JP2006242241A - 玉軸受ユニット - Google Patents
玉軸受ユニット Download PDFInfo
- Publication number
- JP2006242241A JP2006242241A JP2005056987A JP2005056987A JP2006242241A JP 2006242241 A JP2006242241 A JP 2006242241A JP 2005056987 A JP2005056987 A JP 2005056987A JP 2005056987 A JP2005056987 A JP 2005056987A JP 2006242241 A JP2006242241 A JP 2006242241A
- Authority
- JP
- Japan
- Prior art keywords
- outer ring
- ball bearing
- bearing unit
- inner ring
- equivalent member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/01—Parts of vehicles in general
- F16C2326/02—Wheel hubs or castors
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
- Rolling Contact Bearings (AREA)
Abstract
【課題】 高荷重領域で剛性が高くならず(或いは高くなる程度を低く抑えて)、玉軸受ユニットに加わるアキシアル荷重を、広い範囲で(高荷重に至る迄)精度良く求められる構造を実現する。
【解決手段】 アキシアル荷重に伴う、外輪相当部材22と内輪相当部材23との軸方向に関する相対変位量に基づいて、これら両部材22、23同士の間に作用するアキシアル荷重を求める。外輪軌道6及び内輪軌道11の断面形状の曲率半径を、玉5の接触角θが小さい状態でこの玉5の転動面が接触する部分よりも、この接触角θが大きくなった状態で接触する部分に向けて次第に大きくなる方向に漸増させる。この構成により、上記アキシアル荷重が大きい状態で玉軸受ユニットの剛性が高くなるのを抑えて、上記課題を解決する。
【選択図】 図1
【解決手段】 アキシアル荷重に伴う、外輪相当部材22と内輪相当部材23との軸方向に関する相対変位量に基づいて、これら両部材22、23同士の間に作用するアキシアル荷重を求める。外輪軌道6及び内輪軌道11の断面形状の曲率半径を、玉5の接触角θが小さい状態でこの玉5の転動面が接触する部分よりも、この接触角θが大きくなった状態で接触する部分に向けて次第に大きくなる方向に漸増させる。この構成により、上記アキシアル荷重が大きい状態で玉軸受ユニットの剛性が高くなるのを抑えて、上記課題を解決する。
【選択図】 図1
Description
この発明は、自動車の懸架装置に車輪を支持する部分等、各種回転支持部分に組み込んだ状態で使用する玉軸受ユニットの改良に関し、負荷の大きさに基づく剛性変化の少ない構造を実現するものである。この様な玉軸受ユニットは、この玉軸受ユニットに加わるアキシアル荷重の大きさを、この玉軸受ユニットを構成する外輪相当部材と内輪相当部材との相対変位量から求める、荷重測定装置を組み込んだ構造で、この相対変位量と上記アキシアル荷重との関係を単純化する事により、このアキシアル荷重の測定精度を向上させる面から有効である。
例えば自動車の車輪は懸架装置に対し、複列アンギュラ型の玉軸受ユニットにより、回転自在に支持する。又、自動車の走行安定性を確保する為に、例えば非特許文献1に記載されている様な、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、ビークルスタビリティコントロールシステム(VSC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等の信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記玉軸受ユニットに加わるアキシアル荷重の大きさを知る事が好ましい場合がある。
この様な事情に鑑みて、特許文献1には、玉軸受ユニットに加わるアキシアル荷重を測定する構造が記載されている。この特許文献1に記載された従来構造の第1例の場合、外輪の外周面に設けた固定側フランジの内側面複数個所で、この固定側フランジをナックルに結合する為のボルトを螺合する為のねじ孔を囲む部分に、それぞれ荷重センサを添設している。上記外輪を上記ナックルに支持固定した状態でこれら各荷重センサは、このナックルの外側面と上記固定側フランジの内側面との間で挟持される。この様な従来構造の第2例の転がり軸受ユニットの荷重測定装置の場合、車輪と上記ナックルとの間に加わるアキシアル荷重は、上記各荷重センサにより測定される。更に、特許文献2には、一部の剛性を低くした外輪相当部材に動的歪みを検出する為のストレンゲージを設け、このストレンゲージが検出する玉の通過周波数から玉の公転速度を求め、更に、転がり軸受に加わるアキシアル荷重を測定する方法が記載されている。
上述の様な特許文献1に記載された従来構造の第1例の場合、ナックルに対し外輪を支持固定する為のボルトと同数だけ、荷重センサを設ける必要がある。この為、荷重センサ自体が高価である事と相まって、転がり軸受ユニットの荷重測定装置全体としてのコストが相当に嵩む事が避けられない。又、特許文献2に記載された方法は、外輪相当部材の一部の剛性を低くする必要があり、この外輪相当部材の耐久性確保が難しくなる可能性がある他、十分な測定精度を得る事が難しいと考えられる。
この様な事情に鑑みて本発明者等は先に、複列アンギュラ型の玉軸受ユニットを構成する回転側軌道輪にエンコーダを、この回転側軌道輪と同心に支持固定し、このエンコーダの被検出面の変位を検出する事で、この回転側軌道輪と静止側軌道輪との相対変位量を測定し、更にこの相対変位量に基づいてこれら両軌道輪同士の間に加わるアキシアル荷重を求める発明(先発明)を行なった(特願2004−279155号)。この先発明に係る構造の場合、上記エンコーダの被検出面の特性が円周方向に関して変化するパターン(位相と、ピッチと、検出信号のデューティ比に結び付く、各特性の割合とのうちから選択される1乃至複数)は、検出すべきアキシアル荷重の作用方向に見合う(一般的には一致する)、上記被検出面の幅方向(一般的には軸方向)に関して連続的に変化している。そして、上記静止側軌道輪等の固定部分に支持したセンサの検出部を、上記エンコーダの被検出面(一般的には周面)に近接対向させて、このセンサの出力信号が、上記相対変位量に応じて変化する様にしている。
図3〜4は、この様な先発明に係る構造の第1例を示している。この先発明の第1例の転がり軸受ユニットの荷重測定装置は、車輪支持用転がり軸受ユニット1と、回転速度検出装置としての機能を兼ね備えた、荷重測定装置2とを備える。
このうちの車輪支持用転がり軸受ユニット1は、図3に示す様に、外輪3と、ハブ4と、玉5、5とを備える。このうちの外輪3は、使用状態で懸架装置に支持固定される静止側軌道輪であって、それぞれが断面円弧形のアンギュラ型である複列の外輪軌道6、6を内周面に、上記懸架装置に結合する為の外向フランジ状の取付部7を外周面に、それぞれ有する。又、上記ハブ4は、使用状態で車輪を支持固定してこの車輪と共に回転する回転側軌道輪であって、ハブ本体8と内輪9とを組み合わせ固定して成る。この様なハブ4は、外周面の軸方向外端部(懸架装置への組み付け状態で車体の幅方向外側となる端部)に車輪を支持固定する為のフランジ10を、それぞれが断面円弧形のアンギュラ型である複列の内輪軌道11、11を上記ハブ本体8の軸方向中間部及び内輪9の外周面に、それぞれ設けている。上記各玉5、5は、これら各内輪軌道11、11と上記各外輪軌道6、6との間にそれぞれ複数個ずつ、互いに逆方向の(背面組み合わせ型の)接触角を付与した状態で転動自在に設け、上記外輪3の内径側に上記ハブ4を、この外輪3と同心に回転自在に支持している。
このうちの車輪支持用転がり軸受ユニット1は、図3に示す様に、外輪3と、ハブ4と、玉5、5とを備える。このうちの外輪3は、使用状態で懸架装置に支持固定される静止側軌道輪であって、それぞれが断面円弧形のアンギュラ型である複列の外輪軌道6、6を内周面に、上記懸架装置に結合する為の外向フランジ状の取付部7を外周面に、それぞれ有する。又、上記ハブ4は、使用状態で車輪を支持固定してこの車輪と共に回転する回転側軌道輪であって、ハブ本体8と内輪9とを組み合わせ固定して成る。この様なハブ4は、外周面の軸方向外端部(懸架装置への組み付け状態で車体の幅方向外側となる端部)に車輪を支持固定する為のフランジ10を、それぞれが断面円弧形のアンギュラ型である複列の内輪軌道11、11を上記ハブ本体8の軸方向中間部及び内輪9の外周面に、それぞれ設けている。上記各玉5、5は、これら各内輪軌道11、11と上記各外輪軌道6、6との間にそれぞれ複数個ずつ、互いに逆方向の(背面組み合わせ型の)接触角を付与した状態で転動自在に設け、上記外輪3の内径側に上記ハブ4を、この外輪3と同心に回転自在に支持している。
一方、上記荷重測定装置2は、図3に示す様に、エンコーダ12と、センサ13と、図示しない演算器とを備える。
このうちのエンコーダ12は、軟鋼板等の磁性材製で、それぞれがスリット状である複数の透孔14a、14bを、交互に形成している。これら各透孔14a、14bは、上記エンコーダ12の中心軸の方向に対し傾斜している。又、円周方向に隣り合う透孔14a、14b同士の間で、傾斜方向は互いに逆になっている。又、円周方向に隣り合う透孔14a、14b同士のピッチは、交互に大小を繰り返している。この様なエンコーダ12は、上記ハブ4の中間部に外嵌固定している。一方、上記センサ13は、永久磁石と、ホール素子或いは磁気抵抗素子等の磁気検出素子とを組み込んだ、アクティブ型の磁気センサで、上記外輪3の中間部に形成した取付孔15に、径方向外方から内方に挿通する状態で設けている。そして、上記センサ13の先端部を上記外輪3の内周面から径方向内方に突出させて、この先端部に設けた検出部を、被検出面である、上記エンコーダ12の外周面に近接対向させている。
このうちのエンコーダ12は、軟鋼板等の磁性材製で、それぞれがスリット状である複数の透孔14a、14bを、交互に形成している。これら各透孔14a、14bは、上記エンコーダ12の中心軸の方向に対し傾斜している。又、円周方向に隣り合う透孔14a、14b同士の間で、傾斜方向は互いに逆になっている。又、円周方向に隣り合う透孔14a、14b同士のピッチは、交互に大小を繰り返している。この様なエンコーダ12は、上記ハブ4の中間部に外嵌固定している。一方、上記センサ13は、永久磁石と、ホール素子或いは磁気抵抗素子等の磁気検出素子とを組み込んだ、アクティブ型の磁気センサで、上記外輪3の中間部に形成した取付孔15に、径方向外方から内方に挿通する状態で設けている。そして、上記センサ13の先端部を上記外輪3の内周面から径方向内方に突出させて、この先端部に設けた検出部を、被検出面である、上記エンコーダ12の外周面に近接対向させている。
上述の様に構成する先発明の荷重測定装置の第1例の場合、アキシアル荷重に基づいて上記ハブ4と上記外輪3とが軸方向に相対変位すると、上記センサ13の検出信号が変化するパターン(ピッチ及び位相)が変化する。そこで、このパターンの変化に基づいて、上記相対変位の大きさ、更には上記アキシアル荷重の大きさを求められる。尚、同方向に傾斜した透孔14a、14a(14b、14b)に基づいて上記検出信号が変化する周期は、上記相対変位に拘らず変化しない。従って、この周期に基づいて、上記ハブ4の回転速度を求める事もできる。
次に、図5〜6は、先発明に係る構造の第2例を示している。本例の場合には、車輪支持用転がり軸受ユニット1aを構成する回転側軌道輪であるハブ4aの中心部に、等速ジョイントに付属のスプライン軸を挿通する為のスプライン孔16を形成している。そして、上記ハブ4aの中間部に、磁性金属材製で円環状のエンコーダ12aを外嵌固定している。このエンコーダ12aの外周面には、凹部17、17と凸部18、18とを、円周方向に関して交互に配置している。これら各凹部17、17と凸部18、18との円周方向に関する幅寸法は、軸方向に関して漸次変化している。
一方、静止側軌道輪である外輪3の中間部に形成した取付孔15に、上述した第1例の場合と同様の、磁気検知式のセンサ13を挿通し、このセンサ13の先端部に設けた検出部を、上記エンコーダ12aの外周面に近接対向させている。このセンサ13の検出信号は、上記検出部の近傍を上記各凹部17、17と上記各凸部18、18とが交互に通過する事に伴って変化するが、この変化のパターン(検出信号のデューティ比=高電位継続時間/1周期)は、上記検出部が対向する、上記エンコーダ12aの外周面の軸方向位置によって変化する。そこで、上記変化のパターンに基づいて、上記外輪3と上記ハブ4aとの間に作用するアキシアル荷重を求められる。
次に、図7〜8は、先発明に係る構造の第3例を示している。本例の場合には、静止側軌道輪である外輪3の一部に1対のセンサ13a、13bを、回転側軌道輪であるハブ4の回転方向に関する位相を一致させ、且つ、このハブ4の軸方向にずらせた状態で配置している。そして、上記両センサ13a、13bの検出部を、上記ハブ4の中間部に外嵌固定したエンコーダ12bの外周面に近接対向させている。このエンコーダ12bは、磁性金属板により円筒状に形成されたもので、幅方向片半部と他半部とに、それぞれスリット状の透孔14c、14dを、それぞれ上記エンコーダ12bの中心軸の方向に対し傾斜させた状態で、円周方向に関して等間隔に形成している。幅方向片半部の透孔14c、14cの傾斜方向と、他半部の透孔14d、14dの傾斜方向とは互いに逆で、傾斜角度は互いに等しい。又、上記外輪3と上記ハブ4との間にアキシアル荷重が作用していない状態(中立状態)で、上記両列の透孔14c、14dの間に存在するリム部19が、上記両センサ13a、13bの検出部の丁度中央位置に存在する。
上述の様なエンコーダ12bを含んで構成する、先発明の荷重測定装置の第3例の場合、上記中立状態では、上記両センサ13a、13bの検出信号の位相が互いに一致する。これに対して、上記外輪3と上記ハブ4との間にアキシアル荷重が作用すると、これら外輪3とハブ4とが軸方向に相対変位する結果、上記1対のセンサ13a、13bの検出信号の位相がずれる。そこで、このずれの方向及び大きさ(実際の場合には、上記両センサ13a、13bの検出信号の1周期に対するずれの大きさの比)に基づいて、上記アキシアル荷重の方向及び大きさを求められる。尚、上記ハブ4の回転速度は、何れかのセンサ13a(13b)の検出信号の周期或いは周波数に基づいて求められる。又、一方の列の透孔14c、14c(或は14d、14d)を傾斜させない(軸方向に平行にする)事もできる。この場合には、傾斜させない透孔に基づく出力信号を基準として、傾斜させた透孔に基づく出力信号の位相変化を求める。
次に、図9〜10は、先発明に係る構造の第4例を示している。この先発明の第4例の場合には、ハブ4の内端部に外嵌固定した内輪9の内端部に、図10に示す様なエンコーダ12cの基端部を外嵌して、このエンコーダ12cを上記ハブ4に対し、このハブ4と同心に支持固定している。このエンコーダ12cは、磁性金属板製で、先半部に設けた円筒状部に、それぞれが「く」字形でスリット状の透孔14e、14eを、円周方向に関して等間隔に形成している。又、外輪3の内端部に嵌合固定したカバー20に支持したセンサホルダ21内に1対のセンサを、軸方向に離隔した状態で保持している。そして、これら両センサの検出部を、上記エンコーダ12cの内周面に近接対向させている。
上述の様な先発明の転がり軸受ユニットの荷重測定装置の第4例の場合も、アキシアル荷重に基づいてハブ4と外輪3とが軸方向に相対変位すると、上記1対のセンサの検出信号の位相がずれる。そこで、このずれの大きさに基づいて、上記相対変位の大きさ、更には上記アキシアル荷重の大きさを求められる。尚、上記ハブ4の回転速度は、何れかのセンサの検出信号に基づいて求められる。
尚、上述の先発明の転がり軸受ユニットの荷重測定装置の第1〜4例は何れも、エンコーダ12〜12cとして単なる磁性材製のものを使用し、センサの側に永久磁石を組み込む事を意図している。これに対して、前記特願2004−279155号には、永久磁石製のエンコーダを使用し、センサの側の永久磁石を省略する構造に就いても記載されている。何れの場合でも、エンコーダの被検出面が円周方向に関して変化するパターンは、検出すべきアキシアル荷重の作用方向に一致する、この被検出面の幅方向(一般的には軸方向)に関して連続的に変化している。
何れにしても、上述の様な先発明に係る転がり軸受ユニットの荷重測定装置により求めたアキシアル荷重は、路面と車輪(タイヤ)との接触面でこの車輪の軸方向に生じている荷重と、(モーメントの影響を勘案した上で所定の換算をすれば)実質的に等価である。従って、上記求めたアキシアル荷重に基づいて車両の走行状態を安定化させる為の制御を行なえば、車両の姿勢が不安定になる事を予防する為のフィードフォワード制御が可能になる等、車両の走行安定性確保の為の高度な制御が可能になる。
上述の様な先発明に係る転がり軸受ユニットの荷重測定装置により、前記外輪3等の静止側軌道輪と、前記ハブ4等の回転側軌道輪との間の相対変位量を求め、更にこれら両軌道輪同士の間に加わるアキシアル荷重を求める為には、前記エンコーダ12〜12cの被検出面の特性が変化するパターンの変化程度と、上記アキシアル荷重との関係である零点及びゲイン特性を、正確に把握しておく必要がある。ところが、従来から知られている玉軸受ユニットの場合、静止側軌道輪と回転側軌道輪との間に作用するアキシアル荷重の大きさと、これら両軌道輪同士の相対変位との関係が、著しく非線形であった為、零点及びゲイン特性を正確に把握する事が難しかった。又、仮にこれら零点及びゲイン特性を正確に把握したとしても、このうちのゲイン特性が著しく非線形であると、上記相対変位量から上記荷重を求める為の計算が面倒で、上記走行安定性確保の為の制御を迅速に行なう事が難しくなる(迅速に行なう為には、計算速度が速い、高価なCPUが必要になる)。
例えば、図3、5、7、9に示した様な、複列アンギュラ型の玉軸受ユニットである車輪支持用転がり軸受ユニット1、1aに、車両の幅方向内側に向いた(図3、5、7、9で右向きの)アキシアル荷重が作用した場合、このアキシアル荷重を支承する、外側(図3、5、7、9の左側)の列の玉5、5の接触角θ(図3の左上部参照)は、このアキシアル荷重が大きくなる程大きく(ハブ4、4aの中心軸に対する傾斜角度が小さく)なる。そして、上記接触角θが大きくなる程、上記車輪支持用転がり軸受ユニット1、1aのアキシアル方向の剛性が大きくなる。この結果、この車輪支持用転がり軸受ユニット1、1aを構成する外輪3とハブ4、4aとが、アキシアル方向に変位しにくくなる。即ち、従来構造の場合には、アキシアル荷重が大きくなる程、アキシアル荷重の変動量に対応するアキシアル方向の変化量が少なくなる(アキシアル方向に変化しにくくなる)。
この点に就いて、非特許文献2の記載に基づいて説明する。上述の様なアンギュラ型の玉軸受ユニットにアキシアル荷重が加わった場合、上記外輪3と上記ハブ4、4a(内輪)とは、このアキシアル荷重を受ける側の外輪軌道6と内輪軌道11とに関して、これら両軌道6、11と各玉5、5との弾性変形に基づき、互いに接近(変位)する。この際の、接触荷重Qと、接近量δと、これら各玉5、5の直径Db との関係は、上記外輪3の変形係数をco とし、上記ハブ4、4a(内輪)の変形係数をci とすれば、次の(1)式で表される。
δ/Db =(co +ci )・(Q/Db 2)2/3 −−− (1)
この(1)式を変形すると、次の(2)式を得られる。
Q=Cδ・δ3/2 −−− (2)
尚、この(2)式中のCδは、次の(3)式で表される。
Cδ=Db 1/2/(co +ci )3/2 −−− (3)
δ/Db =(co +ci )・(Q/Db 2)2/3 −−− (1)
この(1)式を変形すると、次の(2)式を得られる。
Q=Cδ・δ3/2 −−− (2)
尚、この(2)式中のCδは、次の(3)式で表される。
Cδ=Db 1/2/(co +ci )3/2 −−− (3)
この様な(3)式で表されるCδを、定数として考えれば、上記(2)式から、荷重(接触荷重Q)は変位の3/2乗に比例する事、即ち、変位(接近量δ)と荷重との関係は、直線的な比例関係ではなく、変位が大きくなるに従って、変位に見合う荷重値は、変位の増加分以上に大きくなる事が分かる。逆に言えば、荷重値が大きくなる程、この荷重の増加に伴う変位の増加量は少なくなる事が分かる。即ち、アンギュラ型の玉軸受の剛性は、変位が小さい低荷重側では比較的低く、変位が大きくなる高荷重側では比較的高くなる。この様な特性、即ち、荷重が大きくなる程変位が少なくなる特性は、前述の先発明に係る転がり軸受ユニットの荷重測定装置を実施する上で不利である。この理由は、上記先発明に係る荷重測定装置を実施する場合、上記外輪3と上記ハブ4、4a(内輪)との間の軸方向に関する相対変位から、これら外輪3とハブ4、4a(内輪)との間に加わるアキシアル荷重を求める為である。この様な先発明を実施する場合、玉軸受ユニットの剛性が高くなる高荷重側で、荷重の変動量に対する変位の変化量のゲインが低くなる(変動量と変化量との関係を示す線の勾配が小さくなる)事は、アキシアル荷重の検出精度を確保する面から不利になる。
本発明は、上述の様な事情に鑑みて、高荷重領域で剛性が高くならず(或いは高くなる程度を低く抑えて)、玉軸受ユニットに加わる荷重を、広い範囲で(高荷重に至る迄)精度良く求められる構造を実現すべく発明したものである。
本発明の玉軸受ユニットは、従来から知られている玉軸受ユニットと同様、図1に略示する様に、内周面に断面円弧形の外輪軌道6を有する、前述の図3、5、7、9に記載した構造での外輪3に相当する外輪相当部材22と、外周面に断面円弧形の内輪軌道11を有する、前述の図3、5、7、9に記載した構造でのハブ4、4aに相当する内輪相当部材23とを有する。そして、複数個の玉5を上記外輪軌道6と上記内輪軌道11との間に、接触角θを付与した状態で、転動自在に設けている。
特に、本発明の玉軸受ユニットに於いては、上記外輪軌道6と上記内輪軌道11とのうちの少なくとも一方(図1では両方)の軌道6、11の断面形状の曲率半径を、上記接触角θが小さい状態で上記各玉5の転動面が接触する部分よりも、この接触角θが大きくなった状態でこれら各玉5の転動面が接触する部分に向けて、次第に大きくなる方向に、漸増させている。即ち、一般的な玉軸受ユニットの場合には、図1に模式的に実線で示す様に、上記外輪軌道6と上記内輪軌道11との断面形状の曲率半径を、上記各玉5の直径Db の1/2よりも僅かに大きな{例えば(0.51〜0.56)Db 程度の}一定値に設定していた。これに対して本発明の場合には、図1に模式的に破線で示す様に、上記外輪軌道6と上記内輪軌道11との断面形状の曲率半径が、上記外輪軌道6では径方向内方に向かう程、上記内輪軌道11では径方向外方に向かう程、漸増する様な、複合曲面としている。尚、上記破線で示した上記両軌道6、11の断面形状の曲率半径に関しても、上記(0.51〜0.56)Db 程度の範囲内で変化させる事が、上記両軌道6、11の転がり疲れ寿命確保の面からは好ましい。
上述の様に構成する本発明の玉軸受ユニットの場合には、高荷重領域でも、剛性が高くならないか、或いは高くなる程度を低く抑えられる。この理由は、高荷重領域では、各玉5の転動面が、軌道面のうちで断面形状の曲率半径が大きくなった部分に転がり接触するので、当該部分での接触楕円が小さくなる傾向になり、転がり接触部分が弾性変形し易くなる為である。
即ち、外輪軌道6と内輪軌道11との間に複数個の玉5を、接触角θを付与した状態で転動自在に設けた玉軸受ユニットの場合、上記外輪軌道6と上記内輪軌道11との間に(図1で外輪相当部材22を左方に、内輪相当部材23を右方に、それぞれ押圧する方向に)加わるアキシアル荷重が大きくなる程、このアキシアル荷重を支承する各玉5の接触角θが大きくなる。そして、これら各玉5の転動面が接触する軌道面の断面形状の曲率が大きくなり、これら各玉5の転動面と当該軌道面との転がり接触部の接触楕円が小さくなる傾向になる。この結果、上記アキシアル荷重に基づき、上記外輪相当部材22と上記内輪相当部材23とが軸方向に相対変位し易い(アキシアル方向の剛性が低い)状態となり、上記接触角θが大きくなる事に伴うアキシアル方向の剛性向上分を補償する(相殺して、アキシアル荷重に基づく変位量を確保する)。
この様に本発明の玉軸受ユニットの場合には、無負荷乃至は低負荷時のアキシアル荷重に対する剛性と、高負荷時のアキシアル荷重に対する剛性との差が小さくなる。従って、アキシアル荷重に対して発生する、アキシアル方向の変位に対するゲイン特性の直線性が改善し、高負荷側での荷重の変動量に対する変位の変化量のゲインを確保できる(変動量と変化量との関係を示す線の勾配を大きく確保できる)。従って、無負荷乃至は低負荷時だけでなく、高負荷時に於いても、アキシアル荷重を精度良く測定できる。
以上の点に就いて、図2を参照しつつ、更に説明する。この図2は、前述の非特許文献2に記載された、荷重に基づく軌道の変形のし易さと、この軌道の断面形状の曲率半径との関係を示す線図である。この様な図2の横軸のκは、軌道面の断面形状の曲率半径に関する比を表す係数で、この曲率半径と玉5の直径の1/2との差を、この玉5の直径の1/2で除した値である。従って、玉5の直径が一定とすれば、上記κは、軌道面の断面形状の曲率半径を表す係数になる。又、上記図2の縦軸は、前述の(3)式で表されるCδであり、前述の(2)式で表した、接触荷重Qと接近量δとの関係式中の係数となるものである。この(2)式から明らかな通り、上記Cδが大きい程、接触荷重に基づく接近量(変位)は小さくなる。
一方、上記図2から明らかな通り、軌道面の断面形状の曲率半径を表すκの値が大きくなる程、上記Cδが小さくなる。これらを勘案すれば、上記軌道面の断面形状の曲率半径を大きくする程、玉軸受ユニットの剛性が低下する事が分かる。本発明の場合には、この様な特性を利用して、この玉軸受ユニットに加わるアキシアル荷重が大きくなった場合にも、この玉軸受ユニットのアキシアル方向の剛性が高くなる事を抑えている。そして、この玉軸受ユニットに加わるアキシアル荷重が或る程度大きくなった状態でも、このアキシアル荷重の変動に対する、前記外輪相当部材22と前記内輪相当部材23との相対変位量を確保し、この相対変位量に基づく、上記アキシアル荷重の測定精度を確保できる様にしている。
尚、単に、玉軸受ユニットに大きなアキシアル荷重が加わった場合にも、このアキシアル荷重の変動に対する、上記外輪相当部材22と上記内輪相当部材23との相対変位量を確保する事だけを考えれば、前記外輪軌道6と前記内輪軌道11との一方又は双方の断面形状の曲率半径全体を大きくすれば足りる。但し、この様な構造を採用した場合には、玉軸受ユニットに必要とされる耐久性及び剛性を確保できなくなる。即ち、例えば自動車の車輪を支持する為の玉軸受ユニットの場合、大きなアキシアル荷重が加わるのは、急旋回時等、希であるのに対して、ラジアル荷重に関しては、車体重量自体に加えて、加減速に伴う重心移動等により、頻繁に(乃至は常に)大きな荷重が加わる。従って、上記外輪軌道6と上記内輪軌道11との一方又は双方の断面形状の曲率半径全体を大きくすると、上記ラジアル荷重までも、小さな接触楕円で支承する必要が生じ、この曲率半径全体を大きくした軌道並びに前記各玉5の転動面の転がり疲れ寿命を確保する事が難しくなる。又、上記アキシアル荷重が低い状態での、アキシアル方向の剛性が低くなり過ぎて、例えば自動車の車輪支持用転がり軸受ユニットの場合には、直進安定性の確保が難しくなる等の問題を生じる。これに対して本発明の場合には、大きなアキシアル荷重が作用した場合に上記各玉5の転動面が転がり接触する部分のみ、軌道面の断面形状の曲率半径を大きくしているので、上述の様な不都合を生じる事はない。
同様の理由で、玉軸受ユニットに加わるラジアル荷重を、(前述の特願2004−279155号に、アキシアル荷重を測定する為の構造と共に開示されている)外輪相当部材と内輪相当部材との径方向に関する相対変位量から求める構造で、高荷重領域でのこの相対変位量の確保を、外輪軌道及び内輪軌道の曲率半径の工夫で行なう事も、好ましくない。即ち、上記ラジアル荷重を、高荷重領域でも、低荷重領域と同様の精度で求める事のみを考慮した場合には、上記外輪軌道及び内輪軌道の曲率半径を、図1の破線とは逆方向に変化させる(接触角が小さい状態で各玉の転動面が接触する部分で、曲率半径を大きくする)事が考えられる。但し、この場合には、上述した断面形状の曲率半径全体を大きくする場合と同様に、転がり疲れ寿命を確保する事が難しくなる。従って、本発明の様な構造は、ラジアル荷重の測定精度向上の為には不向きである。
本発明を実施する場合に好ましくは、請求項2に記載した様に、玉軸受ユニットを、複列アンギュラ型玉軸受とする。この為に、例えば前述の図3、5、7、9に示す様に、外輪相当部材である外輪3の内周面に、それぞれが断面円弧形である複列の外輪軌道6、6を、内輪相当部材であるハブ4、4aの外周面に、それぞれが断面円弧形である複列の内輪軌道11、11を、それぞれ設ける。又、これら両内輪軌道11、11と上記両外輪軌道6、6との間に玉5、5を、両列毎に互いに複数個ずつ、これら両列同士の間で互いに逆方向の接触角を付与した状態で転動自在に設ける。そして、上記両列の外輪軌道6、6及び内輪軌道11、11に関して、少なくとも一方の軌道(両外輪軌道6、6と両内輪軌道11、11とのうちの一方又は双方)の断面形状の曲率半径を、図1に破線で示した様に、上記各玉5、5の接触角θが小さい状態でこれら各玉5、5の転動面が接触する部分よりも、この接触角θが大きくなった状態でこれら各玉5、5の転動面が接触する部分に向けて、次第に大きくなる方向に漸増させる。
この様な構成を採用すれば、軸方向に関して何れの方向に作用するアキシアル荷重も支持できる構造で、これら両方向のアキシアル荷重に関して、高荷重作用時に於ける荷重の変動に対する、上記外輪相当部材(外輪3)と上記内輪相当部材(ハブ4、4a)との相対変位量を確保し、この相対変位量に基づく、上記アキシアル荷重の測定精度を確保できる。
又、上記図3、5、7、9に示す様な複列アンギュラ型玉軸受の場合には、上記外輪相当部材(外輪3)と上記内輪相当部材(ハブ4、4a)との間の温度差に伴って、上記各玉5、5に付与している予圧が変化する場合があるが、上述の請求項2に記載した様な構造を採用すれば、この予圧変化を低く抑えられる。即ち、上記外輪相当部材(外輪3)の温度に比べて上記内輪相当部材(ハブ4、4a)の温度が低い場合、内輪軌道11、11同士の軸方向ピッチP11(図3参照)が、上記両列の外輪軌道6、6同士の軸方向ピッチP6 (図3参照)に対応して適正な予圧を付与できる値(内輪軌道11、11同士の軸方向ピッチに関する適正値P00)に比べて短くなる(P11<P00)。この様な場合に、上記各軌道6、11の断面形状が、図1に実線で示す様な単一曲率円弧である場合には、上記ピッチ変化(P00→P11)に伴って上記予圧が高くなり、上記各軌道6、11及び上記各玉5、5の転動面の転がり疲れ寿命が低下する。これに対して、これら各軌道6、11の断面形状を、図1に破線で示す様な複合曲面とすれば、上記ピッチ変化(P00→P11)に拘らず、上記予圧が高くなる事を抑えて、上記各軌道6、11及び上記各玉5、5の転動面の転がり疲れ寿命の低下を防止できる。
又、上述の様な請求項2に記載した発明を実施する場合に好ましくは、請求項3に記載した様に、複列アンギュラ型玉軸受を車輪支持用玉軸受ユニットとする。そして、外輪相当部材と内輪相当部材とのうちの一方の部材を、懸架装置に支持固定される静止側軌道輪とし、他方の部材を、車輪を支持固定する回転側軌道輪とする。
本発明を、この様な車輪支持用玉軸受ユニットで実施すれば、懸架装置に対し回転自在に支持した車輪の支持剛性が、直進走行時と旋回走行時とで大きく変化する事を防止できる。そして、車両の走行安定性確保の為の設計が容易になる。
本発明を、この様な車輪支持用玉軸受ユニットで実施すれば、懸架装置に対し回転自在に支持した車輪の支持剛性が、直進走行時と旋回走行時とで大きく変化する事を防止できる。そして、車両の走行安定性確保の為の設計が容易になる。
又、本発明を実施する場合に好ましくは、請求項4に記載した如く、例えば前述の図3〜10に示す様に、外輪相当部材22(外輪3)と内輪相当部材23(ハブ4、4a)との間に作用するアキシアル荷重を測定する為の荷重測定装置を備える。そして、この荷重測定装置は、上記外輪相当部材22(外輪3)と上記内輪相当部材23(ハブ4、4a)とのうちで使用時に回転する回転側軌道輪(ハブ4、4a)の一部に、被検出面(である外周面)の特性を円周方向に関して交互に変化させたエンコーダ12〜12cを、上記回転側軌道輪(ハブ4、4a)と同心に支持する。又、上記外輪相当部材22(外輪3)と上記内輪相当部材23(ハブ4、4a)とのうちで使用時にも回転しない静止側軌道輪(外輪3)等の回転しない部分に支持されたセンサ13〜13bの検出部を上記エンコーダ12〜12cの被検出面に対向させる。このセンサ13〜13bは、この被検出面の特性変化に対応してその出力信号を変化させる。又、この被検出面の特性が円周方向に関して変化するパターンは、検出すべきアキシアル荷重の作用方向に対応して、上記被検出面の幅方向に関して連続的に変化させる。そして、上記センサ13〜13bの出力信号を入力した演算器により、この出力信号に基づいて、上記外輪相当部材22(外輪3)と上記内輪相当部材23(ハブ4、4a)との間に加わるアキシアル荷重を算出する。
この様な構成を採用すれば、前述の先発明の様に、比較的低コストで造れる構造で、上記外輪相当部材22(外輪3)と上記内輪相当部材23(ハブ4、4a)との間に作用するアキシアル荷重を精度良く測定できる。特に、本発明によれば、このアキシアル荷重が大きい場合にも、上記外輪相当部材22(外輪3)と上記内輪相当部材23(ハブ4、4a)との軸方向に関する相対変位量を確保して、上記アキシアル荷重を精度良く求められる。
1、1a 車輪支持用転がり軸受ユニット
2 荷重測定装置
3 外輪
4、4a ハブ
5 玉
6 外輪軌道
7 取付部
8 ハブ本体
9 内輪
10 フランジ
11 内輪軌道
12、12a、12b、12c エンコーダ
13、13a、13b センサ
14a、14b、14c、14d、14e、14f 透孔
15 取付孔
16 スプライン孔
17 凹部
18 凸部
19 リム部
20 カバー
21 センサホルダ
22 外輪相当部材
23 内輪相当部材
2 荷重測定装置
3 外輪
4、4a ハブ
5 玉
6 外輪軌道
7 取付部
8 ハブ本体
9 内輪
10 フランジ
11 内輪軌道
12、12a、12b、12c エンコーダ
13、13a、13b センサ
14a、14b、14c、14d、14e、14f 透孔
15 取付孔
16 スプライン孔
17 凹部
18 凸部
19 リム部
20 カバー
21 センサホルダ
22 外輪相当部材
23 内輪相当部材
Claims (4)
- 内周面に断面円弧形の外輪軌道を有する外輪相当部材と、外周面に断面円弧形の内輪軌道を有する内輪相当部材と、これら外輪軌道と内輪軌道との間に、接触角を付与された状態で転動自在に設けられた複数個の玉とを備えた玉軸受ユニットに於いて、上記外輪軌道と上記内輪軌道とのうちの少なくとも一方の軌道の断面形状の曲率半径が、上記接触角が小さい状態で上記各玉の転動面が接触する部分よりも、この接触角が大きくなった状態でこれら各玉の転動面が接触する部分に向けて、次第に大きくなる方向に、漸増している事を特徴とする玉軸受ユニット。
- 玉軸受ユニットが、外輪相当部材の内周面にそれぞれが断面円弧形である複列の外輪軌道を、内輪相当部材の外周面にそれぞれが断面円弧形である複列の内輪軌道を、それぞれ有し、これら両外輪軌道と両内輪軌道との間に玉を、両列毎に互いに複数個ずつ、これら両列同士の間で互いに逆方向の接触角を付与した状態で転動自在に設けた複列アンギュラ型玉軸受であり、上記両列の外輪軌道及び内輪軌道に関して、少なくとも一方の軌道の断面形状の曲率半径を、上記接触角が小さい状態で上記各玉の転動面が接触する部分よりも、この接触角が大きくなった状態でこれら各玉の転動面が接触する部分に向けて、次第に大きくなる方向に、漸増させている、請求項1に記載した玉軸受ユニット。
- 複列アンギュラ型玉軸受が車輪支持用玉軸受ユニットであり、外輪相当部材と内輪相当部材とのうちの一方の部材が懸架装置に支持固定される静止側軌道輪であり、他方の部材が車輪を支持固定する回転側軌道輪である、請求項2に記載した玉軸受ユニット。
- 外輪相当部材と内輪相当部材との間に作用するアキシアル荷重を測定する為の荷重測定装置を備え、この荷重測定装置は、上記外輪相当部材と上記内輪相当部材とのうちで使用時に回転する回転側軌道輪の一部にこの回転側軌道輪と同心に支持された、被検出面の特性を円周方向に関して交互に変化させたエンコーダと、その検出部をこの被検出面に対向させた状態で回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させるセンサと、このセンサの出力信号に基づいて、上記外輪相当部材と上記内輪相当部材との間に加わるアキシアル荷重を算出する演算器とを備えたものであり、上記被検出面の特性が円周方向に関して変化するパターンは、検出すべきアキシアル荷重の作用方向に対応して、上記被検出面の幅方向に関して連続的に変化している、請求項1〜3のうちの何れか1項に記載した玉軸受ユニット。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005056987A JP2006242241A (ja) | 2005-03-02 | 2005-03-02 | 玉軸受ユニット |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005056987A JP2006242241A (ja) | 2005-03-02 | 2005-03-02 | 玉軸受ユニット |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006242241A true JP2006242241A (ja) | 2006-09-14 |
Family
ID=37048867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005056987A Withdrawn JP2006242241A (ja) | 2005-03-02 | 2005-03-02 | 玉軸受ユニット |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006242241A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010054256A (ja) * | 2008-08-27 | 2010-03-11 | Nsk Ltd | 転がり軸受ユニット用荷重測定装置 |
JP2012045667A (ja) * | 2010-08-26 | 2012-03-08 | Nsk Ltd | 工作機械のスピンドル装置 |
KR101532768B1 (ko) * | 2014-08-01 | 2015-07-02 | 주식회사 트리보테크 | 고하중용 구름 베어링 |
DE102016205571A1 (de) * | 2016-04-05 | 2017-04-13 | Schaeffler Technologies AG & Co. KG | Federbeinlager |
CN113614399A (zh) * | 2019-03-25 | 2021-11-05 | 株式会社捷太格特 | 角接触球轴承的接触角取得方法及车轮用轴承装置的制造方法 |
-
2005
- 2005-03-02 JP JP2005056987A patent/JP2006242241A/ja not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010054256A (ja) * | 2008-08-27 | 2010-03-11 | Nsk Ltd | 転がり軸受ユニット用荷重測定装置 |
JP2012045667A (ja) * | 2010-08-26 | 2012-03-08 | Nsk Ltd | 工作機械のスピンドル装置 |
KR101532768B1 (ko) * | 2014-08-01 | 2015-07-02 | 주식회사 트리보테크 | 고하중용 구름 베어링 |
DE102016205571A1 (de) * | 2016-04-05 | 2017-04-13 | Schaeffler Technologies AG & Co. KG | Federbeinlager |
CN113614399A (zh) * | 2019-03-25 | 2021-11-05 | 株式会社捷太格特 | 角接触球轴承的接触角取得方法及车轮用轴承装置的制造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4433688B2 (ja) | 転がり軸受ユニットの荷重測定装置及び荷重測定用転がり軸受ユニット | |
JP2007127253A (ja) | センサ付き転がり軸受装置 | |
JP2005090994A (ja) | 転がり軸受ユニットの荷重測定装置 | |
JP2006242241A (ja) | 玉軸受ユニット | |
JP4899722B2 (ja) | 状態量測定装置付転がり軸受ユニット | |
JP2006317434A (ja) | 転がり軸受ユニットの変位測定装置及び荷重測定装置 | |
JP2007085742A (ja) | 荷重測定装置付転がり軸受ユニット | |
JP4894277B2 (ja) | 転がり軸受ユニットの荷重測定装置 | |
JP4269669B2 (ja) | 転がり軸受ユニット用荷重測定装置 | |
JP5092393B2 (ja) | 転がり軸受ユニットの状態量測定装置の組立方法 | |
JP2009019880A (ja) | 転がり軸受ユニットの状態量測定装置 | |
JP2004340579A (ja) | 転がり軸受ユニットの荷重測定装置及び荷重測定用転がり軸受ユニット | |
JP4843958B2 (ja) | 転がり軸受ユニットの荷重測定装置 | |
JP2006201157A (ja) | 変位測定装置付玉軸受ユニット及び荷重測定装置付玉軸受ユニット | |
JP2005291457A (ja) | 玉軸受ユニット | |
JP2008224397A (ja) | 転がり軸受ユニットの荷重測定装置 | |
JP2007309665A (ja) | 車輪支持用転がり軸受ユニットの荷重測定装置 | |
JP4941140B2 (ja) | 転がり軸受ユニットの状態量測定装置 | |
JP2008122171A (ja) | 状態量測定装置付転がり軸受ユニットのセンサの交換方法 | |
JP2005098771A (ja) | 転がり軸受ユニットの荷重測定装置 | |
JP2005091073A (ja) | 回転速度検出装置及び転がり軸受ユニットの荷重測定装置 | |
JP4325376B2 (ja) | 車両用姿勢安定化装置 | |
JP2007078073A (ja) | 車輪用転がり軸受装置 | |
JP2005181265A (ja) | 転がり軸受ユニットの荷重測定装置 | |
JP2007010318A (ja) | 荷重測定装置付転がり軸受ユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070502 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080218 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090728 |