JP2006250739A - 異物欠陥検査方法及びその装置 - Google Patents

異物欠陥検査方法及びその装置 Download PDF

Info

Publication number
JP2006250739A
JP2006250739A JP2005068340A JP2005068340A JP2006250739A JP 2006250739 A JP2006250739 A JP 2006250739A JP 2005068340 A JP2005068340 A JP 2005068340A JP 2005068340 A JP2005068340 A JP 2005068340A JP 2006250739 A JP2006250739 A JP 2006250739A
Authority
JP
Japan
Prior art keywords
optical system
illumination
defect inspection
sample surface
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005068340A
Other languages
English (en)
Other versions
JP4713185B2 (ja
Inventor
Yukio Uto
幸雄 宇都
Hiroyuki Nakano
博之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005068340A priority Critical patent/JP4713185B2/ja
Priority to US11/325,548 priority patent/US7453561B2/en
Publication of JP2006250739A publication Critical patent/JP2006250739A/ja
Priority to US12/273,174 priority patent/US7724360B2/en
Application granted granted Critical
Publication of JP4713185B2 publication Critical patent/JP4713185B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】
半導体デバイス等の基板上に回路パターンを形成するデバイス製造工程において、製造工程中に発生する微小な異物やパターン欠陥を、高速に高感度で安定して検査できる装置および方法を提供すること。
【解決手段】
表面に透明膜が形成された被検査対象物に対し、複数の照明方向と照明角度を有する照明手段から最適な照明条件を決定して照明し、前記被検査対象物表面に形成されたパターンからのノイズを排除して検出することにより、前記被検査対象物表面および透明膜表面の異物または欠陥の反射散乱光を有効に検出するとともに、検査装置に備えた検出光学系の結像性能確認手段により該検出光学系の結像性能を評価、修正して検出光学系を最良の状態にする。
【選択図】 図1

Description

本発明は、半導体チップや液晶製品を製造する際の薄膜基板、半導体基板やフォトマスク等に存在する異物や回路パターンに生じる欠陥を検出し、前記検出された異物または欠陥を分析して対策を施すデバイス製造工程における異物または欠陥の発生状況を検査する方法及びその装置に関する。
半導体製造工程では、半導体基板(ウェハ)上に異物が存在すると配線の絶縁不良や短絡などの不良原因になる。さらに半導体素子の微細化に伴い、より微細な異物がキャパシタの絶縁不良やゲート酸化膜などの破壊の原因にもなる。これらの異物は、搬送装置の可動部から発生するものや、人体から発生するもの、プロセスガスにより処理装置内で反応生成されたもの、薬品や材料に混入していたものなど種々の原因により種々の状態で混入される。
同様に液晶表示素子の製造工程においても、上記異物によりパターン欠陥が生じると、表示素子として使えないものになってしまう。また、プリント基板の製造工程においても同様の状況であって、異物の混入はパターンの短絡、不良接続の原因となる。このような背景の下、半導体製造においては、各製造ライン毎に異物検査装置を場合によっては複数配置し、上記異物の早期発見による製造プロセスへのフィードバックにより半導体製造の歩留まり向上を図っている。
従来のこの種の半導体基板上の異物を検出する技術の1つとして、特開昭62−89336号公報(従来技術1)に記載されているように、半導体基板上にレーザを照射して半導体基板上に異物が付着している場合に発生する異物からの散乱光を検出し、直前に検査した同一品種半導体基板の検査結果と比較することにより、パターンによる虚報を無くし、高感度かつ高信頼度な異物及び欠陥検査を可能にするものが開示されている。また、特開昭63−135848号公報(従来技術2)に開示されているように、半導体基板上にレーザ光を照射して半導体基板上に異物が付着している場合に発生する異物からの散乱光を検出し、この検出した異物をレーザフォトルミネッセンスあるいは2次X線分析(XMR)などの分析技術で分析するものが知られている。
また、上記異物を検査する技術として、ウェハにコヒーレント光を照射してウェハ上の繰り返しパターンから射出する光を空間フィルタで除去し、繰り返し性を持たない異物や欠陥を強調して検出する方法が開示されている。また、ウェハ上に形成された回路パターンに対して該回路パターンの主要な直線群に対して45度傾けた方向から照射して主要な直線群からの0次回折光を対物レンズの開口内に入射させないようにした異物検査装置が、特開平1−117024号公報(従来技術3)において知られている。この従来技術3においては、主要な直線群ではない他の直線群を空間フィルタで遮光することについても記載されている。また、異物等の欠陥検査装置およびその方法に関する従来技術としては、特開平1−250847号公報(従来技術4)、特開2000−105203号公報(従来技術5)が知られている。特に、従来技術5には、検出光学系を切り換えて検出画素サイズを変えることが記載されている。また、異物のサイズ測定技術としては、特開2001−60607号公報(従来技術6)に開示されている。
特開昭62−89336号公報 特開昭63−135848号公報 特開平1−117024号公報 特開平1−250847号公報 特開2000−105203号公報 特開2001−60607号公報
しかしながら、上記従来技術1〜5では、繰り返しパターンや非繰り返しパターンが混在する基板上の微細な異物または欠陥を、高感度で、かつ高速に検出することは容易にできなかった。すなわち、上記従来技術1〜5では、例えば、メモリセル部等の繰り返しパターン部分以外では、検出感度(最小検出異物寸法)が低いという課題があった。また、上記従来技術1〜5では、パターン密度が高い領域における0.1μmレベルの微小異物または欠陥の検出感度が低いという課題があった。また、上記従来技術1〜5では、配線間を短絡する異物または欠陥の検出感度や薄膜状の異物の検出感度が低いという課題があった。また、上記従来技術6では、異物または欠陥の計測精度が低いという課題があった。また、上記従来技術6では、透明薄膜が形成されたウェハ表面上の異物の検出感度が低いという課題があった。
本発明は、上記課題を解決して、繰り返しパターンと非繰り返しパターンとが混在する被検査対象基板に対して、0.1μmレベルの微小な異物または欠陥を高速で、しかも高精度に検査できるようにした欠陥検査方法及びその装置を提供するものである。特に、半導体等の製造ラインに複数導入される同種の欠陥検査装置において、各検査装置間での欠陥検出性能差(機差)を低減し欠陥を安定検出するための欠陥検査方法及びその装置を提供するものである。
すなわち、本発明では、試料表面に照明光束を照射する照明手段と、この照明手段により照明された試料表面からの反射散乱光を対物レンズを介して集光して検出器で検出する検出手段と、この検出手段の検出器で反射散乱光を検出して得た信号を処理して試料表面の欠陥を検出する信号処理手段とを備えた欠陥検査装置において、検出手段に、試料表面からの反射散乱光を集光する集光光学系と該集光光学系の収差を補正する収差補正部とを備えて構成した。
そして、照明手段を、試料表面に高角度方向から照明光束を照射する第1の照明部と、試料表面に低角度方向から照明光束を照射する第2の照明部とを備えて構成した。
また、検出手段の集光光学系には反射光学系と屈折光学系とを備え、収差補正部は、反射光学系の反射条件または屈折光学系の屈折条件を変えることにより集光光学系の収差を補正するように構成した。
更に、検出手段の集光光学系に結像倍率可変部を更に備え、この結像倍率可変部は、対物レンズを検出器との位置を一定にした状態で集光光学系の結像倍率を変化させるように構成した。
更に、照明手段は、照明光束を一方向に長い形状に成形して試料表面に対して傾斜した方向から照射するように構成した。
更に、検出手段には、被検査対象基板と光検出器との相対距離を一定にして結像倍率を可変する構成を有していることを特徴とする。光学系前記可変倍率結像光学系は、フーリエ変換像の大きさを一定にして結像倍率を可変に構成した。
また、本発明では、欠陥検査装置を、照明光源から出射された照明光束を被検査対象基板の表面に対して高傾斜角度と低傾斜角度とで切り換えて照射できるように構成した照明光学系と、被検査対象基板からの反射散乱光を、検査対象上の異物欠陥を検出するに最適な方向に配置して異物欠陥からの散乱光を集光する対物レンズと対物レンズで集光された反射散乱光を結像させる結像光学系と結像光学系で結像された反射散乱光を受光して信号に変換する光検出器とを有する検出光学系と、照明光学系での高傾斜角度照明および低傾斜角度照明した際、検出光学系の光検出器から得られる画像信号をデジタル画像信号に変換するA/D変換部とA/D変換部で変換されたデジタル画像信号に基づいて欠陥を検出する欠陥検出処理部と検出した異物を確認するための手段を備えて構成した。
本発明によれば、欠陥を安定して検出するために欠陥検査装置内に検出光学系の収差計測手段と収差を補正する手段を備え、検出光学系の欠陥検査装置搭載時のデータと比較、補正することにより長期にわたる欠陥の安定検出の実現、同検査装置間での個体差を低減でき、LSIパターン等の基板上の回路パターンからの回折光を低減して微小な異物または欠陥や、配線間を短絡する異物または欠陥や薄膜状の異物を高速で、しかも高精度に検査をすることができる効果を奏する。
以下、本発明に係る実施の形態について図面を用いて説明する。
本発明に係る欠陥検査装置は、様々な品種や様々な製造工程におけるウェハ等の被検査基板上における異物、パターン欠陥、マイクロスクラッチ等の様々な欠陥を高感度で、かつ高速で検査し特にウェハ表面に形成された薄膜表面の欠陥を薄膜中の欠陥と分離して安定して検出できるようにするものである。
すなわち、本発明に係る欠陥検査装置は、図2(a)に示す如く、照明光学系10によって照明するスリット状ビーム201の照射角度α及び照射方向φを被検査対象に応じて変更可能にすると共に、被検査対象表面と検出器26の受光面とを結像関係となるよう検出光学系20を配置し、また検出光学系20の結像倍率を可変にして検出画素サイズを検出欠陥の大きさに合わせて設定して検査できるように構成した。
更に、本発明に係る欠陥検査装置には、例えば、異なる照射角度の照明光を照射することによって欠陥から発生する散乱光の違いを特徴量として、検出した欠陥の種類を分ける機能も備えるように構成した。
まず、本発明に係る欠陥検査装置の実施の形態について具体的に説明する。なお、以下の実施の形態では、半導体ウェハ及び半導体該ウェハ上に形成された透明膜上の小/大異物やマイクロスクラッチおよび、透明膜中の異物やパターン欠陥等の欠陥を検査する場合について説明するが、半導体ウェハに限らず、薄膜基板やフォトマスク、TFT、PDP等にも適用可能である。
図1に、本発明に係る欠陥検査装置の構成を示す。欠陥検査装置は、大きくは、照明光学系10、倍率可変検出光学系20、搬送系30、信号処理系40及び欠陥検査装置全体を制御する全体制御部50によって構成される。
搬送系30は、様々な品種や様々な製造工程から得られるウェハ等の被検査対象基板1を載置台34に載置、移動させるXYステージ31、Zステージ32、θステージ33と、これらを制御するためのコントローラ35とを備えている。
照明光学系10は、レーザ光源11、ビーム拡大光学系16、ミラー254、256、レンズ255を備え、レーザ光源11から射出された光を、ビーム拡大光学系16である大きさに拡大後、ミラー254、256、レンズ255等を介して、複数の斜め方向から被検査対象基板1上に照明する。
検出光学系20は、対物レンズ21、反射可変ユニット100、空間フィルタ22、結像レンズ23、光学フィルタ25、TDIイメージセンサ等の光検出器26から構成される。
また、検出光学系20の光路中には、波面計測光学系150が配置されている。波面計測光学系150は、ミラー151と検出器152から成り、検出光学系20の光路中への挿入、退避が可能なミラー151によって被検査対象基板1側から対物レンズ21に入射させた平行光束を検出器152で検出して光学系の結像性能をチェックする役割を持つ。
信号処理系40は、光検出器26で検出された画像信号を処理して欠陥、異物を検出する。
観察光学系60は、レンズ61と偏光ビームスプリッタ62と照明光源63及び撮像手段64を備え、照明光源63によりウェハ1の表面を照明して、ウェハ1を予め別の検査装置で検査して検出された異物の有無、形状を確認する。
全体制御部50は、検査条件などを設定し、上記照明光学系10、倍率可変検出光学系20、搬送系30および信号処理系40の全体を制御する。全体制御部50には、入出力手段51(キーボードやネットワークも含む)、表示手段52、記憶部53が設けられている。
なお、この異物検査装置には、ウェハ1の表面の像を光検出器26の受光面に結像させるように自動焦点制御系(図示せず)を備えている。
本検査装置では、複数の方向から被検査対象基板1の表面に照明可能な構成になっている。照明光学系10としては、特開2000−105203号公報に記載されているように、図2(a)に示す如く、レーザ光源11から射出された光L0を、例えば図示しない凹レンズおよび凸レンズ等から構成されるビーム拡大光学系16、レンズ14、ミラー15等で構成される。
本発明の検査装置では、図2(b)及び(c)に示す如く、スリット状ビーム201を平面的に複数の方向(図2(b)及び(c)においては4方向220、230、240、250)、及び複数の照明角度にて、試料載置台34上に載置されたウェハ(被検査対象基板)1に照射するように構成されている。
ここで、照明光をスリット状ビーム201にするのは、照明により発生する異物や欠陥からの散乱光を、光検出器26の一列に配置した受光素子で一括して検出することにより、異物検査の高速化を図るためである。
すなわち、ウェハ1上に形成されたチップ202の配列方向がXステージ31の走査方向およびYステージ32の走査方向に向くようにθステージ33を駆動して載置テーブル34上に載置されたウェハ1の向きを調整し、この向きを調整したウェハ1上にスリット状ビーム201を照射する。
このウェハ1上に照射されるスリット状ビーム201の形状は、X方向に集光してY方向に平行光となるように構成された光学系により、Xステージ31の走査方向Xに直角(ウェハ1上に照射されたスリット状ビーム201の長手方向がXステージ31の走査方向Xに直角)、Yステージ32の走査方向Yに平行(ウェハ1上に照射されたスリット状ビーム201の長手方向がYステージ32の走査方向Yに平行)、また光検出器26の画素の配列方向203(図2(c)参照)とも平行になるよう光軸が調整されているものである。これは画像信号のチップ間比較を行う際に、チップ間の位置合わせが容易に行える効果を奏する。このスリット状ビーム201は、図3に示すように光路中に例えば円筒レンズ244や円錐曲面レンズ14を設けることにより形成することができる。
ここで、方向220及び230からの照明では、ウェハのY軸方向に対して左右に角度φ回転し、かつZ軸方向に角度α傾斜した方向(図2(b)では、方向230からの照明光のミラー233で反射されて円筒レンズ234を透過してミラー235に到る光路と、ミラー235からウェハ1のスリット状ビーム201の照射領域までの光路とが重なって表示されている)からレーザ光を照射してウェハ1上にスリット状ビーム201を形成する。これを実現するための構成として、図3(a)に示すように、長手方向の曲率半径が連続的に変化するような円錐曲面レンズ14(図2(b)の円筒レンズ224、234に相当)を光路中に配し、Yステージの走査方向に対してスリット状ビーム201の長軸方向が平行になるようにしている。
また、方向250からの照明では、Yステージの走査方向と平行でスリット状ビーム201の長手方向と同じ方向からの照明になるため、図3(b)に示す円筒レンズ244によりスリット状ビーム201を形成することができる。
さらに、方向240からの照明では、Yステージの走査方向と平行でスリット状ビーム201の長手方向に直角な方向からの照明になるため、図3(b)に示した円筒レンズ244とは90度向きを変えて配置した円筒レンズ255によりスリット状ビーム201を形成することができる。
また、全体制御部50からの指令に基づいて、図2(a)に示すように、ミラー15とミラー205を機構的に切り換えることにより、照明角αを例えば被検査対象基板1上で検査対象とする異物の種類によって変えられる構成になっている。図2(c)に示すようにいかなる照明角の場合でもスリット状ビーム201は光検出器26の画素の配列方向203をカバーする照明領域を有し、上記以外の方向220及び230に対向する方向を含めいずれの方向からの照明であっても、スリット状ビーム201の照明位置がウェハ1上で一致するよう構成されるものである。
これにより、Y方向に平行光を有し、かつφ=45度付近の照明を実現することができる。特に、スリット状ビーム201をY方向に平行光にすることによって、主要な直線群がX方向およびY方向を向いた回路パターンから発する回折光が空間フィルタ22によって遮光されることになる。
なお、円錐曲面レンズ14の製造方法については、例えば特開2000−105203号公報に記載されているような方法がある。
ところで、スリット状ビーム201を複数の照明角度でウェハ1上に形成するのは、ウェハ1表面に発生している種々のタイプの異物検出に対応するためである。すなわち、被検査対象基板1上のパターン欠陥や高さの低い異物検出を対象として検出する構成になっている。
照明角度αは、高角度になると回路パターンからの反射回折光量が増加し、S/N比が低下するので経験的に求められた最適値が適用される。一例として、ウェハ表面の高さの低い異物を検出したい場合は、照明角度αは小さい角度が良く、例えばαが1度乃至10度好ましくは1度乃至5度程度になるように設定する。また、配線工程での配線間の異物やパターン欠陥を検出したい場合は、照明角度αを大きくすると良いが、パターンと異物のS/N比の関係から、40度乃至60度好ましくは45度乃至は55度程度に設定すると良い。また、検査対象の工程と、検出したい異物の種類に対応関係がある場合は、検査レシピの中にどちらの照明角度に設定するか予め決めても良い。また、前述のウェハ表面の異物やパターン欠陥を偏りなく検出するためには、照明角度として前述した角度の中間値、即ち5度乃至45度の間に設定しても良い。
更に、照明方向φに関しては、例えば配線工程の場合、ウェハ上に形成された配線パターンと照明の方向を合わせることにより、配線間の異物を検出し易くなる。また、ウェハの回路パターンが配線パターンではなく、コンタクトホールやキャパシタ等の場合は、特定の方向性がないため、チップに対し45度付近の方向から照明するのが望ましい。なお、照明角度の変更は、例えば、図2(a)に示すように、角度の異なる2個のミラー15と205とを切り換えるか、あるいは、ミラー15(又は205)の角度をX方向(紙面に垂直)を回転軸にして図示しない回転手段によって変えても良い。このとき、ミラー15はZ方向にも移動しスリット状ビーム201がウェハ上でもって検出光学系の検出光軸と一致するようにし、レンズ14もZ方向に移動してスリット状ビーム201が検出光学系の検出光軸上で最小径となるように調整される。
次に、照明方向を変更する方法について図2(b)を用いて説明する。図2(b)に示す分岐光学要素218はミラー、プリズム等で構成され、図示していない駆動手段を用いて位置をY方向に移動させることによって、レーザ光源11から出射されたレーザ光L0を透過または反射して3方向のうちの何れかの方向へ導く。分岐光学要素218を透過したレーザ光L1は、ハーフプリズム221で透過光と反射光に分岐され、例えば透過した光は、波長板236を透過した後、ミラー231,ビーム径補正光学系232、ミラー233、円錐曲面レンズ234を介して再びミラー235で反射されて、方向230よりウェハ1上にスリット状ビーム201を形成する。
一方、ハーフプリズム221での反射光についても同機能を有する光学素子、即ちビーム径補正光学系222、ミラー223、円筒レンズ224、ミラー225を介して方向220よりウェハ1上にスリット状ビーム201を照射する。なお、ビーム径補正光学系222及び232は、ウェハ1に照射されるスリット状ビーム201が同じ大きさに成るように円錐曲面レンズ14に入射するレーザ光のビーム径を調節するものである。また、ハーフプリズム221の代りにミラー260を設置すれば方向220から、また、ハーフプリズム221及びミラー260の何れも用いなければ方向230から、それぞれ一方向からの照明を行うことができる。また、ハーフプリズム221の後方に波長板226、236を挿入することによって照射するレーザ光の偏光方向をそろえることも可能である。
ところで、分岐光学要素218で反射されたレーザ光L2は、ビーム径補正光学系241を通過後、ミラー242及び243で反射し、円筒レンズ244を通過し再びミラー245で反射されて方向240よりウェハ1上にスリット状ビーム201を照射する。
一方、レーザ光L3についても、L2の光路上に配置された各光学素子と同様に、ミラー251で反射してビーム径補正光学系252を透過した後、ミラー253と254とで反射して円筒レンズ255を透過して、ミラー256で反射して方向250よりウェハ1上にスリット状ビーム201を照射する。
照明方向240及び250に関しては、例えば配線工程において、ウェハ上に形成された配線パターンがX方向又はY方向に平行となって多く形成されている場合に、照明の方向を合わせることが可能であり、配線間の異物を検出し易くなるという効果を奏する。
なお、レーザ光源11として、ここではYAG第2高調波の波長532nmの高出力レーザを用いているが、必ずしも532nmである必要はなく、紫外、遠紫外あるいは真空紫外光レーザでも良く、またArレーザや窒素レーザ、He−Cdレーザやエキシマレーザ、半導体レーザ等の光源であっても良い。
一般的にレーザ波長を短波長化することにより、検出像の解像度が向上するため、高感度な検査が可能となる。
次に、図4(a)に示す検出光学系20について説明する。検出光学系20は、ウェハ等の被検査対象基板1から反射回折された光を、対物レンズ21、反射可変ユニット100、空間フィルタ22、結像レンズ(可変倍率結像光学系)23、濃度フィルタ、偏光板などから成る光学フィルタ群420を介して、TDIイメージセンサ等の光検出器26で検出するように構成されている。光検出器26としてTDIセンサを用いた場合、複数の出力用タップを備えたTDIセンサを用いて複数の信号を並列に出力させ、信号処理系40でこの複数の信号を複数の処理回路または複数の処理ソフトを用いて並列に処理することにより、高速な欠陥の検出を行うことができる。
空間フィルタ22は、ウェハ1上の繰り返しパターンからの反射回折光によるフーリエ変換像を遮光して欠陥、異物からの散乱光を通過する機能を有し、対物レンズ21の空間周波数領域、すなわちフーリエ変換の結像位置(射出瞳に相当する)に配置されている。
なお、空間フィルタ22は、検出光学系20の光路中に、検査中はX方向に退避可能なミラー90と、投影レンズ91、TVカメラ92からなる瞳観察光学系70を用いて、例えば図5(a)に示すように、瞳観察光学系70の観察視野501においてフーリエ変換の結像位置における繰り返しパターンからの反射回折光像502(図5(a)中の白抜きの点)を撮像し、フーリエ変換の結像位置に設けた図5(b)に示すような矩形状の遮光部を有する遮光板503の間隔pを、矩形状の遮光部が反射回折光像502を遮光するように図示しない機構でメカニカルに変化させて、同図(c)に示すようにフーリエ変換の結像位置においてパターンからの反射回折光像による輝点のない像504になるように調整されるものである。これらは、TVカメラ92からの信号を信号処理系40で処理して全体制御部50の指令に基づいて実施される。なお、上記遮光板503によらず、TVカメラ92からの画像信号に基づいて、例えば液晶表示素子などを用いて透明基板上に遮光部を白黒反転させて形成したものを遮光板503と置き換えても良い。
本検査装置では、異物検査を高速に行うモードと低速で高感度な検査を行うモードを備えている。つまり、回路パターンが高い密度で製造されている被検査対象物または領域は、検出光学系の倍率を高くすることにより高分解能の画像信号が得られるので、高感度な検査が行える。また、回路パターンが低い密度で製造されている被検査対象物または領域は、倍率を下げることにより、高感度のまま高速検査を実現できるものである。これにより、検出すべき異物の大きさと、検出画素の大きさを最適化でき、異物以外からのノイズを排除し、異物からの散乱光のみを効率よく検出できるという効果を奏する。つまり、本検査装置ではウェハ1に上方に設置されている検出光学系20の倍率を簡単な構成で可変できるようになっているものである
次に、検出光学系の倍率を可変にする動作について図4(a)及び(b)を用いて説明する。
検出光学系の倍率の変更は全体制御部50からの指令に基づいて行われる。結像レンズ23は、可動レンズ401、402、403、移動機構404で構成され、倍率変更時は対物レンズ21および、空間フィルタ22の位置を光軸方向に変化させることなく、検出器26上に結像されるウェハ表面像の倍率を可変できる特徴を奏している。すなわち、倍率変更時にも被検査対象基板1と光検出器26との相対位置を変える必要がなく、倍率変更時の移動機構404を簡単な構成でもって倍率を変えることができ、さらに、フーリエ変換面の大きさも変わらないので、空間フィルタ22を変更しなくても良い利点を有する。
検出光学系20の倍率Mは、対物レンズ21の焦点距離405をf、結像レンズ23の焦点距離406をfとすると(数1)により算出できる。
M=f2/f1 (数1)
従って、倍率可変検出光学系20を倍率Mにするためには、fは固定値であるから、fが(M×f)になる位置に可動レンズを移動することになる。
次に、図4(a)の移動機構404について、図4(b)を用いて詳細に説明する。図4(b)は、図4(a)の可動レンズ401〜03と移動機構404で構成される結像レンズ23の詳細な構成であって、可動レンズ401及び402、403を特定の場所に移動して位置決めする構成を示している。可動レンズ401はレンズ保持部410に保持され、レンズ保持部410はモータ411によるボールネジ412の回転によりリニアガイド450の上を光軸方向に移動する。また、それぞれレンズ保持部420及び430に保持された可動レンズ402、403についてもモータ421、431によるボールネジ422、432の回転によりリニアガイド450上を光軸方向にそれぞれ独立して移動することが可能な構成になっている。
すなわち、各可動レンズ401、402、403を保持しているレンズ保持部410、420、430の先端に位置決めセンサの可動部415、425、435を、可動レンズ401、402、403の停止位置に位置決めセンサの検出部416、426、436をそれぞれ設け、モータ411、421、431を駆動してレンズ保持部を光軸方向に移動させ、あらかじめ所望の倍率の位置に設けられた各位置決めセンサ416、426、436によって位置決めセンサ可動部415、425、435を検出して位置決めする。なお、位置決めセンサ417、418は可動レンズ401の光軸方向の上限、下限のリミットセンサであり、可動レンズ402、403についても同様にリミットセンサ427,428及び437,438が設置されている。ここで、位置決めセンサとしては、光学的、磁気的センサ等が考えられる。
これらの動作は、全体制御部50からの指令に基づいて行われるが、例えば、被検査対象基板1上に形成された回路パターンが高密度の場合は高倍率での高感度検査モードとし、回路パターンが低密度の場合は低倍率にして高速検査を行う等、ステージ上に載置される被検査対象基板1の表面情報、製造プロセスにあわせて微小欠陥を多く検出するように倍率を設定するものである。
従って、本欠陥検査装置の検出光学系は同一のレンズ構成でもって、低倍率から高倍率をカバーしている。しかし、今後益々、検出光学系を構成しているレンズ群のレンズ構成数は増加傾向にあり、かつ高い面精度と組立精度が要求されるようになってきている。更に検査装置内の機械振動や温度変化などの環境変化にも対応する必要が出てきている。
このため、本発明では欠陥検査装置の検出光学系に検査照明光と同波長の照明光を透過させ、透過光の波面収差を検出することにより検出光学系20の結像性能をモニタすることが可能になっている。
例えば、図2(b)に示した構成において、レーザ光源11から出射してビーム拡大光学系16を通過したレーザ光L0を分岐光学要素218で反射させてレーザL3とし、ミラー254で反射後、レンズ255、ミラー256を光路から退避させてミラー306、307を介して集光レンズ308に入射させ、ウェハ1の裏面側からウェハ1の検査表面とZ方向の同位置に該集光レンズ308によるスポットを形成させる。
この検出光学系20の結像性能をモニタする結像性能モニタ光学系309の構成を図1にも示す。図2に示した構成では、ミラー306からミラー307に向かってレーザL0がY軸方向に進むように構成されているが、図1においては、便宜上、結像性能モニタ光学系309において、ミラー306からミラー307に向かうレーザがX軸方向に沿って進むように表示してある。
集光レンズ308で形成されたレーザスポットは、図1に示した検出光学系20の対物レンズ21を通過後平行光束となり、反射可変ユニット100で反射された後、該反射可変ユニット100と結像レンズ23との間に設けられ、光路からY方向に退避可能に配置されたミラー151で反射されて波面検出器152に達する。
反射可変ユニット100は、図13(a)の如く支持板102上にXY方向に配置された複数のアクチュエータ110とスペーサ106、反射ミラー105で構成され、これらは押え板103により支持板102に固定されている。アクチュエータ110は、例えば圧電素子やモータ駆動の直動装置である。コントローラ115は、干渉計解析装置350(図6参照)からの電気信号を駆動信号に変換しアクチュエータ110を駆動する。反射ミラー105とアクチュエータ110の間に設置しているスペーサ106は、例えば図13(b)に示す如く表面に複数の突起107が施されたものあるいは図13(c)に示すように扇状または同心円状に突起108が配列された弾性変形体である。アクチュエータ110は各突起に圧力が作用するように配置されており、コントローラ115からの電気信号に応じた変位量(圧力)で反射ミラー105の反射表面を微小変形させる。なお、反射ミラーを変形させる方法について述べたが、複数の反射ミラーを半導体プロセス等により作製した駆動系一体形のミラーを用いても良い。
波面検出器152は、例えば受光素子が二次元配列したCCDカメラであり、平行光束は各受光素子の受光面近傍に二次元配列した集光レンズによって受光素子上に集光する。例えば、光学系の収差によって上記平行光束の波面が乱されている場合、各素子の出力信号が変化し不連続性が発生する。全体制御部50は波面検出器152から出力される画像信号を処理して波面収差量を算出する。算出された該波面収差量は、既に記憶装置53に格納されている当該検出光学系20の製造時のレンズデータと比較される。比較結果より収差が発生していると判定された場合は、反射可変ユニット100内に設けられた反射ミラー105の反射面を、反射面の裏側に複数個設けられたアクチュエータ110により変形させて修正する。そして、再度、波面収差量を測定し、収差量が規定値内になるまでミラー105の反射面の修正・収差測定が繰り返される。反射ミラー105は例えばレンズ21の射出瞳位置に設置されている。
次に、検出光学系20のレンズ調整方法の一例について図6〜図13を用いて説明する。図6は干渉計装置360の構成概略図であり、検出光学系20の対物レンズ21及び結像レンズ23を被検査レンズとして、干渉縞を計測することによりレンズ収差を調整することができる。
すなわち、図6に示した干渉計装置360の構成において、レーザ光源300から出射したレーザ光L0は、ビーム拡大光学系305である大きさに拡大後、ハーフミラー310により透過光と反射光に分岐される。ハーフミラー310の透過光は反射可変ユニット100(またはミラー340)で反射されて平面ミラー325(または球面ミラー320)に入射する。一方、ハーフミラー310での反射光は参照ミラー330に入射する。反射可変ユニット100とミラー340及び平面ミラー325と球面ミラー320は図示しない機構によってそれぞれ光路中から退避可能な構成になっている。平面ミラー325と参照ミラー330で反射された光は入射光路に沿ってハーフミラー310まで戻る。平面ミラー325で反射した光はハーフミラー310で反射し、参照ミラー330で反射された光はハーフミラー310を透過してそれぞれ重なって検出器315に入射する。ここで参照ミラー330は微動ステージ335上に設置されており、干渉計解析装置350からの信号によりコントローラ334を介してZ方向に微動する。まお、351は入出力手段、352は表示手段、353は記憶部である。
次に、干渉計装置360を用いて検出光学系20の結像レンズ23を含む後群レンズ系19を調整する手順の一例を、図9のフローを用いて説明する。
先ず、図6において反射可変ユニット100とミラー340を切換えて光路中にミラー340を設置し、平面ミラー325と球面ミラー320を切換えて光路中に球面ミラー320を設置する。
次に、ビーム拡大光学系305を光路中から退避した状態でレーザ光源300から出射したレーザ光をハーフミラー310で分岐し、分岐したそれぞれのレーザを球面ミラー320又は参照ミラー330に入射させる。それぞれ入射したレーザは球面ミラー320又は参照ミラー330でそれぞれ反射して入射経路を逆方向にたどり、ハーフミラー310で反射または透過して合成されて検出器315に到達する。ここで、レーザ光が検出器315上で一致することを確認する(S1200)。
次に、図7に示すように、ビーム拡大光学系305を光路中に配置し鏡筒内に可動レンズ401〜403が組み込まれた被調整レンズ19を、結像位置が球面ミラー320の側になるように設置する(S1250)。このとき各可動レンズ401〜403の間隔は設計値に初期設定されている。
次に、干渉計解析装置350で波面収差の計測を行う(S1260)。収差の計測結果に基づいて調整を行い、表示部352のモニタ画面上で干渉縞の形状が図8(a)から図8(b)のようになるように被調整レンズ19を調整する(S1270)。干渉計解析装置350での収差計測を行い収差量が規定値以内か確認する(S1280)。収差量が規定値以上の場合はステップS1260〜S1280を繰り返す。
次に、干渉計装置360を用いて検出光学系20の対物レンズ21と反射可変ユニット100とを含む前群レンズ系18を調整する手順の一例を、図11のフローを用いて説明する。
まず図6示す干渉計装置360において反射可変ユニット100とミラー340を切換えて光路中にミラー340を設置し、表示部352の画面上に図8(a)に示すような干渉縞301が現れるように参照ミラー330を粗調節後、さらに微調整して図8(b)に示すような干渉縞302となるように干渉計装置360をキャリブレーションする(S1300)。
次に、反射可変ユニット100とミラー340を切換える(S1310)。反射可変ユニット100の反射ミラー105の平面度を干渉計解析装置350で測定し、波面収差量を算出する(S1320)。波面収差量に基づいて補正値を算出し、反射可変ユニットの反射ミラー105をアクチュエータ110を駆動して変形させ収差量を調整する(S1330)。
調整後、再度、表示部352のモニタ画面での縞観察と干渉計解析装置350での収差計算を行い、収差量が規定値以内か判定する(S1340)。収差量が規定値以上の場合はステップS1320〜S1340を繰り返す。
次に、図10に示すように、前群レンズ系18を設置し(S1350)、干渉計解析装置350で波面収差の計測を行う(S1360)。収差の計測結果に基づいて調整を行い、表示部352のモニタ画面上で干渉縞の形状が図8(a)から図8(b)のようになるように被調整レンズである前群レンズ系18を調整する(S1370)。干渉計解析装置350での収差計測を行い収差量が規定値以内か確認する(S1380)。収差量が規定値以上の場合はステップS1360〜S1380を繰り返す。
上記工程を経て調整が終了した前群レンズ系18は後群レンズ系19と組み合わされて検出光学系20の全体調整が行われる。以下に、図12を用いて検出光学系20の調整方法を説明する。
レーザ光源300から出射したレーザ光L0はビーム拡大光学系311で拡大され、図示しないミラーでY方向に折り曲げられた後、ミラー307でZ方向に反射され集光レンズ308に入射した後、対物レンズ21の前側焦点位置(検査対象面)にレーザスポットを形成する。レーザスポットは対物レンズ21に入射し検出光学系20の結像位置にスポット像として結像し、結像位置に設けられた検出器315に入射する。検出器315は画像信号を干渉縞解析装置350に出力する。
干渉縞解析装置350では検出器315から入力された画像信号からスポット像の収差量測定を行い、収差量が最小となるように、前群レンズ系18と後群レンズ系19の相対的な位置調整が行われる。収差量が規定値以下になるまで、収差測定とレンズ系の位置調整が繰り返し行われる。調整結果は各検出光学系20毎にデータとして記憶手段353に格納され、欠陥検査装置への搭載後の参照データとしても使用される。
以上のように調整された検出光学系20は、図14に示す如く欠陥検査装置に搭載されるが、波面計測光学系150により検出光学系20の結像性能を製造当時と同様に維持することが可能である。
なお、検出光学系20の構成要素である対物レンズ21や結像レンズ23においては、レンズの構成数が増加することが予想される。これに対する一例として、非球面レンズを適用することによりレンズの構成枚数を大幅に低減することも考えられる。これは検出光学系の軽量化、組立工数の低減に効果を奏すると考える。
一方、異物検査においてはウェハ表面に透明な膜(例えば酸化膜)が形成された多層ウェハも検査する必要がある。多層ウェハは、透明膜の上にパターンが形成される工程の繰り返しにより作られる。酸化膜の形成されたウェハ上の異物検査において、酸化膜表面の異物のみを検出するニーズが高まっている。基本的には照明角αを小さくすることでパターン回折光等下地からの反射光の影響を抑えることが可能であるが、照明角αを小さくすることにより、異物から発せられる散乱光のうち照明光の正反射側、すなわち前方散乱光が大きくなり、上方に設けられた検出光学系への散乱光入射が小さくなって異物が安定して検出されなくなる問題がある。
そこで本発明では、図14に示すような装置を用いて、異物を検出するようにしている。図14において、照明光学系10は、基本的に図2(b)に示した構成と同じであり、分岐光学要素218で光路L2の方向の光学要素を省略し、かつ、同じ部品の部品番号を一部省略して表示してある。図14に示した構成において、光源11から発射してビーム拡大光学系16でビーム径が拡大され、分岐光学要素218で光路L3の方向に反射されたレーザを、ミラー251,ビーム径補正光学系252、ミラー253、254、256、及び円筒レンズ255を介して照明方向250からウェハ1の表面に対して照明角γでもってウェハ1上にスリット状ビーム201を照射する。この照明方向250に対して交叉する方向260で、且つ、検出角度δ(ウェハ1の表面に対する傾き角度)なる方向に、結像レンズ630,検出器640からなる検出光学系を配置し、照明方向250からスリット状ビーム201で照射することによりウェハ上に形成された薄膜表面に存在する異物からの側方散乱光を検出するようにしている。検出器640の受光面と、スリット状ビーム201が照射されたウェハ表面の領域とは結像関係になっており、結像レンズ630は検出器の受光面がスリット状ビーム201の全照明範囲を臨むように結像倍率が設定されている。
検出系を結像関係にすることにより検出対象以外からの迷光の影響を防止し、並列処理が可能なため検査の高速化が図れるメリットを備えている。検査中は、ウェハ表面がZ方向で一定の位置となるように図示しない自動焦点制御系により検出器の受光面がスリット状ビーム201の全照明範囲をとらえるように制御される。ここで検出器640としては、検出器26と同様に、TDIイメージセンサ等が用いられる。また、光路中に、図1で説明した空間フィルタ22と同様に機能を有する空間フィルタを設置してパターンからの反射回折光を遮光することも可能である。なお、照明方向としては、方向220あるいは方向230(図2(b)、(c)参照)から照明しても良い。ただし、照明手段と、結像レンズ630,検出器640からなる検出光学系が干渉しないように配置し、パターン回折光等下地からの反射光の影響を抑えられる方向、角度、つまり、実験的に求められた最適な位置に照明、検出系双方が設置されることが望ましい。
次に、ウェハ1表面からの反射回折光を受光し、光電変換する光検出器26からの出力信号を処理するための信号処理系40の内容について図15を用いて説明するが、図15は1チャンネル分の信号処理系を信号処理系40の中に設けた例であり、検出器26が複数のチャンネル出力を有する場合は、信号処理系40の中に本信号処理系と同様の回路を複数チャンネル分設ける必要がある。
信号処理系40は、A/D変換器1301、A/D変換された検出画像信号f(i,j)を記憶するデータ記憶部1302、上記検出画像信号に基いて閾値算出処理をする閾値算出処理部1303、上記データ記憶部1302から得られる検出画像信号1410と閾値算出処理部1303から得られる閾値画像信号(Th(H),Th(Hm),Th(Lm),Th(L))1420とを基に画素マージ毎に異物検出処理を行うための回路を複数備えた異物検出処理部1304a〜1304n、例えば、低角度照明によって欠陥から検出して得られた散乱光量、高角度照明によって欠陥から検出して得られた散乱光量、及び欠陥の広がりを示す検出画素数等の特徴量を算出する特徴量算出回路1310、該特徴量算出回路1310から得られる各マージ毎の特徴量を基に、半導体ウェハ上の小/大異物やパターン欠陥やマイクロスクラッチ等の欠陥を分類する各種欠陥に分類する統合処理部1309、および結果表示部1311から構成される。
異物検出処理部1304a〜1304nの各々は、例えば1×1、3×3、5×5、…n×nのマージオペレータの各々に対応させて、画素マージ回路部1305a〜1305n、1306a〜1306n、異物検出処理回路1307a〜1307n、および検査領域処理部1308a〜1308nを備えて構成される。
光検出器26で得られた信号はA/D変換器1301でデジタル化され、検出画像信号f(i,j)1410をデータ記憶部1302に保存すると共に、閾値算出処理部1303に送る。閾値算出処理部1303で異物検出のための閾値画像Th(i,j)1420を算出し、各種マージオペレータ毎に、画素マージ回路1305、1306で処理された信号を基に、異物検出処理回路1307で異物を検出する。
検出された異物信号や閾値画像を検査領域処理部1308により、検出場所による処理を施す。同時に、各種マージオペレータ毎に設けられた異物検出処理部1304a〜1304nの、画素マージ回路1305a〜1305n、1306a〜1306n、異物検出処理回路1307a〜1307n、検査領域処理部1308a〜1308nから得られた信号を基に、特徴量算出回路1309で特徴量(例えば、高角度照明により得られた散乱光量、低角度照明により得られた散乱光量、欠陥の検出画素数等)を算出し、前記異物信号と前記特徴量を統合処理部1309で統合し、結果表示部1311に検査結果を表示する。
以下に詳細を述べる。まず、A/D変換器1301は光検出器26で得られたアナログ信号をデジタル信号に変換する機能を有する回路であるが、変換ビット数は8ビットから12ビット程度が望ましい。これは、ビット数が少ないと信号処理の分解能が低くなるため、微小な光を検出するのが難しくなる一方、ビット数が多いとA/D変換器が高価となり、装置価格が高くなるというデメリットがあるからである。次に、データ記憶部1302は、A/D変換されたデジタル信号を記憶しておくための回路である。
次に、信号の画素マージ回路部1305、1306について図16を用いて説明する。画素マージ回路部1305a〜1305n、1306a〜1306nは、各々異なるマージオペレータ1504で構成される。
マージオペレータ1504は、データ記憶部1302から得られる検出画像信号f(i,j)1410と、および閾値算出処理部1303から得られる検出閾値画像Th(H)、検出閾値画像Th(L)、検証閾値画像Th(Hm)、および検証閾値画像Th(Lm)からなる差分閾値画像信号1420との各々をn×n画素の範囲で結合する機能であり、例えば、n×n画素の平均値を出力する回路である。
ここで、画素マージ回路部1305a、1306aは例えば1×1画素をマージするマージオペレータで構成され、画素マージ回路部1305b、1306bは例えば3×3画素をマージするマージオペレータで構成され、画素マージ回路部1305c、1306cは例えば5×5画素をマージするマージオペレータで構成され、…画素マージ回路部1305n、1306nは例えばn×n画素をマージするマージオペレータで構成される。1×1画素をマージするマージオペレータは、入力信号1410、1420をそのまま出力する。
閾値画像信号については、上記の如く、4つの画像信号(Th(H),Th(Hm),Th(Lm),Th(L))からなるため、各画素マージ回路部1306a〜1306nにおいて4つのマージオペレータOpが必要となる。従って、各画素マージ回路部1305a〜1305nからは、検出画像信号が各種マージオペレータ1504でマージ処理してマージ処理検出画像信号431a〜431nとして出力されることになる。他方、各画素マージ回路部1306a〜1306nからは、4つの閾値画像信号(Th(H),Th(Hm),Th(Lm),Th(L))が各種マージオペレータOp1〜Opnでマージ処理してマージ処理閾値画像信号441a(441a1〜441a4)〜441n(441n1〜441n4)として出力されることになる。なお、各画素マージ回路部1306a〜1306n内のマージオペレータは同じものである。
ここで、画素をマージする効果を説明する。異物検査では、微小異物だけでなく、数μmの範囲に広がった薄膜状の大きな異物も見逃すことなく検出する必要がある。しかし、薄膜状異物からの検出画像信号は、必ずしも大きくならないため、1画素単位の検出画像信号ではSN比が低く、見逃しが生じることがある。このため、薄膜状異物の大きさに相当するn×n画素の単位で切出して畳み込み演算をすることによってSN比を向上させるようにしている。
次に、検査領域処理部1308a〜1308nについて説明する。検査領域処理部1308a〜1308nは、異物検出処理回路1307a〜1307nからチップを特定して得られる異物又は欠陥検出信号に対して、検査する必要がない領域(チップ内の領域も含む)のデータを除去する場合や、検出感度を領域(チップ内の領域も含む)毎に変える場合、また、逆に検査したい領域を選択する場合に用いる。
検査領域処理部1308a〜1308nは、例えば、被検査対象基板1上の領域のうち、検出感度が低くても良い場合には、閾値算出処理部1303の閾値算出部1411から得られる該当領域の閾値を高く設定しても良いし、異物検出処理回路1307a〜1307nから出力される異物のデータから異物の座標を基にして検査したい領域の異物のデータのみを残す方法でも良い。
ここで、検出感度が低くても良い領域というのは、例えば、被検査対象基板1において回路パターンの密度が低い領域である。検出感度を低くする利点は、検出個数を効率良く減らすことである。つまり、高感度な検査装置では、数万個の異物を検出する場合がある。この時、本当に重要なのは回路パターンが存在する領域の異物であり、この重要な異物を対策することがデバイス製造の歩留り向上への近道である。
しかしながら、被検査対象基板1上の全領域を同一感度で検査した場合、重要な異物と重要でない異物が混じるために、重要な異物を容易に抽出することができない。そこで、検査領域処理部1308a〜1308nは、チップ内のCAD情報または閾値マップ情報に基いて、回路パターンが存在しないような、歩留りにあまり影響しない領域の検出感度を低くすることにより、効率良く重要異物を抽出することができる。ただし、異物の抽出方法は、検出感度を変更する方法だけでなく、後述する異物の分類により、重要異物を抽出しても良いし、異物サイズを基に重要異物を抽出しても良い。
次に、統合処理部1309およびその検査結果表示部1311について説明する。統合処理部1309では、画素マージ回路1305、1306で並列処理された異物検出結果を統合したり、特徴量算出回路1310で算出した特徴量と異物検出結果を統合し、結果表示部1311に結果を送る機能を有する。この検査結果統合処理は、処理内容を変更し易くするためにPC等で行うのが望ましい。
まず、特徴量算出回路1310について説明する。この特徴量とは、検出された異物や欠陥の特徴を表す値であり、特徴量算出回路1310は、前記特徴量を算出する処理回路である。特徴量としては、例えば、高角度照明及び低角度照明によって得られた異物又は欠陥からの反射回折光量(散乱光量)(Dh,Dl)、検出画素数、異物検出領域の形状や慣性主軸の方向、ウェハ上の異物の検出場所、下地の回路パターン種類、異物検出時の閾値等がある。
〔顕微鏡を付けた実施の形態〕
本発明に係る欠陥検査装置に関する実施形態は図17に示すように、検査によって検出された異物は、観察光学系60によって確認可能な構成になっている。この観察光学系60は、ステージ31、32を動かすことにより、観察光学系60の顕微鏡視野の位置に、ウェハ1上の検出した異物(虚報も含む)を移動させ、この画像を観察するものである。
観察光学系60を備えている利点は、SEMなどのレビュー装置にウェハを移動させなくても、検出した異物を即座に観察できることである。検査装置での検出物を即座に観察することによって、すばやく異物の発生原因を特定することができる。また、観察光学系60のTVカメラ64の画像は、パソコンと共用のカラーモニタ上に検出した異物の画像が映し出され、検出異物の座標を中心として、部分的にレーザ照射とステージ走査による検査ができ、異物の散乱光像と異物位置をマーキングしてモニタ上に写す機能も有している。これにより、実際異物を検出したか否かの確認も可能である。なお、ステージ走査による部分画像は、異物の検出されたダイの隣接ダイの検査画像も取得できるのでその場での比較確認も可能である。
観察用光学系60としては、光源には可視光(例えば白色光)でも良いし、紫外光を光源とした顕微鏡でも良い。特に微小な異物を観察するためには、高解像度の顕微鏡、例えば、紫外光を用いた顕微鏡が望ましい。また、可視光の顕微鏡を用いると異物の色情報が得られ、異物の認識を容易に行えるという利点がある
本発明に係る欠陥検査装置の一実施の形態を示す概略構成図である。 図1に示す照明光学系の配置を説明するための図である。 照明光学系に用いられている円錐曲面レンズの機能を説明するための図である。 図1に示す検出光学系の構成及び倍率可変部分の可変動作説明図である。 図1に示す瞳観察光学系の機能を説明するための図である。 本発明に関わる干渉計装置の構成図である。 干渉計装置を用いて検出光学系の後群レンズの調整方法を説明する図である。 図7に示す調整方法の良否を説明するための図である。 図7に示す調整の手順を説明する流れ図である。 干渉計装置を用いて検出光学系の前群レンズの調整方法を説明する図である。 図10に示す調整の手順を説明する流れ図である。 検出光学系の全体調整について説明するための図である。 本発明に関わる反射可変手段の構成図である。 本発明に関わる欠陥検査装置の全体構成図である。 図1に示す信号処理系を示す構成図である。 閾値算出処理部を説明する図である。 観察光学系を付けた実施の形態の概略構成図である。
符号の説明
1…ウェハ(被検査対象基板)、10…照明光学系、11、300…レーザ光源、20…検出光学系、30…搬送系、35…ステージコントローラ、40…信号処理系、50…全体制御部、60…観察光学系、70…瞳観察光学系、100…反射可変ユニット、150…波面計測光学系、350…干渉縞解析装置、351…入力手段、352…表示手段、353…記憶手段、360…干渉計装置、420…光学フィルタ群、640…検出器、1301…A/D変換器、1302…データ記憶部、1303…閾値算出処理部、1307…異物検出処理回路、1308…検査領域処理部、1309…統合処理部、1310…特徴量算出回路(特徴量算出部)、1311…結果表示部

Claims (11)

  1. 試料表面に照明光束を照射する照明手段と、
    該照明手段により照明された前記試料表面からの反射散乱光を対物レンズを介して集光して検出器で検出する検出手段と、
    該検出手段の検出器で前記反射散乱光を検出して得た信号を処理して前記試料表面の欠陥を検出する信号処理手段とを備え、
    前記検出手段は、前記試料表面からの反射散乱光を集光する集光光学系と該集光光学系の収差を補正する収差補正部とを有することを特徴とする欠陥検査装置。
  2. 前記照明手段は、前記試料表面に高角度方向から照明光束を照射する第1の照明部と、前記試料表面に低角度方向から照明光束を照射する第2の照明部とを有することを特徴とする請求項1記載の欠陥検査装置。
  3. 前記検出手段の集光光学系は反射光学系と屈折光学系とを有し、前記収差補正部は、前記反射光学系の反射条件または前記屈折光学系の屈折条件を変えることにより前記集光光学系の収差を補正することを特徴とする請求項1記載の欠陥検査装置。
  4. 前記検出手段の集光光学系は結像倍率可変部を更に有し、該結像倍率可変部は、前記対物レンズを前記検出器との位置を一定にした状態で前記集光光学系の結像倍率を変化させることを特徴とする請求項1記載の欠陥検査装置。
  5. 前記照明手段は、前記照明光束を一方向に長い形状に成形して前記試料表面に対して傾斜した方向から照射することを特徴とする請求項1記載の欠陥検査装置。
  6. 前記検出手段の検出器は検出信号を並列に出力する時間遅延型積分センサであり、前記信号処理手段は前記時間遅延型積分センサから並列に出力された信号を並列に処理することを特徴とする請求項1記載の欠陥検査装置。
  7. 試料表面に照明光束を照射し、
    該照明された前記試料表面からの反射散乱光を集光光学系を介して集光して前記反射散乱光の像を所望の倍率で検出し、
    前記反射散乱光を検出して得た信号を処理して前記試料表面の欠陥を検出する欠陥検査方法であって、
    前記集光光学系の収差を前記所望の倍率に応じて補正して前記試料表面からの反射散乱光の像を検出することを特徴とする欠陥検査方法。
  8. 前記試料表面に照明光束を照射することを、前記試料表面に高角度方向から照明光束を照射する高角度照射と、前記試料表面に低角度方向から照明光束を照射する低角度照射とを切替えて行うことを特徴とする請求項7記載の欠陥検査方法。
  9. 前記集光光学系の収差を前記所望の倍率に応じて補正することを、前記集光光学系の反射条件または屈折条件を変えることにより行うことを特徴とする請求項7記載の欠陥検査方法。
  10. 前記照明光束を一方向に長い形状に成形して前記試料表面に対して傾斜した方向から照射することを特徴とする請求項7記載の欠陥検査方法。
  11. 前記反射散乱光の像を並列出力型の時間遅延型積分センサで検出し、該時間遅延型積分センサから並列に出力された信号を並列に処理することを特徴とする請求項7記載の欠陥検査方法。
JP2005068340A 2005-03-11 2005-03-11 異物欠陥検査方法及びその装置 Expired - Fee Related JP4713185B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005068340A JP4713185B2 (ja) 2005-03-11 2005-03-11 異物欠陥検査方法及びその装置
US11/325,548 US7453561B2 (en) 2005-03-11 2006-01-05 Method and apparatus for inspecting foreign particle defects
US12/273,174 US7724360B2 (en) 2005-03-11 2008-11-18 Method and apparatus for inspecting foreign particle defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068340A JP4713185B2 (ja) 2005-03-11 2005-03-11 異物欠陥検査方法及びその装置

Publications (2)

Publication Number Publication Date
JP2006250739A true JP2006250739A (ja) 2006-09-21
JP4713185B2 JP4713185B2 (ja) 2011-06-29

Family

ID=36970479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068340A Expired - Fee Related JP4713185B2 (ja) 2005-03-11 2005-03-11 異物欠陥検査方法及びその装置

Country Status (2)

Country Link
US (2) US7453561B2 (ja)
JP (1) JP4713185B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298623A (ja) * 2007-05-31 2008-12-11 Hitachi High-Technologies Corp 検査装置および検査方法
JP2011075406A (ja) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp 表面欠陥検査方法及びその装置
WO2012043039A1 (ja) * 2010-09-27 2012-04-05 株式会社日立ハイテクノロジーズ 欠陥検査装置及び欠陥検査方法
JP2012230048A (ja) * 2011-04-27 2012-11-22 Ihi Inspection & Instrumentation Co Ltd 撮像装置とこれを用いた内部観察方法
WO2013099468A1 (ja) * 2011-12-27 2013-07-04 株式会社 日立ハイテクノロジーズ 検査装置
JP2014178713A (ja) * 2014-06-18 2014-09-25 Casio Comput Co Ltd 撮像装置、表示方法、及びそのプログラム
KR101521837B1 (ko) * 2013-12-09 2015-05-26 주식회사 메디코어스 엑스선 데이터 획득 시스템
KR101688810B1 (ko) * 2015-09-22 2016-12-22 주식회사 메디코어스 선형 디텍터를 이용한 면상 엑스선 촬영장치
CN111133299A (zh) * 2017-08-02 2020-05-08 杰德克思股份有限公司 透明或半透明薄膜的表面异物检测仪
WO2022014579A1 (ja) * 2020-07-14 2022-01-20 国立研究開発法人情報通信研究機構 光学収差補正プログラム及び光学波面推定プログラム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8624971B2 (en) 2009-01-23 2014-01-07 Kla-Tencor Corporation TDI sensor modules with localized driving and signal processing circuitry for high speed inspection
EP2239084A1 (en) * 2009-04-07 2010-10-13 Excico France Method of and apparatus for irradiating a semiconductor material surface by laser energy
JP5216752B2 (ja) 2009-11-18 2013-06-19 株式会社日立ハイテクノロジーズ 欠陥検出方法及び欠陥検出装置並びにこれを備えた欠陥観察装置
US9939386B2 (en) * 2012-04-12 2018-04-10 KLA—Tencor Corporation Systems and methods for sample inspection and review
US9128064B2 (en) 2012-05-29 2015-09-08 Kla-Tencor Corporation Super resolution inspection system
US9448343B2 (en) * 2013-03-15 2016-09-20 Kla-Tencor Corporation Segmented mirror apparatus for imaging and method of using the same
JP6378931B2 (ja) * 2014-05-21 2018-08-22 浜松ホトニクス株式会社 顕微鏡装置及び画像取得方法
US10410337B2 (en) * 2014-12-24 2019-09-10 Datalogic Ip Tech S.R.L. System and method for identifying the presence or absence of transparent pills in blister packer machines using high resolution 3D stereo reconstruction based on color linear cameras
US9860466B2 (en) 2015-05-14 2018-01-02 Kla-Tencor Corporation Sensor with electrically controllable aperture for inspection and metrology systems
US10785394B2 (en) 2015-08-28 2020-09-22 Kla Corporation Imaging performance optimization methods for semiconductor wafer inspection
US10778925B2 (en) 2016-04-06 2020-09-15 Kla-Tencor Corporation Multiple column per channel CCD sensor architecture for inspection and metrology
US10313622B2 (en) 2016-04-06 2019-06-04 Kla-Tencor Corporation Dual-column-parallel CCD sensor and inspection systems using a sensor
CN110530793B (zh) * 2019-08-21 2022-06-28 荧飒光学科技(上海)有限公司 一体化傅里叶变换光致发光光谱仪
US11204312B2 (en) * 2020-03-13 2021-12-21 Applied Materials, Inc. In-situ full wafer metrology system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134430A (ja) * 1984-04-13 1986-02-18 テイ ア−ル ダブリユ− インコ−ポレ−テツド アクテイブミラ−波面センサ
JPS6289336A (ja) * 1985-10-16 1987-04-23 Hitachi Ltd 半導体用基板上の異物検出装置
JPS63135848A (ja) * 1986-11-28 1988-06-08 Hitachi Ltd 欠陥検査装置
JPH01117024A (ja) * 1987-10-30 1989-05-09 Hitachi Ltd 異物検出方法及び装置
JPH01250847A (ja) * 1988-02-19 1989-10-05 Kla Instr Corp 自動高速光学検査装置
JP2000105203A (ja) * 1998-07-28 2000-04-11 Hitachi Ltd 欠陥検査装置およびその方法
JP2001060607A (ja) * 1999-08-24 2001-03-06 Hitachi Ltd 異物欠陥検査装置
JP2004093252A (ja) * 2002-08-30 2004-03-25 Hitachi Ltd 欠陥検査装置および欠陥検査方法
US20040100629A1 (en) * 2002-11-27 2004-05-27 Kla-Tencor Technologies, Corporation Apparatus and methods for removing optical abberations during an optical inspection
JP2004177284A (ja) * 2002-11-27 2004-06-24 Hitachi Ltd 欠陥検査装置および欠陥検査方法
JP2004271470A (ja) * 2003-03-12 2004-09-30 Hitachi High-Technologies Corp パターン検査方法及びその装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806774A (en) * 1987-06-08 1989-02-21 Insystems, Inc. Inspection system for array of microcircuit dies having redundant circuit patterns
US5220617A (en) * 1991-09-04 1993-06-15 International Business Machines Corporation Method and apparatus for object inspection
JP2000223541A (ja) * 1999-01-27 2000-08-11 Hitachi Ltd 欠陥検査装置およびその方法
US7136159B2 (en) * 2000-09-12 2006-11-14 Kla-Tencor Technologies Corporation Excimer laser inspection system
US7525659B2 (en) * 2003-01-15 2009-04-28 Negevtech Ltd. System for detection of water defects
JP5006040B2 (ja) * 2003-09-04 2012-08-22 ケーエルエー−テンカー コーポレイション 異なる検査パラメータを使用する試験片の検査のための方法とシステム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134430A (ja) * 1984-04-13 1986-02-18 テイ ア−ル ダブリユ− インコ−ポレ−テツド アクテイブミラ−波面センサ
JPS6289336A (ja) * 1985-10-16 1987-04-23 Hitachi Ltd 半導体用基板上の異物検出装置
JPS63135848A (ja) * 1986-11-28 1988-06-08 Hitachi Ltd 欠陥検査装置
JPH01117024A (ja) * 1987-10-30 1989-05-09 Hitachi Ltd 異物検出方法及び装置
JPH01250847A (ja) * 1988-02-19 1989-10-05 Kla Instr Corp 自動高速光学検査装置
JP2000105203A (ja) * 1998-07-28 2000-04-11 Hitachi Ltd 欠陥検査装置およびその方法
JP2001060607A (ja) * 1999-08-24 2001-03-06 Hitachi Ltd 異物欠陥検査装置
JP2004093252A (ja) * 2002-08-30 2004-03-25 Hitachi Ltd 欠陥検査装置および欠陥検査方法
US20040100629A1 (en) * 2002-11-27 2004-05-27 Kla-Tencor Technologies, Corporation Apparatus and methods for removing optical abberations during an optical inspection
JP2004177284A (ja) * 2002-11-27 2004-06-24 Hitachi Ltd 欠陥検査装置および欠陥検査方法
JP2004271470A (ja) * 2003-03-12 2004-09-30 Hitachi High-Technologies Corp パターン検査方法及びその装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314930B2 (en) 2007-05-31 2012-11-20 Hitachi High-Technologies Corporation Inspection device and inspection method
US7847928B2 (en) 2007-05-31 2010-12-07 Hitachi High-Technologies Corporation Inspection device and inspection method
JP2008298623A (ja) * 2007-05-31 2008-12-11 Hitachi High-Technologies Corp 検査装置および検査方法
JP2011075406A (ja) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp 表面欠陥検査方法及びその装置
US8564767B2 (en) 2010-09-27 2013-10-22 Hitachi High-Technologies Corporation Defect inspecting apparatus and defect inspecting method
JP2012068205A (ja) * 2010-09-27 2012-04-05 Hitachi High-Technologies Corp 欠陥検査装置及び欠陥検査方法
WO2012043039A1 (ja) * 2010-09-27 2012-04-05 株式会社日立ハイテクノロジーズ 欠陥検査装置及び欠陥検査方法
JP2012230048A (ja) * 2011-04-27 2012-11-22 Ihi Inspection & Instrumentation Co Ltd 撮像装置とこれを用いた内部観察方法
WO2013099468A1 (ja) * 2011-12-27 2013-07-04 株式会社 日立ハイテクノロジーズ 検査装置
JPWO2013099468A1 (ja) * 2011-12-27 2015-04-30 株式会社日立ハイテクノロジーズ 検査装置
US9151719B2 (en) 2011-12-27 2015-10-06 Hitachi High-Technologies Corporation Inspection apparatus
KR101521837B1 (ko) * 2013-12-09 2015-05-26 주식회사 메디코어스 엑스선 데이터 획득 시스템
JP2014178713A (ja) * 2014-06-18 2014-09-25 Casio Comput Co Ltd 撮像装置、表示方法、及びそのプログラム
KR101688810B1 (ko) * 2015-09-22 2016-12-22 주식회사 메디코어스 선형 디텍터를 이용한 면상 엑스선 촬영장치
CN111133299A (zh) * 2017-08-02 2020-05-08 杰德克思股份有限公司 透明或半透明薄膜的表面异物检测仪
WO2022014579A1 (ja) * 2020-07-14 2022-01-20 国立研究開発法人情報通信研究機構 光学収差補正プログラム及び光学波面推定プログラム

Also Published As

Publication number Publication date
US7453561B2 (en) 2008-11-18
US20090079973A1 (en) 2009-03-26
JP4713185B2 (ja) 2011-06-29
US20060203231A1 (en) 2006-09-14
US7724360B2 (en) 2010-05-25

Similar Documents

Publication Publication Date Title
JP4713185B2 (ja) 異物欠陥検査方法及びその装置
JP5469839B2 (ja) 物体表面の欠陥検査装置および方法
JP4988224B2 (ja) 欠陥検査方法及びその装置
US10488348B2 (en) Wafer inspection
JP4183492B2 (ja) 欠陥検査装置および欠陥検査方法
US5177559A (en) Dark field imaging defect inspection system for repetitive pattern integrated circuits
US8228496B2 (en) Defect inspection method and defect inspection apparatus
JP4616472B2 (ja) 表面の異常および/または特徴を検出するためのシステム
JP2005283190A (ja) 異物検査方法及びその装置
US9546962B2 (en) Multi-spot scanning collection optics
JP5303217B2 (ja) 欠陥検査方法及び欠陥検査装置
JP5132866B2 (ja) 表面検査装置および表面検査方法
JP2007248086A (ja) 欠陥検査装置
US6124924A (en) Focus error correction method and apparatus
JP5276833B2 (ja) 欠陥検査方法及び欠陥検査装置
JP2003017536A (ja) パターン検査方法及び検査装置
US8564767B2 (en) Defect inspecting apparatus and defect inspecting method
JP2012013707A (ja) 欠陥検査装置
JP2012163422A (ja) 検査装置
JPH10221270A (ja) 異物検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

LAPS Cancellation because of no payment of annual fees