JP2021095605A - Aluminum alloy foil for molding and manufacturing method thereof - Google Patents

Aluminum alloy foil for molding and manufacturing method thereof Download PDF

Info

Publication number
JP2021095605A
JP2021095605A JP2019227205A JP2019227205A JP2021095605A JP 2021095605 A JP2021095605 A JP 2021095605A JP 2019227205 A JP2019227205 A JP 2019227205A JP 2019227205 A JP2019227205 A JP 2019227205A JP 2021095605 A JP2021095605 A JP 2021095605A
Authority
JP
Japan
Prior art keywords
less
aluminum alloy
alloy foil
molding
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019227205A
Other languages
Japanese (ja)
Other versions
JP7454369B2 (en
Inventor
祐介 今井
Yusuke Imai
祐介 今井
貴史 鈴木
Takashi Suzuki
貴史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2019227205A priority Critical patent/JP7454369B2/en
Publication of JP2021095605A publication Critical patent/JP2021095605A/en
Application granted granted Critical
Publication of JP7454369B2 publication Critical patent/JP7454369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

To inhibit a development of an aggregate structure, to reduce an anisotropy in mechanical properties, and to prevent a crease or a crack at molding by an aluminum alloy foil having a fine and even grain structure.SOLUTION: An aluminum alloy foil for molding has a composition including 0.2-1.2 mass% Si, 0.5-1.5 mass% Fe, 0.05-0.20 mass% Cu, and the balance Al with inevitable impurities. As an aggregate structure, a Cube orientation density is 8.0 or less, a Cu orientation density is 5.0 or less, an R orientation density is 5.0 or less, and a difference of the maximum orientation density and the minimum orientation density of these aggregate structures is 4.0 or less.SELECTED DRAWING: Figure 1

Description

この発明は、成形加工に供される成形用アルミニウム合金箔およびその製造方法に関する。 The present invention relates to an aluminum alloy foil for molding used in a molding process and a method for producing the same.

主に深絞り加工で製造される食品や薬品の容器としてアルミニウム合金箔が用いられている。その場合アルミニウム箔には高い成形性に加え、深絞り加工で発生する凹凸である”耳”や、さらに機械的性質の異方性が小さいことが求められる。
例えば、特許文献1では、成分範囲を規定するとともに、結晶粒の粒径を規定し、さらに、Cube方位の面積率を規定することで成形性を高めるとしている。
また、特許文献2では、(111)面、(100)面、(110)面、および、(311)面のそれぞれを示す各回折強度の比率を規定する成形性を高めるとしている。
Aluminum alloy foil is mainly used as a container for foods and chemicals manufactured by deep drawing. In that case, the aluminum foil is required to have high moldability, "ears" which are irregularities generated by deep drawing, and anisotropy of mechanical properties.
For example, Patent Document 1 states that the moldability is improved by defining the component range, the particle size of the crystal grains, and the area ratio of the Cube orientation.
Further, Patent Document 2 states that the moldability for defining the ratio of each diffraction intensity indicating each of the (111) plane, the (100) plane, the (110) plane, and the (311) plane is enhanced.

特開2018−115376号公報Japanese Unexamined Patent Publication No. 2018-115376 特開2012−052158号公報Japanese Unexamined Patent Publication No. 2012-052158

しかし、従来のアルミニウム合金箔では成形性が充分であるとは言えず、集合組織、特にCube方位の発達に伴う0−90°耳の発達により、成形時にしわが生じたり、結晶粒径が粗大かつ不均一な為に成形時に肌荒れが生じ、成形時に割れが生じたりしてしまう問題がある。
本発明は上記事情を背景とし、集合組織の発達を抑制し、機械的性質の異方性を低減させ、微細かつ均一な結晶粒組織をもったアルミニウム合金箔によって成形時のシワや割れの防止を目的としたものである。
However, it cannot be said that the conventional aluminum alloy foil has sufficient moldability, and wrinkles occur during molding and the crystal grain size becomes coarse due to the development of the texture, especially the 0-90 ° ear accompanying the development of the Cube orientation. Moreover, since it is non-uniform, there is a problem that rough skin occurs during molding and cracks occur during molding.
Against the background of the above circumstances, the present invention suppresses the development of texture, reduces the anisotropy of mechanical properties, and prevents wrinkles and cracks during molding by using an aluminum alloy foil having a fine and uniform grain structure. The purpose is.

すなわち、本発明の成形用アルミニウム合金箔のうち、第1の形態は、Si:0.2〜1.2質量%、Fe:0.5〜1.5質量%、Cu:0.05〜0.20質量%を含有し、残部がAl及びその他の不可避不純物からなる組成を有し、集合組織としてCube方位密度8.0以下、Cu方位密度5.0以下、R方位密度5.0以下であり、且つこれら集合組織の最大方位密度と最小方位密度の差分が4.0以内であることを特徴とする。 That is, among the molding aluminum alloy foils of the present invention, the first form is Si: 0.2 to 1.2% by mass, Fe: 0.5 to 1.5% by mass, Cu: 0.05 to 0. .20% by mass, the balance is composed of Al and other unavoidable impurities, and the texture is Cube orientation density 8.0 or less, Cu orientation density 5.0 or less, R orientation density 5.0 or less. It is characterized in that the difference between the maximum azimuth density and the minimum azimuth density of these textures is within 4.0.

第2の形態の成形用アルミニウム合金箔の発明は、前記形態の発明において、さらに、前記組成に、Mn:0.0020〜0.010質量%を含有することを特徴とする。 The invention of the aluminum alloy foil for molding of the second aspect is characterized in that, in the invention of the said aspect, the composition further contains Mn: 0.0020 to 0.010% by mass.

第3の形態の成形用アルミニウム合金箔の発明は、前記形態の発明において、平均結晶粒径が25μm以下であり、且つ最大結晶粒径が40μm以下であることを特徴とする。 The invention of the aluminum alloy foil for molding of the third embodiment is characterized in that, in the invention of the above-described embodiment, the average crystal grain size is 25 μm or less and the maximum crystal grain size is 40 μm or less.

第4の形態の成形用アルミニウム合金箔の発明は、前記形態の発明において、圧延方向に対する0°、45°および90°方向の伸びにおいて、箔厚あたりの伸び率(伸び率/箔厚)の最大値と最小値の差分が0.1以下であることを特徴とする。 In the invention of the fourth aspect of the aluminum alloy foil for molding, in the invention of the above-described aspect, the elongation rate per foil thickness (elongation rate / foil thickness) at the elongation in the 0 °, 45 ° and 90 ° directions with respect to the rolling direction. The difference between the maximum value and the minimum value is 0.1 or less.

本発明の成形用アルミニウム合金箔の製造方法のうち、第1の形態は、前記各形態に記載のアルミニウム合金箔の製造方法であって、
前記形態の発明の組成を有するアルミニウム合金の鋳塊に480〜540℃で4時間以上保持する均質化処理を行い、均質化処理後に圧延仕上がり温度が230〜320℃となるように熱間圧延を行い、冷間圧延の途中で中間焼鈍を行い、熱間圧延後から中間焼鈍までの冷間圧延率を20〜80%とし、さらに中間焼鈍後から最終製品までの冷間圧延率を75〜99%とし、冷間圧延後に最終焼鈍を行うことを特徴とする。
Among the methods for producing an aluminum alloy foil for molding of the present invention, the first form is the method for producing an aluminum alloy foil according to each of the above-described forms.
An ingot of an aluminum alloy having the composition of the invention of the above-described embodiment is subjected to a homogenization treatment in which it is held at 480 to 540 ° C. for 4 hours or more, and after the homogenization treatment, hot rolling is performed so that the rolling finish temperature becomes 230 to 320 ° C. Then, intermediate annealing is performed in the middle of cold rolling, the cold rolling ratio from after hot rolling to intermediate annealing is set to 20 to 80%, and the cold rolling ratio from after intermediate annealing to the final product is 75 to 99. %, The final annealing is performed after cold rolling.

他の形態の成形用アルミニウム合金箔の製造方法の発明は、前記形態の発明において、前記最終焼鈍が、昇温速度が40℃/秒以上であり、保持が温度220〜450℃且つ100秒以下で行われることを特徴とする。 Another invention of the method for producing an aluminum alloy foil for molding is that in the invention of the above-mentioned embodiment, the final annealing has a temperature rising rate of 40 ° C./sec or more, and the holding temperature is 220 to 450 ° C. and 100 seconds or less. It is characterized by being done in.

以下に、本発明で規定する技術的事項について以下で説明する。 Hereinafter, the technical matters specified in the present invention will be described below.

Si:0.2〜1.2質量%
Siはアルミニウム箔の強度を若干向上させ、Al−Fe合金箔の集合組織発達を抑制し、耳率の低減にも有効な元素である。Si含有量が0.2%未満ではその効果に乏しく、1.2%を超えると材料強度が高くなり、またAl−Fe−Si系の粗大な金属間化合物が生成し成形性や箔圧延性の低下を招く。
なお、同様の理由により、Si含有量の下限は0.4%、上限は0.7%とするのが望ましい。
Si: 0.2 to 1.2% by mass
Si is an element that slightly improves the strength of the aluminum foil, suppresses the texture development of the Al—Fe alloy foil, and is also effective in reducing the ear ratio. If the Si content is less than 0.2%, the effect is poor, and if it exceeds 1.2%, the material strength becomes high, and an Al-Fe-Si-based coarse intermetallic compound is generated, resulting in formability and foil rollability. Causes a decrease in.
For the same reason, it is desirable that the lower limit of the Si content is 0.4% and the upper limit is 0.7%.

Fe:0.5〜1.5質量%
Feはアルミニウム箔の強度を向上させることの出来る元素である。またAl−Fe系の第二相粒子が高密度に分布する事で、結晶粒が微細化し、成形性向上と深絞り時の肌荒れの抑制に効果がある。Fe含有量が0.5%未満ではそれらの効果に乏しく、1.5%を超えるとAl−Fe系の粗大な金属間化合物が生成し成形性の低下を招くだけでなく、集合組織の発達により機械的性質の異方性や耳率が大きくなる。
なお、同様の理由により、Fe含有量の下限は0.6%、上限は1.0%とするのが望ましい。
Fe: 0.5 to 1.5% by mass
Fe is an element that can improve the strength of aluminum foil. Further, since the Al—Fe-based second phase particles are distributed at high density, the crystal grains become finer, which is effective in improving the moldability and suppressing the rough skin at the time of deep drawing. If the Fe content is less than 0.5%, these effects are poor, and if it exceeds 1.5%, coarse Al-Fe-based intermetallic compounds are formed, which not only lowers the moldability but also develops the texture. As a result, the anisotropy of mechanical properties and the ear ratio increase.
For the same reason, it is desirable that the lower limit of the Fe content is 0.6% and the upper limit is 1.0%.

Cu:0.05〜0.20質量%
Cuはアルミニウム箔の強度を大きく向上させ、また集合組織にも寄与し機械的性質の異方性と耳率に影響を及ぼす元素である。Cu含有量が0.05%未満ではCube方位密度が増加し機械的性質の異方性と耳率が大きくなる。Cu含有量が0.20%を超えると材料強度が高くなりすぎ成形性や箔圧延性が大きく低下する。
なお、同様の理由により、Cu含有量の下限は0.10%、上限は0.15%とするのが望ましい。
Cu: 0.05 to 0.20% by mass
Cu is an element that greatly improves the strength of aluminum foil, contributes to texture, and affects the anisotropy of mechanical properties and ear ratio. If the Cu content is less than 0.05%, the Cube orientation density increases, and the anisotropy of mechanical properties and the ear ratio increase. If the Cu content exceeds 0.20%, the material strength becomes too high and the moldability and foil rollability are greatly reduced.
For the same reason, it is desirable that the lower limit of the Cu content is 0.10% and the upper limit is 0.15%.

Mn:0.0020〜0.010質量%
Mnはアルミニウム箔の強度を向上させ、且つアルミニウム箔の再結晶を強く阻害する元素であるので所望により含有させる。Mn含有量が0.0020%未満では冷間圧延中に回復・再結晶を起こしやすいAl−Fe合金において強度低下のリスクが高まり、また高純度のアルミニウム地金を使用する必要がある為製造コストが増加する。一方、Mn含有量が0.010%を超えると、材料強度が高くなり成形性や圧延性が低下する。
なお、同様の理由により、Mn含有量の下限は0.0025%、上限は0.005%とするのが望ましい。
なお、Mnを積極的に含有しない場合に、0.0020%未満でMnを不可避不純物として含有するものであってもよい。
Mn: 0.0020 to 0.010% by mass
Since Mn is an element that improves the strength of the aluminum foil and strongly inhibits the recrystallization of the aluminum foil, it is contained as desired. If the Mn content is less than 0.0020%, the risk of strength reduction increases in the Al-Fe alloy, which easily recovers and recrystallizes during cold rolling, and it is necessary to use high-purity aluminum bullion, so the manufacturing cost. Will increase. On the other hand, when the Mn content exceeds 0.010%, the material strength becomes high and the moldability and rollability deteriorate.
For the same reason, it is desirable that the lower limit of the Mn content is 0.0025% and the upper limit is 0.005%.
When Mn is not positively contained, Mn may be contained as an unavoidable impurity in an amount of less than 0.0020%.

Cube方位密度8.0以下、Cu方位密度5.0以下、R方位密度5.0以下、且つこれら集合組織の最大方位密度と最小方位密度の差分が4.0以下
集合組織の発達は機械的性質の異方性を増加させ、深絞り成形時の耳率の増加と、耳の発生に起因したシワの発生の要因となる。深絞り加工時に箔の圧延方向に対する0度と90度方向に生成する耳に寄与するCube方位密度、そして主に45度方向に生成する耳に寄与するCu方位とR方位密度を規定以下に制御し、且つこれら集合組織の最大方位密度と最小方位密度の差分(最大方位密度−最小方位密度)を4.0以下とする事で、耳率を小さくすることができ、機械的性質の異方性も小さいアルミニウム合金箔を得る事ができる。
Cube orientation density 8.0 or less, Cu orientation density 5.0 or less, R orientation density 5.0 or less, and the difference between the maximum orientation density and the minimum orientation density of these textures is 4.0 or less Mechanical development is mechanical. It increases the anisotropy of the property and causes an increase in the ear ratio during deep drawing and the generation of wrinkles due to the generation of ears. Control the Cube azimuth density that contributes to the ears generated in the 0 and 90 degrees directions with respect to the rolling direction of the foil during deep drawing, and the Cu azimuth and R azimuth densities that contribute mainly to the ears generated in the 45 degree direction below the specified value. However, by setting the difference between the maximum azimuth density and the minimum azimuth density (maximum azimuth density-minimum azimuth density) of these aggregates to 4.0 or less, the ear ratio can be reduced and the mechanical properties are different. It is possible to obtain an aluminum alloy foil having a small property.

平均結晶粒径が25μm以下、且つ最大結晶粒径が40μm以下
平均結晶粒径が25μmを超えると肌荒れによる成形時の割れのリスクが高まる。
平均結晶粒径は主に化学成分と製造工程の選択により変量することができる。Feは結晶粒を微細化する作用が強く、また中間焼鈍から最終厚みに至る冷間圧延率が高い程結晶粒は微細化される。また最終焼鈍の昇温速度がある一定以上であることも結晶粒の微細化には重要であり、粗大な結晶粒の生成を防ぎ、均一微細な結晶粒組織を得ることができる。これらの最適化により平均結晶粒径25μm以下、且つ最大結晶粒径40μm以下を達成する事が出来る。ただし結晶粒径はFeの存在状態や、中間焼鈍条件の影響も受ける為、同じFe添加量且つ同じ冷間圧延率であっても変化する事がある。
If the average crystal grain size is 25 μm or less and the maximum crystal grain size is 40 μm or less and the average crystal grain size exceeds 25 μm, the risk of cracking during molding due to rough skin increases.
The average crystal grain size can be varied mainly by selecting the chemical composition and the manufacturing process. Fe has a strong effect of refining crystal grains, and the higher the cold rolling ratio from intermediate annealing to the final thickness, the finer the crystal grains. Further, it is also important for the crystal grain refinement that the temperature rising rate of the final annealing is at least a certain level, and it is possible to prevent the formation of coarse crystal grains and obtain a uniform and fine crystal grain structure. By these optimizations, an average crystal grain size of 25 μm or less and a maximum crystal grain size of 40 μm or less can be achieved. However, since the crystal grain size is also affected by the presence of Fe and the intermediate annealing conditions, it may change even if the amount of Fe added is the same and the cold rolling ratio is the same.

圧延方向に対する0°、45°および90°方向の伸びにおいて、箔厚あたりの伸び率の最大値と最小値の差分((最大伸び率/箔厚)−(最小伸び率/箔厚))が0.1以下
各方向の伸び率のバラツキが大きい場合、機械的性質の異方性が大きくなり、耳率の増加や成形時のシワ発生につながる。各方向全体において、箔厚あたりの伸び率の差分を0.1以下に制御することでこれらの問題発生を抑制出来る。
上記条件は、前記で記載したように、集合組織制御により達成することができる。
The difference between the maximum and minimum elongation rates per foil thickness ((maximum elongation rate / foil thickness)-(minimum elongation rate / foil thickness)) at elongations in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction. 0.1 or less When the variation in the elongation in each direction is large, the anisotropy of the mechanical properties becomes large, which leads to an increase in the ear ratio and wrinkles during molding. By controlling the difference in elongation rate per foil thickness to 0.1 or less in all directions, the occurrence of these problems can be suppressed.
The above conditions can be achieved by texture control, as described above.

均質化処理工程:480〜540℃で4時間以上保持する均質化処理
Feが析出しやすい温度で均質化処理を行う事で、Feの固溶量を低下させその後の製造工程におけるCube方位の発達を促す事が出来る。また1μm以上のAl−Fe系の第二相粒子の密度を増加させることで、結晶粒の微細化に繋がる。
均質化処理温度が480℃未満では、微細な第二相粒子が多く析出し、結晶粒微細化の効果に乏しい。均質化処理温度が540℃超えると固溶Fe量が多くなり、再結晶挙動が変化する事でCube方位密度が低下し、Cu方位密度、R方位密度が増加し易くなる。 上記理由により、均質化処理温度は、好ましくは500〜520℃である。保持時間については4時間以上が好ましい。Feはアルミニウムマトリックス中で非常に拡散しにくい元素であり、4時間未満では均質化の効果が十分に得られない。上限は特に設けないが経済性の観点を考慮すると20時間以下が望ましい。
Homogenization treatment step: Homogenization treatment of holding at 480 to 540 ° C. for 4 hours or more By performing the homogenization treatment at a temperature at which Fe is likely to precipitate, the solid solution amount of Fe is reduced and the Cube orientation is developed in the subsequent manufacturing process. Can be urged. Further, increasing the density of Al—Fe-based second-phase particles of 1 μm or more leads to miniaturization of crystal grains.
When the homogenization treatment temperature is less than 480 ° C., a large amount of fine second-phase particles are precipitated, and the effect of grain refinement is poor. When the homogenization treatment temperature exceeds 540 ° C., the amount of solid solution Fe increases, the recrystallization behavior changes, the Cube orientation density decreases, and the Cu orientation density and the R orientation density tend to increase. For the above reasons, the homogenization treatment temperature is preferably 500 to 520 ° C. The holding time is preferably 4 hours or more. Fe is an element that is extremely difficult to diffuse in the aluminum matrix, and the homogenizing effect cannot be sufficiently obtained in less than 4 hours. There is no particular upper limit, but 20 hours or less is desirable from the viewpoint of economy.

熱間圧延工程:圧延仕上がり温度が230〜320℃
均質化処理後の鋳塊を熱間圧延する場合、その仕上がり温度が重要となる。320℃を超えると熱間圧延後に板の一部で再結晶を生じ、最終製品における理想的な集合組織が得にくくなる。またファイバー粒と再結晶粒が混在する不均一な組織は、最終製品における結晶粒組織の不均一さにも寄与し、成形性の低下を招く恐れがある。圧延仕上がり温度が230℃未満で仕上げるには熱間圧延中の温度も極めて低温となる為、板のサイドにクラックが発生し生産性が大幅に低下する懸念がある。
Hot rolling process: Rolling finish temperature is 230-320 ° C
When hot rolling the ingot after the homogenization treatment, the finished temperature is important. If the temperature exceeds 320 ° C., recrystallization occurs in a part of the plate after hot rolling, and it becomes difficult to obtain an ideal texture in the final product. Further, the non-uniform structure in which the fiber grains and the recrystallized grains are mixed also contributes to the non-uniformity of the crystal grain structure in the final product, which may lead to a decrease in moldability. In order to finish the rolling at a finished temperature of less than 230 ° C., the temperature during hot rolling is also extremely low, so that there is a concern that cracks may occur on the side of the plate and the productivity may be significantly reduced.

冷間圧延、中間焼鈍、最終冷間圧延
一般には冷間圧延を行う事で圧延集合組織と呼ばれるCu方位やS方位が発達し、中間焼鈍で再結晶を生じる事で再結晶集合組織であるCube方位が発達する事が知られている。冷間圧延率と中間焼鈍条件の制御は理想的な集合組織を得る上で極めて重要である。熱間圧延から中間焼鈍までの冷間圧延率は、中間焼鈍後の集合組織の発達を抑制する為、20〜80%とする事が望ましい。前記冷間圧延率が80%を超えると、中間焼鈍後もCube方位が発達せず圧延集合組織が維持されてしまい、また前記冷間圧延率が20%未満では冷間圧延で導入されるひずみ量が低くなり、Cube方位の過度な発達や中間焼鈍時の再結晶粒の粗大化やサイズの不均一化を招く。
Cold rolling, intermediate annealing, final cold rolling In general, cold rolling develops Cu orientation and S orientation called rolling texture, and recrystallization occurs during intermediate annealing, which is a recrystallized texture. It is known that the orientation develops. Controlling the cold rolling ratio and intermediate annealing conditions is extremely important for obtaining an ideal texture. The cold rolling ratio from hot rolling to intermediate annealing is preferably 20 to 80% in order to suppress the development of texture after intermediate annealing. If the cold rolling ratio exceeds 80%, the Cube orientation does not develop even after intermediate annealing and the rolling texture is maintained, and if the cold rolling ratio is less than 20%, the strain introduced in cold rolling The amount becomes low, which leads to excessive development of Cube orientation, coarsening of recrystallized grains during intermediate annealing, and non-uniform size.

中間焼鈍では、工業的な中間焼鈍の方式としては、一般的に、コイルを炉に投入し一定時間保持するバッチ焼鈍(Batch Annealing、BATCH)と、連続焼鈍ライン(Continuous Annealing Line、 CAL)により材料を急加熱・急冷するCAL焼鈍との2種類の方式が知られている。
本発明では、中間焼鈍方法は特に限定しないが、Cube方位粒の成長を抑制する目的でCAL焼鈍が望ましい。バッチ焼鈍の場合は、好適には、温度300〜400℃、CAL焼鈍の場合は420〜470℃が選択できる。バッチ焼鈍において、焼鈍温度が300℃未満では再結晶が完了せず、400℃を超えると再結晶粒の粗大化やFe析出が不十分となる恐れがある。CAL焼鈍においても焼鈍温度が420℃未満では再結晶が完了せず、470℃を超えると固溶Fe量が多くなり、最終製品においてCu方位やR方位の発達が促進する恐れがある。中間焼鈍は複数回行うことも可能である。
In intermediate annealing, industrial intermediate annealing methods generally include batch annealing (Batch Annealing, BATCH) in which the coil is placed in a furnace and held for a certain period of time, and continuous annealing line (Continuous Annealing Line, CAL). There are two known methods, CAL annealing, in which the material is rapidly heated and cooled.
In the present invention, the intermediate annealing method is not particularly limited, but CAL annealing is desirable for the purpose of suppressing the growth of cube-oriented grains. In the case of batch annealing, a temperature of 300 to 400 ° C. can be preferably selected, and in the case of CAL annealing, a temperature of 420 to 470 ° C. can be selected. In batch annealing, if the annealing temperature is less than 300 ° C., recrystallization is not completed, and if it exceeds 400 ° C., the coarsening of recrystallized grains and Fe precipitation may be insufficient. Even in CAL annealing, recrystallization is not completed when the annealing temperature is less than 420 ° C., and when it exceeds 470 ° C., the amount of solid solution Fe increases, which may promote the development of Cu orientation and R orientation in the final product. Intermediate annealing can be performed multiple times.

中間焼鈍後から最終製品までの最終冷間圧延率は75〜99%とする事で、理想的な集合組織と微細な結晶粒組織を得る事が出来る。最終冷間圧延率が75%未満では再結晶粒の粗大化、及びCube方位密度の増加を招き、99%を超えるとCu方位とR方位密度が増加する。 By setting the final cold rolling ratio from the intermediate annealing to the final product to 75 to 99%, an ideal texture and a fine crystal grain structure can be obtained. If the final cold rolling ratio is less than 75%, the recrystallized grains become coarse and the Cube orientation density increases, and if it exceeds 99%, the Cu orientation and the R orientation density increase.

最終焼鈍
最終焼鈍は箔を軟化させ、成形性を向上させると共に再結晶により各結晶方位密度のバランスを取る目的で行われる。またこの最終焼鈍時の昇温速度が速いと冷間圧延によって蓄積されたひずみの回復を抑制出来る為、再結晶後の結晶粒径が均一微細となることから、最終焼鈍の条件は昇温速度が40℃/秒以上であり、保持が温度220〜450℃且つ100秒以下で行われることが必要である。昇温速度が40℃/秒未満であると、再結晶粒径の粗大化を招く。温度が220℃未満では再結晶が完了せず、450℃を超えると固溶Fe量が多くなり、強度の上昇に伴う伸びの低下によって成形性が害される。時間は100秒を超えると生産性を阻害することから制限するのが望ましい。
Final annealing Final annealing is performed for the purpose of softening the foil, improving moldability, and balancing the density of each crystal orientation by recrystallization. In addition, if the temperature rise rate during final annealing is high, recovery of strain accumulated by cold rolling can be suppressed, and the crystal grain size after recrystallization becomes uniform and fine. Therefore, the condition for final annealing is the temperature rise rate. It is necessary that the temperature is 40 ° C./sec or more, and the holding is performed at a temperature of 220 to 450 ° C. and 100 seconds or less. If the rate of temperature rise is less than 40 ° C./sec, the recrystallization particle size becomes coarse. If the temperature is less than 220 ° C., recrystallization is not completed, and if it exceeds 450 ° C., the amount of solid solution Fe increases, and the formability is impaired by the decrease in elongation as the strength increases. It is desirable to limit the time because it hinders productivity when it exceeds 100 seconds.

本発明によれば、成形時の耳率の増加やシワの発生を抑えることができ、さらに成形高さの向上や割れの防止をする。さらには成形時のトリミング量を小さくして製品の歩留まりを向上させることができる効果がある。 According to the present invention, it is possible to suppress an increase in ear ratio and occurrence of wrinkles during molding, and further improve the molding height and prevent cracking. Further, there is an effect that the yield of the product can be improved by reducing the trimming amount at the time of molding.

本発明の一実施形態における製造工程のフロー図を示す。The flow chart of the manufacturing process in one Embodiment of this invention is shown.

以下、本発明の一実施形態の成形用アルミニウム合金箔およびその製造方法について説
明する。
本実施形態の成形用アルミニウム合金箔の材料となるアルミニウム合金の鋳塊は、常法により鋳造することができ、例えば本発明の組成の成分範囲となるように成分調整し、鋳造することにより得ることができる。
Hereinafter, an aluminum alloy foil for molding according to an embodiment of the present invention and a method for producing the same will be described.
The ingot of the aluminum alloy used as the material of the aluminum alloy foil for molding of the present embodiment can be cast by a conventional method, and is obtained, for example, by adjusting the composition so as to be within the composition range of the present invention and casting. be able to.

次いで、得られたアルミニウム合金の鋳塊に対して、図1に示すように、均質化処理以降を実施する。均質化処理は、例えば480〜540℃×4時間以上の条件で行い、均質化処理後、熱間圧延を行う。
熱間圧延の条件は、例えば熱間仕上り温度として230〜320℃の間に制御して行う。
上記熱間圧延では、アルミニウム合金板の仕上がり板厚を3〜8mmにすることが好ましい。また、上記熱間圧延後、最初の中間焼鈍までの冷間圧延率が、20〜80%となるように仕上がり板厚を設定するのが望ましい。
Next, as shown in FIG. 1, the ingot of the obtained aluminum alloy is subjected to homogenization treatment and subsequent steps. The homogenization treatment is performed under the conditions of, for example, 480 to 540 ° C. × 4 hours or more, and after the homogenization treatment, hot rolling is performed.
The hot rolling conditions are controlled, for example, between 230 and 320 ° C. as the hot finish temperature.
In the hot rolling, it is preferable that the finished plate thickness of the aluminum alloy plate is 3 to 8 mm. Further, it is desirable to set the finished plate thickness so that the cold rolling ratio from the hot rolling to the first intermediate annealing is 20 to 80%.

上記熱間圧延後、熱間圧延材に対し冷間圧延を行う。
また、冷間圧延の途中には、少なくとも1回の中間焼鈍を実施する。
中間焼鈍の焼鈍炉として連続焼鈍炉やバッチ炉を使用し、焼鈍条件としては、バッチ炉の場合は昇温速度25〜50℃/時で昇温し、300〜400℃で3時間以上保持後、冷却速度20〜40℃/時で冷却を実施することが望ましく、また連続焼鈍炉の場合は、昇温速度50〜300℃/秒で昇温し、420〜470℃で1〜5秒の保持後、冷却速度20〜200℃/秒にて冷却を実施することが望ましい。
冷間圧延途中で中間焼鈍を行う場合、冷間圧延は熱間圧延仕上がり後、最初の中間焼鈍前までの冷間圧延率が20〜80%になるように行うのが望ましく、最終の中間焼鈍後、最終板厚に至るまでの最終冷間圧延率を75〜99%とする。なお、いずれの冷間圧延率も、冷間圧延前の板厚を基準にしている。
上記冷間圧延により、例えば、40〜200μm板厚の成形用アルミニウム合金箔を得る。なお、本発明としては、成形用アルミニウム合金箔の板厚が特定のものに限定されるものではない。
After the hot rolling, the hot rolled material is cold rolled.
Further, in the middle of cold rolling, at least one intermediate annealing is performed.
A continuous annealing furnace or a batch furnace is used as the annealing furnace for intermediate annealing. As for the annealing conditions, in the case of a batch furnace, the temperature is raised at a heating rate of 25 to 50 ° C./hour and held at 300 to 400 ° C. for 3 hours or more. It is desirable to carry out cooling at a cooling rate of 20 to 40 ° C./hour, and in the case of a continuous annealing furnace, the temperature is raised at a heating rate of 50 to 300 ° C./sec and at 420 to 470 ° C. for 1 to 5 seconds. After holding, it is desirable to carry out cooling at a cooling rate of 20 to 200 ° C./sec.
When intermediate annealing is performed during cold rolling, it is desirable that cold rolling be performed so that the cold rolling ratio after the hot rolling finish and before the first intermediate annealing is 20 to 80%, and the final intermediate annealing is performed. After that, the final cold rolling ratio up to the final plate thickness is set to 75 to 99%. All cold rolling ratios are based on the plate thickness before cold rolling.
By the cold rolling, for example, an aluminum alloy foil for molding having a plate thickness of 40 to 200 μm is obtained. In the present invention, the thickness of the aluminum alloy foil for molding is not limited to a specific one.

冷間圧延終了後には、最終焼鈍を行うのが望ましい。最終焼鈍の条件は、例えば昇温速度40℃/秒以上で、保持を220〜450℃×100秒以下で行なうことが望ましい。また保持終了後の冷却については特に限定されないが、冷却速度を30〜300℃/秒などの条件で行うことができる。最終焼鈍で速い昇温速度を得る為には従来のバッチ焼鈍では困難であり、例えばアルミニウム合金箔へのIR照射や過熱蒸気の噴射、高温のヒートロールにアルミニウム合金箔を接触させる方法などがある。本特許では加熱方式として過熱蒸気、ヒートロール及びIRを用いて供試材を作製し、種々の特性を評価した。
以上では、成形用アルミニウム合金箔の製造方法について説明したが、本発明としては成形用アルミニウム合金箔の製造方法が上記工程に限定されるものではない。
It is desirable to perform final annealing after the completion of cold rolling. It is desirable that the final annealing conditions are, for example, a heating rate of 40 ° C./sec or more and holding at 220 to 450 ° C. × 100 seconds or less. The cooling after the end of holding is not particularly limited, but the cooling rate can be set to 30 to 300 ° C./sec or the like. It is difficult to obtain a high temperature rise rate in the final annealing by conventional batch annealing. For example, there are methods such as IR irradiation on an aluminum alloy foil, injection of superheated steam, and a method of bringing the aluminum alloy foil into contact with a high temperature heat roll. .. In this patent, test materials were prepared using superheated steam, heat rolls and IR as the heating method, and various characteristics were evaluated.
Although the method for producing the aluminum alloy foil for molding has been described above, the method for producing the aluminum alloy foil for molding is not limited to the above steps in the present invention.

本発明の成形用アルミニウム合金箔は、その化学成分と集合組織の最適化により機械的性質の異方性が極めて小さいアルミニウム合金箔を得ることができる。
上記成形用アルミニウム合金箔は、深絞りや張出しなどの成形に供することができ、耳やシワの発生を抑えた成形を行うことができる。
例えば食品等の包装や電池の外装に用いることができる。この場合はアルミニウム箔の表面に樹脂を貼り合せ複合材でも使用される事がある。
The aluminum alloy foil for molding of the present invention can obtain an aluminum alloy foil having extremely small anisotropy of mechanical properties by optimizing its chemical composition and texture.
The aluminum alloy foil for molding can be used for molding such as deep drawing and overhanging, and molding can be performed while suppressing the occurrence of ears and wrinkles.
For example, it can be used for packaging foods and the exterior of batteries. In this case, a resin may be laminated on the surface of the aluminum foil and used as a composite material.

次に、本発明について、比較例と比較しつつ実施例を説明する。
表1に示す組成(残部がAlと不可避不純物)の合金を溶製し、表1に示す条件で、均質化処理、熱間圧延、冷間圧延、中間焼鈍、最終焼鈍を行い供試材を得た。
Next, Examples of the present invention will be described while comparing with Comparative Examples.
An alloy having the composition shown in Table 1 (the balance is Al and unavoidable impurities) is melted, and under the conditions shown in Table 1, homogenization treatment, hot rolling, cold rolling, intermediate annealing, and final annealing are performed to prepare the test material. Obtained.

Figure 2021095605
Figure 2021095605

得られた供試材について、以下の項目についてそれぞれ評価を行い、評価結果を表2に示した。 The obtained test materials were evaluated for each of the following items, and the evaluation results are shown in Table 2.

結晶方位密度
Cube方位は{001}<100>、Cu方位は{112}<111>、R方位は{123}<634>を代表方位とした。それぞれの方位密度はX線回折法において、{111}、{200}、{220}の不完全極点図を測定し、その結果を用いて3次元方位分布関数(ODF;Orientation Distribution Function)を計算し、各結晶方位密度の評価を行った。
また得られたCube方位、Cu方位、R方位の方位密度の内、最大のものと最小のものの差分を計算し、評価を実施した。
Crystal orientation density The Cube orientation was {001} <100>, the Cu orientation was {112} <111>, and the R orientation was {123} <634>. For each azimuth density, the incomplete pole map of {111}, {200}, and {220} is measured by the X-ray diffractometry, and the result is used to calculate the three-dimensional azimuth distribution function (ODF). Then, each crystal orientation density was evaluated.
Further, among the obtained directional densities of the Cube azimuth, Cu azimuth, and R azimuth, the difference between the maximum and the minimum was calculated and evaluated.

平均結晶粒径と最大結晶粒径
最終焼鈍後のアルミニウム箔の供試材表面を20容量%過塩素酸+80容量%エタノール混合溶液を用い、電圧20Vで電解研磨を行った後、バーカー氏液中にて電圧30Vの条件で陽極酸化処理した。処理後の供試材について、光学顕微鏡にて300μm×300μmの範囲の結晶粒を観察した。撮影した写真から切断法により平均結晶粒径を算出した。また切断法計測時の最大の結晶組織の粒径を最大結晶粒径とした。
Average crystal grain size and maximum crystal grain size The surface of the sample material of the aluminum foil after final annealing was electrolytically polished at a voltage of 20 V using a mixed solution of 20% by volume perchloric acid + 80% by volume ethanol, and then in Mr. Barker's solution. The anodization treatment was carried out under the condition of a voltage of 30 V. For the test material after the treatment, crystal grains in the range of 300 μm × 300 μm were observed with an optical microscope. The average crystal grain size was calculated from the photograph taken by the cutting method. The maximum crystal grain size at the time of measurement by the cutting method was defined as the maximum crystal grain size.

伸び率
伸び率は引張試験にて測定した。圧延方向に対し0°、45°、90°の各方向のJIS5号試験片を採取し、万能引張試験機(島津製作所社製 AGS−X 10kN)で引張り速度5mm/min.にて試験を行った。得られた伸び率を用い、(伸び率(%)/箔厚(μm))の計算によって箔厚あたりの伸び率を求めた。箔厚あたりの伸び率が0.1以下であれば異方性が小さく、成形性に問題はないが、それ以上の場合は異方性によって成形性が害される為、不可判定とした。
Elongation rate Elongation rate was measured by a tensile test. JIS No. 5 test pieces in each direction of 0 °, 45 °, and 90 ° with respect to the rolling direction were sampled, and a tensile speed of 5 mm / min was used with a universal tensile tester (AGS-X 10 kN manufactured by Shimadzu Corporation). The test was conducted at. Using the obtained elongation rate, the elongation rate per foil thickness was obtained by calculating (elongation rate (%) / foil thickness (μm)). If the elongation rate per foil thickness is 0.1 or less, the anisotropy is small and there is no problem in moldability, but if it is more than 0.1, the moldability is impaired by the anisotropy, so it was judged as undecidable.

成形性の評価
絞り比1.75にて深絞りを行い、耳率の測定と成形カップのフランジ部にシワが生じているか否かについて評価を実施した。なおシワの判定については実体顕微鏡を用い、5mm幅のフランジ部に生じているシワを観察し、シワの長さが2mm未満であれば問題ないとし、2mm以上の場合は不可判定とした。
また耳率の測定は成形カップ全周の凹凸形状測定を行った後下記の式にて耳率を算出した。
耳率={山の平均高さ−谷の平均高さ}/{(山の平均高さ+谷の平均高さ)/2}×100(%)
耳率3%以上の場合はフランジの形状に耳が顕著となる為不可判定とした。
Evaluation of moldability Deep drawing was performed at a drawing ratio of 1.75, and the ear ratio was measured and whether or not wrinkles were formed on the flange of the molding cup was evaluated. Regarding the determination of wrinkles, a stereomicroscope was used to observe the wrinkles generated on the flange portion having a width of 5 mm, and if the length of the wrinkles was less than 2 mm, there was no problem, and if it was 2 mm or more, it was judged to be impossible.
In addition, the ear ratio was measured by the following formula after measuring the uneven shape of the entire circumference of the molded cup.
Ear rate = {average height of mountains-average height of valleys} / {(average height of mountains + average height of valleys) / 2} x 100 (%)
When the ear ratio was 3% or more, the ears became prominent in the shape of the flange, so it was judged as undecidable.

Figure 2021095605
Figure 2021095605

以上本発明について、上記実施形態および実施例に基づいて説明を行ったが、本発明の
技術的範囲は上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限り
は、上記実施形態に対する適宜の変更が可能である。
Although the present invention has been described above based on the above-described embodiments and examples, the technical scope of the present invention is not limited to the contents of the above-mentioned description, and is described above as long as it does not deviate from the scope of the present invention. Appropriate changes to the embodiments are possible.

Claims (6)

Si:0.2〜1.2質量%、Fe:0.5〜1.5質量%、Cu:0.05〜0.20質量%を含有し、残部がAl及びその他の不可避不純物からなる組成を有し、集合組織としてCube方位密度8.0以下、Cu方位密度5.0以下、R方位密度5.0以下であり、且つこれら集合組織の最大方位密度と最小方位密度の差分が4.0以下であることを特徴とする成形用アルミニウム合金箔。 Composition containing Si: 0.2 to 1.2% by mass, Fe: 0.5 to 1.5% by mass, Cu: 0.05 to 0.20% by mass, and the balance consisting of Al and other unavoidable impurities. Cube orientation density is 8.0 or less, Cu orientation density is 5.0 or less, R orientation density is 5.0 or less, and the difference between the maximum orientation density and the minimum orientation density of these textures is 4. An aluminum alloy foil for molding, which is characterized by being 0 or less. さらに、前記組成に、Mn:0.0020〜0.010質量%を含有することを特徴とする請求項1に記載の成形用アルミニウム合金箔。 The aluminum alloy foil for molding according to claim 1, further comprising Mn: 0.0020 to 0.010% by mass in the composition. 平均結晶粒径が25μm以下であり、且つ最大結晶粒径が40μm以下であることを特徴とする請求項1または2に記載の成形用アルミニウム合金箔。 The aluminum alloy foil for molding according to claim 1 or 2, wherein the average crystal grain size is 25 μm or less and the maximum crystal grain size is 40 μm or less. 圧延方向に対する0°、45°および90°方向の伸びにおいて、箔厚あたりの伸び率(伸び率/箔厚)の最大値と最小値の差分が0.1以下であることを特徴とする請求項1〜3のいずれかに記載の成形用アルミニウム合金箔。 A claim characterized in that the difference between the maximum value and the minimum value of the elongation rate (elongation rate / foil thickness) per foil thickness is 0.1 or less in the elongations in the 0 °, 45 ° and 90 ° directions with respect to the rolling direction. Item 3. The aluminum alloy foil for molding according to any one of Items 1 to 3. 請求項1〜3のいずれか1項に記載のアルミニウム合金箔の製造方法であって、
請求項1または2に記載の組成を有するアルミニウム合金の鋳塊に480〜540℃で4時間以上保持する均質化処理を行い、均質化処理後に圧延仕上がり温度が230〜320℃となるように熱間圧延を行い、冷間圧延の途中で中間焼鈍を行い、熱間圧延後から中間焼鈍までの冷間圧延率を20〜80%とし、さらに中間焼鈍後から最終製品までの冷間圧延率を75〜99%とし、冷間圧延後に最終焼鈍を行うことを特徴とする成形用アルミニウム合金箔の製造方法。
The method for producing an aluminum alloy foil according to any one of claims 1 to 3.
An ingot of an aluminum alloy having the composition according to claim 1 or 2 is subjected to a homogenization treatment in which the ingot is held at 480 to 540 ° C. for 4 hours or more, and after the homogenization treatment, heat is applied so that the rolling finish temperature becomes 230 to 320 ° C. Inter-rolling is performed, intermediate annealing is performed during cold rolling, the cold rolling ratio from after hot rolling to intermediate annealing is set to 20 to 80%, and the cold rolling ratio from after intermediate annealing to the final product is set. A method for producing an aluminum alloy foil for molding, which comprises 75 to 99% and is subjected to final annealing after cold rolling.
前記最終焼鈍が、昇温速度が40℃/秒以上であり、保持が温度220〜450℃且つ100秒以下で行われることを特徴とする請求項5記載の成形用アルミニウム合金箔の製造方法。 The method for producing an aluminum alloy foil for molding according to claim 5, wherein the final annealing is performed at a temperature rising rate of 40 ° C./sec or more, holding at a temperature of 220 to 450 ° C. and 100 seconds or less.
JP2019227205A 2019-12-17 2019-12-17 Aluminum alloy foil for forming and its manufacturing method Active JP7454369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019227205A JP7454369B2 (en) 2019-12-17 2019-12-17 Aluminum alloy foil for forming and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019227205A JP7454369B2 (en) 2019-12-17 2019-12-17 Aluminum alloy foil for forming and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021095605A true JP2021095605A (en) 2021-06-24
JP7454369B2 JP7454369B2 (en) 2024-03-22

Family

ID=76430771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019227205A Active JP7454369B2 (en) 2019-12-17 2019-12-17 Aluminum alloy foil for forming and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7454369B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047475A (en) * 2020-09-11 2022-03-24 中▲ロ▼材料応用研究院有限公司 Aluminum foil, method for producing the same and use thereof
CN114921694A (en) * 2022-06-22 2022-08-19 江苏鼎胜新能源材料股份有限公司 Low-strength high-elongation aluminum foil for milk powder cover and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223075A (en) * 2007-03-12 2008-09-25 Kobe Steel Ltd Hot rolling omission type aluminum alloy sheet and its manufacturing method
WO2012086448A1 (en) * 2010-12-20 2012-06-28 古河スカイ株式会社 Aluminum alloy foil for electrode current collectors and manufacturing method thereof
CN103088238A (en) * 2011-10-28 2013-05-08 湖南省邵东县新仁铝业有限责任公司 Aluminum alloy foil and processing technology thereof
JP2016141865A (en) * 2015-02-04 2016-08-08 三菱アルミニウム株式会社 Aluminum alloy foil, collector for battery electrode and production method of aluminum alloy foil
JP2017186630A (en) * 2016-04-07 2017-10-12 三菱アルミニウム株式会社 Aluminum alloy foil for battery power collection body and manufacturing method therefor
JP2019014940A (en) * 2017-07-06 2019-01-31 三菱アルミニウム株式会社 Aluminum alloy foil and manufacturing method of aluminum alloy foil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265895B2 (en) 2019-03-12 2023-04-27 Maアルミニウム株式会社 aluminum alloy foil for forming

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223075A (en) * 2007-03-12 2008-09-25 Kobe Steel Ltd Hot rolling omission type aluminum alloy sheet and its manufacturing method
WO2012086448A1 (en) * 2010-12-20 2012-06-28 古河スカイ株式会社 Aluminum alloy foil for electrode current collectors and manufacturing method thereof
CN103088238A (en) * 2011-10-28 2013-05-08 湖南省邵东县新仁铝业有限责任公司 Aluminum alloy foil and processing technology thereof
JP2016141865A (en) * 2015-02-04 2016-08-08 三菱アルミニウム株式会社 Aluminum alloy foil, collector for battery electrode and production method of aluminum alloy foil
JP2017186630A (en) * 2016-04-07 2017-10-12 三菱アルミニウム株式会社 Aluminum alloy foil for battery power collection body and manufacturing method therefor
JP2019014940A (en) * 2017-07-06 2019-01-31 三菱アルミニウム株式会社 Aluminum alloy foil and manufacturing method of aluminum alloy foil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047475A (en) * 2020-09-11 2022-03-24 中▲ロ▼材料応用研究院有限公司 Aluminum foil, method for producing the same and use thereof
JP7280304B2 (en) 2020-09-11 2023-05-23 中▲ロ▼材料応用研究院有限公司 Aluminum foil, production method and use thereof
CN114921694A (en) * 2022-06-22 2022-08-19 江苏鼎胜新能源材料股份有限公司 Low-strength high-elongation aluminum foil for milk powder cover and preparation method and application thereof

Also Published As

Publication number Publication date
JP7454369B2 (en) 2024-03-22

Similar Documents

Publication Publication Date Title
JP6936293B2 (en) Aluminum alloy foil
JP6754025B1 (en) Manufacturing method of aluminum alloy foil and aluminum alloy foil
JP6461249B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
JP5113318B2 (en) Aluminum alloy plate for forming and method for producing the same
JP6461248B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
JP6326485B2 (en) Aluminum alloy plate for DR can body and manufacturing method thereof
JP6433380B2 (en) Aluminum alloy rolled material
JP7376749B2 (en) aluminum alloy foil
JP2008223075A (en) Hot rolling omission type aluminum alloy sheet and its manufacturing method
JP2021095605A (en) Aluminum alloy foil for molding and manufacturing method thereof
JP6355098B2 (en) High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same
JP7265895B2 (en) aluminum alloy foil for forming
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JP7414453B2 (en) Aluminum alloy material and its manufacturing method
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2006257470A (en) Method for manufacturing aluminum alloy sheet for can lid
JP2006037148A (en) Aluminum alloy hard sheet for can barrel and its production method
WO2022138620A1 (en) Aluminum alloy foil
JP2005139530A (en) Method of producing aluminum alloy sheet for forming
JP2022103056A (en) Aluminum alloy foil
JPWO2016056240A1 (en) Aluminum alloy plate for superplastic forming and manufacturing method thereof
JP2019044271A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP4200071B2 (en) Aluminum alloy sheet for forming
KR20220079494A (en) aluminum alloy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240311

R150 Certificate of patent or registration of utility model

Ref document number: 7454369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150