−X線断面図、図4の(イ)は空気噴出部2における基板Gの凸部8の浮上状態を示す図であり、同じく(ロ)は噴出空気11の圧力分布曲線12を示す図である。 Hereinafter, the present invention will be described in more detail with reference to the best examples of the present invention. The non-contact type substrate transfer apparatus according to the present embodiment has a configuration in which a substrate is floated and transferred, and is hereinafter simply referred to as “substrate transfer apparatus”. 1 is an overall perspective view of the substrate transfer apparatus A 1 of the first embodiment, FIG. 2 is a plan view of the same, FIG. 3 is a cross-sectional view taken along the line XX of FIG. 2, and FIG. It is a figure which shows the floating state of the convex part 8 of the board | substrate G, and (b) is a figure which shows the pressure distribution curve 12 of the ejection air 11 similarly.

最初に、第1実施例の基板搬送装置A1 について説明する。図1及び図2に示されるように、第1実施例の基板搬送装置A1 は、平面視において基板Gよりも少し小さい方形板状のベース1と、前記ベース1の上面に、ベース1の幅方向Q(基板Gの搬送方向Rと直交する水平方向)に一定の取付間隔Lをおいて取付けられた複数本(本実施例の場合、4本)の空気噴出部2とから構成されている。前記ベース1における高さ方向のほぼ中央部には、基板Gの搬送方向Rに所定間隔をおいて、多数本の第1空気流路3a,3b が、ベース1の幅方向Qに沿って設けられている。また、ベース1において、各空気噴出部2と対応する位置には、各第2空気流路4が、ベース1の奥行方向(基板Gの搬送方向R)に沿って設けられている。更に、各空気噴出部2には、高さ方向に沿って多数本の空気噴出孔5a,5b が設けられている。本実施例の場合、各空気噴出孔5a,5b は、各空気噴出部2における左右方向(ベース1の幅方向Qに沿った方向)のほぼ中央部に設けられた1本の第1空気噴出孔5aと、前記中央部から所定の間隔で左右方向に振り分けられて設けられた2本の第2空気噴出孔5bとから成り、両者は空気噴出部2の長手方向(基板Gの搬送方向R)に一定間隔をおいて交互に設けられている。そして、前述した第1空気流路3a,3b のうち、空気流路3aと第1空気噴出孔5aとが連通されており、空気流路3bと第2空気噴出孔5bとが連通されている。更に、第1空気流路3a,3b と第2空気流路4とが連通されている。このため、ベース1の端部に設けられたポート4aから各第2空気流路4に供給された圧縮空気(図2において、矢印6で示す)は、各第1空気流路3a,3b を流れて各空気噴出孔5a,5b から上方に噴出され、基板Gを浮上させる。 First, the substrate transfer apparatus A 1 according to the first embodiment will be described. As shown in FIGS. 1 and 2, the substrate transfer apparatus A 1 of the first embodiment includes a rectangular plate-like base 1 that is slightly smaller than the substrate G in plan view, and an upper surface of the base 1. It is composed of a plurality of (four in the case of this embodiment) air ejection portions 2 attached at a fixed attachment interval L in the width direction Q (horizontal direction orthogonal to the transport direction R of the substrate G). Yes. A plurality of first air flow paths 3 a and 3 b are provided along the width direction Q of the base 1 at a predetermined center in the transport direction R of the substrate G at a substantially central portion in the height direction of the base 1. It has been. Further, in the base 1, each second air flow path 4 is provided at a position corresponding to each air ejection portion 2 along the depth direction of the base 1 (the transport direction R of the substrate G). Further, each air ejection portion 2 is provided with a large number of air ejection holes 5a and 5b along the height direction. In the case of the present embodiment, each of the air ejection holes 5a, 5b is one first air ejection provided in the substantially central portion of each air ejection portion 2 in the left-right direction (the direction along the width direction Q of the base 1). It consists of a hole 5a and two second air ejection holes 5b that are provided in the left-right direction at a predetermined interval from the central part, both of which are in the longitudinal direction of the air ejection part 2 (the transport direction R of the substrate G) ) Are alternately provided at regular intervals. Of the first air flow paths 3a and 3b described above, the air flow path 3a and the first air ejection hole 5a communicate with each other, and the air flow path 3b and the second air ejection hole 5b communicate with each other. . Further, the first air flow paths 3a, 3b and the second air flow path 4 are communicated with each other. For this reason, the compressed air (indicated by arrows 6 in FIG. 2) supplied from the port 4a provided at the end of the base 1 to each second air channel 4 passes through each first air channel 3a, 3b. It flows and is ejected upward from the air ejection holes 5a and 5b, and the substrate G is levitated.

次に、空気噴出部2について説明する。図1に示されるように、第1実施例の基板搬送装置A1 を構成する各空気噴出部2はアルミ(アルミニウム)の押出し材より成り、それらの上面部7は、空気浮上されて波状(波形曲線形状)に撓む基板Gの凸部8に対応する曲面形状となっている。図3に示されるように、各空気噴出部2の上面部7に設けられた各空気噴出孔5a,5b から空気が噴出され、それらの直上に配置された基板Gを押し上げる。これにより、基板Gが浮上される。基板Gにおける各空気噴出部2の直上の部分は、空気により押し上げられて凸部8(上に凸の部分)が形成されると共に、各空気噴出部2どうしの間の直上の部分は、自重により下方に撓んで凹部9が形成される。この結果、基板Gは断面視において波形曲線形状となる。該波形曲線形状は、空気噴出部2から噴出される空気の圧力による浮上力、基板Gの自重、各空気噴出部2の取付間隔L及び基板G自体の特性等により定められるものである。前述した各空気噴出部2の上面部7は、波形曲線形状となった基板Gのうちの凸部8に対応している。なお、本明細書では、各空気噴出部2における第1空気噴出孔5aから噴出された空気によって基板Gが押し上げられた場合について説明する。また、本実施例において、基板Gの実際の浮上間隔は、数十ないし数百ミクロンである。従って、図においては、波形曲線形状に変形された基板Gの変形ピッチ(各空気噴出部2の取付間隔Lに等しい)に対する現実の撓み量の比よりも遥かに大きな割合で図示してある。 Next, the air ejection part 2 will be described. As shown in FIG. 1, each air ejection part 2 constituting the substrate transfer apparatus A 1 of the first embodiment is made of an extruded material of aluminum (aluminum), and the upper surface part 7 is air-lifted and corrugated ( It is a curved surface shape corresponding to the convex portion 8 of the substrate G that bends to a (waveform curve shape). As shown in FIG. 3, air is ejected from the air ejection holes 5 a and 5 b provided in the upper surface portion 7 of each air ejection section 2, and pushes up the substrate G disposed immediately above them. Thereby, the board | substrate G is levitated. The portion immediately above each air ejection portion 2 in the substrate G is pushed up by the air to form a convex portion 8 (a portion convex upward), and the portion immediately above each air ejection portion 2 has its own weight. As a result, the concave portion 9 is formed by bending downward. As a result, the substrate G has a waveform curve shape in cross-sectional view. The waveform curve shape is determined by the levitation force due to the pressure of the air ejected from the air ejection section 2, the weight of the substrate G, the mounting interval L of each air ejection section 2, the characteristics of the substrate G itself, and the like. The upper surface part 7 of each air ejection part 2 mentioned above respond | corresponds to the convex part 8 of the board | substrate G used as the waveform curve shape. In the present specification, the case where the substrate G is pushed up by the air ejected from the first air ejection holes 5a in each air ejection section 2 will be described. In this embodiment, the actual flying interval of the substrate G is several tens to several hundreds of microns. Therefore, in the figure, the ratio is much larger than the ratio of the actual deflection amount to the deformation pitch of the substrate G deformed into the waveform curve shape (equal to the mounting interval L of each air ejection part 2).

上記した作用について、更に詳細に説明する。図4の(イ)に示されるように、第1空気噴出孔5aから噴出された空気(噴出空気11)により、基板Gが浮上される。このとき、各空気噴出部2の取付間隔Lが一定値を超えている場合、基板Gにおいて空気が当たっていない部分(各空気噴出部2どうしの間の部分)は自重により撓み、波形曲線形状を呈する。ここで、撓み状態における基板Gの凹部9(下に凸の部分)は、ベース1に接触しないものとする。このときの基板Gの撓み形状は、自然に決定される波形曲線形状である。即ち、各空気噴出部2の取付間隔Lに対応して、しかも同一高さに設けられた支持部(図示せず)によって基板Gを非拘束状態で支持した状態の基板Gの撓み形状と実質的に等価となる。該基板Gは、波形曲線形状のまま搬送される。これにより、基板Gの搬送方向Rの曲げ強度が高くなり、基板Gの先端部の垂下り量が少なくなり、各空気噴出部2との接触が回避され易くなる。しかも、前記波形曲線形状は、基板Gの自然変形による撓み形状なので、該基板Gを強制変形させた場合と比較して基板Gに作用するストレスが少なくなり、基板Gの品質の低下を最小限に抑制するか、或いは殆ど低下しなくなる。更に、搬送後においては、基板Gが原形状(平面形状)に復元され易いという利点がある。   The above operation will be described in more detail. As shown in FIG. 4A, the substrate G is levitated by the air (ejection air 11) ejected from the first air ejection holes 5a. At this time, when the mounting interval L of each air ejection part 2 exceeds a certain value, the part of the substrate G that is not exposed to air (the part between the air ejection parts 2) bends by its own weight, and has a waveform curve shape. Presents. Here, it is assumed that the concave portion 9 (downward convex portion) of the substrate G in the bent state does not contact the base 1. The bending shape of the board | substrate G at this time is a waveform curve shape determined naturally. That is, the substrate G is substantially bent and substantially in a state of supporting the substrate G in an unconstrained state by a support portion (not shown) provided at the same height corresponding to the mounting interval L of each air ejection portion 2. Are equivalent. The board | substrate G is conveyed with a waveform curve shape. Thereby, the bending strength of the conveyance direction R of the board | substrate G becomes high, the drooping amount of the front-end | tip part of the board | substrate G decreases, and a contact with each air ejection part 2 becomes easy to be avoided. In addition, since the wavy curve shape is a bent shape due to the natural deformation of the substrate G, the stress acting on the substrate G is reduced compared with the case where the substrate G is forcibly deformed, and the deterioration of the quality of the substrate G is minimized. It is suppressed or hardly lowered. Furthermore, there is an advantage that the substrate G is easily restored to the original shape (planar shape) after the conveyance.

そして、各空気噴出部2の上面部7は、基板Gの撓み形状(波形曲線形状)に対応して設けられている。即ち、図4の(イ)に示されるように、各空気噴出部2の上面部7は、空気によって押し上げられる基板Gの凸部8に倣った曲面形状となっていて、浮上状態における各空気噴出部2の上面部7から基板Gの凸部8までの浮上間隔δ1 は、各空気噴出部2の上面部7においてほぼ同一である。 And the upper surface part 7 of each air ejection part 2 is provided corresponding to the bending shape (waveform curve shape) of the board | substrate G. As shown in FIG. That is, as shown in FIG. 4A, the upper surface portion 7 of each air ejection portion 2 has a curved surface shape that follows the convex portion 8 of the substrate G pushed up by air, and each air in the floating state. The flying interval δ 1 from the upper surface portion 7 of the ejection portion 2 to the convex portion 8 of the substrate G is substantially the same in the upper surface portion 7 of each air ejection portion 2.

空気浮上された状態で波形曲線形状に撓んだ基板Gが搬送されるとき、各空気噴出部2の上面部7と基板Gの直上部分との浮上間隔δ1 は、常に一定に保持される。即ち、噴出後の空気の流れを含めて、各空気噴出部2における基板Gの浮上状態が一定となって、各空気噴出部2のコーナー部7aを含む上面部7と基板Gとが接触することなく、最も安定した空気浮上状態で搬送される。前記「最も安定した空気浮上状態」とは、各空気噴出部2における噴出空気の圧力及び流量を個別に制御することなく、これらを一定にしたままで、浮上間隔δ1 を一定にできて基板Gを空気浮上搬送できることである。また、空気浮上された基板Gと各空気噴出部2の上面部7との浮上間隔δ1 は一定に保持されるため、基板Gの浮上量、並びに浮上に要する空気の圧力及び流量は最少で済む。空気浮上された基板Gは、図示しない搬送手段により一定の浮上状態を保持し、各空気噴出部2の上面部7と非接触式のまま、搬送方向Rに沿って搬送される。なお、基板Gの搬送手段として、基板Gの端面部を押したり引っ張ったりする方法や、基板Gの搬送方向Rに分力が発生し得るように、空気を基板Gに対して斜めに噴出させて、前記空気の圧力によって基板Gを移動させる方法がある。 When the substrate G bent in a waveform curve shape is conveyed in a state where the air is floated, the flying interval δ 1 between the upper surface portion 7 of each air ejection portion 2 and the portion directly above the substrate G is always kept constant. . That is, the floating state of the substrate G in each air ejection portion 2 including the flow of air after ejection becomes constant, and the upper surface portion 7 including the corner portion 7a of each air ejection portion 2 and the substrate G come into contact with each other. Without being transported in the most stable air levitation state. The “most stable air levitation state” means that the flying interval δ 1 can be made constant while keeping the pressure and flow rate of the air blown out in each air jetting part 2 individually, and keeping them constant. It is that G can be conveyed by air. In addition, since the flying distance δ 1 between the substrate G that has been air-floated and the upper surface portion 7 of each air ejection portion 2 is kept constant, the flying height of the substrate G and the pressure and flow rate of air required for flying are minimized. That's it. The substrate G that has been floated on air is transported along the transport direction R while maintaining a certain floating state by a transport means (not shown) and in a non-contact manner with the upper surface portion 7 of each air ejection section 2. Note that as a means for transporting the substrate G, air is ejected obliquely with respect to the substrate G so that a component force can be generated in a method of pushing or pulling an end surface portion of the substrate G or in the transport direction R of the substrate G. Then, there is a method of moving the substrate G by the pressure of the air.

これに対して、図4の(イ)に一点鎖線で示されるように、空気噴出部2の上面部7’が平面状である場合、基板Gと空気噴出部2との接触を回避するために空気噴出部2の各コーナー部7aから同一量(浮上間隔δ1)だけ基板Gを浮上させるためには、空気噴出部2の幅方向Qのほぼ中央部における基板Gの浮上間隔δ1'を大幅に大きくする必要がある(δ1'>δ1)。このことは、空気噴出部2の上面部7’が平面状である場合、本発明に比較して、空気の圧力及び流量の少なくとも一方を大幅に大きくしてはじめて本発明と同一の効果が得られることを意味する。 On the other hand, in order to avoid contact between the substrate G and the air ejection part 2 when the upper surface part 7 'of the air ejection part 2 is planar as shown by the alternate long and short dash line in FIG. In order to float the substrate G by the same amount (floating interval δ 1 ) from each corner portion 7 a of the air ejection portion 2, the floating interval δ 1 ′ of the substrate G at the substantially central portion in the width direction Q of the air ejection portion 2. Needs to be greatly increased (δ 1 '> δ 1 ). This means that when the upper surface portion 7 'of the air ejection portion 2 is planar, the same effect as the present invention can be obtained only when at least one of the pressure and flow rate of air is significantly increased compared to the present invention. Means that

上記したように、空気噴出部2の上面部7と基板Gの凸部8との浮上間隔δ1 が均一になることで、前記空気噴出部2の左右の側方に逃げる空気の量が少なくなり、空気の消費量が少なくて済む。しかも、基板Gの搬送中における空気噴出部2における噴出空気11の圧力は、一定に保持される。図4の(ロ)において、噴出空気11の圧力分布曲線12を一点鎖線で示す。 As described above, since the flying distance δ 1 between the upper surface portion 7 of the air ejection portion 2 and the convex portion 8 of the substrate G is uniform, the amount of air escaping to the left and right sides of the air ejection portion 2 is small. Therefore, less air consumption is required. In addition, the pressure of the jet air 11 in the air jet part 2 during the transfer of the substrate G is kept constant. In FIG. 4B, the pressure distribution curve 12 of the jet air 11 is indicated by a one-dot chain line.

そして、各空気噴出部2の取付間隔Lが一定であるならば、各空気噴出部2の上面部7をすべて同一形状にすることができると共に、各空気噴出部2における噴出空気の圧力及び流量を個別に制御することなく、一定のままで基板Gを空気浮上搬送できる。しかも、空気噴出部2の左右の各コーナー部7aも曲面形状であるため、従来の空気噴出部2’の各コーナー部7a'と比較して、接触したときの基板Gの損傷の度合が少なくなる。   And if the attachment space | interval L of each air ejection part 2 is constant, while being able to make all the upper surface parts 7 of each air ejection part 2 into the same shape, the pressure and flow volume of the ejection air in each air ejection part 2 Without separately controlling the substrate G, the substrate G can be floated and conveyed. In addition, since the left and right corner portions 7a of the air ejection portion 2 are also curved, the degree of damage to the substrate G when contacting is less than that of the respective corner portions 7a 'of the conventional air ejection portion 2'. Become.

次に、図5の(イ)に示されるように、上面部7’が平面状の空気噴出部2’で、噴出空気11による基板Gの凹部9の浮上間隔が、前述した空気噴出部2と同一(δ1)である場合を考える。この場合、空気噴出部2’の左右の各側部には、その中央部よりも大きな隙間Vが形成され、各コーナー部7a'における基板Gの浮上間隔δ2 は、中央部における浮上間隔δ1 よりも大きい。空気噴出部2’から噴出された噴出空気11は、基板Gの凹部9に当たった後、左右の側方に形成された大きな隙間Vから逃げ易くなる。このため、基板Gの側部における噴出空気11の圧力は、中央部における圧力よりも遥かに小さくなり、本発明の場合と比較して大量の空気が必要となってしまう。図5の(ロ)において、噴出空気11の圧力分布曲線13を一点鎖線で示す。 Next, as shown in FIG. 5A, the upper surface portion 7 ′ is a flat air ejection portion 2 ′, and the flying interval of the concave portion 9 of the substrate G by the ejection air 11 is the air ejection portion 2 described above. Is the same (δ 1 ). In this case, a gap V larger than the central portion is formed in each of the left and right side portions of the air ejection portion 2 ′, and the floating interval δ 2 of the substrate G in each corner portion 7a ′ is the floating interval δ in the central portion. Greater than one . After the blown air 11 blown out from the air blowout part 2 ′ hits the recess 9 of the substrate G, it becomes easy to escape from the large gap V formed on the left and right sides. For this reason, the pressure of the blown air 11 at the side portion of the substrate G is much smaller than the pressure at the central portion, and a large amount of air is required as compared with the case of the present invention. In FIG. 5B, the pressure distribution curve 13 of the jet air 11 is indicated by a one-dot chain line.

次に、第2実施例の基板搬送装置A2 について説明する。図6の(イ),(ロ)に示されるように、第2実施例の各空気噴出部14は、アルミの中空材を押出し成形したものであるという点で、前述した第1実施例の各空気噴出部2と異なっている。即ち、各空気噴出部14の内部に、それらの長手方向に沿って連続する空洞部15が設けられている。各空気噴出部14に供給された圧縮空気(矢印16で示す)は、いったん空洞部15に貯留された後、各空気噴出孔5a,5b から噴出される。第2実施例の基板搬送装置A2 の場合、、前記空洞部15に直接空気を供給することができるため、ベース1に各空気流路3a,3b,4を設けなくても済むと共に、空気流路が短くなって詰まりにくくなるという利点がある。なお、図6の(イ)では、各空気噴出部14の手前側から圧縮空気を供給する形態を示している。 Next, the substrate transfer apparatus A 2 according to the second embodiment will be described. As shown in FIGS. 6 (a) and 6 (b), each air ejection portion 14 of the second embodiment is obtained by extruding an aluminum hollow material in the first embodiment described above. It differs from each air ejection part 2. That is, the cavity part 15 which follows the longitudinal direction in each air ejection part 14 is provided. Compressed air (indicated by arrow 16) supplied to each air ejection portion 14 is once stored in the cavity 15 and then ejected from each air ejection hole 5a, 5b. In the case of the substrate transfer apparatus A 2 of the second embodiment, since air can be directly supplied to the cavity 15, it is not necessary to provide each air flow path 3 a, 3 b, 4 in the base 1, and air There is an advantage that the flow path is shortened and clogging is difficult. In addition, (a) of FIG. 6 shows a form in which compressed air is supplied from the front side of each air ejection portion 14.

次に、第3実施例の基板搬送装置A3 について説明する。図7の(イ),(ロ)に示されるように、第3実施例の空気噴出部17は、断面長方形状の基台部18と、該基台部18の上部に取付けられた弾性わん曲部19とから構成されている。前記弾性わん曲部19は、弾性変形可能なわん曲部材より成り、浮上状態の基板Gの凸部8に対応する上面部を有している。前記基台部18と前記弾性わん曲部19とは、図示しない連結手段により連結されている。図7の(ロ)に示されるように、基台部18にそのまま弾性わん曲部19を取付けたときに、前記弾性わん曲部19の上面部と浮上状態の基板Gの凸部8とが対応していない場合(弾性わん曲部19と基板Gの凸部8との浮上間隔が一定でない状態)がある。その状態を、図7の(ロ)に二点鎖線で示す。このまま空気を噴出させると、空気の逃げ量が多くなり、空気の消費量が増大してしまう。 Next, the substrate transfer apparatus A 3 of the third embodiment will be described. As shown in FIGS. 7A and 7B, the air ejection portion 17 of the third embodiment includes a base section 18 having a rectangular cross section and an elastic wand attached to the upper portion of the base section 18. It is comprised from the music part 19. FIG. The elastic bent portion 19 is made of an elastically deformable bent member, and has an upper surface portion corresponding to the convex portion 8 of the substrate G in a floating state. The base portion 18 and the elastic bending portion 19 are connected by a connecting means (not shown). As shown in FIG. 7B, when the elastic bending portion 19 is attached to the base portion 18 as it is, the upper surface portion of the elastic bending portion 19 and the convex portion 8 of the substrate G in the floating state are formed. There is a case where it does not correspond (a state where the flying distance between the elastic bent portion 19 and the convex portion 8 of the substrate G is not constant). This state is indicated by a two-dot chain line in FIG. If air is spouted as it is, the amount of air escape increases and the amount of air consumption increases.

これを防止するため、基台部18と弾性わん曲部19との間にシム板21が挟み込まれて、両者が連結される。これにより、前記弾性わん曲部19が弾性変形し、変形後の上面部と基板Gの凸部8との浮上間隔を一定とすることができる。前記シム板21において、空気噴出孔5aと対応する部分には各通し孔21aが設けられているため、空気の通過に支障は生じない。第3実施例の空気噴出部17の場合、弾性わん曲部19の上面部の形状を微調整することができるため、空気噴出部17を基板Gの凸部8に対してより正確に対応させることができ、異なる厚み、特性の基板Gに対応できる。また、予め計算や実験等を行って空気噴出部17の上面部の曲面形状を求めることが不要となり、基板Gの厚みや特性に対して現場においても対応できる。   In order to prevent this, a shim plate 21 is sandwiched between the base portion 18 and the elastic bending portion 19 so that both are connected. Thereby, the elastic bending portion 19 is elastically deformed, and the floating interval between the deformed upper surface portion and the convex portion 8 of the substrate G can be made constant. In the shim plate 21, since each through hole 21a is provided in a portion corresponding to the air ejection hole 5a, there is no problem in the passage of air. In the case of the air ejection portion 17 of the third embodiment, the shape of the upper surface portion of the elastic bending portion 19 can be finely adjusted, so that the air ejection portion 17 is more accurately associated with the convex portion 8 of the substrate G. It is possible to deal with substrates G having different thicknesses and characteristics. In addition, it is not necessary to obtain a curved surface shape of the upper surface portion of the air ejection portion 17 by performing calculations and experiments in advance, and the thickness and characteristics of the substrate G can be dealt with in the field.

次に、第4実施例の基板搬送装置A4 について説明する。図8の(イ),(ロ)に示されるように、第4実施例の空気噴出部22は、上面部がわん曲された基台部23と、該基台部23の上部に取付けられた弾性板部24とから構成されている。前記基台部23の上面部は、浮上状態の基板Gの凸部8に対応する曲面形状となっている。また、前記弾性板部24は、弾性変形可能な薄板より成る。 Next, the substrate transfer apparatus A 4 of the fourth embodiment will be described. As shown in FIGS. 8A and 8B, the air ejection part 22 of the fourth embodiment is attached to a base part 23 having a curved upper surface part and an upper part of the base part 23. And an elastic plate portion 24. The upper surface portion of the base portion 23 has a curved surface shape corresponding to the convex portion 8 of the floating substrate G. The elastic plate portion 24 is made of an elastically deformable thin plate.

基台部23に取付けられた弾性板部24は、前記基台部23の上面部に倣ってわん曲する。この状態で、弾性板部24のわん曲形状は、基板Gの凸部8の撓み形状(波形曲線形状)と対応していない。換言すれば、弾性板部24の上面部と基板Gの凸部8との浮上間隔は一定でない。その状態を、図8の(ロ)に二点鎖線で示す。しかし、各空気噴出部22から噴出された空気が基板Gに当たって左右の側方から逃げようとするとき、前記弾性板部24の側端部を押し下げる。これにより、弾性板部24と基板Gとの浮上間隔が一定になる。第4実施例の空気噴出部22の場合、弾性板部24の上面部が基板Gの波形曲線形状に倣うように自動で調整されるので、調整の手間が省けるという利点がある。   The elastic plate portion 24 attached to the base portion 23 bends following the upper surface portion of the base portion 23. In this state, the curved shape of the elastic plate portion 24 does not correspond to the bent shape (waveform curve shape) of the convex portion 8 of the substrate G. In other words, the flying distance between the upper surface portion of the elastic plate portion 24 and the convex portion 8 of the substrate G is not constant. This state is indicated by a two-dot chain line in FIG. However, when the air ejected from each air ejecting portion 22 strikes the substrate G and tries to escape from the left and right sides, the side end portion of the elastic plate portion 24 is pushed down. Thereby, the floating interval between the elastic plate portion 24 and the substrate G becomes constant. In the case of the air ejection part 22 of the fourth embodiment, since the upper surface part of the elastic plate part 24 is automatically adjusted so as to follow the waveform curve shape of the substrate G, there is an advantage that the labor of adjustment can be saved.

本明細書では、各空気噴出部2,14,17,22が、基板Gにおける上に凸の部分(凸部8)に対応して設けられた形態である。しかし、前記各空気噴出部2,14,17,22が、波形曲線形状を呈する基板Gの全体に対応して(換言すれば、基板Gの上に凸の部分だけでなく、下に凸の部分にも対応して)設けられている形態であっても構わない。この場合、各空気噴出部2,14,17,22の上面部7も、基板Gに対応して連続する波形曲線形状を呈する。   In this specification, each air ejection part 2,14,17,22 is the form provided corresponding to the upward convex part (convex part 8) in the board | substrate G. FIG. However, each of the air ejection portions 2, 14, 17, and 22 corresponds to the entire substrate G having a waveform curve shape (in other words, not only a convex portion on the substrate G but also a convex portion on the lower side). It may be provided in a manner corresponding to the part). In this case, the upper surface portion 7 of each of the air ejection portions 2, 14, 17, 22 also exhibits a continuous waveform curve shape corresponding to the substrate G.

上記した各実施例の空気噴出部2,14,17,22は、アルミの押出し材より成るものである。このため、各空気噴出部2,14,17,22の上面部7の曲面形状を、長手方向に連続して成形することが容易である。しかし、アルミ以外の金属の押出し材、或いは樹脂材より成るものであっても構わない。   The air ejection portions 2, 14, 17, and 22 in each of the above-described embodiments are made of an extruded aluminum material. For this reason, it is easy to form the curved surface shape of the upper surface portion 7 of each air ejection portion 2, 14, 17, 22 continuously in the longitudinal direction. However, it may be made of an extruded material of a metal other than aluminum or a resin material.

第1実施例の基板搬送装置A1 の全体斜視図である。 1 is an overall perspective view of a substrate transfer apparatus A 1 according to a first embodiment. 同じく平面図である。It is also a plan view. 図2のX−X線断面図である。FIG. 3 is a sectional view taken along line XX in FIG. 2. (イ)は空気噴出部2における基板Gの凸部8の浮上状態を示す図であり、(ロ)は噴出空気11の圧力分布曲線12を示す図である。(A) is a figure which shows the floating state of the convex part 8 of the board | substrate G in the air ejection part 2, (b) is a figure which shows the pressure distribution curve 12 of the ejection air 11. FIG. (イ)は従来の空気噴出部2’における基板Gの凹部9の浮上状態を示す図であり、(ロ)は噴出空気11の圧力分布曲線13を示す図である。(A) is a figure which shows the floating state of the recessed part 9 of the board | substrate G in the conventional air ejection part 2 ', (b) is a figure which shows the pressure distribution curve 13 of the ejection air 11. FIG. (イ)は第2実施例の基板搬送装置A2 の全体斜視図であり、(ロ)は正面断面図である。(A) is a whole perspective view of board | substrate conveyance apparatus A2 of 2nd Example, (b) is front sectional drawing. (イ)は第3実施例の基板搬送装置A3 の全体斜視図であり、(ロ)は正面断面図である。(A) is a whole perspective view of substrate conveying apparatus A3 of 3rd Example, (b) is front sectional drawing. (イ)は第4実施例の基板搬送装置A4 の全体斜視図であり、(ロ)は正面断面図である。(A) is a whole perspective view of board | substrate conveyance apparatus A4 of 4th Example, (b) is front sectional drawing.

符号の説明Explanation of symbols

1 〜A4 :基板搬送装置
G:基板
L:取付間隔(所定の間隔)
Q:幅方向(搬送方向と直交する水平方向)
R:搬送方向
δ1 :浮上間隔
2,14,17,22:空気噴出部
5a,5b :空気噴出孔
7:上面部(上面)
8:凸部(上に凸の部分)
15:空洞部(空洞)
19:弾性わん曲部(空気噴出部の上面)
24:弾性板部(板状部材)
A 1 to A 4 : substrate transfer device
G: Substrate
L: Mounting interval (predetermined interval)
Q: Width direction (horizontal direction orthogonal to the conveyance direction)
R: Transport direction
δ 1 : Levitation interval 2, 14, 17, 22: Air ejection part
5a, 5b: Air ejection holes
7: Upper surface (upper surface)
8: Convex part (protruding part upward)
15: Cavity (Cavity)
19: Elastic bent portion (upper surface of air ejection portion)
24: Elastic plate (plate member)

Claims (5)

基板の搬送方向と直交する水平方向に沿って所定の間隔をおいて多数の空気噴出部が配置され、各空気噴出部の空気噴出孔から噴出される空気の圧力により基板を空気浮上させて搬送する非接触式基板搬送装置であって、
前記各空気噴出部の上面は、多数の空気噴出孔から噴出される空気の圧力による浮上力、基板の自重、空気噴出部の取付間隔及び基板自体の特性等により自然に定められる基板の搬送方向と直交する方向の形状である波形曲線形状のうち、少なくとも上に凸の部分の形状に対応した曲面となっていることを特徴とする非接触式基板搬送装置。
A large number of air ejection portions are arranged at predetermined intervals along a horizontal direction orthogonal to the substrate transport direction, and the substrate is air-lifted and transported by the pressure of air ejected from the air ejection holes of each air ejection portion. A non-contact type substrate transfer device,
The upper surface of each of the air ejection portions is a substrate transport direction that is naturally determined by the levitation force due to the pressure of air ejected from a number of air ejection holes, the weight of the substrate, the mounting interval of the air ejection portions, and the characteristics of the substrate itself. A non-contact type substrate transfer apparatus characterized in that it is a curved surface corresponding to the shape of at least the upwardly convex portion of the waveform curve shape which is a shape in a direction orthogonal to the shape.
前記多数の空気噴出部の上面は、基板の搬送方向に連続して設けられていることを特徴とする請求項1に記載の非接触式基板搬送装置。 2. The non-contact type substrate transfer apparatus according to claim 1, wherein upper surfaces of the plurality of air ejection portions are continuously provided in a substrate transfer direction. 前記各空気噴出部は、内部に空気通路となる空洞を有することを特徴とする請求項1又は2に記載の非接触式基板搬送装置。 Each non-contact-type board | substrate conveyance apparatus of Claim 1 or 2 with which each said air ejection part has the cavity used as an air passage inside. 前記各空気噴出部の上面の曲面形状が微調整可能になっていることを特徴とする請求項1ないし3のいずれかに記載の非接触式基板搬送装置。 4. The non-contact type substrate transfer apparatus according to claim 1, wherein the curved shape of the upper surface of each air ejection part can be finely adjusted. 前記各空気噴出部の上面に、弾性を有する板状部材が取付けられていることを特徴とする請求項1ないし4のいずれかに記載の非接触式基板搬送装置。 The non-contact type substrate transfer apparatus according to any one of claims 1 to 4, wherein a plate-like member having elasticity is attached to an upper surface of each of the air ejection portions.
JP2005085201A 2005-03-24 2005-03-24 Noncontact substrate conveying device Abandoned JP2006264891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085201A JP2006264891A (en) 2005-03-24 2005-03-24 Noncontact substrate conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085201A JP2006264891A (en) 2005-03-24 2005-03-24 Noncontact substrate conveying device

Publications (1)

Publication Number Publication Date
JP2006264891A true JP2006264891A (en) 2006-10-05

Family

ID=37201255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085201A Abandoned JP2006264891A (en) 2005-03-24 2005-03-24 Noncontact substrate conveying device

Country Status (1)

Country Link
JP (1) JP2006264891A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153577A (en) * 2006-12-20 2008-07-03 Toppan Printing Co Ltd Method and device for conveying sheet substrate
KR101059617B1 (en) 2007-11-30 2011-08-25 가부시키가이샤 덴소 Fabric Support Device
NL2009764C2 (en) * 2012-11-06 2014-05-08 Univ Delft Tech An apparatus for carrying and transporting a product.
WO2023167480A1 (en) * 2022-03-03 2023-09-07 주식회사 엘지에너지솔루션 Air lifting device and drying device for manufacturing electrode comprising same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153577A (en) * 2006-12-20 2008-07-03 Toppan Printing Co Ltd Method and device for conveying sheet substrate
KR101059617B1 (en) 2007-11-30 2011-08-25 가부시키가이샤 덴소 Fabric Support Device
NL2009764C2 (en) * 2012-11-06 2014-05-08 Univ Delft Tech An apparatus for carrying and transporting a product.
WO2014073955A1 (en) * 2012-11-06 2014-05-15 Technische Universiteit Delft An apparatus for carrying and transporting a product
WO2023167480A1 (en) * 2022-03-03 2023-09-07 주식회사 엘지에너지솔루션 Air lifting device and drying device for manufacturing electrode comprising same

Similar Documents

Publication Publication Date Title
JP4501713B2 (en) Air levitation transfer device
CN102026560B (en) Method and system for locally controlling support of a flat object
WO2016136495A1 (en) Gas floated workpiece support device and non-contact workpiece support method
JP2006264804A (en) Flotation unit for large flat panel, and non-contact carrying device using the same
JP2003063643A (en) Thin plate conveying system and apparatus
JP2006264891A (en) Noncontact substrate conveying device
JP2007008644A (en) Conveying device for plate-like work
US9708136B2 (en) Liquid-ejecting bearings for transport of glass sheets
JP2008130892A (en) Air float carrying apparatus and air carrying method
KR101059617B1 (en) Fabric Support Device
JP4229670B2 (en) Method and apparatus for conveying thin plate material
JP4529794B2 (en) Gas levitation transfer device
JP4171293B2 (en) Method and apparatus for conveying thin plate material
KR101610215B1 (en) Conveyance device
JP6456904B2 (en) Gas floating work support device
JP2009040598A (en) Air floatation transportation device, air floatation unit, and air floatation transportation method
KR101936427B1 (en) Transferring guide assembly and Apparatus for transferring a substrate having the same
JP2015168499A (en) Base material levitation device
JP2012101897A (en) Conveying device
JP2011178529A (en) Float transportation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A621

A762 Written abandonment of application

Effective date: 20090820

Free format text: JAPANESE INTERMEDIATE CODE: A762