JP2006257470A - Method for manufacturing aluminum alloy sheet for can lid - Google Patents

Method for manufacturing aluminum alloy sheet for can lid Download PDF

Info

Publication number
JP2006257470A
JP2006257470A JP2005074292A JP2005074292A JP2006257470A JP 2006257470 A JP2006257470 A JP 2006257470A JP 2005074292 A JP2005074292 A JP 2005074292A JP 2005074292 A JP2005074292 A JP 2005074292A JP 2006257470 A JP2006257470 A JP 2006257470A
Authority
JP
Japan
Prior art keywords
rolling
lid
aluminum alloy
rate
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005074292A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuzaki
松崎和彦
Satoru Suzuki
鈴木覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2005074292A priority Critical patent/JP2006257470A/en
Publication of JP2006257470A publication Critical patent/JP2006257470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably obtain a can lid material of low earing without affecting material strength even in a manufacturing method in an SA process. <P>SOLUTION: The aluminum alloy ingot containing 0.1 to 0.3% Si, 0.2 to 0.7% Mn, 0.05 to 0.15% Cu. 0.1 to 0.5% Fe, and 2.0 to 2.5% Mg is subjected to homogenization treatment for 3 to 12 hours at (410+200xMn[mass%])°C according to the amount of the contained Mn, then to hot rolling. The coil side face temperature right after taking up to a coil form is regulated to 310 to 340°C and 5,000 to 20,000 pieces of the second phase particles of a size 0.5 to 3.5 μm at the section of the sheet are made to exist in 1 mm<SP>2</SP>and thereafter, the sheet is subjected to cold rolling of 86 to 90% in the rate of rolling without being subjected to intermediate heat treatment so that the earing rate when the sheet is made into a cylindrical deep drawn container at a deep drawing rate 48% attains ≤8%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は陰圧缶用のアルミニウム缶蓋用のアルミニウム合金板に関するものである。すなわち、缶内部に充填する飲料が炭酸を含まない、コーヒー、茶等を対象とし、アルミニウムまたはスチール製の缶胴体と本発明のアルミニウム合金板で成形した缶蓋体を巻き締めることにより、1個の飲料缶製品となる。 The present invention relates to an aluminum alloy plate for an aluminum can lid for a negative pressure can. That is, the beverage filled in the can is intended for coffee, tea, etc., which does not contain carbonic acid, and by tightening a can lid made of aluminum or steel and the aluminum alloy plate of the present invention, one can be Beverage can product.

これまでも缶蓋用アルミニウム合金板において耳率の改善を目的とした発明があるが、下記の理由により、いずれも不十分であった。 There have been inventions aimed at improving the ear rate in aluminum alloy plates for can lids, but none of them has been sufficient for the following reasons.

特許文献1では、リサイクル性が優れるという理由から、合金組成のみを規定しているが、本発明のように製法までも規定しなければ、所望の耳率の良い材料が得られない。   In Patent Document 1, only the alloy composition is specified for the reason that recyclability is excellent. However, if the manufacturing method is not specified as in the present invention, a material having a desired ear ratio cannot be obtained.

特許文献2では、冷間圧延板表面の1〜20μmの大きさを有する第2相粒子の面積占有率を規定し、缶蓋の開口性の改善を行なっているが、耳率を向上させるには、この段階でのこのサイズの第2相粒子の制御では不十分である。   In Patent Document 2, the area occupancy of the second phase particles having a size of 1 to 20 μm on the surface of the cold rolled sheet is specified and the opening of the can lid is improved, but the ear rate is improved. Is not sufficient to control the second phase particles of this size at this stage.

特許文献3では、耳率及び開缶性を向上させるために、熱間圧延の条件及び熱間圧延板の表層部における結晶粒の方位密度を規定している。これは耳率低減には有効であるが、多段タンデム熱間圧延機を用いての製造では、本発明のように更に一定サイズの第2相粒子の分布を規定することが必要である。   In Patent Document 3, in order to improve the ear rate and the openability, the conditions for hot rolling and the orientation density of crystal grains in the surface layer portion of the hot rolled sheet are specified. This is effective in reducing the ear ratio, but in the production using a multi-stage tandem hot rolling mill, it is necessary to further regulate the distribution of second phase particles having a certain size as in the present invention.

特開2000−160273号公報JP 2000-160273 A 特開2000−273593号公報JP 2000-273593 A 特開2001−214248号公報JP 2001-214248 A

アルミニウム合金板の耳率が悪いと、成形された缶蓋体のカール部の高さ(カールハイト)が円周方向にて均一とならない。カールハイトが円周方向で不均一になってしまうと、缶胴体との勘合の際に、カールハイトが部分的に高い箇所にて缶胴体と点接触してしまうため、部分的に勘合されない不具合が生じてしまう。そのため、缶蓋用アルミニウム合金板にはできるだけ、耳率の低いことが要求されている。 When the ear rate of the aluminum alloy plate is poor, the height (curl height) of the curled portion of the molded can lid body is not uniform in the circumferential direction. If the curl height becomes uneven in the circumferential direction, it will not be partly mated because the curl height will be in point contact with the can body at the part where it is partly high when mating with the can body. Will occur. For this reason, the aluminum alloy plate for can lids is required to have as low an ear rate as possible.

本発明の対象となる製造方法は、熱間圧延終了後、もしくは冷間圧延のパス間に、中間焼鈍を施さないような工程、いわゆるSA(Self−Annealing、自己焼鈍)工程である。SA工程は、焼鈍処理を省略できるため、コスト的には有利であるが、以下のようなデメリットがある。すなわち、SA以外の工程であれば、中間焼鈍の熱処理条件(温度、時間)や中間焼鈍前までの冷間圧延の圧下率、中間焼鈍後の冷間圧延率の変更等により、耳率の制御がより容易に変更可能となるが、SA工程の場合、熱間圧延以降で熱処理が付与されないため、耳率の制御が制限されてしまう。 The manufacturing method which is the subject of the present invention is a process in which intermediate annealing is not performed after the end of hot rolling or between passes of cold rolling, so-called SA (Self-Annealing) process. Since the SA process can omit the annealing treatment, it is advantageous in terms of cost, but has the following disadvantages. That is, if the process is other than SA, the ear rate is controlled by changing the heat treatment conditions (temperature, time) of the intermediate annealing, the cold rolling reduction before the intermediate annealing, the cold rolling rate after the intermediate annealing, and the like. However, in the case of the SA process, since the heat treatment is not applied after the hot rolling, the control of the ear rate is limited.

アルミニウムもしくはアルミニウム合金をタンデム式の熱間圧延機にて比較的高い圧延率で熱間圧延し、再結晶させた材料の集合組織は、立方体方位が優位となる傾向がある。続く冷間圧延にて結晶粒はファイバー状に伸ばされ、方位はランダムとなる。前者の方位が優位な圧延板では、深絞りにより形成された容器は、圧延方向に対して0°と90°に耳が強くなり、後者の方位が優位であれば、45°に耳が強くなる。従って、両者のバランスをとることにより、耳率の低い材料を製造する必要がある。 The texture of aluminum or aluminum alloy that has been hot-rolled with a tandem hot rolling mill at a relatively high rolling ratio and recrystallized tends to have a cubic orientation. In the subsequent cold rolling, the crystal grains are elongated into fibers, and the orientation is random. In the rolled plate with the former orientation being dominant, the container formed by deep drawing has a strong ear at 0 ° and 90 ° with respect to the rolling direction, and when the latter orientation is dominant, the ear is strong at 45 °. Become. Therefore, it is necessary to produce a material with a low ear rate by balancing the two.

冷間圧延の圧下率変更による制御は、耳率以外の因子である材料強度の変更を伴ってしまうため、缶蓋体の強度及び成形性への影響を考慮すると好ましくない。そのため熱間圧延以前の材料制御が必要であるが、本発明者等は合金組成及び製造方法を規定することにより、熱間仕上げ圧延後の板の断面における0.5〜3.5μmの大きさの第2相粒子の分布状況を制御して、耳率が良好な缶蓋用アルミニウム合金板が製造可能となることを見出し、本発明に到達した。 Control by changing the rolling reduction in cold rolling is accompanied by a change in material strength, which is a factor other than the ear rate, and is not preferable in view of the effects on the strength and formability of the can lid. Therefore, it is necessary to control the material before hot rolling, but the present inventors specify the alloy composition and the manufacturing method, so that the size of the cross section of the plate after hot finish rolling is 0.5 to 3.5 μm. The present inventors have found that an aluminum alloy plate for can lids having a good ear ratio can be manufactured by controlling the distribution state of the second phase particles.

すなわち、必須元素として、Si:0.1〜0.3%(mass%、以下同じ)、Mn:0.2〜0.7%、Cu:0.05〜0.15%、Fe:0.1〜0.5% 、Mg:2.0〜2.5%を含有し、残部Alおよび不可避不純物よりなるアルミニウム合金鋳塊を、含有するMn量に応じて、(410+200×Mn[mass%]±19)℃で3〜12時間の均質化処理後、熱間圧延を施し、コイル状に巻き上げた直後のコイル側面温度を310〜340℃とし、板の断面(圧延方向と厚さ方向を2辺とする面)における0.5〜3.5μmの大きさの第2相粒子を1mm中に5000〜20000個存在させ、その後中間熱処理をすることなく圧延率86〜90%の冷間圧延を施すことにより、総絞り率48%にて円筒状深絞り容器にしたときの耳率が8%以下となるようにすることを特徴とする缶蓋用アルミニウム合金板の製造方法である。 That is, as essential elements, Si: 0.1 to 0.3% (mass%, the same applies hereinafter), Mn: 0.2 to 0.7%, Cu: 0.05 to 0.15%, Fe: 0.0. The aluminum alloy ingot containing 1 to 0.5%, Mg: 2.0 to 2.5%, and the balance Al and unavoidable impurities, depending on the amount of Mn contained, (410 + 200 × Mn [mass%] After the homogenization treatment at ± 19) ° C. for 3 to 12 hours, hot rolling is performed, and the coil side surface temperature immediately after winding into a coil shape is 310 to 340 ° C., and the cross section of the plate (the rolling direction and the thickness direction are 2). the second phase particles of the size of 0.5~3.5μm in the surface) to the side in the presence 5,000 to 20,000 pieces in 1 mm 2, then rolling reduction 86 to 90% of the cold without intermediate heat treatment rolling The cylindrical deep-drawn container with a total drawing rate of 48% It is a manufacturing method of an aluminum alloy sheet for can lid, characterized in that to the ear rate when the is set to be 8% or less.

本発明によれば、SA工程での製造方法であっても材料強度に影響せず安定して低耳の缶蓋材を得ることができる。   According to the present invention, a low-ear can lid material can be stably obtained without affecting the material strength even in the manufacturing method in the SA process.

本発明での合金成分の作用および範囲限定の理由を述べる。 The reason for the action and range limitation of the alloy components in the present invention will be described.

Si: 添加量を0.1〜0.3%とする。Al(Fe,Mn)Si系化合物(α相)、MgSi等の第2相粒子形成に影響を及ぼす。本発明のような良好な耳率を得るには、上記のように熱間圧延時もしくは圧延直後に形成される再結晶集合組織を最適にする必要があるが、再結晶集合組織には0.5〜3.5μmの大きさの第2相粒子分布が影響される。0.1%未満では、アルミニウム合金板の製法を如何にしてもその粒子分布が得られない。0.3%を超える範囲では、粗大な第2相粒子が発生してしまい、缶蓋のリベット成形の際に割れが発生しやすくなる。 Si: Addition amount is 0.1 to 0.3%. It affects the formation of second phase particles such as Al (Fe, Mn) Si compounds (α phase), Mg 2 Si and the like. In order to obtain a good ear ratio as in the present invention, it is necessary to optimize the recrystallization texture formed during hot rolling or immediately after rolling as described above. The second phase particle distribution with a size of 5 to 3.5 μm is affected. If it is less than 0.1%, the particle distribution cannot be obtained no matter how the aluminum alloy sheet is produced. In the range exceeding 0.3%, coarse second-phase particles are generated, and cracks are likely to occur during rivet molding of the can lid.

Mn:添加量を0.2〜0.7%とする。強度を向上させるとともに、Al−Mn−Fe系の第2相粒子形成に影響を及ぼす。前述と同様に、0.2%未満では、耳率制御のために必要な一定サイズ以上の第2相粒子の分布を得られず、0.7%を超えると、粗大な第2相粒子が発生してしまい、缶蓋のリベット成形の際に割れが発生しやすくなる。後述の均質化処理温度を添加量に応じて変化させる。 Mn: Addition amount is set to 0.2 to 0.7%. While improving an intensity | strength, it influences Al-Mn-Fe type | system | group 2nd phase particle formation. Similarly to the above, if it is less than 0.2%, the distribution of the second phase particles having a certain size or more necessary for controlling the ear ratio cannot be obtained, and if it exceeds 0.7%, coarse second phase particles are not obtained. It will occur and cracks are likely to occur during rivet forming of the can lid. The homogenization temperature described later is changed according to the amount added.

Cu:添加量を0.05〜0.15%とする。冷延や塗装焼付け時のAl−Mg−Cu系析出による強度上昇、耐熱性の向上に必要である。0.05%未満ではその効果が少なく、0.15%を超えると強度過剰により、成形性が低下する。
Fe:添加量を0.1〜0.5%とする。Mn同様にAl−Mn−Fe系の第2相粒子形成に影響を及ぼす。0.1%未満では、耳率制御のために必要な一定サイズ以上の第2相粒子の分布を得られず、0.5%を超えると、粗大な第2相粒子が発生してしまい、成形性が低下する。
Cu: Addition amount is set to 0.05 to 0.15%. Necessary for increasing strength and improving heat resistance due to Al-Mg-Cu precipitation during cold rolling and paint baking. If it is less than 0.05%, the effect is small, and if it exceeds 0.15%, the formability deteriorates due to excessive strength.
Fe: Addition amount is 0.1 to 0.5%. Like Mn, it affects the formation of Al—Mn—Fe-based second phase particles. If it is less than 0.1%, it is impossible to obtain a distribution of second phase particles of a certain size or more necessary for controlling the ear ratio, and if it exceeds 0.5%, coarse second phase particles are generated, Formability is reduced.

Mg:添加量を2〜3.5%とする。固溶硬化による強度向上に寄与するとともに、MgSiの第2相粒子形成に影響を及ぼす。2%未満ではその効果が不十分である。一方、3.5%を超えると圧延時や成形中の加工硬化が大きくなり、成形性が低下する。 Mg: Addition amount is 2 to 3.5%. It contributes to strength improvement by solid solution hardening and affects the formation of second phase particles of Mg 2 Si. If it is less than 2%, the effect is insufficient. On the other hand, if it exceeds 3.5%, work hardening during rolling or forming becomes large, and formability deteriorates.

以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良いが、必要に
応じてCr、Zn、Tiのうちの1種または2種以上を添加しても良い。これらのCr、
Zn、Tiについてさらに詳細に説明する。
In addition to the above elements, Al and inevitable impurities may be basically used, but one or more of Cr, Zn, and Ti may be added as necessary. These Cr,
Zn and Ti will be described in more detail.

Cr:
Crは強度向上に効果的な元素であるが、0.05%未満ではその効果が少なく、0.
5%を越えれば巨大晶出物生成によって成形性の低下を招くため、好ましくない。そこで
Crを添加する場合のCr量の範囲は0.05〜0.5%とした。なおCr量のより好ま
しい範囲は0.1〜0.4%である。
Cr:
Cr is an element effective for improving the strength, but if it is less than 0.05%, the effect is small.
If it exceeds 5%, the formation of giant crystallized products causes a decrease in moldability, which is not preferable. Therefore, the range of Cr content when adding Cr is set to 0.05 to 0.5%. A more preferable range of the Cr content is 0.1 to 0.4%.

Zn:
Znの添加はAl−Mg−Zn系粒子の時効析出による強度向上に寄与するが、0.0
5%未満ではその効果が得られず、0.8%を越えれば、強度への寄与については問題が
ないが、耐食性を劣化させる。そこでZnを添加する場合のZr量の範囲は0.05〜0
.8%とした。なおZn量のより好ましい範囲は、0.1〜0.5%である。
Zn:
The addition of Zn contributes to the strength improvement due to aging precipitation of Al—Mg—Zn-based particles.
If it is less than 5%, the effect cannot be obtained. If it exceeds 0.8%, there is no problem in terms of contribution to strength, but the corrosion resistance is deteriorated. Therefore, the range of the Zr amount when adding Zn is 0.05 to 0.
. 8%. A more preferable range of the Zn content is 0.1 to 0.5%.

Ti:
通常のアルミニウム合金においては、鋳塊結晶粒微細化のためにTiを微量添加するこ
とが行なわれており、この発明においても、必要に応じて微量のTiを添加しても良い。
但しTi量が0.001%未満ではその効果が得られず、一方0.20%を越えれば巨大
なAl−Ti系金属間化合物が晶出して成形性を阻害するため、Tiを添加する場合のT
i量は0.001〜0.20%の範囲内とした。またTiとともに微量のBを添加すれば
鋳塊結晶粒微細化の効果が向上することが知られており、そこでこの発明の場合もTiと
ともに微量のBを添加することは許容される。このようにTiと併せてBを添加する場合
、B量が0.0001%未満ではその効果がなく、0.05%を越えればTi−B系の粗
大粒子が混入して成形性を害することから、TiとともにBを添加する場合のB量は0.
0001〜0.05%の範囲内とすることが望ましい。
Ti:
In a normal aluminum alloy, a small amount of Ti is added for refining ingot crystal grains. In this invention, a small amount of Ti may be added as necessary.
However, when the amount of Ti is less than 0.001%, the effect cannot be obtained. On the other hand, when it exceeds 0.20%, a large Al—Ti intermetallic compound crystallizes and inhibits formability. T
The amount of i was within the range of 0.001 to 0.20%. Further, it is known that the addition of a small amount of B together with Ti improves the effect of refining the ingot crystal grains. Therefore, in the present invention, addition of a small amount of B together with Ti is allowed. Thus, when adding B together with Ti, if the amount of B is less than 0.0001%, there is no effect, and if it exceeds 0.05%, Ti-B based coarse particles are mixed to impair the formability. Therefore, the amount of B when adding B together with Ti is 0.
It is desirable to be within the range of 0001 to 0.05%.

本発明では上記合金組成をもつアルミニウム鋳塊を以下の工程で製造する。 In the present invention, an aluminum ingot having the above alloy composition is produced by the following steps.

均質化処理は、アルミニウム鋳塊に含有するMn量に応じて、温度を(410+200×Mn[mass%]±19)℃として3〜12時間とする。均質化処理は、熱間圧延板の0.5〜3.5μmの大きさの第2相粒子分布を制御するのに重要な工程である。その温度をMn量によって変化させるのは、Mnは他元素に比べてAl中に固溶し難く、本発明のように0.2〜0.8%と比較的多く添加させる場合は、同一温度条件ではMn量の増加に応じて第2相粒子は大きく、且つ密に分布するようになる。そのため本発明のように、耳率を制御するためには最適な第2相粒子分布の状態を得ることが必要であり、Mn量によって均質化処理温度を変える必要がある。温度が高くなるほど、Al−Mn−Fe系の第2相粒子はAl中に固溶する方向に作用するため、Mnが多く含有されている場合は温度を高く、Mnが低く含有されている場合は温度を低く設定しなければならない。特に、本発明のように(410+200×Mn[mass%]±19)℃のように設定すれば、Mn含有量が異なってもほぼ同一の第2相粒子分布が得られ、最終板の耳率が安定して低くなる。ここで±19℃は温度制御の許容範囲であり±19℃を超えると、第2相粒子の分布が外れてしまう。同じ理由で、温度制御の許容範囲は±10℃が望ましい。   In the homogenization treatment, the temperature is set to (410 + 200 × Mn [mass%] ± 19) ° C. for 3 to 12 hours according to the amount of Mn contained in the aluminum ingot. The homogenization treatment is an important process for controlling the distribution of the second phase particles having a size of 0.5 to 3.5 μm in the hot rolled sheet. The temperature is changed depending on the amount of Mn. Mn is not easily dissolved in Al as compared with other elements, and when adding a relatively large amount of 0.2 to 0.8% as in the present invention, the same temperature is used. Under the conditions, the second phase particles become large and densely distributed as the amount of Mn increases. Therefore, as in the present invention, in order to control the ear rate, it is necessary to obtain an optimal second phase particle distribution state, and it is necessary to change the homogenization temperature depending on the amount of Mn. The higher the temperature, the more Al-Mn-Fe-based second phase particles act in the direction of solid solution in Al, so the higher the temperature when Mn is contained, the lower the Mn content. The temperature must be set low. In particular, when the temperature is set to (410 + 200 × Mn [mass%] ± 19) ° C. as in the present invention, almost the same second phase particle distribution can be obtained even if the Mn content is different, and the final plate has an ear ratio Is stable and low. Here, ± 19 ° C. is an allowable range of temperature control, and if it exceeds ± 19 ° C., the distribution of the second phase particles is deviated. For the same reason, the allowable range of temperature control is desirably ± 10 ° C.

均質化処理後、熱間粗圧延、熱間仕上圧延を行なう。熱間仕上圧延は、タンデム式の熱間圧延機を用い、総圧下率88〜94%にて圧延し、コイル状に巻上げる。その巻き上げた直後のコイル側面の温度が310℃〜340℃になるようにする。コイル温度が310℃未満であると、コイル巻き後に材料の再結晶が十分に行なわれず、材料の過剰な高強度化や長手方向の強度ばらつきが大きくなってしまう。340℃を超えるような材料温度であると、熱間仕上圧延時に温度が高くなりすぎてしまい、ピックアップインクルージョンのような表面不良を生じてしまう。 材料温度の制御は、熱間粗圧延後の材料温度維持、熱間仕上圧延の圧延速度、圧延油の油温、流量、エマルジョン状態等を調整することにより行なう。   After the homogenization treatment, hot rough rolling and hot finish rolling are performed. Hot finish rolling is performed using a tandem hot rolling mill at a total rolling reduction of 88 to 94% and wound into a coil. The temperature on the side surface of the coil immediately after the winding is set to 310 ° C to 340 ° C. When the coil temperature is less than 310 ° C., the material is not sufficiently recrystallized after winding the coil, resulting in an excessive increase in strength of the material and a variation in strength in the longitudinal direction. If the material temperature exceeds 340 ° C., the temperature becomes too high during hot finish rolling, resulting in surface defects such as pickup inclusion. The material temperature is controlled by adjusting the material temperature after hot rough rolling, the rolling speed of hot finish rolling, the oil temperature of the rolling oil, the flow rate, the emulsion state, and the like.

良好な耳率を得るには、熱間圧延時もしくは圧延直後に形成される再結晶集合組織を最適にする必要があるが、再結晶集合組織には一定サイズ以上の第2相粒子の分布が影響する。
一定サイズ以上の第2相粒子が熱間圧延板に存在しなければ、タンデム式熱間圧延機にて熱間圧延された材料は、立方体方位結晶粒が優位となり、その材料に冷間圧延を施したアルミニウム合金板の耳率は0−90°耳高となる。一定サイズ以上の第2相粒子が熱間圧延板に存在すれば、その粒子と母相との界面にて立方体方位とは異なる方位を有する結晶粒の生成及び成長が促進される。立方体方位以外の結晶粒を多く有する材料に冷間圧延を施したアルミニウム合金板の耳率は45°耳高となるが、熱間圧延板中に一定量以上に第2相粒子が存在すると、続く冷間圧延時に第2相粒子を核として転位が過剰に集積するため材料強度が過大となり、缶蓋の成形性を阻害してしまう。
In order to obtain a good ear ratio, it is necessary to optimize the recrystallization texture formed at the time of hot rolling or immediately after rolling. In the recrystallization texture, the distribution of second phase particles having a certain size or more is present. Affect.
If second-phase particles of a certain size or larger are not present in the hot-rolled plate, the material hot-rolled by the tandem hot-rolling mill has superior cubic orientation grains, and the material is cold-rolled. The ear rate of the applied aluminum alloy plate is 0-90 ° ear height. If the second phase particles having a certain size or more are present in the hot-rolled sheet, generation and growth of crystal grains having an orientation different from the cube orientation at the interface between the particles and the parent phase are promoted. The ear rate of the aluminum alloy sheet that has been cold-rolled to a material having many crystal grains other than the cubic orientation is 45 ° high, but when the second phase particles are present in a certain amount or more in the hot-rolled sheet, During the subsequent cold rolling, the dislocations accumulate excessively with the second phase particles as nuclei, resulting in an excessively high material strength and hindering the moldability of the can lid.

そのため、本発明では、上記の条件で製造して、熱間仕上げ圧延後の板の断面(圧延方向と厚さ方向を2辺とする面)における0.5〜3.5μmの大きさの第2相粒子が1mm中に5000〜20000個存在するようにする。 Therefore, in this invention, it manufactures on said conditions and the 0.5-3.5 micrometer magnitude | size in the cross section (surface which makes a rolling direction and a thickness direction 2 sides) after hot finish rolling. There are 5000 to 20000 two-phase particles in 1 mm 2 .

このような分布密度とすることによって、立方体方位とそれ以外の方位を有する結晶粒バランスの取れた材料組織とすれば、耳率及び成形性の良好な材料となる。 By setting it as such a distribution density, if it is set as the material structure of the crystal grain balance which has a cube orientation and other than that, it will become a material with a favorable ear rate and a moldability.

第2相粒子の大きさが0.5μm未満であれば、立方体方位とは異なる方位を有する結晶粒の生成サイトとはなり得ず、3.5μmを超えると生成サイトにはなり得るが、大きな第2相粒子は缶蓋成形性を阻害するので、好ましくない。またその分布密度が1mm中に5000個未満であれば、立方体方位の結晶粒が優位となり、製品の耳が0−90°耳高となり耳率が高くなるし、20000個を超えると、材料強度が過大となり成形性が悪くなる。 If the size of the second phase particles is less than 0.5 μm, it cannot be a generation site of crystal grains having an orientation different from the cubic orientation, and if it exceeds 3.5 μm, it can be a generation site. Second phase particles are not preferred because they impair can lid moldability. Further, if the distribution density is less than 5000 in 1 mm 2 , the crystal grains in the cubic orientation are dominant, the ears of the product become 0-90 ° ear height, and the ear rate is increased. The strength becomes excessive and the moldability becomes worse.

熱間仕上圧延後に、中間焼鈍を行うことなく冷間圧延を施すが、冷間圧延率が86%未満であると缶蓋として必要な強度が得られず、90%を超えると素板強度の過度な超過により、缶蓋成形時に成形性を損ねる。よって、冷間圧延率は86〜90%とする。 After hot finish rolling, cold rolling is performed without performing intermediate annealing. However, if the cold rolling rate is less than 86%, the required strength as a can lid cannot be obtained. Excessive excess impairs moldability during can lid molding. Therefore, the cold rolling rate is 86 to 90%.

上記の様な製造方法をとることにより最終的に得られた板を総絞り率48%にて円筒状深絞り容器にしたときの耳率が8%以下とする。耳率が8%を超えてしまうと、缶蓋として成形したときにカール部の高さが部分的に高い箇所が生じてしまい、缶胴部との勘合時に不具合を生じてしまう。   By using the manufacturing method as described above, the ear rate when the finally obtained plate is made into a cylindrical deep-drawn container with a total drawing rate of 48% is 8% or less. If the ear rate exceeds 8%, a portion where the curl portion is partially high is formed when it is formed as a can lid, and a problem occurs when fitting with the can body portion.

以下の実施例における特性の評価方法は以下の通り実施した。   The evaluation method of characteristics in the following examples was performed as follows.

・仕上熱間圧延板の第2相粒子分布
バフ研磨した熱間圧延板の断面(圧延方向と厚さ方向を2辺とする面)の任意の5mm範囲を光学顕微鏡にて撮影し、撮影像を画像解析装置にて2値化して、第2相粒子のサイズ及び個数密度を測定した。
・ Second phase particle distribution of finished hot rolled sheet Photographing an arbitrary 5mm 2 area of the cross section (surface with two sides in the rolling direction and thickness direction) of the buffed hot rolled sheet, and photographing The image was binarized with an image analyzer, and the size and number density of the second phase particles were measured.

・塗装焼付け後の素板耐力
冷間圧延板から圧延方向を長手方向としたJIS5号引張り試験片をオイルバスにて塗装焼付相当の処理(250℃×10秒)した後、引張り速度20mm/分で引張り試験を行い、0.2%耐力値を測定した。塗装焼付け後の耐力値が230MPa以下の場合、缶蓋としての必要強度が不足するため、不良となる。
-JIS No. 5 tensile test piece with the rolling direction as the longitudinal direction from the cold-rolled base plate after coating baking was processed in an oil bath equivalent to coating baking (250 ° C x 10 seconds), followed by a pulling speed of 20 mm / min. A tensile test was conducted to measure a 0.2% proof stress value. When the proof stress after painting and baking is 230 MPa or less, the required strength as a can lid is insufficient, resulting in a failure.

・缶蓋成形性(リベット成形性)
塗装焼付け処理を施した最終板に、多段の張り出し成形を付与し、割れの有無を目視にて確認した。500枚の板に成形を施し、1枚でも割れが認められた場合、不良(×)とした。
・ Can lid formability (rivet formability)
The final plate subjected to the paint baking process was subjected to multi-stage overmolding and visually checked for cracks. When 500 sheets were molded and even one sheet was cracked, it was judged as defective (x).

・耳率 (幅方向分布を含む)
Φ57の円形ブランクから絞り率48%の円筒容器を作成し、円筒容器の側壁高さを、円周方向にピッチ45°で合計8点測定し、下式のような計算から耳率を求めた。
耳率 =(45°の平均高さ−0、90°の平均高さ)/(全測定点の平均高さ)
円形ブランクのサンプリングは、アルミニウム合金板の幅方向から等間隔に5点を測定し、5点の平均値が8%超を不良(×)とした。
・ Ear rate (including distribution in the width direction)
A cylindrical container with a drawing ratio of 48% was prepared from a circular blank of Φ57, and the side wall height of the cylindrical container was measured at a total of 8 points at a pitch of 45 ° in the circumferential direction, and the ear ratio was obtained from the calculation of the following equation. .
Ear rate = (average height of 45 ° −0, average height of 90 °) / (average height of all measurement points)
For sampling of the circular blank, 5 points were measured at equal intervals from the width direction of the aluminum alloy plate, and an average value of 5 points was determined to be defective (x) if it exceeded 8%.

表1に示す合金組成のAl合金を常法により溶解鋳造し鋳塊を製造した。次いで添加Mn量に応じた温度にて均質化処理をした後、熱間粗圧延を施し、板厚23mmまで圧延した。その後、4段タンデム式圧延機にて熱間仕上げ圧延を実施し、各段の圧下率は約50%、板厚1.8mmとし、コイル巻上げ直後の材料温度は310〜340℃であった。その後、中間焼鈍を行うことなく冷間圧延を施し0.25mmのアルミニウム合金板を製造した。   An ingot was manufactured by melting and casting an Al alloy having an alloy composition shown in Table 1 by a conventional method. Subsequently, after homogenizing at a temperature corresponding to the amount of added Mn, hot rough rolling was performed, and the sheet was rolled to a thickness of 23 mm. Thereafter, hot finish rolling was performed with a four-stage tandem rolling mill, the reduction ratio of each stage was about 50%, the plate thickness was 1.8 mm, and the material temperature immediately after coiling was 310 to 340 ° C. Then, it cold-rolled without performing intermediate annealing and manufactured the 0.25 mm aluminum alloy plate.

Figure 2006257470
Figure 2006257470

本発明の組成範囲内にある合金は、熱延板の第2相粒子分布が請求項1を満たす範囲であり、円筒容器の耳率も請求項1の範囲を満たす。また、塗装焼付け後の耐力についても230MPa以上を確保し、缶蓋(リベット)成形性も良好となっている。   In the alloy within the composition range of the present invention, the second phase particle distribution of the hot-rolled plate satisfies the first aspect, and the ear ratio of the cylindrical container also satisfies the first aspect. Further, the yield strength after baking is ensured to be 230 MPa or more, and the can lid (rivet) moldability is also good.

比較例8、10、14はそれぞれSi,Fe,Mnが本発明の規定下限から外れているおり、熱間圧延板の第2相粒子分布が規定範囲外であり且つ耳率が悪い。比較例12、14、16はそれぞれCu,Mn,Mgが本発明の規定下限から外れているため、塗装後の耐力が十分に得られておらず、比較例7、9、11、13、15はそれぞれSi,Fe,Cu,Mn,Mgが本発明の規定上限から外れているため、缶蓋の成形性が劣っている。   In Comparative Examples 8, 10, and 14, Si, Fe, and Mn are out of the specified lower limit of the present invention, the second phase particle distribution of the hot rolled sheet is out of the specified range, and the ear rate is poor. In Comparative Examples 12, 14, and 16, Cu, Mn, and Mg are out of the specified lower limit of the present invention, so that the proof strength after coating is not sufficiently obtained. Comparative Examples 7, 9, 11, 13, and 15 Since Si, Fe, Cu, Mn, and Mg are out of the specified upper limit of the present invention, the moldability of the can lid is inferior.

上記表1の合金組成1のAl合金を常法により溶解鋳造した後、表2の条件で均質化処理、熱間圧延を実施した。その後、中間焼鈍を行うことなく冷間圧延を施しアルミニウム板を製造した。なお、合金組成1のMn量から算出される均質化処理温度は460±19℃である。   After melting and casting the Al alloy having the alloy composition 1 shown in Table 1 by a conventional method, homogenization treatment and hot rolling were performed under the conditions shown in Table 2. Then, it cold-rolled without performing intermediate annealing and manufactured the aluminum plate. The homogenization temperature calculated from the amount of Mn of alloy composition 1 is 460 ± 19 ° C.

表2に、実施例の結果を示す。 Table 2 shows the results of the examples.

Figure 2006257470
Figure 2006257470

本発明の製造条件であるA〜Dは熱延板の第2相粒子分布が本発明内にあり、耳率及び塗装焼付け後の耐力、缶蓋成形性のいずれにおいても良好な結果が得られている。   In the production conditions A to D of the present invention, the second phase particle distribution of the hot-rolled sheet is in the present invention, and good results are obtained in any of the ear rate, the proof strength after baking and the can lid moldability. ing.

一方比較例Eは、均質化処理温度が規定より低く、熱延上り温度も低く、熱延板の第2相粒子分布が多すぎ、塗装焼付け後の耐力が高く缶蓋(リベット)成形性が悪い。比較例Gは、均質化処理温度が規定より少し低いため、熱延板の第2相粒子分布が多すぎ、塗装焼付け後の耐力が高く缶蓋(リベット)成形性が悪い。また比較例F,Hは、均質化処理温度が規定より高く熱延板の第2相粒子分布が少なすぎ、耳率が悪い。比較例Iは、熱延上り温度が低いため熱延終了後に材料が再結晶化されず、塗装焼付け後の耐力が高く缶蓋(リベット)成形性が悪い。
On the other hand, in Comparative Example E, the homogenization temperature is lower than specified, the hot rolling temperature is low, the second phase particle distribution of the hot-rolled sheet is too large, the yield strength after baking is high, and the can lid (rivet) moldability bad. In Comparative Example G, the homogenization temperature is slightly lower than specified, so that the second phase particle distribution of the hot-rolled sheet is too large, the yield strength after baking is high, and the can lid (rivet) moldability is poor. In Comparative Examples F and H, the homogenization temperature is higher than specified, the distribution of the second phase particles in the hot rolled sheet is too small, and the ear rate is poor. In Comparative Example I, since the hot rolling temperature is low, the material is not recrystallized after the hot rolling is finished, the yield strength after baking is high, and the can lid (rivet) moldability is poor.

Claims (1)

必須元素として、Si:0.1〜0.3%(mass%、以下同じ)、Mn:0.2〜0.7%、Cu:0.05〜0.15%、Fe:0.1〜0.5% 、Mg:2.0〜2.5%を含有し、残部Alおよび不可避不純物よりなるアルミニウム合金鋳塊を、含有するMn量に応じて、(410+200×Mn[mass%]±19)℃で3〜12時間の均質化処理後、熱間圧延を施し、コイル状に巻き上げた直後のコイル側面温度を310〜340℃とし、板の断面(圧延方向と厚さ方向を2辺とする面)における0.5〜3.5μmの大きさの第2相粒子を1mm中に5000〜20000個存在させ、その後中間熱処理をすることなく圧延率86〜90%の冷間圧延を施すことにより、総絞り率48%にて円筒状深絞り容器にしたときの耳率が8%以下となるようにすることを特徴とする缶蓋用アルミニウム合金板の製造方法。
As essential elements, Si: 0.1 to 0.3% (mass%, the same applies hereinafter), Mn: 0.2 to 0.7%, Cu: 0.05 to 0.15%, Fe: 0.1 to 0.1% An aluminum alloy ingot containing 0.5%, Mg: 2.0 to 2.5%, and the balance Al and unavoidable impurities is (410 + 200 × Mn [mass%] ± 19 according to the amount of Mn contained. ) After the homogenization treatment at 3 ° C for 3 to 12 hours, hot rolling is performed, the coil side surface temperature immediately after being coiled is 310 to 340 ° C, and the cross section of the plate (the rolling direction and the thickness direction are two sides) 5,000 to 20000 second phase particles having a size of 0.5 to 3.5 μm are present in 1 mm 2 , and then cold rolling is performed at a rolling rate of 86 to 90% without intermediate heat treatment. By using a cylindrical deep-drawn container with a total draw ratio of 48% Method for producing an aluminum alloy sheet for can lid, wherein the ear rate is set to be 8% or less.
JP2005074292A 2005-03-16 2005-03-16 Method for manufacturing aluminum alloy sheet for can lid Pending JP2006257470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074292A JP2006257470A (en) 2005-03-16 2005-03-16 Method for manufacturing aluminum alloy sheet for can lid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074292A JP2006257470A (en) 2005-03-16 2005-03-16 Method for manufacturing aluminum alloy sheet for can lid

Publications (1)

Publication Number Publication Date
JP2006257470A true JP2006257470A (en) 2006-09-28

Family

ID=37097052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074292A Pending JP2006257470A (en) 2005-03-16 2005-03-16 Method for manufacturing aluminum alloy sheet for can lid

Country Status (1)

Country Link
JP (1) JP2006257470A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132592A (en) * 2009-12-25 2011-07-07 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for ring-pull cap and method for manufacturing the sheet
JP2013023757A (en) * 2011-07-25 2013-02-04 Sumitomo Light Metal Ind Ltd Aluminum alloy plate for negative pressure can lid, and method of manufacturing the same
CN105483474A (en) * 2015-12-21 2016-04-13 河南明泰铝业股份有限公司 High-strength aluminum alloy deep-drawing bottle cap and production method thereof
JP2016160511A (en) * 2015-03-04 2016-09-05 株式会社神戸製鋼所 Aluminum alloy sheet for negative pressure can-top
CN109972001A (en) * 2019-03-29 2019-07-05 郑州明泰实业有限公司 A kind of capacitor case 1100-O state aluminium alloy strips and its production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132592A (en) * 2009-12-25 2011-07-07 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for ring-pull cap and method for manufacturing the sheet
JP2013023757A (en) * 2011-07-25 2013-02-04 Sumitomo Light Metal Ind Ltd Aluminum alloy plate for negative pressure can lid, and method of manufacturing the same
JP2016160511A (en) * 2015-03-04 2016-09-05 株式会社神戸製鋼所 Aluminum alloy sheet for negative pressure can-top
WO2016140054A1 (en) * 2015-03-04 2016-09-09 株式会社神戸製鋼所 Aluminum alloy sheet for negative-pressure can lids
CN105483474A (en) * 2015-12-21 2016-04-13 河南明泰铝业股份有限公司 High-strength aluminum alloy deep-drawing bottle cap and production method thereof
CN109972001A (en) * 2019-03-29 2019-07-05 郑州明泰实业有限公司 A kind of capacitor case 1100-O state aluminium alloy strips and its production method

Similar Documents

Publication Publication Date Title
JP6326485B2 (en) Aluminum alloy plate for DR can body and manufacturing method thereof
WO2009123011A1 (en) Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP2005298922A (en) Aluminum alloy plate to be formed, and manufacturing method therefor
JP5432642B2 (en) Aluminum alloy plate for can end and manufacturing method thereof.
JP2006257470A (en) Method for manufacturing aluminum alloy sheet for can lid
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
WO2016140054A1 (en) Aluminum alloy sheet for negative-pressure can lids
JP2007277694A (en) Painted aluminum-alloy sheet for lid of positive pressure can, and manufacturing method therefor
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP4164437B2 (en) Method for producing aluminum alloy sheet for forming
JP2021095605A (en) Aluminum alloy foil for molding and manufacturing method thereof
JP2007131920A (en) Aluminum alloy sheet having small and stable earing rate in sheet-width direction for can lid, and manufacturing method therefor
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2004263253A (en) Aluminum alloy hard sheet for can barrel, and production method therefor
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2018123376A (en) Aluminum alloy sheet and manufacturing method therefor
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP4202894B2 (en) Mg-containing Al alloy
JP2007051307A (en) Aluminum alloy sheet for can body having excellent bottom wrinkle property, and its manufacturing method
JP2007169744A (en) Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method
JPH02267242A (en) Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture