JP2006242676A - Outer diameter measuring device and measuring probe - Google Patents

Outer diameter measuring device and measuring probe Download PDF

Info

Publication number
JP2006242676A
JP2006242676A JP2005056999A JP2005056999A JP2006242676A JP 2006242676 A JP2006242676 A JP 2006242676A JP 2005056999 A JP2005056999 A JP 2005056999A JP 2005056999 A JP2005056999 A JP 2005056999A JP 2006242676 A JP2006242676 A JP 2006242676A
Authority
JP
Japan
Prior art keywords
measured
groove
measuring
outer diameter
contact terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005056999A
Other languages
Japanese (ja)
Inventor
Takeshi Kobayashi
武 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005056999A priority Critical patent/JP2006242676A/en
Publication of JP2006242676A publication Critical patent/JP2006242676A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an outer diameter measuring device for holding a columnar member when measuring the outer diameter of the columnar member, such as a column, and securing high measurement precision. <P>SOLUTION: The outer diameter measuring device measures the diameter of a groove section formed on a columnar member (work) to be measured by holding with upper and lower measuring probes installed in upper and lower directions (a direction in which gravity operates is set to the upper direction). The upper and lower measuring probes have two spherical contact terminals also serving as a positioning function, and a rod-like (columnar) contact terminal, respectively. The lower measuring probe has a support member (rod-like guide) for horizontally supporting the measurement member at both the left/right sides (both the axial sides of the member to be measured) in the contact terminal. The two spherical contact terminals installed on the upper measuring probe centers the member to be measured, and further the support member supports the posture of the member to be measured horizontally while the groove diameter is being measured by the contact terminal, thus measuring the member to be measured precisely. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、外径測定装置、及び測定子に関し、例えば、円柱面を有する部材の外径を測定するものに関する。   The present invention relates to an outer diameter measuring device and a measuring element, and for example, relates to an apparatus for measuring the outer diameter of a member having a cylindrical surface.

例えば、スピンドルなどの円柱部材の外径や、円柱部材に形成された玉軸受用の溝径など、円形断面を有する被測定部材の外径(直径、溝径)の加工精度を自動的に測定して仕分けしたいとの要望がある。   For example, the processing accuracy of the outer diameter (diameter, groove diameter) of a member to be measured having a circular cross section, such as the outer diameter of a cylindrical member such as a spindle or the groove diameter of a ball bearing formed on the cylindrical member, is automatically measured. There is a request to sort.

このような円柱部材の外径を測定する方法としては、一般に、円柱部材に2方向あるいは3方向から測定端子を当てて挟み込み、基準位置からの変位量により直径を求める方法がとられる。
このような技術として次の文献で開示されている直径測定方法がある。
特開平10−26523号公報
As a method of measuring the outer diameter of such a cylindrical member, generally, a method is used in which a measuring terminal is sandwiched between two or three directions and the diameter is obtained from a displacement amount from a reference position.
As such a technique, there is a diameter measuring method disclosed in the following document.
JP-A-10-26523

この技術は、測定基準部材を用意し、これを用いて円盤部材の外径を測定するものである。
測定基準部材を用いることにより、円盤部材の芯だし精度などによる測定のばらつきを低減するものである。
This technique prepares a measurement reference member and measures the outer diameter of the disk member using the measurement reference member.
By using the measurement reference member, variation in measurement due to the centering accuracy of the disk member is reduced.

従来の外径測定装置は、円盤部材など、軸線方向の厚みが小さい被測定部材の測定を想定しており、円柱や円筒など、軸線方向に長い被測定物の測定は想定していなかった。
そのため、測定時に被測定部材が傾くなどして測定精度が低下する可能性があった。
特に、円柱面に形成された玉軸受用の溝を複数列有する被測定部材の溝径を測定する場合、溝ごとに対応する異なる測定子を用意する必要があった。
A conventional outer diameter measuring apparatus assumes measurement of a member to be measured such as a disk member having a small thickness in the axial direction, and does not assume measurement of an object to be measured that is long in the axial direction, such as a cylinder or a cylinder.
For this reason, there is a possibility that the measurement accuracy may deteriorate due to the member to be measured being inclined during measurement.
In particular, when measuring the groove diameter of a member to be measured having a plurality of rows of ball bearing grooves formed on a cylindrical surface, it is necessary to prepare different measuring elements corresponding to the respective grooves.

そこで、本発明の目的は、円柱などの柱状部材の外径測定時に柱状部材を保持し、高い測定精度を確保することである。   Therefore, an object of the present invention is to hold the columnar member when measuring the outer diameter of a columnar member such as a cylinder and to ensure high measurement accuracy.

本発明は、前記目的を達成するために、柱状部材の軸線に垂直な面の外周において、少なくとも異なる3点、又は、前記柱状部材の中心を通る少なくとも異なる2方向の点で接触する接触端子と、前記外周に接触した際の前記接触端子の位置を用いて前記柱状部材の外径寸法を測定する測定手段と、前記測定手段が測定する際に、前記接触端子が接触する点によって形成される面と前記柱状部材の軸線が垂直になるように、前記柱状部材を支持する支持部と、を具備したことを特徴とする外径測定装置を提供する(第1の構成)。
また、本発明は、第1の構成において、前記柱状部材は円柱部材により構成されており、前記柱状部材の外周に接して前記柱状部材の転がりを防止する転がり防止部材を具備し、測定手段は、前記柱状部材の外形寸法を測定する際に、前記柱状部材を前記転がり防止部材から離隔して測定するように構成することもできる(第2の構成)。
更に、本発明は、第1の構成、又は第2の構成の外径測定装置で使用する接触端子の少なくとも1つ、及び当該接触端子が接触する柱状部材の姿勢を保持するための支持部材を一体として固定する固定部と、第1の構成、又は第2の構成の外径測定装置に装着するための装着部と、を具備したことを特徴とする外径測定装置の測定子を提供する(第3の構成)。
In order to achieve the above object, the present invention provides a contact terminal that contacts at least three different points or at least two different points passing through the center of the columnar member on the outer periphery of the surface perpendicular to the axis of the columnar member. A measuring means for measuring the outer diameter of the columnar member using the position of the contact terminal when contacting the outer periphery, and a point where the contact terminal contacts when the measuring means measures Provided is an outer diameter measuring device comprising a support portion for supporting the columnar member such that the surface and the axis of the columnar member are perpendicular to each other (first configuration).
Further, the present invention is the first configuration, wherein the columnar member is configured by a columnar member, and includes a rolling prevention member that contacts an outer periphery of the columnar member and prevents the columnar member from rolling, and the measuring unit includes When measuring the outer dimension of the columnar member, the columnar member may be measured separately from the rolling prevention member (second configuration).
Furthermore, the present invention provides at least one contact terminal used in the outer diameter measuring apparatus having the first configuration or the second configuration, and a support member for maintaining the posture of the columnar member with which the contact terminal contacts. Provided is a measuring element for an outer diameter measuring device, comprising: a fixing portion that is fixed as a unit; and a mounting portion for mounting on the outer diameter measuring device having the first configuration or the second configuration. (Third configuration).

本発明によると、円柱などの柱状部材の外径測定時に柱状部材を保持し、高い測定精度を確保することができる。   According to the present invention, the columnar member can be held at the time of measuring the outer diameter of a columnar member such as a cylinder, and high measurement accuracy can be ensured.

(1)実施の形態の概要
本実施の形態の外形測定装置は、上下方向(重力の作用する方向を下方向とする)に設置された上測定子と下測定子で挟むことにより円柱状の被測定部材(ワーク)に形成された溝部の溝径を測定する。
(1) Outline of Embodiment The external shape measuring apparatus of the present embodiment has a cylindrical shape by being sandwiched between an upper measuring element and a lower measuring element that are installed in the vertical direction (the direction in which gravity acts is the downward direction). The groove diameter of the groove formed on the member to be measured (workpiece) is measured.

上測定子には位置決め機能を兼ねた2個の球状の接触端子があり、下測定子には棒状(円柱状)の接触端子がある。
また、下測定子には、接触端子の左右両側(被測定部材の軸方向両側)に測定部材を水平支持するための支持部材(棒状ガイド)を備えられている。
The upper probe has two spherical contact terminals that also serve as a positioning function, and the lower probe has a rod-shaped (columnar) contact terminal.
Further, the lower measuring element is provided with support members (bar-shaped guides) for horizontally supporting the measurement member on both the left and right sides of the contact terminal (on both sides in the axial direction of the member to be measured).

上測定子に設置された2個の球状接触端子が被測定部材の芯だしを行い、更に、接触端子で溝径を計測している間、支持部材が被測定部材の姿勢を水平に支持するため、高い精度で被測定部材の計測を行うことができる。   The two spherical contact terminals installed on the upper measuring element center the member to be measured, and while the groove diameter is measured by the contact terminal, the support member horizontally supports the posture of the member to be measured. Therefore, the member to be measured can be measured with high accuracy.

なお、本実施の形態で測定する被測定部材には、溝部が2カ所あり、これら被測定部の変更は、被測定部材の設置位置をロボットなどの外部駆動装置により移動させて測定位置に合わせることで行う。   The member to be measured in the present embodiment has two groove portions, and the change of the member to be measured is adjusted by moving the installation position of the member to be measured by an external drive device such as a robot. Do that.

上下測定子の構造により、軸方向に長くバランスの取り難い形状の被測定部材でも、被測定部材が水平に支持され安定した状態で測定行為ができ、被測定部材を移動させるだけで複数箇所の溝径を測定することができる。   Due to the structure of the upper and lower styluses, even the measured member that is long and difficult to balance in the axial direction can be measured in a stable state with the measured member supported horizontally. The groove diameter can be measured.

(2)実施の形態の詳細
図1は、本実施の形態に係る外径測定装置にて外径を測定するワークである被測定部材の形状を説明するための図である。
図1(a)は、被測定部材50の軸に垂直な方向の外形を示しており、図1(b)は、軸方向の外形を示している。
被測定部材50は、柱状の円柱部材を構成しており、例えば、ステンレス、鉄などの金属材料を用いて形成されている。
(2) Details of Embodiment FIG. 1 is a diagram for explaining the shape of a member to be measured, which is a workpiece for measuring the outer diameter by the outer diameter measuring apparatus according to the present embodiment.
FIG. 1A shows the outer shape in the direction perpendicular to the axis of the member 50 to be measured, and FIG. 1B shows the outer shape in the axial direction.
The member to be measured 50 constitutes a columnar columnar member, and is formed using a metal material such as stainless steel or iron, for example.

被測定部材50の外寸は、長さが15〜16[mm]程度、外径(直径)が4[mm]程度である。
被測定部材50は、例えば、軸付き砥石を高速・高精度で回転させるためのスピンドルに用いられる。
The outer dimension of the member to be measured 50 is about 15 to 16 [mm] in length and about 4 [mm] in outer diameter (diameter).
The member to be measured 50 is used, for example, as a spindle for rotating a shaft-equipped grindstone with high speed and high accuracy.

被測定部材50には、軸線方向に10[mm]程度離れて溝部51と溝部52が形成されている。
溝部51、及び溝部52は、玉軸受をはめ込むための玉軸受用溝であって、被測定部材50の周囲に渡って形成されている。
A groove 51 and a groove 52 are formed in the member to be measured 50 at a distance of about 10 mm in the axial direction.
The groove 51 and the groove 52 are ball bearing grooves for fitting ball bearings, and are formed around the member to be measured 50.

溝部51、溝部52は、半径1.2[mm]、深さ0.15[mm]程度のR形状を有した溝底を有している。
被測定部材50の円柱面、溝部51、及び溝部52は、例えば、旋盤加工や研削加工などの機械加工により形成されており、特に玉軸受をはめ込む溝部51や溝部52の加工精度が重要である。
The groove 51 and the groove 52 have a groove bottom having an R shape with a radius of 1.2 [mm] and a depth of about 0.15 [mm].
The cylindrical surface of the member to be measured 50, the groove 51, and the groove 52 are formed by, for example, machining such as lathe processing or grinding. Particularly, the processing accuracy of the groove 51 and the groove 52 into which the ball bearing is fitted is important. .

図2(a)は、本実施の形態に係る外形測定装置の外観を示した図である。
なお図示しないが、外形測定装置1のほかに、外形測定装置1に被測定部材50をセットしたり測定後にこれを仕分けする搬送ロボットや、外形測定装置1と搬送ロボットを制御する中央制御装置などが存在する。
これらの外形測定装置1、搬送ロボット、中央制御装置により外径測定システムが構成されている。
FIG. 2A is a diagram showing an appearance of the external shape measuring apparatus according to the present embodiment.
Although not shown, in addition to the outer shape measuring apparatus 1, a conveyance robot that sets the member to be measured 50 on the outer shape measuring apparatus 1 and sorts the member after measurement, a central control apparatus that controls the outer shape measuring apparatus 1 and the conveying robot, and the like Exists.
The outer diameter measuring system is constituted by the outer shape measuring device 1, the transfer robot, and the central control device.

外形測定装置1は、溝部51、溝部52の外形を測定する装置である。
外形測定装置1は、本体8、上測定子保持部5、下測定子保持部6、上測定子2、下測定子3、及び設置台22などから構成されている。
なお、以下では、上測定子2と下測定子3を区別しない場合、単に測定子と記す。
The contour measuring device 1 is a device that measures the contours of the groove 51 and the groove 52.
The external shape measuring apparatus 1 includes a main body 8, an upper probe holder 5, a lower probe holder 6, an upper probe 2, a lower probe 3, and an installation table 22.
In the following, when the upper measuring element 2 and the lower measuring element 3 are not distinguished, they are simply referred to as measuring elements.

本体8は、上測定子2を上下移動させるための駆動力を発揮する駆動機構や、測定子が被測定部材50を挟んだ際の上測定子2の位置(変位量)を検出する位置センサなどを装備しており、測定子により被測定部材50の外形を測定する動作を行う。   The main body 8 includes a drive mechanism that exerts a driving force for moving the upper measuring element 2 up and down, and a position sensor that detects the position (displacement amount) of the upper measuring element 2 when the measuring element sandwiches the member to be measured 50. Etc., and the operation of measuring the outer shape of the member 50 to be measured is performed by a measuring element.

また、本体8は、前後方向(被測定部材50の軸線方向)、及び上下移動させる本体移動機構に取り付けられている。
そして、この本体移動機構は、中央制御装置が供給する空気圧により、本体8を測定子と共に前後上下移動させることができる。
The main body 8 is attached to the main body moving mechanism that moves in the front-rear direction (the axial direction of the member 50 to be measured) and vertically.
And this main body moving mechanism can move the main body 8 back and forth with the measuring element by the air pressure supplied from the central control device.

本体8の測定を行う側の面には、上測定子保持部5と下測定子保持部6が、上測定子保持部5を上側にして上下一対に取り付けられている。
そして、上測定子保持部5には上測定子2が取り付けられ、下測定子保持部6には下測定子3が取り付けられている。
On the surface of the main body 8 on which the measurement is performed, the upper probe holder 5 and the lower probe holder 6 are attached in a pair of upper and lower with the upper probe holder 5 facing upward.
The upper probe 2 is attached to the upper probe holder 5, and the lower probe 3 is attached to the lower probe holder 6.

上測定子2は上測定子保持部5に上下方向にスライド可能に配設されており、上測定子2の位置は位置センサによって検出することができる。そして、検出された位置データは図示しない外部入出力インターフェースを介して中央制御装置に送信することができる。   The upper probe 2 is arranged on the upper probe holder 5 so as to be slidable in the vertical direction, and the position of the upper probe 2 can be detected by a position sensor. The detected position data can be transmitted to the central controller via an external input / output interface (not shown).

上測定子2の下方向への移動は、本体8内部に配設されたばねの弾性力で行い、上測定子2の上方向への移動は、中央制御装置から供給される空気圧により行う。
即ち、上測定子2に加える空気圧を低下させるとばねの弾性力で上測定子2が下がるようになっている。
The downward movement of the upper probe 2 is performed by the elastic force of a spring disposed inside the main body 8, and the upward movement of the upper probe 2 is performed by the air pressure supplied from the central controller.
That is, when the air pressure applied to the upper measuring element 2 is lowered, the upper measuring element 2 is lowered by the elastic force of the spring.

このように、ばねの弾性力で上測定子2を下げて被測定部材50を挟む構成とすることにより、一定の力で被測定部材50を挟む機構を低コストで実現することができる。   Thus, by adopting a configuration in which the member to be measured 50 is sandwiched by lowering the upper measuring element 2 with the elastic force of the spring, a mechanism for sandwiching the member to be measured 50 with a constant force can be realized at low cost.

一方、下測定子3は、下測定子保持部6に固定されており、上測定子2の位置センサが位置を測定する際の基準の高さを規定する。
このように、上測定子2は上下移動し、下測定子3は固定されているため、上測定子2を上下移動させることにより、上測定子2と下測定子3を開閉動作させることができる。
On the other hand, the lower probe 3 is fixed to the lower probe holder 6 and defines the reference height when the position sensor of the upper probe 2 measures the position.
Thus, since the upper probe 2 moves up and down and the lower probe 3 is fixed, the upper probe 2 and the lower probe 3 can be opened and closed by moving the upper probe 2 up and down. it can.

なお、本実施の形態では、一例として、上測定子2を可動とし、下測定子3を固定としたが、これに限定するものではなく、逆に上測定子2を固定とし、下測定子3を可動としてもよい。
更には、上測定子2と下測定子3の両方が可動するように構成することもできる。
In this embodiment, as an example, the upper probe 2 is movable and the lower probe 3 is fixed. However, the present invention is not limited to this. Conversely, the upper probe 2 is fixed and the lower probe 2 is fixed. 3 may be movable.
Furthermore, both the upper measuring element 2 and the lower measuring element 3 can be configured to move.

また、上測定子2と下測定子3は、それぞれ上測定子保持部5、下測定子保持部6から着脱可能に構成されている。
そして、下測定子保持部6は、外径測定装置で使用する接触端子(後述)の少なくとも1つ、及び当該接触端子が接触する柱状部材の姿勢を保持するための支持部材を一体として固定する固定部と、外径測定装置に装着するための装着部と、を備えた測定子を構成している。
Further, the upper probe 2 and the lower probe 3 are configured to be detachable from the upper probe holder 5 and the lower probe holder 6, respectively.
And the lower probe holding | maintenance part 6 fixes together the support member for hold | maintaining the attitude | position of the columnar member which at least 1 of the contact terminal (after-mentioned) used with an outer diameter measuring apparatus and the said contact terminal contacts. A measuring element is provided that includes a fixed part and a mounting part for mounting on the outer diameter measuring device.

外形測定装置1の前面(被測定部材50に対する面)には、設置台22が設けられている。この設置台22は、被測定部材50を測定するために搬送ロボットが被測定部材50を仮り置きする台である。   An installation table 22 is provided on the front surface of the outer shape measuring apparatus 1 (the surface with respect to the member to be measured 50). The installation table 22 is a table on which the transport robot temporarily places the member to be measured 50 in order to measure the member to be measured 50.

図2(b)は、設置台22を被測定部材50の軸線方向に見たところを示した図である。
図に示したように、設置台22には、被測定部材50の直径よりも間隔が小さい間隙が設けられており、この隙間の角部が被測定部材50の外周に接して被測定部材50の転がりを防止するため、被測定部材50を安定的に定位置に置けるようになっている。このように、設置台22は転がり防止部材を構成している。
FIG. 2B is a diagram showing the installation base 22 as viewed in the axial direction of the member 50 to be measured.
As shown in the figure, the installation base 22 is provided with a gap having a gap smaller than the diameter of the member to be measured 50, and the corner of the gap is in contact with the outer periphery of the member to be measured 50. Therefore, the member to be measured 50 can be stably placed at a fixed position. Thus, the installation base 22 constitutes a rolling prevention member.

図2(a)に戻り、本体8は、以上のように構成された設置台22に置かれた被測定部材50を次のようにして計測する。
まず、本体8は、上測定子2、下測定子3を開いた状態で、本体移動機構により設置台22方向に移動して、設置台22に形成された間隙に下測定子3を差し込む。
Returning to FIG. 2A, the main body 8 measures the member to be measured 50 placed on the installation base 22 configured as described above as follows.
First, the main body 8 is moved in the direction of the installation table 22 by the main body moving mechanism in a state where the upper measurement unit 2 and the lower measurement unit 3 are opened, and the lower measurement unit 3 is inserted into the gap formed in the installation table 22.

そして、本体8は、上測定子2を下方に移動して被測定部材50を挟み、本体移動機構により上方に移動する。
外形測定装置1は、このようにして測定子で被測定部材50を挟んで持ち上げることにより、測定時に被測定部材50を設置台22から離隔することができる。
The main body 8 moves the upper measuring element 2 downward to sandwich the member 50 to be measured, and moves upward by the main body moving mechanism.
In this way, the external shape measuring apparatus 1 can separate the member to be measured 50 from the installation base 22 at the time of measurement by lifting the member to be measured 50 with the measuring element.

次に搬送ロボットについて説明する。搬送ロボットは、中央制御装置が制御するモータにより駆動される。
搬送ロボットは、中央制御装置の制御により、複数の被測定部材50が多数用意された被測定部材用意エリアから被測定部材50を1つ取り出し、これを設置台22まで運んで設置台22に置く。
Next, the transfer robot will be described. The transfer robot is driven by a motor controlled by the central control device.
Under the control of the central control device, the transfer robot takes out one measured member 50 from the measured member preparation area in which a plurality of measured members 50 are prepared, carries the measured member 50 to the installation table 22, and places it on the installation table 22. .

そして、搬送ロボットは、被測定部材50の測定が終了すると、中央制御装置の制御により、設置台22から被測定部材50を取り上げ、中央制御装置から指示された分別先(加工精度によりランク分けされている)に運ぶ。   When the measurement of the member to be measured 50 is completed, the transfer robot picks up the member to be measured 50 from the installation base 22 under the control of the central control device, and ranks according to the sorting destination (the processing accuracy is instructed) from the central control device. To carry).

次に、中央制御装置について説明する。
中央制御装置は、被測定部材50の測定の進捗を確認しながら、外形測定装置1と搬送ロボットを制御する。
中央制御装置は、外形測定装置1に関しては、供給する空気圧を制御することにより外形測定装置1の動きを制御し、搬送ロボットに関しては、モータに供給する電力を制御することにより搬送ロボットの動きを制御する。
Next, the central controller will be described.
The central control device controls the outer shape measuring device 1 and the transport robot while confirming the progress of measurement of the member 50 to be measured.
The central control device controls the movement of the contour measuring device 1 by controlling the air pressure to be supplied with respect to the contour measuring device 1, and controls the motion of the transport robot by controlling the power supplied to the motor with respect to the transport robot. Control.

また、中央制御装置は、外形測定装置1からの上測定子2の位置データの受信、位置データによる被測定部材50の溝径算出、算出された溝径による被測定部材50の加工精度の判定、加工精度に応じた分別先の選択、といった一連の情報処理を行う。   Further, the central control device receives the position data of the upper probe 2 from the outer shape measuring device 1, calculates the groove diameter of the member to be measured 50 based on the position data, and determines the processing accuracy of the member to be measured 50 based on the calculated groove diameter. A series of information processing such as selection of a sorting destination according to processing accuracy is performed.

このような情報処理を行うために、中央処理装置は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、記憶装置、外部入出力インターフェースなどを用いて構成することができる。
中央処理装置は、上記の一連の処理を行うための外径測定プログラムを記憶装置に記憶しており、これをCPUで実行して上記の処理を行うことができる。
In order to perform such information processing, the central processing unit is configured using, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage device, an external input / output interface, and the like. can do.
The central processing unit stores an outer diameter measurement program for performing the above-described series of processing in a storage device, and can execute the above-described processing by executing the program with a CPU.

図3の各図は、測定時における測定子と被測定部材の関係を説明するための図である。
図3(a)は、測定子によって、溝部51の溝径を測定しているところを示している。
上測定子2の下面先端には、溝部51の溝底に接する接触端子11が設けられており、下測定子3の上面先端には溝部51の溝底に接する接触端子13が設けられている。
Each drawing of FIG. 3 is a diagram for explaining the relationship between the measuring element and the member to be measured at the time of measurement.
FIG. 3A shows a state in which the groove diameter of the groove 51 is measured by a probe.
A contact terminal 11 in contact with the groove bottom of the groove 51 is provided at the lower end of the upper probe 2, and a contact terminal 13 in contact with the groove bottom of the groove 51 is provided at the upper end of the lower probe 3. .

ここで、図3(b)を用いて、接触端子11、及び接触端子13についてより詳細に説明する。
上測定子2の下端面には、被測定部材50の軸線と軸線が平行な凹上の円柱面が形成されている。
この円柱面には、2つの球状の接触端子11が上測定子2の中心に対して対称となる位置に埋め込まれている。
Here, the contact terminal 11 and the contact terminal 13 will be described in more detail with reference to FIG.
A concave cylindrical surface in which the axis of the member to be measured 50 is parallel to the axis is formed on the lower end surface of the upper probe 2.
Two spherical contact terminals 11 are embedded in the cylindrical surface at positions that are symmetric with respect to the center of the upper probe 2.

接触端子11の直径は、溝部51の直径よりも小さく設定されており、このため、おのおのの接触端子11は、被測定部材50の中心を通る2方向から溝部51の溝底に接する。   The diameter of the contact terminal 11 is set to be smaller than the diameter of the groove portion 51, and therefore, each contact terminal 11 contacts the groove bottom of the groove portion 51 from two directions passing through the center of the member to be measured 50.

一方、下測定子3の上端面は平坦に形成されており、円柱形状を有する接触端子13が埋め込まれている。
接触端子13は、軸線が被測定部材50の軸線と垂直になるように配置され、また、接触端子13の直径は溝部51の直径よりも小さく設定されている。そのため、接触端子13は、溝部51の溝底の下端部分で接する。
On the other hand, the upper end surface of the lower probe 3 is formed flat, and a contact terminal 13 having a cylindrical shape is embedded therein.
The contact terminal 13 is arranged such that the axis is perpendicular to the axis of the member 50 to be measured, and the diameter of the contact terminal 13 is set smaller than the diameter of the groove 51. Therefore, the contact terminal 13 contacts at the lower end portion of the groove bottom of the groove portion 51.

このように外形測定装置1は、溝部51の溝底を、接触端子11、11、及び接触端子13により、被測定部材50の中心を通る3方向から抑えるため、測定時における被測定部材50の芯ぶれを防止することができ、高い精度で測定を行うことができる。なお、以下では、接触端子11、11、接触端子13を特に区別しない場合は単に接触端子と記す。   As described above, the external shape measuring apparatus 1 suppresses the groove bottom of the groove 51 from the three directions passing through the center of the member to be measured 50 by the contact terminals 11 and 11 and the contact terminal 13. It is possible to prevent runout and perform measurement with high accuracy. In the following description, the contact terminals 11 and 11 and the contact terminal 13 are simply referred to as contact terminals unless otherwise distinguished.

図3(a)に戻り、下測定子3には、更に円柱形状を有する支持部材15、及び支持部材16が設置されている。
支持部材15と支持部材16の軸線は接触端子13と平行であり、それぞれ接触端子13の軸線に対して対称な位置に配置されている。
Returning to FIG. 3A, the lower measuring element 3 is further provided with a support member 15 having a cylindrical shape and a support member 16.
The axes of the support member 15 and the support member 16 are parallel to the contact terminal 13, and are arranged at positions symmetrical with respect to the axis of the contact terminal 13.

支持部材15は、溝部51の溝径を測定する際に、被測定部材50の外面に接して被測定部材50の姿勢を軸線が水平となるように保持する。
一方、支持部材16は、溝部52の溝径を測定する際に、被測定部材50の外面に接して同様に被測定部材50の姿勢を保持する。
When measuring the groove diameter of the groove 51, the support member 15 is in contact with the outer surface of the member to be measured 50 and holds the posture of the member to be measured 50 so that the axis is horizontal.
On the other hand, when measuring the groove diameter of the groove portion 52, the support member 16 is in contact with the outer surface of the member to be measured 50 and similarly holds the posture of the member to be measured 50.

なお、接触端子11、11、接触端子13、支持部材15、支持部材16は、何れも接着剤で測定子に固定されており、着脱ができるようになっている。
このため、これら接触端子や支持部材が摩耗した場合は、摩耗したもののみ交換することができ、コスト低減を図ることができる。
The contact terminals 11, 11, the contact terminal 13, the support member 15, and the support member 16 are all fixed to the measuring element with an adhesive so that they can be attached and detached.
For this reason, when these contact terminals and supporting members are worn, only the worn ones can be replaced, and the cost can be reduced.

また、被測定部材50とは外形や寸法が異なる部材を計測する場合に、この部材が測定時に水平に保持されるような寸法の接触端子13、支持部材15、支持部材16を選んで下測定子3に取り付けることができる。   Further, when measuring a member whose outer shape or dimension is different from that of the member to be measured 50, the contact terminal 13, the support member 15, and the support member 16 having dimensions such that the member is held horizontally at the time of measurement are selected and measured below. It can be attached to the child 3.

このように支持部材15、支持部材16を設けたのは、被測定部材50が軸線方向に長い柱状の形状を有しているためである。
即ち、被測定部材50は、軸線方向に長い構造を持っているため、重力の作用により接触端子が接した部位の回りにトルクが発生し、支持部材16がないと被測定部材50が傾く場合がありえる。
The support member 15 and the support member 16 are provided in this way because the member to be measured 50 has a columnar shape that is long in the axial direction.
That is, since the member to be measured 50 has a structure that is long in the axial direction, torque is generated around the portion where the contact terminal contacts due to the action of gravity, and the member to be measured 50 tilts without the support member 16. There can be.

一方、柱状部材の外径を正確に測定するためには、接触端子が接触している点が形成する平面と柱状部材の軸線が垂直に保たれる必要がある。
そこで、外形測定装置1では、支持部材15、支持部材16が被測定部材50の傾きを抑える方向に被測定部材50を支えることにより、接触端子が接触している点が形成する平面と被測定部材50の軸線が垂直に保たれるようにしたのである。
On the other hand, in order to accurately measure the outer diameter of the columnar member, the plane formed by the points where the contact terminals are in contact with the axis of the columnar member must be kept vertical.
Therefore, in the outer shape measuring apparatus 1, the support member 15 and the support member 16 support the member to be measured 50 in a direction to suppress the inclination of the member to be measured 50. The axis of the member 50 is kept vertical.

これによって、被測定部材50の傾きによる測定精度の低下を防止することができる。
また、支持部材15、支持部材16が被測定部材50に発生するトルクのバランスをとるため、接触端子や溝部51にかかる応力を軽減することができ、接触端子や被測定部材50の損傷や変形などを抑えることができる。
Thereby, it is possible to prevent a decrease in measurement accuracy due to the inclination of the member to be measured 50.
Further, since the support member 15 and the support member 16 balance the torque generated in the member to be measured 50, the stress applied to the contact terminal and the groove 51 can be reduced, and the contact terminal and the member to be measured 50 are damaged or deformed. Etc. can be suppressed.

図3(c)は、測定子によって溝部52を測定しているところを示している。
溝部52の直径よりも接触端子11、11、及び接触端子13の直径の方が小さく設定されており、このため、接触端子11、11、及び接触端子13は溝部52の溝底に3点で接することができる。
FIG. 3C shows a state in which the groove 52 is measured with a measuring element.
The diameters of the contact terminals 11, 11 and the contact terminal 13 are set to be smaller than the diameter of the groove portion 52. For this reason, the contact terminals 11, 11 and the contact terminal 13 are arranged at three points on the groove bottom of the groove portion 52. You can touch.

そして、溝部51の測定の場合と同様に、測定時における被測定部材50の傾きを支持部材16が抑えるため、被測定部材50の傾きによる測定精度の低下を防止することができる。   As in the case of the measurement of the groove 51, the support member 16 suppresses the inclination of the member to be measured 50 at the time of measurement. Therefore, it is possible to prevent the measurement accuracy from being lowered due to the inclination of the member to be measured 50.

なお、本実施の形態では、溝部51や溝部52といった溝底の溝径を測定したが、これは、外形測定装置1の測定対象部位を溝底に限定するものではなく、円柱の直径や、その他の断面形状を有する柱状部材の外径測定に適用することも可能である。   In the present embodiment, the groove diameters of the groove bottoms such as the groove part 51 and the groove part 52 are measured. However, this does not limit the measurement target part of the outer shape measuring apparatus 1 to the groove bottom. It can also be applied to the outer diameter measurement of columnar members having other cross-sectional shapes.

また、本実施の形態では、接触端子11、接触端子11、接触端子13と溝部51、溝部52の溝底が接する3点から溝部51と溝部52の外径を測定するが、2点の接点により外径を計測することも可能である。
この場合は、例えば、溝底の直径上にある2点間の距離を計測したり、直径上にない2点であるが、溝底の中心方向がわかっているものを用いることができる。
In this embodiment, the outer diameters of the groove 51 and the groove 52 are measured from three points where the contact terminal 11, the contact terminal 11, the contact terminal 13 and the groove 51, and the groove bottom of the groove 52 contact each other. It is also possible to measure the outer diameter.
In this case, for example, a distance between two points on the diameter of the groove bottom can be measured, or two points not on the diameter can be used but the center direction of the groove bottom is known.

即ち、柱状部材の軸線に垂直な面の外周において、少なくとも異なる3点、又は、この柱状部材の中心を通る少なくとも異なる2方向の点で接触端子を接触させることにより外径を得ることができる。
なお、外形測定装置1は、位置センサ、上測定子2、下測定子3などにより、外周に接触した際の接触端子の位置を用いて柱状部材の外径寸法を測定する測定手段を備えている。
That is, the outer diameter can be obtained by contacting the contact terminals at at least three different points or at least two different points passing through the center of the columnar member on the outer periphery of the surface perpendicular to the axis of the columnar member.
The outer shape measuring apparatus 1 includes a measuring unit that measures the outer diameter of the columnar member by using the position of the contact terminal when contacting the outer periphery with the position sensor, the upper measuring element 2, the lower measuring element 3, and the like. Yes.

次に、図4を用いて外形測定装置1が溝部51を測定する際の動作について説明する。
まず、図4(a)に示したように、搬送ロボットのワーク搬送チャック21が被測定部材50を設置台22の上に設置する。
Next, the operation when the contour measuring apparatus 1 measures the groove 51 will be described with reference to FIG.
First, as shown in FIG. 4A, the workpiece transfer chuck 21 of the transfer robot sets the member to be measured 50 on the setting table 22.

次に、図4(b)に示したように、本体移動機構が本体8を設置台22の方向に移動させることにより、測定子が設置台22方向に前進する。そして、下測定子3は、設置台22に形成された間隙に挿入される。
このときの被測定部材50と測定子の位置関係は、溝部51の位置と接触端子13の位置が一致する位置である。
Next, as shown in FIG. 4B, when the main body moving mechanism moves the main body 8 in the direction of the installation table 22, the probe moves forward in the direction of the installation table 22. Then, the lower probe 3 is inserted into a gap formed on the installation table 22.
The positional relationship between the member to be measured 50 and the measuring element at this time is a position where the position of the groove 51 and the position of the contact terminal 13 coincide.

次に、図4(c)に示したように、外形測定装置1は、上測定子2を下方に移動させて上測定子2と下測定子3を閉じ、溝部51を接触端子で挟み込む。
次いで本体移動機構が本体8を上方に移動させることにより、測定子は溝部51を挟んだまま上方に移動し、被測定部材50を設置台22から持ち上げて離隔する。
このように被測定部材50を測定時に設置台22から離隔するのは、設置台22の干渉により測定誤差が生じるのを防ぐためである。
Next, as shown in FIG. 4C, the outer shape measuring apparatus 1 moves the upper measuring element 2 downward to close the upper measuring element 2 and the lower measuring element 3, and sandwiches the groove 51 between the contact terminals.
Next, when the main body moving mechanism moves the main body 8 upward, the measuring element moves upward while sandwiching the groove 51, and the member to be measured 50 is lifted away from the installation base 22.
The reason why the member to be measured 50 is separated from the installation base 22 at the time of measurement is to prevent a measurement error due to interference of the installation base 22.

溝部51の測定が終わると、本体移動機構が本体8を下方に移動させる。これによって、測定子が下方向に移動して被測定部材50が設置台22の上に置かれる。次いで、外形測定装置1は、上測定子2と下測定子3を開いて被測定部材50を設置台22上に解放する。   When the measurement of the groove 51 is finished, the main body moving mechanism moves the main body 8 downward. As a result, the probe moves downward and the member to be measured 50 is placed on the installation table 22. Next, the outer shape measuring apparatus 1 opens the upper measuring element 2 and the lower measuring element 3 to release the member to be measured 50 onto the installation table 22.

図示しないが、被測定部材50が設置台22上に解放された後、本体移動機構が本体8を後方に後退させ、これによって、測定子が設置台22から離れる。
以上のようにして、溝部51の溝径が測定される。
Although not shown, after the member to be measured 50 is released onto the installation base 22, the main body moving mechanism retracts the main body 8 backward, whereby the measuring element is separated from the installation base 22.
As described above, the groove diameter of the groove 51 is measured.

次に、図5を用いて外形測定装置1が溝部52の測定する際の動作について説明する。
まず、図5(a)に示したように、ワーク搬送チャック21は、溝部51の測定を終えた被測定部材50を持ち上げ、測定子方向に移動させて再び設置台22の上に置く。この位置は、溝部52が置かれた位置が、溝部51が測定時に置かれていた位置となる位置である。
Next, the operation when the contour measuring apparatus 1 measures the groove 52 will be described with reference to FIG.
First, as illustrated in FIG. 5A, the workpiece conveyance chuck 21 lifts the member to be measured 50 that has finished the measurement of the groove 51, moves it in the direction of the measuring element, and places it on the installation table 22 again. This position is a position where the position where the groove 52 is placed is the position where the groove 51 was placed during measurement.

即ち、この位置は、被測定部材50の位置を、溝部51と溝部52の間隔だけ測定子側にシフトした位置である。
このように、被測定部材50の位置を溝部51と溝部52の間隔だけシフトしたのは、本体8の前後移動量が一定であるため、接触端子が溝部52の位置に来るようにするためである。これによって、本体8の移動量を制御する必要がなく、本体移動機構の構成を単純化してコストを低減することができる。
That is, this position is a position where the position of the member to be measured 50 is shifted to the measuring element side by the distance between the groove 51 and the groove 52.
As described above, the position of the member to be measured 50 is shifted by the interval between the groove 51 and the groove 52 so that the contact terminal comes to the position of the groove 52 because the amount of forward and backward movement of the main body 8 is constant. is there. Thereby, it is not necessary to control the movement amount of the main body 8, and the configuration of the main body moving mechanism can be simplified to reduce the cost.

次に、図5(b)に示したように、本体移動機構が本体8を設置台22の方向に移動させることにより、測定子が設置台22方向に前進する。そして、下測定子3は、設置台22に形成された間隙に挿入される。
このときの被測定部材50と測定子の位置関係は、先にワーク搬送チャック21による位置調整により、溝部52の位置と接触端子13の位置が一致する位置となっている。
Next, as shown in FIG. 5B, when the main body moving mechanism moves the main body 8 in the direction of the installation table 22, the probe moves forward in the direction of the installation table 22. Then, the lower probe 3 is inserted into a gap formed on the installation table 22.
The positional relationship between the member to be measured 50 and the measuring element at this time is a position where the position of the groove 52 and the position of the contact terminal 13 coincide with each other by the position adjustment by the work conveying chuck 21 first.

次に、図5(c)に示したように、外形測定装置1は、上測定子2を下方に移動させ上測定子2と下測定子3を閉じ、溝部52を接触端子で挟み込む。
次いで本体移動機構が本体8を上方に移動させることにより、測定子は溝部52を挟んだまま上方に移動し、被測定部材50を設置台22から持ち上げて離隔する。
Next, as shown in FIG. 5C, the outer shape measuring apparatus 1 moves the upper measuring element 2 downward, closes the upper measuring element 2 and the lower measuring element 3, and sandwiches the groove 52 with the contact terminals.
Next, when the main body moving mechanism moves the main body 8 upward, the measuring element moves upward with the groove 52 interposed therebetween, and the member to be measured 50 is lifted away from the installation base 22.

溝部52の測定が終わると、本体移動機構が本体8を下方に移動させる。これによって、測定子が下方向に移動して被測定部材50が設置台22の上に置かれる。次いで、外形測定装置1は、上測定子2と下測定子3を開いて被測定部材50を設置台22上に解放する。   When the measurement of the groove 52 is finished, the main body moving mechanism moves the main body 8 downward. As a result, the probe moves downward and the member to be measured 50 is placed on the installation table 22. Next, the outer shape measuring apparatus 1 opens the upper measuring element 2 and the lower measuring element 3 to release the member to be measured 50 onto the installation table 22.

図示しないが、被測定部材50が設置台22上に解放された後、本体移動機構が本体8を後方に後退させ、これによって、測定子が設置台22から離れる。
以上のようにして、溝部52の溝径が測定される。
Although not shown, after the member to be measured 50 is released onto the installation base 22, the main body moving mechanism retracts the main body 8 backward, whereby the measuring element is separated from the installation base 22.
As described above, the groove diameter of the groove 52 is measured.

この後、ワーク搬送チャック21が被測定部材50を設置台22から持ち上げて、中央制御装置が選択した分別先に搬送する。
以上の説明では、溝部51を測定した後、溝部52を測定したが、先に溝部52を測定し、その後溝部51を測定してもよい。
Thereafter, the workpiece conveyance chuck 21 lifts the member 50 to be measured from the installation table 22 and conveys it to the sorting destination selected by the central control unit.
In the above description, after measuring the groove 51, the groove 52 is measured. However, the groove 52 may be measured first, and then the groove 51 may be measured.

次に、図6のフローチャートを用いて、外径測定システム(中央制御装置、外形測定装置1、搬送ロボット)が被測定部材50を測定する手順について説明する。
まず、中央制御装置が搬送ロボットのモータを制御し、搬送ロボットに被測定部材50を設置台22に設置させる。
Next, a procedure for measuring the member to be measured 50 by the outer diameter measurement system (the central control device, the outer shape measurement device 1, and the transfer robot) will be described using the flowchart of FIG.
First, the central control apparatus controls the motor of the transfer robot, and causes the transfer robot to place the member to be measured 50 on the installation table 22.

搬送ロボットは、この制御により、被測定部材用意エリアに多数用意された被測定部材50のうちの1つをワーク搬送チャック21でつかみ、設置台22に搬送する(ステップ5)。
搬送ロボットは、被測定部材50を設置台22に搬送すると、定位置にこれを置く。
With this control, the transfer robot grasps one of the many measured members 50 prepared in the measured member preparation area with the workpiece transfer chuck 21 and transfers it to the installation table 22 (step 5).
When the transport robot transports the member to be measured 50 to the installation table 22, the transport robot places it in a fixed position.

次に、中央制御装置は、本体移動機構を制御し、測定子を開いた状態で設置台22の方へ前進させ、定位置で停止させる(ステップ10)。
これにより、2つの溝部のうちの一方(溝部51)と接触端子の位置が測定位置で揃う。
Next, the central control unit controls the main body moving mechanism, advances the head toward the installation base 22 in a state where the probe is opened, and stops it at a fixed position (step 10).
As a result, one of the two groove portions (groove portion 51) and the position of the contact terminal are aligned at the measurement position.

次に、中央制御装置は、外形測定装置1を制御して測定子で被測定部材50を挟み、次いで本体移動機構を制御して本体8を上方に移動する。
このように被測定部材50が設置台22から浮いた位置で、中央制御装置は、設置台22の位置を位置センサで検出し、溝部51の溝径を測定する(ステップ15)。
次いで、中央制御装置は、検出した上測定子2の位置データを用いて溝部51の溝径を計算する。そして、中央制御装置は、計算した溝径を記憶する。
Next, the central control device controls the outer shape measuring device 1 to sandwich the member to be measured 50 with a measuring element, and then controls the main body moving mechanism to move the main body 8 upward.
In this way, at the position where the member to be measured 50 is lifted from the installation table 22, the central control unit detects the position of the installation table 22 with the position sensor and measures the groove diameter of the groove 51 (step 15).
Next, the central control unit calculates the groove diameter of the groove 51 using the detected position data of the upper probe 2. Then, the central controller stores the calculated groove diameter.

溝部51の測定を終えると、中央制御装置は、本体移動機構を制御して本体8を下方に移動させ、被測定部材50を設置台22の上に置く。
更に、中央制御機構は、外形測定装置1を制御して測定子を開かせて被測定部材50を設置台22上に解放し、次いで、本体移動機構を制御して本体8を後退させる。
これによって、測定子が被測定部材50から後退する(ステップ20)。
When the measurement of the groove 51 is finished, the central control device controls the main body moving mechanism to move the main body 8 downward, and places the member to be measured 50 on the installation table 22.
Further, the central control mechanism controls the outer shape measuring apparatus 1 to open the measuring element to release the member to be measured 50 on the installation table 22, and then controls the main body moving mechanism to retract the main body 8.
As a result, the measuring element moves backward from the measured member 50 (step 20).

次に、中央制御装置は、搬送ロボットのモータを制御して搬送ロボットに被測定部材50の位置合わせを行わせる。
これによって、搬送ロボットは、ワーク搬送チャック21を被測定部材50の位置に移動して被測定部材50をつかみ、溝部51が置かれてあった位置に溝部52が置かれるように位置合わせを行う(ステップ25)。
Next, the central controller controls the motor of the transfer robot to cause the transfer robot to align the member to be measured 50.
As a result, the transfer robot moves the workpiece transfer chuck 21 to the position of the member to be measured 50, holds the member to be measured 50, and performs alignment so that the groove portion 52 is placed at the position where the groove portion 51 was placed. (Step 25).

次に、中央制御装置は、本体移動機構を制御し、測定子を開いた状態で設置台22の方へ前進させ、定位置で停止させる(ステップ30)。
これにより、2つの溝部のうちの他方(溝部52)と接触端子の位置が測定位置で揃う。
Next, the central control unit controls the main body moving mechanism, advances the head toward the installation base 22 in a state where the probe is opened, and stops it at a fixed position (step 30).
Thereby, the other of the two groove portions (groove portion 52) and the position of the contact terminal are aligned at the measurement position.

次に、中央制御装置は、外形測定装置1を制御して測定子で被測定部材50を挟み、次いで本体移動機構を制御して本体8を上方に移動する。
この被測定部材50が設置台22から浮いた位置で、中央制御装置は、設置台22の位置を位置センサで検出し、溝部52の溝径を測定する(ステップ35)。
次いで、中央制御装置は、検出した上測定子2の位置データを用いて溝部52の溝径を計算する。そして、中央制御装置は、計算した溝径を記憶する。
Next, the central control device controls the outer shape measuring device 1 to sandwich the member to be measured 50 with a measuring element, and then controls the main body moving mechanism to move the main body 8 upward.
At the position where the member to be measured 50 is lifted from the installation base 22, the central controller detects the position of the installation base 22 with a position sensor and measures the groove diameter of the groove 52 (step 35).
Next, the central controller calculates the groove diameter of the groove portion 52 using the detected position data of the upper probe 2. Then, the central controller stores the calculated groove diameter.

溝部52の測定を終えると、中央制御装置は、本体移動機構を制御して本体8を下方に移動させ、被測定部材50を設置台22の上に置く。
更に、中央制御機構は、外形測定装置1を制御して測定子を開かせて被測定部材50を設置台22上に解放し、次いで、本体移動機構を制御して本体8を後退させる。
これによって、測定子が被測定部材50から後退する(ステップ40)。
When the measurement of the groove 52 is finished, the central control device controls the main body moving mechanism to move the main body 8 downward, and places the member to be measured 50 on the installation table 22.
Further, the central control mechanism controls the outer shape measuring apparatus 1 to open the measuring element to release the member to be measured 50 on the installation table 22, and then controls the main body moving mechanism to retract the main body 8.
As a result, the measuring element moves backward from the measured member 50 (step 40).

次に、中央制御装置は、記憶装置に記憶した溝部51と溝部52の溝径を、予め記憶している加工精度の基準と照合し、当該被測定部材50の加工精度を判定する。
そして、中央制御装置は、搬送ロボットに判定した加工精度に対応する分別先に被測定部材50を搬送させる(ステップ45)。
Next, the central control device collates the groove diameters of the groove 51 and the groove 52 stored in the storage device with a processing accuracy reference stored in advance, and determines the processing accuracy of the member to be measured 50.
Then, the central control apparatus causes the member to be measured 50 to be transported to the separation destination corresponding to the processing accuracy determined by the transport robot (step 45).

次に、中央制御装置は、被測定部材用意エリアにまだ未測定の被測定部材50があるか否かを確認し、まだ被測定部材50がある場合は(ステップ50;Y)、ステップ5に戻る。この確認は、被測定部材用意エリアに残っている被測定部材50をセンサで検出したり、あるいは、作業者が中央処理装置に予め設定しておいた個数と計測した被測定部材50の個数を比較するなどして行う。
未測定の被測定部材50がない場合は(ステップ50;N)、中央制御装置は処理を終了する。
Next, the central control unit checks whether or not there is an unmeasured member 50 to be measured in the measured member preparation area. If there is still a member to be measured 50 (step 50; Y), the process proceeds to step 5. Return. This confirmation can be made by detecting the member to be measured 50 remaining in the member-to-be-measured preparation area with a sensor, or by determining the number of members to be measured that have been preset by the operator in the central processing unit. Perform by comparing.
When there is no unmeasured member 50 to be measured (step 50; N), the central control unit ends the process.

以上に説明した本実施の形態により次のような効果を得ることができる。
(1)被測定部材を支持する支持部材を設けることにより、測定時における被測定部材の位置ずれを防止することができる。
(2)被測定部材の位置ずれを防止できるため、複数の測定子を用いることによる測定誤差を防止することができる。
(3)測定部位の変更は、搬送ロボットなどの外部駆動装置により行うため、軸方向の測定部位が異なる多種の被測定部材に対応することができる。
The following effects can be obtained by the present embodiment described above.
(1) By providing a support member that supports the member to be measured, it is possible to prevent a positional deviation of the member to be measured during measurement.
(2) Since displacement of the member to be measured can be prevented, measurement errors caused by using a plurality of measuring elements can be prevented.
(3) Since the measurement site is changed by an external drive device such as a transfer robot, it is possible to cope with various members to be measured having different measurement sites in the axial direction.

なお、本実施の形態では、被測定部材50の溝径を測定したが、円柱部分の外径を計測することもできる。
また、測定対象は、円形断面を有する柱状部材に限らず、被測定部材として三角形、四角形などの多角形や、楕円形などの断面を有する柱状部材を用いることも可能である。
この場合、断面形状に応じて接触端子の形状や配置を変更することが可能である。
In the present embodiment, the groove diameter of the member to be measured 50 is measured, but the outer diameter of the cylindrical portion can also be measured.
The measurement target is not limited to the columnar member having a circular cross section, and a columnar member having a polygonal shape such as a triangle or a quadrangle, or an elliptical cross section can be used as the member to be measured.
In this case, the shape and arrangement of the contact terminals can be changed according to the cross-sectional shape.

測定対象である被測定部材の形状を説明するための図である。It is a figure for demonstrating the shape of the to-be-measured member which is a measuring object. 本実施の形態に係る外形測定装置の外観を示した図である。It is the figure which showed the external appearance of the external shape measuring apparatus which concerns on this Embodiment. 測定子と被測定部材の関係を説明するための図である。It is a figure for demonstrating the relationship between a measuring element and a to-be-measured member. 外形測定装置が溝部を測定する動作を説明するための図である。It is a figure for demonstrating the operation | movement which an external shape measuring apparatus measures a groove part. 外形測定装置が溝部を測定する動作を説明するための図である。It is a figure for demonstrating the operation | movement which an external shape measuring apparatus measures a groove part. 外形測定装置の測定動作を説明するためのフローチャートである。It is a flowchart for demonstrating the measurement operation | movement of an external shape measuring apparatus.

符号の説明Explanation of symbols

1 外形測定装置
2 上測定子
3 下測定子
5 上測定子保持部
6 下測定子保持部
8 本体
11 接触端子
13 接触端子
15 支持部材
16 支持部材
21 ワーク搬送チャック
22 設置台
50 被測定部材
51 溝部
52 溝部
DESCRIPTION OF SYMBOLS 1 Outline measuring device 2 Upper measuring element 3 Lower measuring element 5 Upper measuring element holding part 6 Lower measuring element holding part 8 Main body 11 Contact terminal 13 Contact terminal 15 Support member 16 Support member 21 Work conveyance chuck 22 Installation stand 50 Measured member 51 Groove 52 Groove

Claims (3)

柱状部材の軸線に垂直な面の外周において、少なくとも異なる3点、又は、前記柱状部材の中心を通る少なくとも異なる2方向の点で接触する接触端子と、
前記外周に接触した際の前記接触端子の位置を用いて前記柱状部材の外径寸法を測定する測定手段と、
前記測定手段が測定する際に、前記接触端子が接触する点によって形成される面と前記柱状部材の軸線が垂直になるように、前記柱状部材を支持する支持部と、
を具備したことを特徴とする外径測定装置。
Contact terminals that contact at least three different points on the outer periphery of the surface perpendicular to the axis of the columnar member, or at least two different points passing through the center of the columnar member;
Measuring means for measuring the outer diameter of the columnar member using the position of the contact terminal when in contact with the outer periphery;
A support portion for supporting the columnar member so that a surface formed by a point where the contact terminal contacts and an axis of the columnar member are perpendicular to each other when the measurement unit performs measurement;
An outer diameter measuring device comprising:
前記柱状部材は円柱部材により構成されており、
前記柱状部材の外周に接して前記柱状部材の転がりを防止する転がり防止部材を具備し、
測定手段は、前記柱状部材の外形寸法を測定する際に、前記柱状部材を前記転がり防止部材から離隔して測定することを特徴とする請求項1に記載の外径測定装置。
The columnar member is composed of a cylindrical member,
Comprising a rolling prevention member in contact with the outer periphery of the columnar member to prevent rolling of the columnar member;
2. The outer diameter measuring apparatus according to claim 1, wherein the measuring unit measures the outer dimension of the columnar member by separating the columnar member from the rolling preventing member.
請求項1、又は請求項2に記載の外径測定装置で使用する接触端子の少なくとも1つ、及び当該接触端子が接触する柱状部材の姿勢を保持するための支持部材を一体として固定する固定部と、
請求項1、又は請求項2に記載の外径測定装置に装着するための装着部と、
を具備したことを特徴とする外径測定装置の測定子。
A fixing portion that integrally fixes at least one of the contact terminals used in the outer diameter measuring device according to claim 1 or 2 and a support member for maintaining the posture of the columnar member with which the contact terminal contacts. When,
A mounting part for mounting on the outer diameter measuring device according to claim 1 or 2,
A measuring element of an outer diameter measuring device, comprising:
JP2005056999A 2005-03-02 2005-03-02 Outer diameter measuring device and measuring probe Pending JP2006242676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056999A JP2006242676A (en) 2005-03-02 2005-03-02 Outer diameter measuring device and measuring probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056999A JP2006242676A (en) 2005-03-02 2005-03-02 Outer diameter measuring device and measuring probe

Publications (1)

Publication Number Publication Date
JP2006242676A true JP2006242676A (en) 2006-09-14

Family

ID=37049252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056999A Pending JP2006242676A (en) 2005-03-02 2005-03-02 Outer diameter measuring device and measuring probe

Country Status (1)

Country Link
JP (1) JP2006242676A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374260A (en) * 2014-11-26 2015-02-25 河南航天精工制造有限公司 Rapid fastener outer square part detecting tool and fastener outer square part detecting method
CN105222675A (en) * 2015-10-26 2016-01-06 重庆颖泉标准件有限公司 A kind of gear shift fork wavy surface measuring tool for position
CN105241327A (en) * 2015-10-16 2016-01-13 重庆颖泉标准件有限公司 Detection method for position of waveform surface of shift swing rod
CN105241347A (en) * 2015-10-16 2016-01-13 重庆颖泉标准件有限公司 Measuring tool for thickness of ball of shift swing rod
CN105258605A (en) * 2015-11-18 2016-01-20 绵阳放思创意科技有限公司 Portable balloon measurement device
JP2019185848A (en) * 2018-04-02 2019-10-24 矢崎総業株式会社 Pin diameter discrimination jig and pin diameter discrimination method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093302A (en) * 1983-10-27 1985-05-25 Mitsutoyo Mfg Co Ltd Automatic outside diameter measuring machine
JPH04285801A (en) * 1991-03-13 1992-10-09 Ando Electric Co Ltd Opening-closing mechanism of touch lever of touch lever type dimension measuring device
JP2002206902A (en) * 2001-01-09 2002-07-26 Thk Co Ltd Effective diameter measuring device of ball screw

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093302A (en) * 1983-10-27 1985-05-25 Mitsutoyo Mfg Co Ltd Automatic outside diameter measuring machine
JPH04285801A (en) * 1991-03-13 1992-10-09 Ando Electric Co Ltd Opening-closing mechanism of touch lever of touch lever type dimension measuring device
JP2002206902A (en) * 2001-01-09 2002-07-26 Thk Co Ltd Effective diameter measuring device of ball screw

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374260A (en) * 2014-11-26 2015-02-25 河南航天精工制造有限公司 Rapid fastener outer square part detecting tool and fastener outer square part detecting method
CN105241327A (en) * 2015-10-16 2016-01-13 重庆颖泉标准件有限公司 Detection method for position of waveform surface of shift swing rod
CN105241347A (en) * 2015-10-16 2016-01-13 重庆颖泉标准件有限公司 Measuring tool for thickness of ball of shift swing rod
CN105222675A (en) * 2015-10-26 2016-01-06 重庆颖泉标准件有限公司 A kind of gear shift fork wavy surface measuring tool for position
CN105258605A (en) * 2015-11-18 2016-01-20 绵阳放思创意科技有限公司 Portable balloon measurement device
JP2019185848A (en) * 2018-04-02 2019-10-24 矢崎総業株式会社 Pin diameter discrimination jig and pin diameter discrimination method

Similar Documents

Publication Publication Date Title
EP0315308B1 (en) Cylindrical coordinate measuring machine
JP2006242676A (en) Outer diameter measuring device and measuring probe
JPWO2008029482A1 (en) Machine tool and pallet standby station
JPH08261748A (en) Coordinate measuring apparatus having device for measuring roughness
KR20060105616A (en) Method and device for measuring and adjusting the electrode for taper machining on an electrical discharge machine
CN109195742B (en) Machining center
TW200829354A (en) Lathe and processing method using lathe
JP5315927B2 (en) Grinding machine system and grinding method
JP2012083192A (en) Calibration method and calibration jig for three-dimensional measuring machines
KR20170094248A (en) Measuring steady rest for supporting and measuring central workpiece regions, grinding machine with such a measuring steady rest, and method for supporting and measuring central workpiece regions
CN114623742A (en) Measuring device
JP7274998B2 (en) Grinding equipment
KR20180123467A (en) Polishing apparatus
KR20200067752A (en) Creep feed grinding method
CN114166166A (en) Detection system and detection method for glass molded surface
JPH11245152A (en) Polishing device
CN109382762B (en) Jig for height measurement
JP5971902B2 (en) Work holding device and three-dimensional shape measuring device provided with the work holding device
JP2021079483A (en) Processing device
JP6547570B2 (en) Workpiece dimension confirmation device
JPH0658426B2 (en) Nuclear fuel assembly perpendicularity adjustment device
JP2019136783A (en) Both-side grinding device
JP5463091B2 (en) Automatic workpiece centering device
JPH02109660A (en) Centering method for probe of dimension measurement
JP2746689B2 (en) Optical element processing device equipped with workpiece measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Effective date: 20101216

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A02 Decision of refusal

Effective date: 20111202

Free format text: JAPANESE INTERMEDIATE CODE: A02