JP2006249415A - Adhesive composition for semiconductor device, adhesive sheet for the semiconductor device given by using the same, substrate for connecting semiconductor, and the semiconductor device - Google Patents

Adhesive composition for semiconductor device, adhesive sheet for the semiconductor device given by using the same, substrate for connecting semiconductor, and the semiconductor device Download PDF

Info

Publication number
JP2006249415A
JP2006249415A JP2006029277A JP2006029277A JP2006249415A JP 2006249415 A JP2006249415 A JP 2006249415A JP 2006029277 A JP2006029277 A JP 2006029277A JP 2006029277 A JP2006029277 A JP 2006029277A JP 2006249415 A JP2006249415 A JP 2006249415A
Authority
JP
Japan
Prior art keywords
semiconductor device
adhesive composition
adhesive
heating
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006029277A
Other languages
Japanese (ja)
Other versions
JP4961761B2 (en
JP2006249415A5 (en
Inventor
Yoko Osawa
洋子 大澤
Hiroshi Tsuchiya
浩史 土谷
Yukitsuna Konishi
幸綱 小西
Taiji Sawamura
泰司 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006029277A priority Critical patent/JP4961761B2/en
Publication of JP2006249415A publication Critical patent/JP2006249415A/en
Publication of JP2006249415A5 publication Critical patent/JP2006249415A5/ja
Application granted granted Critical
Publication of JP4961761B2 publication Critical patent/JP4961761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive composition for a semiconductor device, excellent in resistance to heat at a high temperature for a long period, reflow resistance, thermal cycling properties, to provide an adhesive sheet for the semiconductor device, given by using the same, to provide a substrate for connecting a semiconductor, and to provide the semiconductor device. <P>SOLUTION: This adhesive composition for the semiconductor device has a reaction rate of 70-100%, when measured by DSC (differential scanning calorimetry) after heating, and further has at least one softening point in a temperature range of ≥200°C, after heating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体集積回路を実装する際に用いられる、テープオートメーテッドボンディング(TAB)方式のパターン加工テープ、ボールグリッドアレイ(BGA)パッケージ用インターポーザー等の半導体接続用基板、リードフレーム固定テープ、LOC固定テープ、半導体素子等の電子部品とリードフレームや絶縁性支持基板等の支持部材との接着に用いられるダイボンディング材、ヒートスプレッダー、補強板、シールド材の接着剤、ソルダーレジスト、異方導電性フィルム、銅張り積層板、カバーレイ、半導体封止剤、絶縁層等を作製するために適した接着剤組成物およびそれを用いた接着剤シート、半導体接続用基板ならびに半導体装置に関する。   The present invention relates to a pattern processing tape of a tape automated bonding (TAB) method, a semiconductor connection substrate such as an interposer for a ball grid array (BGA) package, a lead frame fixing tape, and a LOC, which are used when mounting a semiconductor integrated circuit. Die bonding materials, heat spreaders, reinforcing plates, adhesives for shield materials, solder resists, anisotropic conductivity, used for bonding of fixing tapes, electronic components such as semiconductor elements, and support members such as lead frames and insulating support substrates The present invention relates to an adhesive composition suitable for producing a film, a copper-clad laminate, a coverlay, a semiconductor encapsulant, an insulating layer, and the like, an adhesive sheet using the same, a semiconductor connection substrate, and a semiconductor device.

半導体集積回路(IC)の実装には、金属製のリードフレームを用いた方式がもっとも多く用いられているが、近年ではガラスエポキシやポリイミド等の有機絶縁性フィルム上にIC接続用の導体パターンを形成した、インターポーザーと称する半導体接続用基板を介した方式が増加している。   A method using a metal lead frame is most often used for mounting a semiconductor integrated circuit (IC). In recent years, a conductive pattern for IC connection is formed on an organic insulating film such as glass epoxy or polyimide. An increasing number of systems are provided via a semiconductor connection substrate called an interposer.

パッケージ形態としては、デュアルインラインパッケージ(DIP)、スモールアウトラインパッケージ(SOP)、クアッドフラットパッケージ(QFP)等のパッケージ形態が用いられてきた。しかし、ICの多ピン化とパッケージの小型化に伴って、最もピン数を多くできるQFPにおいても限界に近づいている。そこで、パッケージの裏面に接続端子を配列するBGA(ボールグリッドアレイ)、CSP(チップスケールパッケージ)が用いられるようになってきた。   As a package form, a package form such as a dual in-line package (DIP), a small outline package (SOP), a quad flat package (QFP) has been used. However, with the increase in the number of pins of ICs and the miniaturization of packages, the QFP that can increase the number of pins is approaching the limit. Therefore, BGA (ball grid array) and CSP (chip scale package) in which connection terminals are arranged on the back surface of the package have been used.

半導体接続用基板の接続方式としては、テープオートメーテッドボンディング(TAB)方式、ワイヤーボンディング方式、フリップチップ方式等が挙げられ、TAB用接着剤付きテープを使用することができる。   Examples of the connection method of the substrate for semiconductor connection include a tape automated bonding (TAB) method, a wire bonding method, a flip chip method, and the like, and a tape with an adhesive for TAB can be used.

TAB方式は、インナーリードを有する接続方式に有利であることは当然であるが、BGA方式において半田ボール用の孔やIC用のデバイスホールを機械的に打ち抜いた後に銅箔をラミネートするプロセスに特に適している。一方、インナーリードを有しないワイヤーボンディングおよびフリップチップ接続の場合は、TAB用接着剤付きテープだけでなく、すでに銅箔を積層し接着剤を加熱硬化させた銅張り積層板を用いることも可能である。   Of course, the TAB method is advantageous for the connection method having the inner leads, but the BGA method is particularly suitable for the process of laminating the copper foil after mechanically punching the holes for solder balls and the device holes for IC. Is suitable. On the other hand, in the case of wire bonding and flip chip connection without an inner lead, it is possible to use not only a tape with an adhesive for TAB, but also a copper-clad laminate already laminated with copper foil and heat-cured adhesive. is there.

図1にBGA方式の半導体装置の例を示す。BGA方式は、半導体集積回路(1)を接続した半導体集積回路接続用基板の外部接続部としてICのピン数にほぼ対応する半田ボール(6)を格子上(グリッドアレイ)に有することを特徴としている。プリント基板への接続は、半田ボール面をすでに半田が印刷してあるプリント基板の導体パターン上に一致するように乗せて、リフローにより半田を融解して行なわれる。最大の特徴は、インターポーザーの面を使用できるため、QFP等の周囲の辺しか使用できないパッケージと比較して多くの端子を少ないスペースに配置できることにある。この小型化機能をさらに進めたものに、チップスケールパッケージ(CSP)があり、マイクロBGA(μ−BGA)、ファインピッチBGA(FP−BGA)、メモリーBGA(m−BGA)、ボードオンチップ(BOC)等の構造が提案されている。μ−BGAはインターポーザーからビームリードを出してICと接続することが特徴であり、m−BGA、BOC、FP−BGAではICとインターポーザー間はボンディングワイヤー(5)によりワイヤーボンディング接続される。ワイヤーボンディング接続は微細ピッチの対応が難しい反面、煩雑なビームリード加工が不要であり、かつ従来のリードフレーム用のワイヤーボンダーが使用できるため、コスト的に有利である。これらの構造を有するパッケージのICとインターポーザーを接着する際にも接着剤層(2)すなわちダイボンディング材が使用される。   FIG. 1 shows an example of a BGA type semiconductor device. The BGA system is characterized in that it has solder balls (6) on the grid (grid array) corresponding to the number of pins of the IC as an external connection portion of the semiconductor integrated circuit connection substrate to which the semiconductor integrated circuit (1) is connected. Yes. Connection to the printed circuit board is performed by placing the solder ball surface so as to coincide with the conductor pattern of the printed circuit board on which the solder has already been printed, and melting the solder by reflow. The biggest feature is that since the surface of the interposer can be used, many terminals can be arranged in a small space as compared with a package such as QFP that can use only the peripheral side. The chip scale package (CSP) is a further advancement of this miniaturization function, and includes micro BGA (μ-BGA), fine pitch BGA (FP-BGA), memory BGA (m-BGA), and board on chip (BOC). ) Etc. have been proposed. The μ-BGA is characterized in that a beam lead is taken out from the interposer and connected to the IC. In the m-BGA, BOC, and FP-BGA, the IC and the interposer are wire-bonded by a bonding wire (5). The wire bonding connection is difficult to deal with a fine pitch, but does not require complicated beam lead processing, and a conventional wire bonder for a lead frame can be used, which is advantageous in terms of cost. The adhesive layer (2), that is, the die bonding material is also used when bonding the IC of the package having these structures and the interposer.

さらに、半導体接続基板には剛性と平面性の付与のための補強板(スティフナー)あるいは放熱のための放熱板(ヒートスプレッダー)等の部品を積層することも行われるが、その際にも接着剤が使用される。また、封止剤用途、絶縁層としての用途にも接着剤が使用される。   In addition, the semiconductor connection board may be laminated with components such as a reinforcing plate (stiffener) for imparting rigidity and flatness or a heat radiating plate (heat spreader) for heat dissipation. Is used. In addition, an adhesive is also used for a sealant and an insulating layer.

これらの接着剤はいずれも最終的にパッケージ内に残留することが多いため、接着性、耐熱性、サーマルサイクル性等の諸特性を満たすことが要求される。   Since these adhesives often remain in the package in the end, it is required to satisfy various properties such as adhesiveness, heat resistance and thermal cycleability.

最近、特にパワーデバイス分野では半導体チップとして用いられる従来のシリコーン(Si)ウエハに代わり、より電気特性の優れたSiC(炭化ケイ素)を使用する方向で進んでいる。このSiCは電気特性に優れているので単位面積にかけられる電圧はSiよりも高くなり、それに伴い、単位面積にかかる温度も高くなる。従って、接着剤にかかる温度も非常に高くなり、150℃から200℃、さらに200℃を越える耐熱性が要求され、さらにそれらの温度で長期間(最大で1000時間程度)耐えることのできる耐熱性が要求されている。また、上述の半田リフロー工程において、半田に含まれる鉛が環境に対して悪影響を及ぼすことから、鉛を含まない半田が多く用いられるようになっている。そのため、従来は230℃程度であった半田の溶融温度が250℃以上になってきており、それに伴い半田リフロー工程で接着剤にかかる温度も上昇する。   Recently, particularly in the field of power devices, SiC (silicon carbide) having better electrical characteristics is being used in place of conventional silicone (Si) wafers used as semiconductor chips. Since this SiC has excellent electrical characteristics, the voltage applied to the unit area becomes higher than that of Si, and accordingly, the temperature applied to the unit area also increases. Therefore, the temperature applied to the adhesive is also extremely high, and heat resistance exceeding 150 ° C. to 200 ° C. and further exceeding 200 ° C. is required, and furthermore, heat resistance that can endure for a long time (up to about 1000 hours) at those temperatures. Is required. Further, in the above-described solder reflow process, the lead contained in the solder has an adverse effect on the environment, so that a solder containing no lead is often used. Therefore, the melting temperature of the solder, which has been about 230 ° C. in the past, has become 250 ° C. or higher, and accordingly, the temperature applied to the adhesive in the solder reflow process also increases.

耐熱性接着剤に関しては、ポリイミド、ポリアミド、ポリアミドイミド、ポリナジイミドを用いた接着剤が提案されている(例えば、特許文献1〜2参照。)。しかしながら、これらの特許文献には、長期高温耐熱性については触れられていない。
特開平7−252459号公報 特開平8−245942号公報
Regarding heat-resistant adhesives, adhesives using polyimide, polyamide, polyamideimide, and polynadiimide have been proposed (see, for example, Patent Documents 1 and 2). However, these patent documents do not mention long-term high-temperature heat resistance.
Japanese Patent Laid-Open No. 7-252459 Japanese Patent Laid-Open No. 8-245942

本発明はこのような問題点を解決し、長期高温耐熱性に優れ、さらに耐リフロー性、サーマルサイクル性に優れた半導体装置用接着剤組成物およびそれを用いた半導体装置用接着剤シート、半導体接続用基板ならびに半導体装置を提供することを目的とする。   The present invention solves such problems, has an excellent long-term high-temperature heat resistance, and further has excellent reflow resistance and thermal cycle properties, an adhesive composition for semiconductor devices, an adhesive sheet for semiconductor devices using the same, and a semiconductor It is an object to provide a connection substrate and a semiconductor device.

すなわち本発明は、加熱後のDSCでの反応率が70〜100%であり、加熱後に200℃以上の温度領域に少なくとも一つの軟化点を有することを特徴とする半導体装置用接着剤組成物であり、それを用いた半導体装置用接着剤シート、半導体接続用基板ならびに半導体装置である。   That is, the present invention provides an adhesive composition for a semiconductor device having a DSC reaction rate of 70 to 100% after heating and having at least one softening point in a temperature region of 200 ° C. or higher after heating. There are an adhesive sheet for a semiconductor device, a substrate for semiconductor connection and a semiconductor device using the same.

本発明の接着剤組成物によって、長期高温耐熱性、耐リフロー性、サーマルサイクル性に優れる効果が得られる。さらに本発明の半導体装置用接着剤組成物によって半導体装置の信頼性を向上させることができる。   The adhesive composition of the present invention provides an effect that is excellent in long-term high-temperature heat resistance, reflow resistance, and thermal cycle properties. Furthermore, the reliability of a semiconductor device can be improved by the adhesive composition for a semiconductor device of the present invention.

以下、本発明の構成を詳述する。   Hereinafter, the configuration of the present invention will be described in detail.

本発明の半導体装置用接着剤組成物および半導体装置用接着剤シートは、前述のスティフナー、ヒートスプレッダー、半導体素子や配線基板(インターポーザー)用半導体集積回路を実装する際に用いられる、テープオートメーテッドボンディング(TAB)方式のパターン加工テープ、ボールグリッドアレイ(BGA)パッケージ用インターポーザー等の半導体接続用基板、リードフレーム固定テープ、LOC固定テープ、半導体素子等の電子部品とリードフレームや絶縁性支持基板等の支持部材との接着に用いられるダイボンディング材、ヒートスプレッダー、補強板、シールド材の接着剤、ソルダーレジスト、異方導電性フィルム、銅張り積層板、カバーレイ等を作製するために適した接着剤組成物およびそれを用いた接着剤シートであり、それら被着体の形状および材料は特に限定されない。また、半導体を封止する封止剤としての用途、絶縁層としての用途にも使用でき、用途は特に限定されない。中でも、本発明の接着剤組成物は、パワーデバイスにおける回路の接着剤や絶縁層としての用途、シリコーン等の半導体基板上に素子が形成された後、図1に示すように切り分けられた半導体集積回路(ベアチップ)(1)が絶縁体層(3)および導体パターン(4)からなる配線基板層に、本発明の接着剤層(2)で接着され、かつ半導体集積回路(1)と配線基板層がボンディングワイヤー(5)により接続された構造を有する半導体装置としての用途に有効である。   The adhesive composition for a semiconductor device and the adhesive sheet for a semiconductor device of the present invention are tape automated used when mounting the above-described stiffener, heat spreader, semiconductor integrated circuit for a semiconductor element or a wiring board (interposer). Bonding (TAB) pattern processing tape, semiconductor connection substrates such as ball grid array (BGA) package interposers, lead frame fixing tapes, LOC fixing tapes, electronic components such as semiconductor elements, lead frames and insulating support substrates Suitable for manufacturing die bonding materials, heat spreaders, reinforcing plates, shield material adhesives, solder resists, anisotropic conductive films, copper-clad laminates, coverlays, etc. Adhesive composition and adhesive sheet using the same Ri, shape and material thereof adherend is not particularly limited. Moreover, it can be used also for the use as a sealing agent which seals a semiconductor, and the use as an insulating layer, and a use is not specifically limited. Among them, the adhesive composition of the present invention is used as a circuit adhesive or an insulating layer in a power device. After an element is formed on a semiconductor substrate such as silicone, the semiconductor integrated is separated as shown in FIG. The circuit (bare chip) (1) is bonded to the wiring board layer composed of the insulator layer (3) and the conductor pattern (4) with the adhesive layer (2) of the present invention, and the semiconductor integrated circuit (1) and the wiring board This is effective for use as a semiconductor device having a structure in which layers are connected by bonding wires (5).

本発明の半導体装置用接着剤組成物は、加熱後のDSCでの反応率が70〜100%であり、加熱後に200℃以上の温度領域に少なくとも一つの軟化点を有することを特徴とする。   The adhesive composition for a semiconductor device of the present invention has a reaction rate of 70 to 100% in DSC after heating, and has at least one softening point in a temperature region of 200 ° C. or higher after heating.

本発明において、加熱後のDSCでの反応率は、加熱前の試料の発熱量Q1(mJ/mg)と150℃で2時間加熱後の試料の発熱量Q2(mJ/mg)を測定し、反応率(%)=((Q1−Q2)/Q1)×100として得られる値を言う。発熱量は、装置セイコーインスツルメンツ(現SIIナノテクノロジー(株))製DSC6200、温度25℃〜350℃、昇温速度10℃/min、試料量約10mg、Al製オープンパン使用、窒素ガスフロー40ml/minにて測定できる。   In the present invention, the reaction rate in DSC after heating is measured by the calorific value Q1 (mJ / mg) of the sample before heating and the calorific value Q2 (mJ / mg) of the sample after heating at 150 ° C. for 2 hours, The reaction rate (%) = value obtained as ((Q1-Q2) / Q1) × 100. The calorific value is DSC6200 manufactured by Seiko Instruments Inc. (currently SII Nanotechnology Co., Ltd.), temperature 25 ° C. to 350 ° C., heating rate 10 ° C./min, sample amount about 10 mg, Al open pan used, nitrogen gas flow 40 ml / It can be measured in min.

本発明で言う軟化点とは動的粘弾性測定におけるtanδ(=E’’/E’)のピーク温度で定義する。E’(貯蔵弾性率)、E’’(損失弾性率)は周波数1〜35Hz、昇温速度2〜5℃/minで測定する。   The softening point in the present invention is defined by the peak temperature of tan δ (= E ″ / E ′) in the dynamic viscoelasticity measurement. E ′ (storage elastic modulus) and E ″ (loss elastic modulus) are measured at a frequency of 1 to 35 Hz and a heating rate of 2 to 5 ° C./min.

本発明の接着剤組成物は、加熱後のDSCでの反応率が70〜100%、より好ましくは80〜100%、さらに好ましくは90〜100%である。この範囲にすることにより、加熱硬化後の物性(特に、耐熱性、靱性)を向上させることができる。このような反応率にするためには、各組成系において加熱温度、加熱時間を適宜調整すればよい。また、加熱後に200℃以上の温度領域に少なくとも一つの軟化点を有するが、より好ましくは230℃以上、さらに好ましくは250℃以上に少なくとも一つの軟化点を有する。軟化点が200℃未満の場合は、サーマルサイクル性が低下する。さらに、加熱後の接着剤組成物が、−65℃以上50℃以下の温度領域および200℃以上300℃以下の温度領域にそれぞれ少なくとも1つの軟化点を有することが好ましく、0℃〜50℃および230℃〜280℃にそれぞれ少なくとも1つの軟化点を有することがさらに好ましく、長期高温耐熱性、サーマルサイクル性の向上を図ることができる。これは、高温側軟化点を高くすることによって弾性率の変化を段階的に行わせ、サーマルサイクル時の応力変化を段階的に吸収できるためと考えられる。一方、低温側軟化点が−65℃以上であれば、固体での形状保持が容易であり、50℃以下であればサーマルサイクル性に優れるため好ましい。   The adhesive composition of the present invention has a DSC reaction rate of 70 to 100%, more preferably 80 to 100%, and still more preferably 90 to 100% after heating. By setting it in this range, the physical properties (particularly heat resistance and toughness) after heat curing can be improved. In order to achieve such a reaction rate, the heating temperature and the heating time may be appropriately adjusted in each composition system. Further, it has at least one softening point in a temperature region of 200 ° C. or higher after heating, more preferably 230 ° C. or higher, and further preferably at least one softening point at 250 ° C. or higher. When the softening point is less than 200 ° C., the thermal cycle property is lowered. Furthermore, it is preferable that the adhesive composition after heating has at least one softening point in a temperature region of −65 ° C. or more and 50 ° C. or less and a temperature region of 200 ° C. or more and 300 ° C. or less, respectively, It is more preferable to have at least one softening point at 230 ° C. to 280 ° C., respectively, and long-term high-temperature heat resistance and thermal cycle performance can be improved. This is considered to be because the change in elastic modulus is performed stepwise by increasing the high temperature side softening point, and the stress change during the thermal cycle can be absorbed stepwise. On the other hand, when the low-temperature side softening point is −65 ° C. or higher, it is easy to maintain the shape as a solid, and when it is 50 ° C. or lower, the thermal cycle property is excellent.

このような軟化点特性を得るための方法は特に限定されない。接着剤組成物自体にこのような軟化点特性を付与するには、軟化点の異なる熱可塑性樹脂あるいは熱硬化性樹脂を複数用いると共に、相互に適切な相溶性を有するものを選択する方法が挙げられる。   A method for obtaining such softening point characteristics is not particularly limited. In order to impart such a softening point property to the adhesive composition itself, there is a method of using a plurality of thermoplastic resins or thermosetting resins having different softening points and selecting those having appropriate compatibility with each other. It is done.

本発明の接着剤組成物は、150℃で2時間加熱後の軟化点Aと、150℃で2時間加熱後さらに200℃で168時間加熱した後の軟化点Bが、B/A≦1.5であり、さらに好ましくは0.8≦B/A≦1.5である。B/A≦1.5であれば、長期高温耐熱性、サーマルサイクル性に優れるので好ましい。   The adhesive composition of the present invention has a softening point A after heating at 150 ° C. for 2 hours and a softening point B after heating at 150 ° C. for 2 hours and further at 200 ° C. for 168 hours, B / A ≦ 1. 5, more preferably 0.8 ≦ B / A ≦ 1.5. B / A ≦ 1.5 is preferable because it is excellent in long-term high-temperature heat resistance and thermal cycle performance.

また、150℃〜250℃における接着剤組成物の貯蔵弾性率E’は、好ましくは1MPa≦E’≦500MPa、より好ましくは5MPa≦E’≦100MPaである。1MPa≦E’≦500MPaであれば、ワイヤーボンディング性、耐リフロー性およびサーマルサイクル性に優れるので好ましい。また、150℃で2時間加熱した後の貯蔵弾性率E1’と、さらに200℃で168時間加熱した後の貯蔵弾性率E2’の変化率は、6×10−3(h−1)以下であることが好ましい。ここで、E’の変化率は、150℃で2時間加熱した後のE’すなわちE1’、150℃で2時間加熱後さらに200℃で168時間加熱した後のE’すなわちE2’を用いて、E’変化率=(LogE2’−LogE1’)/168 として求めた。E’は200℃での値を読みとった。このような弾性率を有する接着剤組成物は、熱硬化性樹脂と熱可塑性樹脂とを組み合わせることにより得ることができる。例えば、多官能エポキシ樹脂、後述するガラス転移温度の低い熱可塑性樹脂との組み合わせが有効である。 The storage elastic modulus E ′ of the adhesive composition at 150 ° C. to 250 ° C. is preferably 1 MPa ≦ E ′ ≦ 500 MPa, more preferably 5 MPa ≦ E ′ ≦ 100 MPa. If it is 1 MPa <= E '<= 500MPa, since it is excellent in wire-bonding property, reflow resistance, and thermal cycle property, it is preferable. Moreover, the change rate of the storage elastic modulus E1 ′ after heating at 150 ° C. for 2 hours and the storage elastic modulus E2 ′ after further heating at 200 ° C. for 168 hours is 6 × 10 −3 (h −1 ) or less. Preferably there is. Here, the rate of change of E ′ is E ′ after heating at 150 ° C. for 2 hours, that is, E1 ′, and E ′ after heating at 150 ° C. for 2 hours and then at 200 ° C. for 168 hours, that is, E2 ′. , E ′ change rate = (LogE2′−LogE1 ′) / 168. E ′ was read at 200 ° C. An adhesive composition having such an elastic modulus can be obtained by combining a thermosetting resin and a thermoplastic resin. For example, a combination with a polyfunctional epoxy resin and a thermoplastic resin having a low glass transition temperature described later is effective.

また、本発明の接着剤組成物は加熱後の接着力が好ましくは5Ncm−1以上、さらに好ましくは10Ncm−1以上であると好適である。加熱後の接着力が5Ncm−1以上であると、パッケージの取扱時、リフロー時に剥離を生じにくいので好ましい。 Further, the adhesive composition of the present invention preferably has an adhesive strength after heating of 5 Ncm −1 or more, more preferably 10 Ncm −1 or more. It is preferable that the adhesive strength after heating is 5 Ncm −1 or more because peeling is unlikely to occur during handling and reflow of the package.

接着剤層の厚みは、弾性率および線膨張係数との関係で適宜選択できるが、2〜500μmが好ましく、より好ましくは20〜200μmである。   Although the thickness of an adhesive bond layer can be suitably selected by the relationship with an elasticity modulus and a linear expansion coefficient, 2-500 micrometers is preferable, More preferably, it is 20-200 micrometers.

本発明の接着剤組成物は、熱可塑性樹脂と熱硬化性樹脂をそれぞれ少なくとも1種類含むことが好ましいが、その種類は特に限定されない。熱可塑性樹脂は接着性、可撓性、熱応力の緩和、低吸水性による絶縁性の向上等の機能を有し、熱硬化性樹脂は耐熱性、高温での絶縁性、耐薬品性、接着剤層強度等の物性のバランスを実現する効果がある。   The adhesive composition of the present invention preferably contains at least one kind of thermoplastic resin and thermosetting resin, but the kind is not particularly limited. Thermoplastic resins have functions such as adhesion, flexibility, relaxation of thermal stress, and improvement of insulation due to low water absorption, and thermosetting resins have heat resistance, insulation at high temperatures, chemical resistance, adhesion There is an effect of realizing a balance of physical properties such as the strength of the agent layer.

熱可塑性樹脂としては、アクリロニトリル−ブタジエン共重合体(NBR)、アクリロニトリル−ブタジエンゴム−スチレン樹脂(ABS)、ポリブタジエン、スチレン−ブタジエン−エチレン樹脂(SEBS)、炭素数1〜8の側鎖を有するアクリル酸および/またはメタクリル酸エステル樹脂(アクリルゴム)、ポリビニルブチラール、ポリアミド、ポリエステル、ポリイミド、ポリアミドイミド、ポリウレタン等が例示される。また、これらの熱可塑性樹脂は後述の熱硬化性樹脂との反応が可能な官能基を有していてもよい。具体的には、アミノ基、カルボキシル基、エポキシ基、水酸基、ヒドロキシアルキル基、イソシアネート基、ビニル基、シラノール基等である。これらの官能基により熱硬化性樹脂との結合が強固になり、耐熱性が向上するので好ましい。炭素数1〜8の側鎖を有するアクリル酸および/またはメタクリル酸エステルを必須共重合成分とする共重合体は、加熱後の接着剤組成物に−65〜50℃の温度領域に軟化点を持たせることができ、また、配線基板層等の素材との接着性、可撓性、熱応力の緩和効果に優れるため特に好ましく使用できる。また、これらの共重合体についても後述の熱硬化性樹脂との反応が可能な官能基を有していてもよい。具体的には、アミノ基、カルボキシル基、エポキシ基、水酸基、ヒドロキシアルキル基、イソシアネート基、ビニル基、シラノール基等である。さらにこの場合、官能基としてカルボキシル基および/または水酸基を有する共重合体に、他の官能基を有する共重合体を混合して用いると接着性が良くなり、さらに好ましい。官能基含有量については、0.07eq/kg以上0.7eq/kg以下が好ましく、より好ましくは0.07eq/kg以上0.45eq/kg以下、さらに好ましくは、0.07eq/kg以上0.14eq/kg以下である。また、長時間加熱後の可とう性の観点から、重量平均分子量(Mw)は好ましくは30万以上、より好ましくは50万以上、より好ましくは100万以上、さらに好ましくは120万以上であり、ガラス転移温度(Tg)は好ましくは20℃以下、より好ましくは0℃以下、より好ましくは−20℃、さらに好ましくは−40℃以下である。この範囲にすることにより、長時間加熱後の可とう性に優れる組成物を得ることができる。熱可塑性樹脂を2種以上用いる場合、その内の少なくとも1種がこの範囲を満たしていれば良い。重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法により測定し、ポリスチレン換算で算出した。TgはDSC法により算出した。また、高温時の劣化性、電気特性がよいことからポリアミド樹脂も好ましく用いられる。ポリアミド樹脂は、公知の種々のものが使用できる。特に、接着剤層に可撓性を持たせ、かつ低吸水の炭素数が36であるジカルボン酸(いわゆるダイマー酸)を必須成分として含むものが好適である。ダイマー酸を含むポリアミド樹脂は、常法によるダイマー酸とジアミンの重縮合により得られるが、この際にダイマー酸以外のアジピン酸、アゼライン酸、セバシン酸等のジカルボン酸を共重合成分として含有してもよい。ジアミンはエチレンジアミン、ヘキサメチレンジアミン、ピペラジン等の公知のものが使用でき、吸湿性、溶解性の点から2種以上の混合でもよい。   Examples of thermoplastic resins include acrylonitrile-butadiene copolymer (NBR), acrylonitrile-butadiene rubber-styrene resin (ABS), polybutadiene, styrene-butadiene-ethylene resin (SEBS), and acrylic having 1 to 8 carbon side chains. Examples include acid and / or methacrylic acid ester resin (acrylic rubber), polyvinyl butyral, polyamide, polyester, polyimide, polyamideimide, polyurethane and the like. Moreover, these thermoplastic resins may have a functional group capable of reacting with a thermosetting resin described later. Specific examples include an amino group, a carboxyl group, an epoxy group, a hydroxyl group, a hydroxyalkyl group, an isocyanate group, a vinyl group, and a silanol group. These functional groups are preferable because the bond with the thermosetting resin becomes stronger and the heat resistance is improved. The copolymer having acrylic acid and / or methacrylic acid ester having a side chain having 1 to 8 carbon atoms as an essential copolymerization component has a softening point in a temperature range of −65 to 50 ° C. in the adhesive composition after heating. In addition, since it is excellent in adhesiveness with a material such as a wiring board layer, flexibility, and thermal stress relaxation effect, it can be particularly preferably used. Moreover, these copolymers may also have a functional group capable of reacting with a thermosetting resin described later. Specific examples include an amino group, a carboxyl group, an epoxy group, a hydroxyl group, a hydroxyalkyl group, an isocyanate group, a vinyl group, and a silanol group. Further, in this case, it is more preferable to use a copolymer having a carboxyl group and / or a hydroxyl group as a functional group in combination with a copolymer having another functional group because the adhesiveness is improved. The functional group content is preferably 0.07 eq / kg or more and 0.7 eq / kg or less, more preferably 0.07 eq / kg or more and 0.45 eq / kg or less, and further preferably 0.07 eq / kg or more and 0.0. 14 eq / kg or less. Further, from the viewpoint of flexibility after heating for a long time, the weight average molecular weight (Mw) is preferably 300,000 or more, more preferably 500,000 or more, more preferably 1,000,000 or more, and still more preferably 1,200,000 or more. The glass transition temperature (Tg) is preferably 20 ° C. or lower, more preferably 0 ° C. or lower, more preferably −20 ° C., and still more preferably −40 ° C. or lower. By setting it within this range, a composition having excellent flexibility after heating for a long time can be obtained. When two or more kinds of thermoplastic resins are used, it is sufficient that at least one of them satisfies this range. The weight average molecular weight was measured by GPC (gel permeation chromatography) method and calculated in terms of polystyrene. Tg was calculated by the DSC method. In addition, polyamide resin is also preferably used because of its good deterioration at high temperatures and good electrical characteristics. Various known polyamide resins can be used. In particular, it is preferable that the adhesive layer has flexibility and a dicarboxylic acid (so-called dimer acid) having a low water absorption carbon number of 36 as an essential component. Polyamide resin containing dimer acid is obtained by polycondensation of dimer acid and diamine by a conventional method. At this time, dicarboxylic acid other than dimer acid, azelaic acid, sebacic acid and the like is contained as a copolymerization component. Also good. As the diamine, known ones such as ethylene diamine, hexamethylene diamine, and piperazine can be used, and two or more kinds may be mixed from the viewpoint of hygroscopicity and solubility.

本発明の接着剤組成物中の熱可塑性樹脂含有量は、好ましくは2〜80重量%、より好ましくは5〜70重量%、さらに好ましくは10〜60重量%である。この範囲であれば、可撓性、耐熱性を維持できるので好ましい。   The thermoplastic resin content in the adhesive composition of the present invention is preferably 2 to 80% by weight, more preferably 5 to 70% by weight, and still more preferably 10 to 60% by weight. If it is this range, since flexibility and heat resistance can be maintained, it is preferable.

熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、キシレン樹脂、フラン樹脂、シアン酸エステル樹脂等公知のものが例示される。特に、エポキシ樹脂およびフェノール樹脂は絶縁性に優れるので好適である。軟化点特性の制御には相溶性の制御が必要であるが、これらの熱硬化樹脂の構造を適切に選択することが有力な方法である。   Examples of the thermosetting resin include known resins such as epoxy resins, phenol resins, melamine resins, xylene resins, furan resins, and cyanate ester resins. In particular, an epoxy resin and a phenol resin are preferable because of excellent insulation. Although control of compatibility is necessary for controlling the softening point characteristics, it is an effective method to appropriately select the structure of these thermosetting resins.

エポキシ樹脂は1分子内に2個以上のエポキシ基を有するものであれば特に制限されないが、ビスフェノールF、ビスフェノールA、ビスフェノールS、レゾルシノール、ジヒドロキシナフタレン、ジシクロペンタジエンジフェノール、ジシクロペンタジエンジキシレノール等のジグリシジルエーテル、エポキシ化フェノールノボラック、エポキシ化クレゾールノボラック、エポキシ化トリスフェニロールメタン、エポキシ化テトラフェニロールエタン、エポキシ化メタキシレンジアミン、シクロヘキサンエポキサイド等の脂環式エポキシ等が挙げられる。その中でも、接着剤組成物の架橋密度を上げ、加熱後の軟化点を上昇させるために、1分子内に3個以上のエポキシ基を有するものが好ましく用いられる。これら多官能エポキシ樹脂としては、オルソクレゾールノボラック型:具体的にはJER(ジャパンエポキシレジン(株))製E180H65、住友化学(株)製ESCN195、日本化薬(株)製EOCN1020、EOCN102S、103S、104S等、DPPノボラック型:具体的にはJER製E157S65等、トリスヒドロキシフェニルメタン型:具体的には日本化薬(株)製EPPN501H、JER製E1032等、テトラフェニロールエタン型:具体的にはJER製E1031S等、ジシクロペンタジエンフェノール型:具体的にはDIC(大日本インキ化学工業(株))製HP7200等、その他ナフタレン構造を有する多官能型エポキシ樹脂、新日鐵化学(株)製ESN、特殊骨格を持つJER製YL6241等、市販されているエポキシ樹脂が挙げられる。これらのエポキシ樹脂は2種類以上混合して用いても良い。特に、3官能エポキシ樹脂と4官能エポキシ樹脂を混合すると、軟化点の制御がより容易であり、長期高温放置後の軟化点変化を抑えることができるため好ましい。さらに、難燃性付与のために、ハロゲン化エポキシ樹脂、特に臭素化エポキシ樹脂を用いることが有効である。この際、臭素化エポキシ樹脂のみでは難燃性の付与はできるものの接着剤耐熱性の低下が大きくなるため非臭素化エポキシ樹脂との混合系とすることが有効である。臭素化エポキシ樹脂の例としては、テトラブロモビスフェノールAとビスフェノールAの共重合型エポキシ樹脂、あるいは“BREN”−S(日本化薬(株)製)等の臭素化フェノールノボラック型エポキシ樹脂が挙げられる。これらの臭素化エポキシ樹脂は、臭素含有量およびエポキシ当量を考慮して2種類以上混合して用いても良い。しかしながら、臭素化エポキシ等はその中にバロゲンである臭素が入っていることから、環境に悪影響を及ぼすことが考えられるため、最近ではバロゲンを含まないタイプのエポキシ樹脂、具体的にはリン含有エポキシ樹脂、窒素含有エポキシ樹脂も多く用いられている。難燃性付与のために、これらのエポキシ樹脂を用いても良い。   The epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule, but bisphenol F, bisphenol A, bisphenol S, resorcinol, dihydroxynaphthalene, dicyclopentadiene diphenol, dicyclopentadienedixylenol, etc. Alicyclic epoxies such as diglycidyl ether, epoxidized phenol novolak, epoxidized cresol novolak, epoxidized trisphenylol methane, epoxidized tetraphenylol ethane, epoxidized metaxylene diamine, and cyclohexane epoxide. Among them, those having three or more epoxy groups in one molecule are preferably used in order to increase the crosslinking density of the adhesive composition and increase the softening point after heating. As these polyfunctional epoxy resins, orthocresol novolak type: specifically, E180H65 manufactured by JER (Japan Epoxy Resin Co., Ltd.), ESCN195 manufactured by Sumitomo Chemical Co., Ltd., EOCN1020 manufactured by Nippon Kayaku Co., Ltd., EOCN102S, 103S, 104S, etc., DPP novolak type: specifically, J157 E157S65, etc., trishydroxyphenylmethane type: specifically Nippon Kayaku Co., Ltd. EPPN501H, JER E1032, etc., tetraphenylolethane type: specifically E1031S made by JER, dicyclopentadienephenol type: Specifically, HP7200 made by DIC (Dainippon Ink Chemical Co., Ltd.), other polyfunctional epoxy resins having a naphthalene structure, ESN made by Nippon Steel Chemical Co., Ltd. , YL6241 made by JER with special skeleton, etc. Epoxy resins have been sales. Two or more of these epoxy resins may be used in combination. In particular, it is preferable to mix a trifunctional epoxy resin and a tetrafunctional epoxy resin because the control of the softening point is easier and the change in the softening point after standing at high temperature for a long time can be suppressed. Furthermore, it is effective to use a halogenated epoxy resin, particularly a brominated epoxy resin, for imparting flame retardancy. At this time, it is effective to use a mixed system with a non-brominated epoxy resin because the brominated epoxy resin alone can impart flame retardancy, but the heat resistance of the adhesive decreases greatly. Examples of brominated epoxy resins include copolymerized epoxy resins of tetrabromobisphenol A and bisphenol A, or brominated phenol novolac type epoxy resins such as “BREN” -S (manufactured by Nippon Kayaku Co., Ltd.). . These brominated epoxy resins may be used in combination of two or more in consideration of bromine content and epoxy equivalent. However, brominated epoxies and the like contain bromine, which is a barogen, and may have an adverse effect on the environment. Recently, epoxy resins that do not contain barogen, specifically phosphorous epoxy Many resins and nitrogen-containing epoxy resins are also used. These epoxy resins may be used for imparting flame retardancy.

フェノール樹脂としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等の公知のフェノール樹脂がいずれも使用できる。例えば、フェノール、クレゾール、p−t−ブチルフェノール、ノニルフェノール、p−フェニルフェノール等のアルキル置換フェノール、テルペン、ジシクロペンタジエン等の環状アルキル変性フェノール、ニトロ基、ハロゲン基、シアノ基、アミノ基等のヘテロ原子を含む官能基を有するもの、ナフタレン、アントラセン等の骨格を有するもの、ビスフェノールF、ビスフェノールA、ビスフェノールS、レゾルシノール、ピロガロール等の多官能性フェノールからなる樹脂が挙げられる。   As the phenol resin, any known phenol resin such as novolak type phenol resin and resol type phenol resin can be used. For example, alkyl-substituted phenols such as phenol, cresol, p-t-butylphenol, nonylphenol, p-phenylphenol, cyclic alkyl-modified phenols such as terpene and dicyclopentadiene, hetero groups such as nitro groups, halogen groups, cyano groups, and amino groups Examples thereof include those having functional groups containing atoms, those having a skeleton such as naphthalene and anthracene, and resins composed of polyfunctional phenols such as bisphenol F, bisphenol A, bisphenol S, resorcinol, and pyrogallol.

熱硬化性樹脂の含有量は、熱可塑性樹脂100重量部に対して5〜400重量部が好ましく、より好ましくは20〜200重量部である。熱硬化性樹脂の含有量が5重量部以上であれば、高温での弾性率が維持でき、半導体装置を実装した機器の使用中に半導体集積回路接続用基板の変形が生じず、また加工工程において取り扱い易いので好ましい。熱硬化性樹脂の含有量が400重量部以下であれば、弾性率が高くなりすぎず、線膨張係数も小さくならないので好ましい。   As for content of a thermosetting resin, 5-400 weight part is preferable with respect to 100 weight part of thermoplastic resins, More preferably, it is 20-200 weight part. If the content of the thermosetting resin is 5 parts by weight or more, the elastic modulus at a high temperature can be maintained, the semiconductor integrated circuit connection substrate is not deformed during use of the device mounted with the semiconductor device, and the processing step It is preferable because it is easy to handle. If the content of the thermosetting resin is 400 parts by weight or less, it is preferable because the elastic modulus does not increase too much and the linear expansion coefficient does not decrease.

本発明の接着剤層にエポキシ樹脂およびフェノール樹脂の硬化剤および硬化促進剤を含有することは何等制限されない。たとえば、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン、2,2’,3,3’−テトラクロロ−4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノベンゾフェノン、3,4,4’−トリアミノジフェニルスルホン等の芳香族ポリアミン、三フッ化ホウ素トリエチルアミン錯体等の三フッ化ホウ素のアミン錯体、2−アルキル−4−メチルイミダゾール、2−フェニル−4−アルキルイミダゾール等のイミダゾール誘導体、無水フタル酸、無水トリメリット酸等の有機酸、ジシアンジアミド、トリフェニルフォスフィン等公知のものが使用できる。これらを単独または2種以上混合して用いても良い。含有量は接着剤組成物100重量部に対して0.1〜50重量部であると好ましい。   It is not limited at all that the adhesive layer of the present invention contains a curing agent and a curing accelerator of epoxy resin and phenol resin. For example, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane, 3,3 ′, 5,5′-tetraethyl-4,4′-diaminodiphenylmethane, 3,3′-dimethyl- 5,5′-diethyl-4,4′-diaminodiphenylmethane, 3,3′-dichloro-4,4′-diaminodiphenylmethane, 2,2 ′, 3,3′-tetrachloro-4,4′-diaminodiphenylmethane 4,4'-diaminodiphenylsulfide, 3,3'-diaminobenzophenone, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'- Aromatic polyamines such as diaminobenzophenone, 3,4,4'-triaminodiphenylsulfone, boron trifluoride triethylamine Boron trifluoride amine complexes such as complexes, imidazole derivatives such as 2-alkyl-4-methylimidazole and 2-phenyl-4-alkylimidazole, organic acids such as phthalic anhydride and trimellitic anhydride, dicyandiamide, triphenyl Known materials such as phosphine can be used. You may use these individually or in mixture of 2 or more types. The content is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the adhesive composition.

本発明において、接着剤層に無機質充填剤を含有することにより、耐リフロー性、打ち抜き性等の加工性、熱伝導性、難燃性を一層向上させることができる。無機質充填剤は接着剤の特性を損なうものでなければ特に限定されないが、その具体例としては、シリカ、酸化アルミニウム、窒化ケイ素、水酸化アルミニウム、金、銀、銅、鉄、ニッケル、炭化ケイ素、窒化アルミニウム、窒化チタン、炭化チタン等が挙げられる。中でも、シリカ、酸化アルミニウム、窒化ケイ素、炭化ケイ素、水酸化アルミニウムが好ましく用いられる。ここで、シリカは非晶、結晶のいずれであってもよく、それぞれのもつ特性に応じて適宜使いわけることを限定するものではない。これらの無機質充填剤に耐熱性、接着性等の向上を目的としてシランカップリング剤等を用いて表面処理を施してもよい。シランカップリング剤は後述のものを用いることができる。また、無機質充填剤の形状は特に限定されず、破砕系、球状、鱗片状等が用いられるが、破砕系が好ましく用いられる。ここでいう破砕とは、球状でない(丸みをおびていない)形状のものを言う。無機質充填剤の粒径は特に限定されないが、分散性および塗工性、耐リフロー、サーマルサイクル性等の信頼性の点で、平均粒径3μm以下、最大粒径10μm以下のものが好ましく用いられる。また、流動性、分散性の点から、平均粒径の異なる無機質充填剤を併用すると一層効果的である。尚、粒径の測定は、堀場LA500レーザー回折式粒度分布計で測定することができる。ここでいう平均粒径とは、球相当体積を基準とした粒度分布を測定し、累積分布をパーセント(%)で表した時の50%に相当する粒子径(メジアン径)で定義される。ここで言う粒度分布は、体積基準で粒子径表示が56分割片対数表示(0.1〜200μm)するものとする。また、最大粒径は平均粒径で定義した粒度分布において、累積分布をパーセント(%)で表した時の100%に相当する粒子径で定義される。また、測定試料は、イオン交換水中に、白濁する程度に粒子を入れ、10分間超音波分散を行ったものとする。また、屈折率1.1、光透過度を基準値(約70%程度、装置内で既に設定されている)に合わせて測定を行う。また、配合量は接着剤組成物全体の2〜60重量%、さらには5〜50重量%が好ましい。   In the present invention, by containing an inorganic filler in the adhesive layer, processability such as reflow resistance and punchability, thermal conductivity, and flame retardancy can be further improved. The inorganic filler is not particularly limited as long as it does not impair the properties of the adhesive. Specific examples thereof include silica, aluminum oxide, silicon nitride, aluminum hydroxide, gold, silver, copper, iron, nickel, silicon carbide, Examples thereof include aluminum nitride, titanium nitride, and titanium carbide. Of these, silica, aluminum oxide, silicon nitride, silicon carbide, and aluminum hydroxide are preferably used. Here, the silica may be either amorphous or crystalline, and it is not limited that the silica can be properly used according to the characteristics of each. These inorganic fillers may be subjected to surface treatment using a silane coupling agent or the like for the purpose of improving heat resistance, adhesiveness and the like. The following silane coupling agents can be used. Further, the shape of the inorganic filler is not particularly limited, and a crushing system, a spherical shape, a scale shape, and the like are used, and a crushing system is preferably used. As used herein, crushing refers to a non-spherical (not rounded) shape. The particle size of the inorganic filler is not particularly limited, but those having an average particle size of 3 μm or less and a maximum particle size of 10 μm or less are preferably used from the viewpoint of reliability such as dispersibility and coatability, reflow resistance, thermal cycle property, and the like. . From the viewpoint of fluidity and dispersibility, it is more effective to use inorganic fillers having different average particle diameters in combination. The particle size can be measured with a Horiba LA500 laser diffraction particle size distribution meter. The average particle diameter here is defined by a particle diameter (median diameter) corresponding to 50% when a particle size distribution is measured with reference to a sphere equivalent volume and the cumulative distribution is expressed in percent (%). The particle size distribution referred to here is such that the particle size display is a 56-segment piece logarithm display (0.1 to 200 μm) on a volume basis. The maximum particle size is defined by a particle size corresponding to 100% when the cumulative distribution is expressed in percent (%) in the particle size distribution defined by the average particle size. In addition, the measurement sample is obtained by putting particles in ion-exchanged water so as to become cloudy and performing ultrasonic dispersion for 10 minutes. In addition, the refractive index is 1.1 and the light transmittance is measured according to a reference value (about 70%, which is already set in the apparatus). The blending amount is preferably 2 to 60% by weight, more preferably 5 to 50% by weight, based on the entire adhesive composition.

本発明において、接着剤層にシランカップリング剤を含有することにより、銅をはじめとした種々の金属やガラスエポキシ基板等のリジッド基板等との接着力の向上をはかることができる。シランカップリング剤は下式(1)のように表される。   In the present invention, by including a silane coupling agent in the adhesive layer, it is possible to improve the adhesive force with various metals including copper and rigid substrates such as a glass epoxy substrate. The silane coupling agent is represented by the following formula (1).

Figure 2006249415
Figure 2006249415

Xはそれぞれ同じでも異なっていてもよく、ビニル基、エポキシ基、スチリル基、アクリロキシ基、アミノ基、メタクリル基、メルカプト基、イソシアネート基およびそれらの少なくとも一つの官能基で置換された炭素数1〜6のアルキル基から選ばれる。その中でも、接着性の点からアミノ基、エポキシ基を含有しているものが好ましい。RはCH、C、CHOCの中から選ばれ、その中でも、メチル基、エチル基が好ましい。 X's may be the same or different and each has 1 to 1 carbon atoms substituted with a vinyl group, an epoxy group, a styryl group, an acryloxy group, an amino group, a methacryl group, a mercapto group, an isocyanate group and at least one functional group thereof. Selected from 6 alkyl groups. Among them, those containing an amino group or an epoxy group are preferable from the viewpoint of adhesiveness. R is selected from CH 3 , C 2 H 5 , and CH 3 OC 2 H 4 , and among them, a methyl group and an ethyl group are preferable.

以上の成分以外に、接着剤の特性を損なわない範囲で酸化防止剤、イオン捕捉剤等の有機、無機成分を含有することは何ら制限されるものではない。微粒子状の無機成分としては水酸化マグネシウム、カルシウム・アルミネート水和物等の金属水酸化物、酸化ジルコニウム、酸化亜鉛、三酸化アンチモン、五酸化アンチモン、酸化マグネシウム、酸化チタン、酸化鉄、酸化コバルト、酸化クロム、タルク等の金属酸化物、炭酸カルシウム等の無機塩、アルミニウム等の金属微粒子、あるいはカーボンブラック、ガラスが挙げられ、有機成分としてはスチレン、NBRゴム、アクリルゴム、ポリアミド、ポリイミド、シリコーン等の架橋ポリマが例示される。また、イオン捕捉剤としては無機イオン交換体が多く使われる。無機イオン交換体は、(1)イオン選択性が大きく、2種以上のイオンが共存する系より特定のイオンを分離することができる、(2)耐熱性に優れる、(3)有機溶剤、樹脂に対して安定である、(4)耐酸化性に優れることから、材料に含有することによって、イオン性不純物の捕捉に有効であり、絶縁抵抗の低下抑制、アルミ配線の腐食防止、エレクトロマイグレーションの発生防止等が期待できる。種類は非常に多く、a)アルミノケイ酸塩(天然ゼオライト、合成ゼオライト等)、b)水酸化物または含水酸化物(含水酸化チタン、含水酸化ビスマス等)、c)酸性塩(リン酸ジルコニウム、リン酸チタン等)、d)塩基性塩、複合含水酸化物(ハイドロタルサイト類等)、e)ヘテロポリ酸類(モリブドリン酸アンモニウム等)、f)ヘキサシアノ鉄(III)塩等(ヘキサシアノ亜鉛等)、g)その他等に分類できる。商品名としては、東亜合成(株)のIXE−100、IXE−300、IXE−500、IXE−530、IXE−550、IXE−600、IXE−633、IXE−700、IXE−700F、IXE−800等が挙げられる。陽イオン交換体、陰イオン交換体、両イオン交換体があるが、接着剤組成物中には陽、陰両方のイオン性不純物が存在することから、両イオン交換体が好ましい。これらを使用することにより、絶縁層用途で使用した場合、配線のマイグレーションを防ぐと共に、絶縁抵抗低下を抑制することができる。   In addition to the above components, it is not limited at all to contain organic and inorganic components such as antioxidants and ion scavengers as long as the properties of the adhesive are not impaired. Fine inorganic components include metal hydroxides such as magnesium hydroxide, calcium aluminate hydrate, zirconium oxide, zinc oxide, antimony trioxide, antimony pentoxide, magnesium oxide, titanium oxide, iron oxide, cobalt oxide Metal oxides such as chromium oxide and talc, inorganic salts such as calcium carbonate, metal fine particles such as aluminum, carbon black, and glass. Organic components include styrene, NBR rubber, acrylic rubber, polyamide, polyimide, and silicone. And the like. In addition, inorganic ion exchangers are often used as ion scavengers. Inorganic ion exchangers (1) have high ion selectivity, can separate specific ions from a system in which two or more ions coexist, (2) have excellent heat resistance, (3) organic solvents and resins (4) Since it is excellent in oxidation resistance, it is effective in trapping ionic impurities by containing it in the material, suppressing the decrease in insulation resistance, preventing corrosion of aluminum wiring, and preventing electromigration. Prevention of the occurrence can be expected. There are many types, a) aluminosilicate (natural zeolite, synthetic zeolite, etc.), b) hydroxide or hydrous oxide (hydrous titanium oxide, hydrous bismuth oxide etc.), c) acid salt (zirconium phosphate, phosphorus Titanium oxide, etc.), d) basic salts, complex hydrous oxides (hydrotalcite, etc.), e) heteropolyacids (ammonium molybdate, etc.), f) hexacyanoiron (III) salts, etc. (hexacyanozinc, etc.), g ) Can be classified as other. Product names include IXE-100, IXE-300, IXE-500, IXE-530, IXE-550, IXE-600, IXE-633, IXE-700, IXE-700F, IXE-800 from Toa Gosei Co., Ltd. Etc. There are cation exchangers, anion exchangers, and both ion exchangers, but both ion exchangers are preferred because both positive and negative ionic impurities are present in the adhesive composition. By using these, when used for an insulating layer, it is possible to prevent migration of wiring and suppress a decrease in insulation resistance.

また、本発明では酸化防止剤の使用が有効である。酸化防止剤としては、酸化防止の機能を付与するものであれば特に限定されず、フェノール系酸化防止剤、チオエーテル系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤等の公知の酸化防止剤を使用できる。これは、例えばNBRゴム等二重結合を含む樹脂の場合、高温で長時間放置すると二重結合部分の架橋が徐々に進行し、接着剤膜が脆くなる傾向があるが、酸化防止剤を使用することにより、これらの反応を抑えることができるからである。これらの有機、無機成分は単独または2種以上混合して用いても良い。微粒子状の成分の平均粒子径は分散安定性を考慮すると、0.2〜5μmが好ましい。また、含有量は接着剤組成物全体の0.1〜50重量%が適当である。   In the present invention, the use of an antioxidant is effective. The antioxidant is not particularly limited as long as it imparts an antioxidant function. Known antioxidants such as a phenol-based antioxidant, a thioether-based antioxidant, a phosphorus-based antioxidant, and an amine-based antioxidant are used. An inhibitor can be used. This is because, for example, in the case of a resin containing a double bond such as NBR rubber, when left for a long time at a high temperature, the crosslinking of the double bond part gradually proceeds and the adhesive film tends to become brittle, but an antioxidant is used. This is because these reactions can be suppressed. These organic and inorganic components may be used alone or in combination of two or more. In view of dispersion stability, the average particle size of the fine particle component is preferably 0.2 to 5 μm. Moreover, 0.1 to 50 weight% of the whole adhesive composition is suitable for content.

本発明の半導体装置用接着剤シートとは、本発明の半導体装置用接着剤組成物からなる接着剤層と、少なくとも1層の剥離可能な保護フィルム層を有するのものをいう。たとえば、保護フィルム層/接着剤層の2層構成、あるいは保護フィルム層/接着剤層/保護フィルム層の3層構成がこれに該当する(図2)。接着剤層とは接着剤組成物の単膜以外にポリイミド等の絶縁性フィルムが積層された複合構造も含まれる。接着剤シートは加熱処理により硬化度を調節してもよい。硬化度の調節は、接着剤シートを配線基板あるいはICに接着する際の接着剤のフロー過多を防止するとともに加熱硬化時の水分による発泡を防止する効果がある。   The adhesive sheet for a semiconductor device of the present invention refers to a sheet having an adhesive layer made of the adhesive composition for a semiconductor device of the present invention and at least one peelable protective film layer. For example, a two-layer structure of a protective film layer / adhesive layer or a three-layer structure of a protective film layer / adhesive layer / protective film layer corresponds to this (FIG. 2). The adhesive layer includes a composite structure in which an insulating film such as polyimide is laminated in addition to a single film of the adhesive composition. The adhesive sheet may be adjusted in degree of curing by heat treatment. Adjustment of the degree of cure has the effect of preventing excessive flow of the adhesive when adhering the adhesive sheet to the wiring board or IC and preventing foaming due to moisture during heat curing.

ここでいう保護フィルム層とは、絶縁体層および導体パターンからなる配線基板層(TABテープ等)あるいは導体パターンが形成されていない層(スティフナー等)に接着剤層を貼り合わせる前に、接着剤層の形態および機能を損なうことなく剥離できれば特に限定されないが、例えばポリエステル、ポリオレフィン、ポリフェニレンスルフィド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリビニルブチラール、ポリ酢酸ビニル、ポリビニルアルコール、ポリカーボネート、ポリアミド、ポリイミド、ポリメチルメタクリレート、シリコーンゴム等のプラスチックフィルム、これらにシリコーンあるいはフッ素化合物等の離型剤のコーティング処理を施したフィルムおよびこれらのフィルムをラミネートした紙、離型性のある樹脂を含浸あるいはコーティングした紙等が挙げられる。保護フィルム層は着色されているとさらに好ましい。保護フィルムを剥離したかどうか目で見て確認することができるため、剥がし忘れを防ぐことができる。   The protective film layer as used herein refers to an adhesive before bonding an adhesive layer to a wiring board layer (TAB tape or the like) composed of an insulator layer and a conductor pattern or a layer (stiffener or the like) where no conductor pattern is formed. Although it will not specifically limit if it can peel without impairing the form and function of a layer, For example, polyester, polyolefin, polyphenylene sulfide, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol , Polycarbonate, polyamide, polyimide, polymethylmethacrylate, silicone rubber, and other plastic films, films coated with a release agent such as silicone or fluorine compounds, and films Paper laminated with arm, paper and the like impregnated or coated with a releasing property of a certain resin. More preferably, the protective film layer is colored. Since it can be confirmed visually whether the protective film has been peeled off, forgetting to peel off can be prevented.

接着剤層の両面に保護フィルム層を有する場合、それぞれの保護フィルム層の接着剤層に対する剥離力をF、F(F>F)としたとき、F−Fは好ましくは5Nm−1以上、さらに好ましくは15Nm−1以上が必要である。F−Fが5Nm−1より小さい場合、剥離面がいずれの保護フィルム層側になるかが安定せず、使用上重大な問題となるので好ましくない。また、剥離力F、Fはいずれも好ましくは1〜200Nm−1、さらに好ましくは3〜100Nm−1 である。1Nm−1より低い場合は保護フィルム層の脱落が生じ、200Nm−1を超えると剥離が不安定であり、接着剤層が損傷する場合があり、いずれも好ましくない。 When the protective film layers are provided on both surfaces of the adhesive layer, when the peeling force of each protective film layer to the adhesive layer is F 1 and F 2 (F 1 > F 2 ), F 1 -F 2 is preferably 5 Nm −1 or more, more preferably 15 Nm −1 or more is required. When F 1 -F 2 is smaller than 5 Nm −1 , which protective film layer side the release surface is on is not stable, which is a serious problem in use. Further, the peeling forces F 1 and F 2 are preferably 1 to 200 Nm −1 , more preferably 3 to 100 Nm −1 . When it is lower than 1 Nm −1 , the protective film layer falls off, and when it exceeds 200 Nm −1 , peeling is unstable and the adhesive layer may be damaged.

本発明の半導体接続用基板とは、図1に示すとおり、ベアチップの電極パッドとパッケージの外部(プリント基板、TABテープ等)を接続するための導体パターンを有する層であり、絶縁体層(3)の片面または両面に導体パターン(4)が形成されているものである。ここでいう絶縁体層は、ポリイミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート等のプラスチックあるいはエポキシ樹脂含浸ガラスクロス等の複合材料からなる、厚さ3〜125μmの可撓性を有する絶縁性フィルム、アルミナ、ジルコニア、ソーダガラス、石英ガラス等のセラミック基板が好適であり、これらから選ばれる複数の層を積層して用いても良い。また必要に応じて、絶縁体層に、加水分解、コロナ放電、低温プラズマ、物理的粗面化、易接着コーティング処理等の表面処理を施すことができる。   As shown in FIG. 1, the substrate for semiconductor connection of the present invention is a layer having a conductor pattern for connecting an electrode pad of a bare chip and the outside of a package (printed circuit board, TAB tape, etc.), and an insulator layer (3 ) Is provided with a conductor pattern (4) on one or both sides. The insulator layer here is made of a composite material such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, or a plastic or epoxy resin-impregnated glass cloth. A ceramic substrate such as an insulating film having a flexibility of 125 μm, alumina, zirconia, soda glass, and quartz glass is suitable, and a plurality of layers selected from these may be laminated. If necessary, the insulator layer can be subjected to surface treatment such as hydrolysis, corona discharge, low-temperature plasma, physical roughening, and easy adhesion coating treatment.

導体パターンの形成は、一般にサブトラクティブ法あるいはアディティブ法のいずれかで行なわれるが、本発明ではいずれを用いてもよい。サブトラクティブ法では、該絶縁体層に銅箔等の金属板を絶縁性接着剤(本発明の接着剤組成物も用いることができる。)により接着するか、あるいは金属板に該絶縁体層の前駆体を積層し、加熱処理等により絶縁体層を形成する方法で作製した材料を、薬液処理でエッチングすることによりパターン形成する。ここでいう材料として具体的には、リジッドあるいはフレキシブルプリント基板用銅張り材料やTABテープを例示することができる。一方、アディティブ法では、該絶縁体層に無電解メッキ、電解メッキ、スパッタリング等により直接導体パターンを形成する。いずれの場合も、形成された導体に腐食防止のため耐食性の高い金属がメッキされていてもよい。このようにして作製された配線基板層には必要によりビアホールが形成され、メッキにより両面に形成された導体パターン間がメッキにより接続されていてもよい。   The conductor pattern is generally formed by either the subtractive method or the additive method, but any of them may be used in the present invention. In the subtractive method, a metal plate such as a copper foil is bonded to the insulator layer with an insulating adhesive (the adhesive composition of the present invention can also be used), or the insulator layer is bonded to the metal plate. A pattern is formed by etching a material prepared by a method in which precursors are stacked and an insulator layer is formed by heat treatment or the like by chemical treatment. Specific examples of the material herein include a rigid or copper-clad material for a flexible printed circuit board and a TAB tape. On the other hand, in the additive method, a conductor pattern is directly formed on the insulator layer by electroless plating, electrolytic plating, sputtering, or the like. In either case, the formed conductor may be plated with a metal having high corrosion resistance to prevent corrosion. Via holes may be formed in the wiring board layer thus produced, if necessary, and the conductive patterns formed on both sides by plating may be connected by plating.

接着剤層は、絶縁体層と導体パターンからなる配線基板層と半導体集積回路の接着に主として用いられる接着剤層である。しかし、配線基板層と他の部材(たとえばICと放熱板等)との接着に用いることは何等制限されず、また他の用途(例えば絶縁層)に用いることも何等制限されない。この接着剤層は半導体集積回路接続用基板に半硬化状態で積層される場合が通常であり、積層前あるいは積層後に30〜200℃の温度で適当な時間予備硬化反応を行なわせて硬化度を調節することができる。   The adhesive layer is an adhesive layer mainly used for bonding the insulating substrate and the wiring board layer composed of the conductor pattern and the semiconductor integrated circuit. However, it is not limited at all to be used for adhesion between the wiring board layer and other members (for example, IC and a heat sink), and it is not limited at all to be used for other purposes (for example, an insulating layer). This adhesive layer is usually laminated in a semi-cured state on a substrate for connecting a semiconductor integrated circuit. A pre-curing reaction is carried out at a temperature of 30 to 200 ° C. for an appropriate time before or after the lamination to increase the degree of curing. Can be adjusted.

次に本発明の接着剤組成物を用いた半導体装置用接着剤シートおよび半導体装置の製造方法の例について説明する。   Next, an example of an adhesive sheet for a semiconductor device using the adhesive composition of the present invention and a method for manufacturing the semiconductor device will be described.

(1)半導体装置用接着剤シート
(a)本発明の接着剤組成物を溶剤に溶解した塗料を、離型性を有するポリエステルフィルム上に塗布、乾燥する。接着剤層の膜厚は10〜100μmとなるように塗布することが好ましい。乾燥条件は、100〜200℃、1〜5分である。溶剤は特に限定されないが、トルエン、キシレン、クロルベンゼン等の芳香族系、メチルエチルケトン、メチルイソブチルケトン等のケトン系、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン等の非プロトン系極性溶剤単独あるいは混合物が好適である。
(1) Adhesive sheet for semiconductor device (a) A paint obtained by dissolving the adhesive composition of the present invention in a solvent is applied onto a polyester film having releasability and dried. It is preferable to apply so that the thickness of the adhesive layer is 10 to 100 μm. Drying conditions are 100 to 200 ° C. and 1 to 5 minutes. Solvents are not particularly limited, but aromatics such as toluene, xylene and chlorobenzene, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aprotic polar solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone alone or a mixture are preferred. It is.

(b)(a)のフィルムに上記離型性を有するポリエステルフィルムよりさらに剥離強度の弱い離型性を有するポリエステルあるいはポリオレフィン系の保護フィルム層をラミネートして、本発明の半導体装置用接着剤シートを得る。さらに接着剤厚みを増す場合は、該半導体装置用接着剤シートを複数回積層すればよい。単膜以外にポリイミド等の絶縁性フィルムが積層された複合構造を作製する場合も、上述のように半導体装置用接着剤シートを絶縁性フィルムに積層するか、もしくは絶縁性フィルムの両面に直接コーティングして作製しても良い。この場合、絶縁性フィルムの厚みは、3〜125μmが好ましく用いられる。ラミネート後に、たとえば30〜70℃で20〜200時間程度熱処理して硬化度を調節してもよい。   (B) An adhesive sheet for a semiconductor device according to the present invention, wherein the film of (a) is laminated with a polyester or polyolefin-based protective film layer having a releasability lower than that of the polyester film having the releasability. Get. In order to further increase the adhesive thickness, the adhesive sheet for a semiconductor device may be laminated a plurality of times. When manufacturing a composite structure in which an insulating film such as polyimide is laminated in addition to a single film, the adhesive sheet for a semiconductor device is laminated on the insulating film as described above, or directly coated on both sides of the insulating film. May be produced. In this case, the thickness of the insulating film is preferably 3 to 125 μm. After lamination, for example, the degree of curing may be adjusted by heat treatment at 30 to 70 ° C. for about 20 to 200 hours.

(2)半導体装置
(a)TAB用接着剤付きテープに12〜35μmの電解銅箔を、130〜170℃、0.1〜0.5MPaの条件でラミネートし、続いてエアオーブン中で80〜170℃、の順次加熱キュア処理を行い、銅箔付きTAB用テープを作製する。得られた銅箔付きTAB用テープの銅箔面に常法によりフォトレジスト膜形成、エッチング、レジスト剥離、電解ニッケルメッキ、電解金メッキ、ソルダーレジスト膜作製をそれぞれ行い、配線基板を作製する。
(2) Semiconductor device (a) 12-35 μm electrolytic copper foil is laminated on a tape with an adhesive for TAB under the conditions of 130-170 ° C., 0.1-0.5 MPa, and then 80- A TAB tape with a copper foil is produced by sequentially heating and curing at 170 ° C. Photoresist film formation, etching, resist stripping, electrolytic nickel plating, electrolytic gold plating, and solder resist film fabrication are performed on the copper foil surface of the obtained TAB tape with copper foil by a conventional method to fabricate a wiring board.

(b)(a)の配線基板に、(1)で得られた半導体装置用接着剤シートを加熱圧着し、さらに接着剤シートの反対面にICを加熱圧着する。この状態で120〜180℃の加熱硬化を行う。   (B) The adhesive sheet for a semiconductor device obtained in (1) is thermocompression bonded to the wiring board of (a), and the IC is further thermocompression bonded to the opposite surface of the adhesive sheet. In this state, heat curing at 120 to 180 ° C. is performed.

(c)ICと配線基板を150〜250℃、100〜150kHz程度の条件でワイヤーボンディング接続した後、樹脂封止する。   (C) After the IC and the wiring board are connected by wire bonding under conditions of about 150 to 250 ° C. and about 100 to 150 kHz, they are sealed with resin.

(d)最後にハンダボールをリフローにて搭載し、本発明の半導体装置を得る。   (D) Finally, solder balls are mounted by reflow to obtain the semiconductor device of the present invention.

以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。実施例の説明に入る前に評価方法について述べる。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The evaluation method will be described before the description of the examples.

(1)評価用パターンテープ作製:TAB用接着剤付きテープ(#7100、(タイプ31N0−00FS)、東レ(株)製)に18μmの電解銅箔を、140℃、0.1MPaの条件でラミネートした。続いてエアオーブンを用いて、80℃で3時間、100℃で5時間、150℃で5時間の順次加熱キュア処理を行い、銅箔付きTAB用テープを作製した。得られた銅箔付きTAB用テープの銅箔面に常法によりフォトレジスト膜を形成し、エッチング、レジスト剥離、電解ニッケルメッキ、電解金メッキをそれぞれ行い、評価用パターンテープサンプルを作製した。ニッケルメッキ厚は3μm、金メッキ厚は1μmとした。   (1) Preparation of evaluation pattern tape: TAB adhesive tape (# 7100, (type 31N0-00FS), manufactured by Toray Industries, Inc.) is laminated with an electrolytic copper foil of 18 μm under conditions of 140 ° C. and 0.1 MPa. did. Subsequently, using an air oven, a heat curing treatment was sequentially performed at 80 ° C. for 3 hours, at 100 ° C. for 5 hours, and at 150 ° C. for 5 hours to produce a TAB tape with copper foil. A photoresist film was formed on the copper foil surface of the obtained TAB tape with copper foil by a conventional method, and etching, resist stripping, electrolytic nickel plating, and electrolytic gold plating were performed to prepare a pattern tape sample for evaluation. The nickel plating thickness was 3 μm, and the gold plating thickness was 1 μm.

(2)耐リフロー性:(1)の評価用パターンテープの裏面に、130℃、0.1MPaの条件で本発明の半導体装置用接着剤シート(厚さ50μm)をラミネートした後、アルミ電極パッドを有するICを用い、図1の構造の評価用半導体装置を作製した。なお、接着剤の硬化は150℃2時間で行った。この方法で作製した30mm角のサンプルを各水準20個準備し、30℃、70%RHの雰囲気下で192時間調湿した後、すみやかに最高温度265℃、15秒の赤外線リフロー炉2回を通過させ、膨れおよび剥がれを確認し、20個中の剥離した個数を調べた。   (2) Reflow resistance: After laminating the adhesive sheet for semiconductor devices (thickness 50 μm) of the present invention on the back surface of the evaluation pattern tape of (1) under the conditions of 130 ° C. and 0.1 MPa, an aluminum electrode pad An evaluation semiconductor device having the structure shown in FIG. The adhesive was cured at 150 ° C. for 2 hours. Twenty 30 mm square samples prepared by this method were prepared for each level, and after conditioning for 192 hours in an atmosphere of 30 ° C. and 70% RH, two infrared reflow ovens with a maximum temperature of 265 ° C. and 15 seconds were immediately performed. It was allowed to pass through, and swelling and peeling were confirmed, and the number of peeled pieces out of 20 pieces was examined.

(3)サーマルサイクル性:上記(2)の方法で作製した30mm角の評価用半導体装置サンプルを各水準30個用意し、熱サイクル試験器(タバイエスペック(株)製、PL−3型)中で、−65℃〜150℃、最低および最高温度で各30分保持の条件で処理し、剥がれの発生を評価した。100サイクル、300サイクル、500サイクル、800サイクルの各終了時点でサンプルを取り出し、剥がれの発生を評価した。30個中、一つでも剥がれを確認したらN.G.とした。   (3) Thermal cycle performance: 30 samples of 30 mm square semiconductor devices for evaluation prepared by the method of (2) above were prepared for each level, and in a thermal cycle tester (PL-3 type, manufactured by Tabay Espec Co., Ltd.) Then, the film was processed at -65 ° C. to 150 ° C. at the minimum and maximum temperatures for 30 minutes, and the occurrence of peeling was evaluated. Samples were taken out at the end of each of 100 cycles, 300 cycles, 500 cycles, and 800 cycles, and the occurrence of peeling was evaluated. If it is confirmed that at least one of 30 pieces is peeled off, N. G. It was.

(4)軟化点(℃)、貯蔵弾性率(E’(PMa))、軟化点比率(B/A)、E’変化率:動的粘弾性測定装置(セイコーインスツルメンツ(株)(現在はエスアイアイ・ナノテクノロジー(株))製、DMS6100)を用いて、温度−70℃〜300℃、周波数1Hz、昇温速度5℃/min、引張モード、サンプルサイズ:長さ5mm、幅10mmの条件で貯蔵弾性率E’、損失弾性率E’’、tanδ(=E’’/E’)をそれぞれ測定した。軟化点はtanδのピーク温度を採用した。サンプルは、150℃2時間加熱した25μm厚みのものを使用した。また、B/Aは、150℃で2時間加熱した後の軟化点Aと、150℃で2時間加熱後さらに200℃で168時間放置した後の軟化点Bから求めた。E’変化率は、150℃で2時間加熱した後のE’すなわちE1’、150℃で2時間加熱後さらに200℃で168時間加熱した後のE’すなわちE2’を用いて、E’変化率=(LogE2’−LogE1’)/168 として求めた。E’は200℃での値を読みとった。   (4) Softening point (° C.), storage elastic modulus (E ′ (PMa)), softening point ratio (B / A), E ′ change rate: dynamic viscoelasticity measuring device (Seiko Instruments Inc. (currently SAI Using DMS6100) manufactured by I-Nanotechnology Co., Ltd., temperature -70 ° C to 300 ° C, frequency 1 Hz, heating rate 5 ° C / min, tensile mode, sample size: length 5 mm, width 10 mm Storage elastic modulus E ′, loss elastic modulus E ″, and tan δ (= E ″ / E ′) were measured. As the softening point, a peak temperature of tan δ was adopted. A sample having a thickness of 25 μm heated at 150 ° C. for 2 hours was used. B / A was determined from the softening point A after heating at 150 ° C. for 2 hours and the softening point B after heating at 150 ° C. for 2 hours and then standing at 200 ° C. for 168 hours. The rate of change of E ′ is the change in E ′ using E ′ after heating at 150 ° C. for 2 hours, ie E1 ′, E ′ after heating for 2 hours at 150 ° C. and then 168 hours at 200 ° C., ie E2 ′. It calculated | required as a ratio = (LogE2'-LogE1 ') / 168. E 'was read at 200 ° C.

(5)接着力:上記(1)の評価用パターンテープの裏面に、130℃、0.1MPaの条件で本発明の半導体装置用接着剤シートをラミネートした後、シリコンウエハーを160℃、0.3MPaの条件で半導体装置用接着剤シートに加熱圧着した。引き続き、エアオーブン中で150℃、2時間加熱処理を行った。得られたサンプルのパターンテープを幅5mmになるように切断し、90°方向に50mm/minの速度で剥離し、その際の接着力を測定した。   (5) Adhesive strength: After laminating the adhesive sheet for a semiconductor device of the present invention on the back surface of the pattern tape for evaluation of (1) above at 130 ° C. and 0.1 MPa, the silicon wafer was placed at 160 ° C., 0. It heat-pressed to the adhesive sheet for semiconductor devices on the conditions of 3 MPa. Subsequently, heat treatment was performed at 150 ° C. for 2 hours in an air oven. The obtained pattern tape of the sample was cut so as to have a width of 5 mm, peeled in the 90 ° direction at a speed of 50 mm / min, and the adhesive force at that time was measured.

(6)絶縁信頼性:(1)の評価用パターンテープの導体幅50μm、導体間距離50μmのくし型形状評価用サンプルの導体パターン面に、接着剤組成物からなる厚さ50μmの接着剤層付きの、厚さ0.1mmの純銅板を、130℃、0.1MPaの条件でラミネートした後、エアオーブン中で150℃、2時間加熱処理を行った。得られたサンプルを用いて、85℃、85%RHの恒温恒湿槽内で100Vの電圧を連続的に印加した状態において、測定直後と400時間後の抵抗値を測定した。   (6) Insulation reliability: an adhesive layer having a thickness of 50 μm made of an adhesive composition on a conductor pattern surface of a comb shape evaluation sample having a conductor width of 50 μm and a distance between conductors of 50 μm of the evaluation pattern tape of (1) Then, a pure copper plate with a thickness of 0.1 mm was laminated under conditions of 130 ° C. and 0.1 MPa, and then heat-treated in an air oven at 150 ° C. for 2 hours. Using the obtained sample, resistance values immediately after measurement and after 400 hours were measured in a state where a voltage of 100 V was continuously applied in a constant temperature and humidity chamber at 85 ° C. and 85% RH.

(7)長期高温耐熱性:電解銅箔(1/2オンス)をJPCA−BM02の銅はく面クリーニングの標準手順に従いクリーニングしたものの光沢面に、25μm厚の半導体装置用接着剤シートを130℃でラミネートし、150℃で2時間加熱した。それらを180℃のエアオーブンに入れ、長期放置試験をおこなった。途中、接着剤の剥がれが生じればN.G.とした。   (7) Long-term high-temperature heat resistance: A 25 μm thick adhesive sheet for semiconductor devices is applied to a glossy surface of electrolytic copper foil (1/2 ounce) cleaned according to the standard procedure for cleaning the copper surface of JPCA-BM02 at 130 ° C. And heated at 150 ° C. for 2 hours. They were placed in an air oven at 180 ° C. and a long-term standing test was conducted. If the adhesive peels off during the process, G. It was.

(8)反応率:加熱前の試料の発熱量Q1(mJ/mg)と150℃で2時間加熱後の試料の発熱量Q2(mJ/mg)を測定し、反応率(%)=((Q1−Q2)/Q1)×100として求めた。測定条件は、装置セイコーインスツルメンツ(現SIIナノテクノロジー(株))製DSC6200、温度25℃〜350℃、昇温速度10℃/min、試料量約10mg、Al製オープンパン使用、窒素ガスフロー40ml/minにて測定した。   (8) Reaction rate: The calorific value Q1 (mJ / mg) of the sample before heating and the calorific value Q2 (mJ / mg) of the sample after heating at 150 ° C. for 2 hours were measured, and the reaction rate (%) = (( It calculated | required as Q1-Q2) / Q1) * 100. The measurement conditions were DSC6200 manufactured by Seiko Instruments Inc. (currently SII Nanotechnology Co., Ltd.), temperature 25 ° C. to 350 ° C., heating rate 10 ° C./min, sample amount about 10 mg, Al open pan used, nitrogen gas flow 40 ml / Measured in min.

参考例1(ポリアミド樹脂の合成)
酸としてダイマー酸PRIPOL1009(ユニケマ社製)およびアジピン酸を用い、酸/アミン比をほぼ等量の範囲で混合し、消泡剤およびリン酸触媒を先の混合物に対して各々1重量%加え、反応体を調製した。この反応体を、140℃、1時間撹拌加熱後、205℃まで昇温し、約1.5時間撹拌した。約2kPaの真空下で、0.5時間保持し、温度を低下させた。最後に、酸化防止剤を添加し、重量平均分子量20000、酸価10のポリアミド樹脂を取り出した。
Reference Example 1 (Synthesis of polyamide resin)
Using dimer acid PRIPOL 1009 (manufactured by Unikema) and adipic acid as the acid, the acid / amine ratio was mixed in an approximately equal range, and an antifoaming agent and a phosphoric acid catalyst were added in an amount of 1% by weight to the previous mixture, A reactant was prepared. The reactant was stirred and heated at 140 ° C. for 1 hour, then heated to 205 ° C. and stirred for about 1.5 hours. The temperature was lowered under a vacuum of about 2 kPa for 0.5 hours. Finally, an antioxidant was added, and a polyamide resin having a weight average molecular weight of 20000 and an acid value of 10 was taken out.

表1に実施例および比較例で用いた各材料の詳細を示す。   Table 1 shows details of each material used in Examples and Comparative Examples.

実施例1〜12、比較例1〜2
(半導体装置用接着剤シートの作製)
表2〜3に記載の各無機質充填剤をトルエンと混合した後、ボールミル処理して分散液を作製した。この分散液に、各熱可塑性樹脂、熱硬化性樹脂、硬化剤、硬化促進剤、その他添加剤および分散液と等重量のメチルエチルケトンをそれぞれ表2〜3の組成比となるように加え、30℃で撹拌、混合して接着剤溶液を作製した。この接着剤溶液をバーコータで、シリコーン離型剤付きの厚さ38μmのポリエチレンテレフタレートフィルム(藤森工業(株)製“フィルムバイナ”GT)に必要な乾燥厚さとなるように塗布し、150℃で4分間乾燥し、保護フィルムを貼り合わせて、本発明の半導体装置用接着シートを作製した。それぞれの組成、特性を表2〜3に示す。
Examples 1-12, Comparative Examples 1-2
(Preparation of adhesive sheet for semiconductor devices)
Each inorganic filler listed in Tables 2-3 was mixed with toluene, and then ball milled to prepare a dispersion. To this dispersion, each thermoplastic resin, thermosetting resin, curing agent, curing accelerator, other additives, and an equal weight of methyl ethyl ketone to the dispersion were added so as to have the composition ratios shown in Tables 2 and 3, respectively. The mixture was stirred and mixed to prepare an adhesive solution. This adhesive solution was applied with a bar coater to a dry thickness required for a 38 μm-thick polyethylene terephthalate film with a silicone release agent (“Film Binner” GT manufactured by Fujimori Kogyo Co., Ltd.) It dried for minutes and bonded the protective film and produced the adhesive sheet for semiconductor devices of this invention. Each composition and characteristic are shown in Tables 2-3.

(半導体装置の作製)
TAB用接着剤付きテープ(タイプ#7100、(31N0−00FS)、東レ(株)製)に18μmの電解銅箔を、140℃、0.1MPaの条件でラミネートした。続いてエアオーブンを用いて、80℃で3時間、100℃で5時間、150℃で5時間の順次加熱キュア処理を行い、銅箔付きTAB用テープを作製した。得られた銅箔付きTAB用テープの銅箔面に常法によりフォトレジスト膜を形成し、エッチング、レジスト剥離、電解ニッケルメッキ、電解金メッキ、フォトソルダーレジスト加工をそれぞれ行い、パターンテープを作製した。ニッケルメッキ厚は3μm、金メッキ厚は1μmとした。続いてパターンテープの裏面に、130℃、0.1MPaの条件で、表2〜3に記載された各接着剤を有する半導体装置用接着剤シートをラミネートした後、アルミ電極パッドを有するICを170℃、0.3MPaの条件で半導体装置用接着剤シートに加熱圧着した。次にエアオーブン中で150℃、2時間加熱処理を行った。続いてこれに、25μmの金ワイヤーを180℃、110kHzでボンディングした。さらに液状封止樹脂(“チップコート”8118、ナミックス(株)製)で封止した。最後にハンダボールを搭載し、図1の構造の半導体装置を作製した。得られた半導体装置の特性を表2〜3に示す。
(Fabrication of semiconductor devices)
An 18 μm electrolytic copper foil was laminated on a tape with an adhesive for TAB (type # 7100, (31N0-00FS), manufactured by Toray Industries, Inc.) at 140 ° C. and 0.1 MPa. Subsequently, using an air oven, a heat curing treatment was sequentially performed at 80 ° C. for 3 hours, at 100 ° C. for 5 hours, and at 150 ° C. for 5 hours to produce a TAB tape with copper foil. A photoresist film was formed on the copper foil surface of the obtained TAB tape with copper foil by a conventional method, and etching, resist peeling, electrolytic nickel plating, electrolytic gold plating, and photo solder resist processing were performed to prepare a pattern tape. The nickel plating thickness was 3 μm, and the gold plating thickness was 1 μm. Subsequently, an adhesive sheet for a semiconductor device having each adhesive described in Tables 2 to 3 was laminated on the back surface of the pattern tape under conditions of 130 ° C. and 0.1 MPa, and then an IC having an aluminum electrode pad was 170. The adhesive sheet for semiconductor devices was thermocompression bonded under the conditions of ° C and 0.3 MPa. Next, heat treatment was performed at 150 ° C. for 2 hours in an air oven. Subsequently, a 25 μm gold wire was bonded to this at 180 ° C. and 110 kHz. Further, it was sealed with a liquid sealing resin (“Chip Coat” 8118, manufactured by NAMICS Co., Ltd.). Finally, a solder ball was mounted to manufacture a semiconductor device having the structure of FIG. The characteristics of the obtained semiconductor device are shown in Tables 2-3.

Figure 2006249415
Figure 2006249415

Figure 2006249415
Figure 2006249415

Figure 2006249415
Figure 2006249415

表2〜3の実施例および比較例から、本発明により得られる半導体装置用接着剤組成物は、接着力、耐リフロー性、サーマルサイクル性に優れていることが分かる。   From the Examples and Comparative Examples in Tables 2-3, it can be seen that the adhesive composition for semiconductor devices obtained by the present invention is excellent in adhesive strength, reflow resistance, and thermal cycle properties.

BGA方式の半導体装置の一態様の断面図。FIG. 14 is a cross-sectional view of one embodiment of a BGA semiconductor device. 本発明の半導体装置用接着剤シートの一態様の断面図。Sectional drawing of the one aspect | mode of the adhesive agent sheet for semiconductor devices of this invention.

符号の説明Explanation of symbols

1 半導体集積回路
2、9 接着剤層
3 絶縁体層
4 導体パターン
5 ボンディングワイヤー
6 半田ボール
7 封止樹脂
8 保護フィルム層
DESCRIPTION OF SYMBOLS 1 Semiconductor integrated circuit 2, 9 Adhesive layer 3 Insulator layer 4 Conductor pattern 5 Bonding wire 6 Solder ball 7 Sealing resin 8 Protective film layer

Claims (11)

加熱後のDSCでの反応率が70〜100%であり、加熱後に200℃以上の温度領域に少なくとも一つの軟化点を有することを特徴とする半導体装置用接着剤組成物。 An adhesive composition for a semiconductor device, having a DSC reaction rate of 70 to 100% after heating and having at least one softening point in a temperature region of 200 ° C. or higher after heating. 加熱後のDSCでの反応率が70〜100%であり、加熱後に−65℃以上50℃以下の温度領域および200℃以上300℃以下の温度領域にそれぞれ少なくとも一つの軟化点を有することを特徴とする請求項1記載の半導体装置用接着剤組成物。 The reaction rate in DSC after heating is 70 to 100%, and has at least one softening point in the temperature range of −65 ° C. or more and 50 ° C. or less and 200 ° C. or more and 300 ° C. or less after heating. The adhesive composition for a semiconductor device according to claim 1. 150℃で2時間加熱後の軟化点Aと、150℃で2時間加熱後さらに200℃で168時間加熱した後の軟化点Bが、B/A≦1.5であることを特徴とする請求項1記載の半導体装置用接着剤組成物。 The softening point A after heating at 150 ° C. for 2 hours and the softening point B after heating at 150 ° C. for 2 hours and further at 200 ° C. for 168 hours are B / A ≦ 1.5. Item 2. An adhesive composition for a semiconductor device according to Item 1. 炭素数1〜8の側鎖を有するアクリル酸エステルおよび/またはメタクリル酸エステルと、エポキシ基、水酸基、カルボキシル基、アミノ基、ヒドロキシアルキル基、ビニル基、シラノール基、イソシアネート基から選ばれた少なくとも1種の官能基を有する熱可塑性樹脂を含むことを特徴とする請求項1記載の半導体装置用接着剤組成物。 Acrylic acid ester and / or methacrylic acid ester having a side chain having 1 to 8 carbon atoms and at least one selected from an epoxy group, a hydroxyl group, a carboxyl group, an amino group, a hydroxyalkyl group, a vinyl group, a silanol group, and an isocyanate group The adhesive composition for a semiconductor device according to claim 1, comprising a thermoplastic resin having various functional groups. 熱可塑性樹脂のガラス転移温度が20℃以下であることを特徴とする請求項4記載の半導体装置用接着剤組成物。 The adhesive composition for semiconductor devices according to claim 4, wherein the thermoplastic resin has a glass transition temperature of 20 ° C. or lower. エポキシ樹脂および/またはフェノール樹脂を含むことを特徴とする請求項1記載の半導体装置用接着剤組成物。 The adhesive composition for a semiconductor device according to claim 1, comprising an epoxy resin and / or a phenol resin. イオン捕捉剤を含むことを特徴とする請求項1記載の半導体装置用接着剤組成物。 The adhesive composition for a semiconductor device according to claim 1, further comprising an ion scavenger. シリカ、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、炭化ケイ素から選ばれた少なくとも1種の無機質充填剤を含有することを特徴とする請求項1記載の半導体装置用接着剤組成物。 2. The adhesive composition for a semiconductor device according to claim 1, comprising at least one inorganic filler selected from silica, aluminum oxide, aluminum hydroxide, silicon nitride, and silicon carbide. 請求項1〜8のいずれか記載の半導体装置用接着剤組成物からなる接着剤層と、少なくとも1層の剥離可能な保護フィルム層を有する半導体装置用接着剤シート。 An adhesive sheet for a semiconductor device comprising an adhesive layer comprising the adhesive composition for a semiconductor device according to claim 1 and at least one peelable protective film layer. 請求項1〜8のいずれか記載の半導体装置用接着剤組成物を用いた半導体接続用基板。 The board | substrate for semiconductor connection using the adhesive composition for semiconductor devices in any one of Claims 1-8. 請求項10記載の半導体接続用基板を用いた半導体装置。 A semiconductor device using the semiconductor connection substrate according to claim 10.
JP2006029277A 2005-02-09 2006-02-07 Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device Active JP4961761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029277A JP4961761B2 (en) 2005-02-09 2006-02-07 Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005032897 2005-02-09
JP2005032897 2005-02-09
JP2006029277A JP4961761B2 (en) 2005-02-09 2006-02-07 Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device

Publications (3)

Publication Number Publication Date
JP2006249415A true JP2006249415A (en) 2006-09-21
JP2006249415A5 JP2006249415A5 (en) 2008-11-20
JP4961761B2 JP4961761B2 (en) 2012-06-27

Family

ID=37090223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029277A Active JP4961761B2 (en) 2005-02-09 2006-02-07 Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device

Country Status (1)

Country Link
JP (1) JP4961761B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127042A (en) * 2007-11-28 2009-06-11 Lintec Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and method for manufacturing semiconductor device
JP2009203338A (en) * 2008-02-27 2009-09-10 Lintec Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and method for manufacturing semiconductor device
JP2009256630A (en) * 2008-03-18 2009-11-05 Hitachi Chem Co Ltd Adhesive sheet
JP2010116453A (en) * 2008-11-12 2010-05-27 Nippon Steel Chem Co Ltd Film adhesive, semiconductor package using the same, and method for producing semiconductor package
JP2010132890A (en) * 2008-10-28 2010-06-17 Hitachi Chem Co Ltd Adhesive sheet and method for manufacturing semiconductor device using the same
JP2010180334A (en) * 2009-02-06 2010-08-19 Shin-Etsu Chemical Co Ltd Adhesive composition, adhesive sheet, and dicing die attach film
WO2011125711A1 (en) * 2010-03-31 2011-10-13 リンテック株式会社 Sheet for forming resin film for chip, and method for manufacturing semiconductor chip
JP2012153819A (en) * 2011-01-27 2012-08-16 Lintec Corp Adhesive composition and adhesive sheet
JP2012246461A (en) * 2011-05-31 2012-12-13 Hitachi Chemical Co Ltd Adhesive sheet
JP2013023684A (en) * 2011-07-26 2013-02-04 Nitto Denko Corp Adhesive sheet and use thereof
JP2013038098A (en) * 2011-08-03 2013-02-21 Nitto Denko Corp Dicing/die-bonding film
JP2013187376A (en) * 2012-03-08 2013-09-19 Hitachi Chemical Co Ltd Adhesive film for semiconductor device, semiconductor device manufacturing method and semiconductor device using the same
JP2013187375A (en) * 2012-03-08 2013-09-19 Hitachi Chemical Co Ltd Adhesive film for semiconductor device, semiconductor device manufacturing method and semiconductor device using the same
KR20140061245A (en) * 2012-11-12 2014-05-21 아지노모토 가부시키가이샤 Insulating resin material
JP2014194031A (en) * 2014-05-22 2014-10-09 Lintec Corp Production method of adhesive sheet and semiconductor device
JP2014208782A (en) * 2013-03-22 2014-11-06 東レ株式会社 Adhesive composition for electronic appliance, and adhesive sheet for electronic appliance
JP2015026571A (en) * 2013-07-29 2015-02-05 日東シンコー株式会社 Seal material
WO2015105028A1 (en) * 2014-01-08 2015-07-16 日東電工株式会社 Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device
JP2017160443A (en) * 2017-04-05 2017-09-14 味の素株式会社 Insulation resin material
JP2018141158A (en) * 2018-04-05 2018-09-13 味の素株式会社 Insulation resin material
JP2019151857A (en) * 2019-06-10 2019-09-12 味の素株式会社 Insulation resin material
JP2022045073A (en) * 2020-09-08 2022-03-18 株式会社東芝 Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151286A (en) * 1984-12-24 1986-07-09 Canon Inc Adhesive for sealing liquid crystal cell
JPH0959573A (en) * 1995-08-22 1997-03-04 Toray Ind Inc Tape with adhesive for tab and semiconductor device
JPH09255933A (en) * 1996-03-21 1997-09-30 Nitto Denko Corp Sheetlike adhesive material and its cured item
JP2001274300A (en) * 2000-03-27 2001-10-05 Kyocera Corp Adhesive and electronic component using the same
JP2002088141A (en) * 2000-09-13 2002-03-27 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and copper-clad laminate using the same
JP2006342333A (en) * 2005-04-13 2006-12-21 Shin Etsu Chem Co Ltd Flame retardant adhesive composition, and adhesive sheet, coverlay film and flexible copper-clad laminate plate, using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151286A (en) * 1984-12-24 1986-07-09 Canon Inc Adhesive for sealing liquid crystal cell
JPH0959573A (en) * 1995-08-22 1997-03-04 Toray Ind Inc Tape with adhesive for tab and semiconductor device
JPH09255933A (en) * 1996-03-21 1997-09-30 Nitto Denko Corp Sheetlike adhesive material and its cured item
JP2001274300A (en) * 2000-03-27 2001-10-05 Kyocera Corp Adhesive and electronic component using the same
JP2002088141A (en) * 2000-09-13 2002-03-27 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and copper-clad laminate using the same
JP2006342333A (en) * 2005-04-13 2006-12-21 Shin Etsu Chem Co Ltd Flame retardant adhesive composition, and adhesive sheet, coverlay film and flexible copper-clad laminate plate, using the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127042A (en) * 2007-11-28 2009-06-11 Lintec Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and method for manufacturing semiconductor device
JP2009203338A (en) * 2008-02-27 2009-09-10 Lintec Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and method for manufacturing semiconductor device
JP2009256630A (en) * 2008-03-18 2009-11-05 Hitachi Chem Co Ltd Adhesive sheet
JP2010132890A (en) * 2008-10-28 2010-06-17 Hitachi Chem Co Ltd Adhesive sheet and method for manufacturing semiconductor device using the same
JP2010116453A (en) * 2008-11-12 2010-05-27 Nippon Steel Chem Co Ltd Film adhesive, semiconductor package using the same, and method for producing semiconductor package
JP2010180334A (en) * 2009-02-06 2010-08-19 Shin-Etsu Chemical Co Ltd Adhesive composition, adhesive sheet, and dicing die attach film
WO2011125711A1 (en) * 2010-03-31 2011-10-13 リンテック株式会社 Sheet for forming resin film for chip, and method for manufacturing semiconductor chip
JP2011216677A (en) * 2010-03-31 2011-10-27 Lintec Corp Sheet for forming resin film for chip and method of manufacturing semiconductor chip
TWI413588B (en) * 2010-03-31 2013-11-01 Lintec Corp A sheet for forming a resin film for a wafer, and a method for manufacturing the semiconductor wafer
CN103903980A (en) * 2010-03-31 2014-07-02 琳得科株式会社 Resin film forming sheet for chip, and method for manufacturing semiconductor chip
US8735881B1 (en) 2010-03-31 2014-05-27 Lintec Corporation Resin film forming sheet for chip, and method for manufacturing semiconductor chip
US8674349B2 (en) 2010-03-31 2014-03-18 Lintec Corporation Resin film forming sheet for chip, and method for manufacturing semiconductor chip
JP2012153819A (en) * 2011-01-27 2012-08-16 Lintec Corp Adhesive composition and adhesive sheet
JP2012246461A (en) * 2011-05-31 2012-12-13 Hitachi Chemical Co Ltd Adhesive sheet
JP2013023684A (en) * 2011-07-26 2013-02-04 Nitto Denko Corp Adhesive sheet and use thereof
JP2013038098A (en) * 2011-08-03 2013-02-21 Nitto Denko Corp Dicing/die-bonding film
JP2013187376A (en) * 2012-03-08 2013-09-19 Hitachi Chemical Co Ltd Adhesive film for semiconductor device, semiconductor device manufacturing method and semiconductor device using the same
JP2013187375A (en) * 2012-03-08 2013-09-19 Hitachi Chemical Co Ltd Adhesive film for semiconductor device, semiconductor device manufacturing method and semiconductor device using the same
KR20200075799A (en) * 2012-11-12 2020-06-26 아지노모토 가부시키가이샤 Insulating resin material
KR102125687B1 (en) * 2012-11-12 2020-06-23 아지노모토 가부시키가이샤 Insulating resin material
KR102381505B1 (en) * 2012-11-12 2022-04-04 아지노모토 가부시키가이샤 Insulating resin material
JP2014095047A (en) * 2012-11-12 2014-05-22 Ajinomoto Co Inc Insulation resin material
KR102284889B1 (en) * 2012-11-12 2021-08-04 아지노모토 가부시키가이샤 Insulating resin material
TWI618096B (en) * 2012-11-12 2018-03-11 味之素股份有限公司 Insulating resin material
KR20210096027A (en) * 2012-11-12 2021-08-04 아지노모토 가부시키가이샤 Insulating resin material
KR20140061245A (en) * 2012-11-12 2014-05-21 아지노모토 가부시키가이샤 Insulating resin material
JP2014208782A (en) * 2013-03-22 2014-11-06 東レ株式会社 Adhesive composition for electronic appliance, and adhesive sheet for electronic appliance
JP2015026571A (en) * 2013-07-29 2015-02-05 日東シンコー株式会社 Seal material
WO2015105028A1 (en) * 2014-01-08 2015-07-16 日東電工株式会社 Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device
JP2014194031A (en) * 2014-05-22 2014-10-09 Lintec Corp Production method of adhesive sheet and semiconductor device
JP2017160443A (en) * 2017-04-05 2017-09-14 味の素株式会社 Insulation resin material
JP2018141158A (en) * 2018-04-05 2018-09-13 味の素株式会社 Insulation resin material
JP2019151857A (en) * 2019-06-10 2019-09-12 味の素株式会社 Insulation resin material
JP2022045073A (en) * 2020-09-08 2022-03-18 株式会社東芝 Semiconductor device
JP7346372B2 (en) 2020-09-08 2023-09-19 株式会社東芝 semiconductor equipment
US11769714B2 (en) 2020-09-08 2023-09-26 Kabushiki Kaisha Toshiba Semiconductor device with semiconductor chip mounted on die pad and leads of lead frame

Also Published As

Publication number Publication date
JP4961761B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4961761B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
JP5109411B2 (en) Adhesive composition for electronic device, adhesive sheet for electronic device using the same, and electronic component
KR100417776B1 (en) Adhesive Sheet for Semiconductor Connecting Substrate, Adhesive-Backed Tape for TAB, Adhesive-Backed Tape for Wire-Bonding Connection, Semiconductor Connecting Substrate, and Semiconductor Device
JP5266696B2 (en) Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP5087910B2 (en) Adhesive composition for electronic device, adhesive sheet for electronic device, and electronic component using the same
JP5131109B2 (en) Adhesive composition for electronic parts and adhesive sheet for electronic parts using the same
JP4961747B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for connecting semiconductor device, and semiconductor device
JP5200386B2 (en) Adhesive sheet for electronic materials
JP2008231287A (en) Adhesive composition for semiconductor device, adhesive sheet using the same, tape with adhesive agent for semiconductor, and copper-clad laminate
JP2006176764A (en) Adhesive composition for electronic equipment, adhesive sheet for electronic equipment, and electronic part and electronic equipment using the same
JP4876317B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
JP3956771B2 (en) Adhesive sheet for semiconductor device, semiconductor connection substrate and semiconductor device
JPH10178251A (en) Board for connecting semiconductor integrated circuit, parts constituting it, and semiconductor device
JP2009091566A (en) Adhesive composition and adhesive sheet using it
JP4742402B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, and semiconductor device
JPH10178053A (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JPH11260839A (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the adhesive composition
JP2008222815A (en) Adhesive composition and adhesive sheet using it
JP2012044193A (en) Adhesive sheet for semiconductor device, component for semiconductor device and semiconductor device using the same
JP2003206452A (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrates for connecting semiconductors and semiconductor device
JP4359954B2 (en) Adhesive sheet for semiconductor device, component using the same, and semiconductor device
JPH10178037A (en) Semiconductor device adhesive composition and semiconductor device adhesive sheet using the same
JPH10178039A (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP3911776B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JPH10178066A (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R151 Written notification of patent or utility model registration

Ref document number: 4961761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3