JP2006233626A - Tunnel structure - Google Patents

Tunnel structure Download PDF

Info

Publication number
JP2006233626A
JP2006233626A JP2005051193A JP2005051193A JP2006233626A JP 2006233626 A JP2006233626 A JP 2006233626A JP 2005051193 A JP2005051193 A JP 2005051193A JP 2005051193 A JP2005051193 A JP 2005051193A JP 2006233626 A JP2006233626 A JP 2006233626A
Authority
JP
Japan
Prior art keywords
tunnel
wall body
rock
fault
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005051193A
Other languages
Japanese (ja)
Other versions
JP4281010B2 (en
Inventor
Masayuki Kosugi
昌幸 小杉
Manabu Utagawa
学 歌川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005051193A priority Critical patent/JP4281010B2/en
Publication of JP2006233626A publication Critical patent/JP2006233626A/en
Application granted granted Critical
Publication of JP4281010B2 publication Critical patent/JP4281010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tunnel structure reducing the damage of a tunnel wall surface following fault vibration displacement at the occurrence of an earthquake of a tunnel passing through a fault in a rock-bed. <P>SOLUTION: An outside wall body 8 integrated with the wall surface of the rock-bed is formed of a wall surface of high rigidity formed with a widened open-cut part 3 across the fault 2. An inside wall body 9 having the same inner void cross section as a lining part of a normal lining 5 is provided in a position separated from the outside wall body 8. The inside wall body 9 has a plurality of ring bodies 10 connected in an axial direction and connected to anchor part ring bodies 12 integrated with the lining of the normal lining 5. A mutual joint part of the ring bodies 10, 12 is provided with an expansion joint 13 allowing sliding displacement in the axial direction of the tunnel. Leg bodies 14 formed of base isolating members are installed between the inside wall body 9 and the outside wall body 8 to constitute a base isolating structure in which displacement in a support direction is allowed. A seal part 15 for preventing the outflow of seepage water and preventing falling-in is installed at an opening of the fault 2 exposed to the widened and open-cut rock-bed surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、土木分野のトンネルなど地下空間の設計や施工において、岩盤内に賦存する断層など規模の大きい不連続面のトンネル貫通位置近傍における地震発生時の不連続面振動変位に伴うトンネル壁面の崩壊や崩落などのダメージを低減あるいは最小化するためのトンネル構造に関するものである。   This invention relates to tunnel wall surface due to discontinuous surface vibration displacement at the time of earthquake occurrence in the vicinity of tunnel penetration position of large-scale discontinuous surface such as faults existing in rock mass in the design and construction of underground space such as tunnel in civil engineering field The present invention relates to a tunnel structure for reducing or minimizing damage such as collapse or collapse.

岩盤内にトンネルなどの地下空間を掘削する場合には、岩盤内に賦存する断層など規模の大きい不連続面を貫通して施工せざるを得ないものの、従来、岩盤内さらには岩盤壁面からトンネル壁面までをセメント、鋼材、ロックボルトなどの高い剛性の材料で一体化する剛性構造が実用に供されており、岩盤掘削後直ちに支保施工する新オーストリア・トンネル工法(NATM,New Austrian Tunneling Method)などで岩盤内の断層など不連続面の貫通部を厚肉で巻き立てるトンネル施工が実用に供されていた。   When excavating underground spaces such as tunnels in the rock mass, it is necessary to pierce large discontinuities such as faults existing in the rock mass. New Austrian Tunneling Method (NATM, New Austrian Tunneling Method), where the tunnel wall is integrated with cement, steel, rock bolts, and other highly rigid materials, and is supported immediately after rock excavation. As a result, tunnel construction that winds up the perforations of discontinuous surfaces such as faults in the bedrock with a thick wall has been put to practical use.

実用のトンネル工法では、トンネル壁面が岩盤の開削壁面と同様に連続する剛体としてトンネル内面を形成するため、地震発生時に連続する岩盤部分と不連続な断層などとのひずみ開放や応力状態が異なることに依存する相対的な変位振動に対応できずに断層など規模の大きい不連続面周辺においてトンネル壁面が崩壊あるいは崩落する被害が多く発生しており、断層など不連続面の変形には対応できない不都合が存在した。   In practical tunneling methods, the tunnel wall surface is formed as a continuous rigid body similar to the open wall of the rock mass, so the strain relief and stress state between the continuous rock mass and discontinuous faults are different when an earthquake occurs. Inability to cope with relative displacement vibrations that depend on the level of damage caused by the collapse or collapse of the tunnel wall around a large discontinuous surface such as a fault, which cannot cope with the deformation of a discontinuous surface such as a fault Existed.

このような地震発生時の地盤変形に対応するトンネル構造としては、例えば下記に示すような従来技術があった。
特開2000−64790号公報 特開2001−55893号公報 特開2000−204891号公報
As a tunnel structure corresponding to the ground deformation at the time of such an earthquake, for example, there is a conventional technique as shown below.
JP 2000-64790 A JP 2001-55893 A JP 2000-204891 A

特許文献1には、トンネルと周辺地山との間に動土圧緩衝領域を設けるトンネル構造が記載されており、この動土圧緩衝領域は、周辺地山からの土圧を支持する支持体と、この内側に配置される緩衝体から構成されていた。支持体はモルタルやコンクリートからなる壁体であって、緩衝体は伸縮性袋体に動土圧緩衝材を封入したもので、この動土圧緩衝材は注入時には流動状態で爾後固化し、固化状態にて強制変形を受けた時にエネルギー吸収できる例えばウレタンゴムなどを採用していた。   Patent Document 1 describes a tunnel structure in which a dynamic earth pressure buffering region is provided between a tunnel and a surrounding natural ground, and this dynamic earth pressure buffering region includes a support that supports earth pressure from the peripheral natural ground, It was comprised from the buffer body arrange | positioned inside this. The support is a wall made of mortar or concrete, and the shock absorber is made by enclosing a dynamic earth pressure buffer material in an elastic bag, and this dynamic earth pressure buffer material is solidified in a fluidized state after injection and then solidified. For example, urethane rubber that can absorb energy when subjected to forced deformation has been adopted.

又特許文献2にはトンネル躯体の外周面に滑動材を装着するトンネル構造が開示されている。この滑動材は地盤と躯体との間で滑りを発生させることによりトンネルと地盤とを絶縁し、地盤ひずみのトンネルへの伝達を遮断して、地震時に発生する躯体断面力の低減を図るものであった。   Patent Document 2 discloses a tunnel structure in which a sliding material is mounted on the outer peripheral surface of a tunnel housing. This sliding material insulates the tunnel from the ground by generating a slip between the ground and the frame, cuts off the transmission of ground strain to the tunnel, and reduces the cross-sectional force of the frame generated during an earthquake. there were.

又特許文献3には、内部にリング状の可とう性部材を備えるトンネル構造が開示されており、この可とう性部材は断層破砕帯幅以上の長さを有するもので、その両端は断層を横切って配置される断面リング状の覆工部に定着されていた。断層破壊時には定着領域間の覆工部による拘束を回避した非定着領域を変形させることで断層破壊時にもトンネル機能を確保することを目指すものであった。   Further, Patent Document 3 discloses a tunnel structure having a ring-shaped flexible member inside, and this flexible member has a length longer than the width of the fault crushing zone, and both ends thereof are faulted. It was fixed to the lining part with a ring-shaped cross section arranged across. The aim was to secure a tunnel function even at the time of fault destruction by deforming the non-fixed area avoiding the constraint by the lining part between the fixed areas at the time of fault destruction.

しかし、従来の動土圧緩衝領域を設けるトンネル構造や躯体の外周面に滑動材を装着するトンネル構造では、地震発生時に最も変形しやすい既存の断層など不連続面の大きな変位振動には対応できなかった。即ち、地震時における岩盤挙動の大部分は既存の断層など不連続面に沿う滑りやダイレーションなどの変形に依存し、又岩盤内における応力状態の変化もこれら不連続面に顕著に現れるため、地震発生時には不連続面において大きな三軸方向の変位振動が生じやすく、緩衝材や滑動材を設ける従来のトンネル構造では、これら中間材を介しても岩盤とトンネル躯体が全面的に接しているため、岩盤の三軸方向の地震振動はトンネル壁面に直接的に伝達されてしまい、断層など不連続面周辺においてトンネル壁面が崩壊あるいは崩落する被害を防ぎ得なかった。   However, conventional tunnel structures with a dynamic earth pressure buffering area and tunnel structures with sliding materials attached to the outer peripheral surface of the frame cannot handle large displacement vibrations on discontinuous surfaces such as existing faults that are most likely to deform when an earthquake occurs. It was. That is, most of the rock behavior during an earthquake depends on deformation such as slip and dilation along the discontinuous surface such as existing faults, and the stress state change in the rock mass also appears prominently on these discontinuous surfaces, When an earthquake occurs, large three-axis displacement vibrations are likely to occur on the discontinuous surface, and in the conventional tunnel structure with cushioning material and sliding material, the rock mass and the tunnel frame are in full contact with each other through these intermediate materials. However, the triaxial seismic vibration of the rock mass was directly transmitted to the tunnel wall surface, and could not prevent the tunnel wall surface from collapsing or collapsing around discontinuous surfaces such as faults.

又、内部にリング状の可とう性部材を備えるトンネル構造は、上下水道等の管路施設には適用し得るが、地震発生時にも剛体としての壁面を維持しなければならない鉄道や自動車用のトンネル構造には適用できなかった。   The tunnel structure with a ring-shaped flexible member inside can be applied to pipe facilities such as water and sewage systems, but for railways and automobiles that must maintain a rigid wall surface in the event of an earthquake. It could not be applied to the tunnel structure.

この発明は、従来のトンネル構造が有する上記の問題点を解消すべくなされたものであり、岩盤内断層を貫通するトンネルの地震発生時における断層振動変位に伴うトンネル壁面の被害を低減し、岩盤壁面における地震に伴う破壊や崩落に拘わらず、トンネル壁面が維持されるトンネル構造を提供することを目的としている。又、地震発生時の振動をトンネル壁面に伝達しない免震構造を備え、岩盤壁面に崩壊等の被害が発生した場合にも速やかな補修が可能なトンネル構造を提供することを目的としている。   The present invention has been made to solve the above-mentioned problems of the conventional tunnel structure, and reduces the damage of the tunnel wall caused by the fault vibration displacement at the time of the earthquake occurrence of the tunnel penetrating the fault in the rock, The object is to provide a tunnel structure in which the wall surface of the tunnel is maintained regardless of the destruction or collapse of the wall surface due to the earthquake. Another object of the present invention is to provide a tunnel structure that has a seismic isolation structure that does not transmit the vibration at the time of the earthquake to the tunnel wall surface, and that can be repaired promptly even when damage such as collapse occurs on the rock wall surface.

上記課題を解決するため、この発明のトンネル構造は、断層など規模の大きい不連続面を有する岩盤内を掘削して構築するトンネル構造において、前記不連続面のトンネル貫通位置近傍を拡幅開削した岩盤面に形成する外側壁体と、少なくとも前記不連続面の位置では外側壁体より離隔して構築する剛体よりなる内側壁体を有することを特徴とするものである。   In order to solve the above-mentioned problems, the tunnel structure of the present invention is a tunnel structure constructed by excavating the inside of a rock having a large scale discontinuous surface such as a fault. It has an outer wall body formed on a surface and an inner wall body made of a rigid body constructed at a distance from the outer wall body at least at the position of the discontinuous surface.

トンネルの掘削に伴って地震時の振動変位が予測される規模の大きい断層の貫通部分に遭遇した場合、この不連続面部分を跨いで拡幅開削する。この拡幅部の両端に定着領域を設け、その外側にある一般断面からなる通常ライニング部と、これらに挟まれる内側壁体及び外側壁体を一体的に接続する。外側壁体は、通常ライニング部と同様な支保構成で例えば、ロックボルト、吹き付けコンクリート、グラウト等からなる剛性の高い壁面で、支保体を岩盤壁面と一体化させる。   When a large-scale fault penetrating part that is predicted to vibrate in the event of an earthquake during tunnel excavation is encountered, widening is performed across this discontinuous surface part. Fixing regions are provided at both ends of the widened portion, and a normal lining portion having a general cross section on the outside thereof is integrally connected to an inner wall body and an outer wall body sandwiched therebetween. The outer wall body has a support structure similar to that of the normal lining portion, and is a highly rigid wall surface made of, for example, rock bolts, sprayed concrete, grout and the like, and the support body is integrated with the rock wall surface.

内側壁体は、地震時に起こり得る不連続面の変位量を考慮し、振動変位した岩盤面が当接しないよう外側壁体から十分離隔した位置に設置する。内側壁体は通常ライニング部と同一の内空断面を有するが、地震時に不連続面が崩壊あるいは崩落しても、これに耐え得る構造とする。この内側壁体は周方向に分割されたコンクリート製あるいは鋼製の部材を拡幅部において組み立て通常ライニング部に定着させる。   Considering the amount of discontinuous surface displacement that can occur during an earthquake, the inner wall body is installed at a position sufficiently separated from the outer wall body so that the rock surface that has been displaced by vibration does not come into contact. The inner wall body usually has the same inner air section as the lining part, but is structured to withstand even if a discontinuous surface collapses or collapses during an earthquake. The inner wall body is constructed by assembling a concrete or steel member divided in the circumferential direction at the widened portion and fixing it to the normal lining portion.

不連続面のトンネル貫通位置近傍を拡幅開削して岩盤支保とトンネル壁面を分離する二重トンネル構造により、地震に伴う断層周辺岩盤の振動変位に伴う相対的変位食い違いのトンネル構造物やその壁面への直接的な伝播を回避する。   The double tunnel structure separating the rock mass support from the tunnel wall by widening the vicinity of the tunnel penetration position on the discontinuous surface, to the tunnel structure and its wall with the relative displacement difference due to the vibration displacement of the rock around the fault due to the earthquake Avoid direct propagation of.

請求項2記載のトンネル構造における内側壁体は、トンネル軸方向にスライド変位を許容し得る伸縮継手を備えることを特徴とするものである。伸縮継手の設置位置、箇所数は拡幅部の長さ、不連続面の性状等により適宜定める。伸縮継手は内側壁体の周方向に設け、軸方向の変位のみ可能で、半径方向の変位を拘束し得る構成とする。複数箇所の伸縮継手を設ける場合、複数のリング状トンネル壁面を接合して内側壁体を形成する。   The inner wall body in the tunnel structure according to claim 2 is provided with an expansion joint capable of allowing sliding displacement in the tunnel axial direction. The installation position and the number of locations of the expansion joint are appropriately determined according to the length of the widened portion, the properties of the discontinuous surface, and the like. The expansion joint is provided in the circumferential direction of the inner wall body so that only an axial displacement is possible and the displacement in the radial direction can be restricted. When providing expansion joints at a plurality of locations, a plurality of ring-shaped tunnel wall surfaces are joined to form an inner wall body.

請求項3記載のトンネル構造における内側壁体は、前記外側壁体より突設する免震部材で支持されることを特徴とするものである。外側壁体と内側壁体との間に免震部材よりなる脚体を設置して、支持方向の変位が許容される免震構造を構成する。免震部材は、内側壁体全重量を支持できる強度及び剛性を備え部材水平方向に十分柔らかな特性を有するアイソレータと減衰性能を備えるダンパーを適宜組み合わせたものとする。   The inner wall body in the tunnel structure according to claim 3 is supported by a seismic isolation member protruding from the outer wall body. A leg body made of a seismic isolation member is installed between the outer side wall body and the inner side wall body to constitute a seismic isolation structure in which displacement in the support direction is allowed. The seismic isolation member is an appropriate combination of an isolator having strength and rigidity capable of supporting the entire inner wall body weight and sufficiently soft characteristics in the horizontal direction of the member and a damper having damping performance.

請求項4記載のトンネル構造における拡幅開削した岩盤面に露出する前記不連続面の開口部には、浸透水流出防止用及び崩落防止用に変形可能で比較的軽量な素材からなるシール材を設けることを特徴とするものである。シール材としては例えば合成樹脂、合成ゴム等からなる塗布膜で開口部を覆い、更に崩落対策用にネット等を設置する。不連続面の開口部は地震振動時に容易に変形し得るよう剛性の高い部材では閉鎖しない。   5. A seal material made of a relatively lightweight material that can be deformed to prevent permeation water outflow and collapse prevention is provided at the opening portion of the discontinuous surface exposed to the rock surface that has been widened and cut in the tunnel structure according to claim 4. It is characterized by this. As the sealing material, for example, the opening is covered with a coating film made of synthetic resin, synthetic rubber or the like, and a net or the like is further installed as a countermeasure against collapse. The opening of the discontinuous surface is not closed by a highly rigid member so that it can be easily deformed during earthquake vibration.

この発明のトンネル構造は、拡幅開削した岩盤面に形成する外側壁体と、これより離隔して構築する内側壁体を有するので、岩盤支保とトンネル壁面を分離する二重トンネル構造となり、地震に伴う断層周辺岩盤の振動変位に伴う相対的変位食い違いのトンネル構造物やその壁面への直接的な伝播を回避することができ、トンネル壁面の被害を低減することができる。   The tunnel structure of the present invention has an outer wall formed on the rock surface that has been widened and opened, and an inner wall body that is separated from the outer wall, so that it becomes a double tunnel structure that separates the rock support and the wall surface of the tunnel. It is possible to avoid the propagation of the tunnel structure with the relative displacement discrepancy accompanying the vibration displacement of the surrounding rock mass of the fault and its direct propagation to the wall surface, and to reduce the damage of the tunnel wall surface.

即ち、地震時に崩壊あるいは崩落する被害を最も受けやすい断層など不連続面周辺で地震に伴う破壊や崩落が生じても、少なくともトンネル壁面を維持でき、緊急災害時のトンネル内の通過に伴う被害を最小限にすることが可能になる。又、外側壁体と内側壁体が離隔しているので、災害発生後の規模の大きい断層など周辺における崩壊や崩落の修復に際しても、地震など岩盤変動に伴う崩壊部の除去と再支保打設による修復が容易となり、修復期間と修復規模の縮小が可能になる。   In other words, even if a failure or collapse occurs near a discontinuous surface such as a fault that is most likely to be damaged or collapsed during an earthquake, at least the tunnel wall surface can be maintained and damage caused by passage through the tunnel during an emergency disaster can be maintained. It becomes possible to minimize. In addition, because the outer wall and the inner wall are separated from each other, even when large-scale faults such as large faults after a disaster have occurred, repairing collapses and collapses due to rock mass fluctuations such as earthquakes is possible. Repair becomes easier, and the repair period and scale can be reduced.

請求項2記載のトンネル構造における内側壁体は、トンネル軸方向にスライド変位を許容し得る伸縮継手を備えるので、不連続面を挟んで軸方向に相対的な変位が生じたとしても、その変位を吸収して躯体損傷を防ぐことができる。又、請求項3記載のトンネル構造における内側壁体は、外側壁体より突設する免震部材で支持されるので、岩盤壁面の三軸方向の振動をトンネル壁面に伝達することを防ぎ、岩盤内の不連続面で発生する食い違い変位の振動に伴う崩壊及び崩落の被害を直接トンネル内壁に伝えない被害低減構造が実現できる。   The inner wall body in the tunnel structure according to claim 2 is provided with an expansion joint capable of allowing sliding displacement in the tunnel axial direction, so even if relative displacement occurs in the axial direction across the discontinuous surface, the displacement It can absorb the body and prevent the body damage. Further, since the inner wall body in the tunnel structure according to claim 3 is supported by a seismic isolation member protruding from the outer wall body, it is possible to prevent transmission of vibration in the triaxial direction of the rock wall surface to the tunnel wall surface. It is possible to realize a damage reduction structure that does not directly transmit the damage of collapse and collapse due to the vibration of the discrepancy displacement generated at the discontinuous surface in the tunnel to the inner wall of the tunnel.

請求項4記載のトンネル構造は、不連続面の開口部を変形可能で比較的軽量な素材からなるシール材で覆蓋するので、地震発生時に生ずる浸透水等の流出を防止することができ、又不連続面の崩落防止も可能となる。地震など大規模な岩盤変動に伴う崩壊や崩落などの被害は岩盤内に賦存する規模の大きい断層など不連続面に集中することから、不連続面の開口部を剛性の高い部材で覆蓋するとより破壊される部位が大きくなってしまう。このため、不連続面の開口部は地震振動時に容易に変形して、しかも破壊されない材料で覆蓋する方が崩落等の被害も低減し得る。   In the tunnel structure according to claim 4, since the opening of the discontinuous surface is covered with a seal material made of a relatively lightweight material that can be deformed, it is possible to prevent the outflow of infiltrated water or the like that occurs when an earthquake occurs. It is also possible to prevent the discontinuity from collapsing. Because damage such as collapse and collapse due to large-scale rock mass changes such as earthquakes concentrates on discontinuous surfaces such as large faults existing in the rock mass, if the opening of the discontinuous surface is covered with a rigid member The part to be destroyed becomes larger. For this reason, the opening of the discontinuous surface is easily deformed at the time of earthquake vibration, and if it is covered with a material that is not destroyed, damage such as collapse can be reduced.

次にこの発明の実施の形態を添付図面に基づき詳細に説明する。図1は断層など不連続面近傍のトンネル周辺岩盤において地震などに伴う相対的振動変位を直接的にトンネル壁面に伝わらないようにする二重構造の免震を施したトンネル構造の断面図である。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Fig. 1 is a cross-sectional view of a tunnel structure with a double-structure seismic isolation that prevents relative vibration displacements associated with earthquakes from being transmitted directly to the tunnel wall in the rock surrounding the discontinuous surface such as faults. .

実用のトンネルなど地下空間の施工では、岩盤1内におけるトンネルなどの壁面が直接セメントなどによって岩盤開削壁面に接合する構造であるが、本発明の構造では岩盤1内にある断層2など不連続面近傍において岩盤1が連続していないことに起因する地震時などの相対的変位、例えば図1に示す矢印方向の変位を直接トンネル壁面に伝播しない構造となっている。   In construction of underground space such as a practical tunnel, the wall surface of the tunnel in the rock mass 1 is directly joined to the rock excavation wall surface by cement or the like, but in the structure of the present invention, a discontinuous surface such as the fault 2 in the rock mass 1 The structure is such that relative displacement during an earthquake or the like due to the rock 1 not being continuous in the vicinity, for example, displacement in the direction of the arrow shown in FIG.

岩盤1を掘削する際、断層2など不連続面近傍においては、これを跨いで拡幅開削部3を設け、一般断面掘削部4の通常ライニング5の構造と同様に岩盤壁面にロックボルト6、吹き付けコンクリート7あるいはグラウトなどを打設し、剛性の高い壁面で岩盤壁面と一体化する外側壁体8を形成する。この外側壁体8と離隔した位置に通常ライニング5の覆工部分と同一の内空断面を有する内側壁体9を設ける。   When excavating the rock mass 1, in the vicinity of the discontinuous surface such as the fault 2, the widened excavation portion 3 is provided across the surface, and the rock bolt 6 is sprayed on the rock wall surface in the same manner as the structure of the normal lining 5 of the general section excavation portion 4. Concrete 7 or grout is placed to form an outer wall 8 that is integrated with the rock wall surface with a highly rigid wall surface. An inner wall body 9 having the same inner cross section as the lining portion of the lining 5 is provided at a position separated from the outer wall body 8.

内側壁体9は、周方向に分割されたコンクリート製あるいは鋼製の部材を拡幅開削部3において組み立てたリング体10を軸方向に複数個接続する構成で、拡幅開削部3の両端に定着領域11を設け、通常ライニング5の覆工と一体化する定着部リング体12と連結している。   The inner wall body 9 has a configuration in which a plurality of ring bodies 10 assembled in the widened cut-out part 3 are connected in the axial direction by a concrete or steel member divided in the circumferential direction. 11 is connected to a fixing unit ring body 12 that is integrated with the lining of the normal lining 5.

これらリング体10,12の接合部にはトンネル軸方向にスライド変位を許容し得る伸縮継手13を備える。内側壁体9は、地震時に起こり得る不連続面の変位量を考慮し、振動変位した岩盤面が当接しないよう外側壁体8から十分離隔した位置に設置するが、その間に免震部材よりなる脚体14を設置して、支持方向の変位が許容される免震構造を構成する。又、拡幅開削した岩盤面に露出する断層2の開口部には、浸透水流出防止用及び崩落防止用にシール部15を設置する。   The joints of these ring bodies 10 and 12 are provided with expansion joints 13 that can allow sliding displacement in the tunnel axis direction. Considering the amount of discontinuous surface displacement that can occur during an earthquake, the inner wall body 9 is installed at a position that is sufficiently separated from the outer wall body 8 so as not to contact the rock surface that has been displaced by vibration. The leg body 14 is installed to constitute a seismic isolation structure in which displacement in the support direction is allowed. In addition, a seal portion 15 is installed at the opening of the fault 2 exposed to the rock surface that has been widened and cut out to prevent the seepage water from flowing out and to prevent the collapse.

このシール部の詳細を図2に基づき説明する。図2はシール部の拡大断面図である。岩盤内に賦存する断層2など不連続面は開削壁面に対して開口しており、地震発生時には岩盤内の最も弱い部分である断層2など不連続面において図2の矢印方向に示す食い違いの相対的振動変位が発生した際には、その開口部からの浸透水の流出や崩壊岩砕の崩落が生ずる。   Details of the seal portion will be described with reference to FIG. FIG. 2 is an enlarged cross-sectional view of the seal portion. The discontinuous surface such as fault 2 existing in the bedrock is open to the cut wall, and when the earthquake occurs, the discrepancy shown in the direction of the arrow in FIG. 2 on the discontinuous surface such as fault 2 is the weakest part in the rock. When relative vibration displacement occurs, the seepage water flows out from the opening and collapse of collapsed rocks occurs.

このため、拡幅開削部3の岩盤にはロックボルト6、吹き付けコンクリート及びグラウト7などを打設して堅固な外側壁体8を構築するが断層2の開口部には樹脂材による塗膜15aや網材15bなどをアンカー15cによって設置し、浸水や微小崩壊に対する防護を施す。   For this reason, rock bolts 6, sprayed concrete, grouts 7 and the like are placed on the bedrock of the widened cut-out portion 3 to construct a solid outer wall body 8, but a coating film 15a made of a resin material or the like is formed at the opening of the fault 2 A net member 15b or the like is installed by an anchor 15c to protect against flooding and microdisintegration.

次に内側壁体の伸縮継手の詳細を図3及び図4に基づき説明する。図3は内側壁体定着部の拡大断面図、図4は伸縮継手の平面図及び断面図を示す。定着部リング体12は通常ライニング5の覆工と一体化しているが、拡幅開削部3方向の端部には伸縮継手13を設け、内側壁体9のリング体10と連結している。伸縮継手13は内側壁体9の周方向に設け、図4(b)の平面図矢印に示すトンネル軸方向の変位のみ可能で、半径方向の変位は拘束し得るよう断面図図4(a)に示す段部13aを有する。この伸縮継手13は既存の橋梁床版などに用いられるスライド構造と同様な構成で、鋼材などによる連結構造である。   Next, details of the expansion joint of the inner wall body will be described with reference to FIGS. 3 is an enlarged sectional view of the inner wall body fixing portion, and FIG. 4 is a plan view and a sectional view of the expansion joint. The fixing part ring body 12 is usually integrated with the lining of the lining 5, but an expansion joint 13 is provided at the end in the direction of the widened cut-out part 3 and is connected to the ring body 10 of the inner wall body 9. The expansion joint 13 is provided in the circumferential direction of the inner wall body 9, and is only capable of displacement in the tunnel axis direction indicated by a plan view arrow in FIG. 4B, and is a sectional view so that the radial displacement can be constrained. The step part 13a shown in FIG. The expansion joint 13 has a structure similar to a slide structure used for an existing bridge floor slab or the like, and is a connection structure made of steel or the like.

次に免震部材の構成について図5及び図6に基づき説明する。図5は図1のV-V断面を示す断面図、図6は免震部材の一例を示す断面図である。免震部材は岩盤壁面に合体した外側壁体8の変位が直接的に内側壁体9のトンネル壁面であるリング体10に脚体14を介して直接的には伝わらないようにする構成で、内側壁体9の全重量を支持できる強度及び剛性を備え部材水平方向に十分柔らかな特性を有するアイソレータと減衰性能を備えるダンパーを適宜組み合わせる。免震機能を有する脚体14は放射状に配置され三次元的な免震機能を有する。   Next, the structure of a seismic isolation member is demonstrated based on FIG.5 and FIG.6. FIG. 5 is a cross-sectional view showing the VV cross section of FIG. 1, and FIG. 6 is a cross-sectional view showing an example of the seismic isolation member. The seismic isolation member is configured so that the displacement of the outer wall body 8 combined with the rock wall surface is not directly transmitted to the ring body 10 which is the tunnel wall surface of the inner wall body 9 via the leg body 14. An isolator having strength and rigidity capable of supporting the entire weight of the inner wall body 9 and sufficiently soft in the horizontal direction of the member and a damper having damping performance are appropriately combined. The legs 14 having a seismic isolation function are arranged radially and have a three-dimensional seismic isolation function.

免震部材の一例として、図6(a)に示す積層ゴムは、支持における剛性を押えて支持軸方向の振動変位などの影響を緩和するため、薄いゴムシート14aと鋼板14bを交互に積層接着したもので中央部に軟質の鋼材14cを圧入してある。積層ゴムのせん断変形時に軟質鋼材14cが塑性変形することにより、エネルギを吸収するダンパー内蔵型のアイソレータとなる。図6(b)に示す鋼材ダンパーでは、鋼材の中心が徐々にくびれる構造で水平方向の大変形とそれに伴う鉛直方向の変形に追従できる。図6(c)に示すオイルダンパーでは、外周構造と内周構造を連結して支持する軸方向にオイルシリンダーの構造が組み込まれ、シリンダー内のオイル圧力の変化によって支持軸方向の免震が実現される。   As an example of the seismic isolation member, the laminated rubber shown in FIG. 6 (a) is laminated and bonded with thin rubber sheets 14a and steel plates 14b alternately in order to suppress the influence of vibration displacement in the direction of the support axis by suppressing the rigidity in the support. A soft steel material 14c is press-fitted into the central portion. When the laminated steel is subjected to shear deformation, the soft steel material 14c is plastically deformed so that an isolator with a built-in damper that absorbs energy is obtained. The steel damper shown in FIG. 6 (b) can follow a large horizontal deformation and a vertical deformation accompanying it with a structure in which the center of the steel is gradually narrowed. In the oil damper shown in Fig. 6 (c), the structure of the oil cylinder is incorporated in the axial direction to support the outer peripheral structure and the inner peripheral structure, and the seismic isolation in the support axial direction is realized by the change of the oil pressure in the cylinder. Is done.

この発明のトンネル構造は、山岳トンネルのみならず、岩盤を開削して形成する地下空間の構造物に広く適用することができる。   The tunnel structure of the present invention can be widely applied not only to mountain tunnels but also to structures in underground spaces formed by excavating rock.

トンネル構造の断面図である。It is sectional drawing of a tunnel structure. シール部の拡大断面図である。It is an expanded sectional view of a seal part. 内側壁体定着部の拡大断面図である。It is an expanded sectional view of an inner wall body fixing part. 伸縮継手の平面図及び断面図である。It is the top view and sectional drawing of an expansion joint. 図1のV-V断面を示す断面図である。It is sectional drawing which shows the VV cross section of FIG. 免震部材の一例を示す断面図である。It is sectional drawing which shows an example of a seismic isolation member.

符号の説明Explanation of symbols

1 岩盤
2 断層
3 拡幅開削部
4 一般断面掘削部
5 通常ライニング
6 ロックボルト
7 吹き付けコンクリート
8 外側壁体
9 内側壁体
10 リング体
11 定着領域
12 定着部リング体
13 伸縮継手
14 脚体
15 シール部
DESCRIPTION OF SYMBOLS 1 Rock bed 2 Fault 3 Widening excavation part 4 General cross-section excavation part 5 Normal lining 6 Rock bolt 7 Spraying concrete 8 Outer side wall body 9 Inner side wall body 10 Ring body 11 Fixing area 12 Fixing part ring body 13 Expansion joint 14 Leg body 15 Seal part

Claims (4)

断層など規模の大きい不連続面を有する岩盤内を掘削して構築するトンネル構造において、前記不連続面のトンネル貫通位置近傍を拡幅開削した岩盤面に形成する外側壁体と、少なくとも前記不連続面の位置では外側壁体より離隔して構築する剛体よりなる内側壁体を有することを特徴とするトンネル構造。   In a tunnel structure constructed by excavating the inside of a rock having a large discontinuous surface such as a fault, an outer wall body formed on the rock surface obtained by widening the vicinity of the tunnel penetration position of the discontinuous surface, and at least the discontinuous surface A tunnel structure characterized by having an inner wall body made of a rigid body constructed at a position spaced apart from an outer wall body. 前記内側壁体は、トンネル軸方向にスライド変位を許容し得る伸縮継手を備えることを特徴とする請求項1記載のトンネル構造。   The tunnel structure according to claim 1, wherein the inner wall body includes an expansion joint capable of allowing a slide displacement in a tunnel axial direction. 前記内側壁体は、前記外側壁体より突設する免震部材で支持されることを特徴とする請求項2記載のトンネル構造。   The tunnel structure according to claim 2, wherein the inner wall body is supported by a seismic isolation member protruding from the outer wall body. 前記拡幅開削した岩盤面に露出する前記不連続面の開口部には、浸透水流出防止用及び崩落防止用に変形可能で比較的軽量な素材からなるシール材を設けることを特徴とする請求項1記載のトンネル構造。   The opening portion of the discontinuous surface exposed to the rock surface that has been widened and cut open is provided with a seal material made of a relatively lightweight material that can be deformed to prevent outflow of osmotic water and to prevent collapse. 1. The tunnel structure according to 1.
JP2005051193A 2005-02-25 2005-02-25 Tunnel structure Expired - Fee Related JP4281010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051193A JP4281010B2 (en) 2005-02-25 2005-02-25 Tunnel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051193A JP4281010B2 (en) 2005-02-25 2005-02-25 Tunnel structure

Publications (2)

Publication Number Publication Date
JP2006233626A true JP2006233626A (en) 2006-09-07
JP4281010B2 JP4281010B2 (en) 2009-06-17

Family

ID=37041585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051193A Expired - Fee Related JP4281010B2 (en) 2005-02-25 2005-02-25 Tunnel structure

Country Status (1)

Country Link
JP (1) JP4281010B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196390A (en) * 2009-02-26 2010-09-09 Taisei Corp Underground structure crossing active fault zone
CN102359395A (en) * 2011-08-03 2012-02-22 中铁十二局集团第四工程有限公司 Method for plugging large-scale water-inrush burst-mud burst hole of tunnel fault
JP2013007263A (en) * 2012-10-12 2013-01-10 Taisei Corp Underground structure crossing active fault zone
CN106545351A (en) * 2016-11-02 2017-03-29 山东科技大学 A kind of tunnel front landslide emergency processing method
CN107326927A (en) * 2017-07-31 2017-11-07 金陵科技学院 A kind of shock-absorbing type underground utilities tunnel and its construction method
CN108951703A (en) * 2018-08-17 2018-12-07 金陵科技学院 Assembled underground pipe gallery and its construction method
CN109736875A (en) * 2018-12-11 2019-05-10 太原理工大学 A kind of coal bed drilling anti-collapse device and anti-collapse method
CN110359954A (en) * 2019-08-02 2019-10-22 西南交通大学 One kind passing through creep faults tunnel particle-filled layers error resilience structure and its construction method
CN110374628A (en) * 2019-08-02 2019-10-25 西南交通大学 One kind passing through the double-deck anti-fault structure in creep faults tunnel and construction method
CN111501789A (en) * 2020-04-21 2020-08-07 中铁西北科学研究院有限公司 Multi-directional composite lining anti-seismic structure for landslide and fault zone and construction method thereof
CN111577326A (en) * 2020-04-21 2020-08-25 中铁西北科学研究院有限公司 Anti-seismic structure suitable for tunnel lining of high-intensity seismic area and construction method thereof
CN112065432A (en) * 2020-09-14 2020-12-11 浙江华东工程咨询有限公司 Tunnel structure penetrating through movable fault fracture zone and construction method thereof
CN113605926A (en) * 2021-08-26 2021-11-05 西南交通大学 Cross-fault tunnel segment lining passive vector type flexible joint structure
JP2022500579A (en) * 2019-06-19 2022-01-04 中鉄十九局集団第六工程有限公司China Railway 19Th Bureau Group Sixth Engineering Co., Ltd. Support structure of two-stage high-speed closed tunnel with reverse arch and its construction method
CN114704288A (en) * 2022-05-18 2022-07-05 华中科技大学 A shock attenuation is from restoring to throne tunnel structure for broken area of fault
CN116006213A (en) * 2023-01-10 2023-04-25 广州大学 Shock insulation structure of shield tunnel and construction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112943306A (en) * 2021-03-11 2021-06-11 淮北市平远软岩支护工程技术有限公司 Roadway fault zone supporting method and step based on instability deformation research

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196390A (en) * 2009-02-26 2010-09-09 Taisei Corp Underground structure crossing active fault zone
CN102359395A (en) * 2011-08-03 2012-02-22 中铁十二局集团第四工程有限公司 Method for plugging large-scale water-inrush burst-mud burst hole of tunnel fault
JP2013007263A (en) * 2012-10-12 2013-01-10 Taisei Corp Underground structure crossing active fault zone
CN106545351A (en) * 2016-11-02 2017-03-29 山东科技大学 A kind of tunnel front landslide emergency processing method
CN106545351B (en) * 2016-11-02 2018-07-24 山东科技大学 A kind of tunnel front landslide emergency processing method
CN107326927B (en) * 2017-07-31 2023-09-29 金陵科技学院 Shock-absorbing underground pipeline tunnel and construction method thereof
CN107326927A (en) * 2017-07-31 2017-11-07 金陵科技学院 A kind of shock-absorbing type underground utilities tunnel and its construction method
CN108951703A (en) * 2018-08-17 2018-12-07 金陵科技学院 Assembled underground pipe gallery and its construction method
CN109736875B (en) * 2018-12-11 2020-03-24 太原理工大学 Coal seam drilling anti-collapse device and anti-collapse method
CN109736875A (en) * 2018-12-11 2019-05-10 太原理工大学 A kind of coal bed drilling anti-collapse device and anti-collapse method
JP2022500579A (en) * 2019-06-19 2022-01-04 中鉄十九局集団第六工程有限公司China Railway 19Th Bureau Group Sixth Engineering Co., Ltd. Support structure of two-stage high-speed closed tunnel with reverse arch and its construction method
JP7125550B2 (en) 2019-06-19 2022-08-24 中鉄十九局集団第六工程有限公司 SUPPORT STRUCTURE AND CONSTRUCTION METHOD FOR TWO-STAGE HIGH-SPEED CLOSING TUNNEL WITH INVERTED ARCH
CN110359954A (en) * 2019-08-02 2019-10-22 西南交通大学 One kind passing through creep faults tunnel particle-filled layers error resilience structure and its construction method
CN110374628A (en) * 2019-08-02 2019-10-25 西南交通大学 One kind passing through the double-deck anti-fault structure in creep faults tunnel and construction method
CN111577326A (en) * 2020-04-21 2020-08-25 中铁西北科学研究院有限公司 Anti-seismic structure suitable for tunnel lining of high-intensity seismic area and construction method thereof
CN111501789B (en) * 2020-04-21 2021-11-02 中铁西北科学研究院有限公司 Multi-directional composite lining anti-seismic structure for landslide and fault zone and construction method thereof
CN111501789A (en) * 2020-04-21 2020-08-07 中铁西北科学研究院有限公司 Multi-directional composite lining anti-seismic structure for landslide and fault zone and construction method thereof
CN112065432A (en) * 2020-09-14 2020-12-11 浙江华东工程咨询有限公司 Tunnel structure penetrating through movable fault fracture zone and construction method thereof
CN112065432B (en) * 2020-09-14 2023-05-02 浙江华东工程咨询有限公司 Tunnel structure penetrating through movable fault fracture zone and construction method thereof
CN113605926A (en) * 2021-08-26 2021-11-05 西南交通大学 Cross-fault tunnel segment lining passive vector type flexible joint structure
CN113605926B (en) * 2021-08-26 2022-06-21 西南交通大学 Cross-fault tunnel segment lining passive vector type flexible joint structure
CN114704288A (en) * 2022-05-18 2022-07-05 华中科技大学 A shock attenuation is from restoring to throne tunnel structure for broken area of fault
CN114704288B (en) * 2022-05-18 2022-11-29 华中科技大学 A shock attenuation is from restoring to throne tunnel structure for broken area of fault
CN116006213A (en) * 2023-01-10 2023-04-25 广州大学 Shock insulation structure of shield tunnel and construction method

Also Published As

Publication number Publication date
JP4281010B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP4281010B2 (en) Tunnel structure
US9958022B2 (en) Energy dissipating device
CN110637125A (en) Connecting device for quickly assembling structural units and simultaneously providing anti-seismic and stable combination
JP5880812B2 (en) Seismic control joint structure for concrete products and joint construction measures
KR101337001B1 (en) Connector assembly for steel pipe strut
WO2016071879A1 (en) Seismic retrofitting buckling restrained brace
JP2009007746A (en) Joint structure of pile head
JPH09256792A (en) Tunnel lining construction and lining method
JP3330341B2 (en) Tunnel structure passing through a fault
JPH10227040A (en) Pile foundation structure
JP4037124B2 (en) Tunnel structure and tunnel construction method
CN114704288A (en) A shock attenuation is from restoring to throne tunnel structure for broken area of fault
Del Amo et al. Evaluation of a Segmental Tunnel Lining Response to a Strike Slip Fault Rupture
CN210003295U (en) Deformable segment joint for tunnel shock resistance
CN219974510U (en) Shock absorbing and isolating structure of multi-arch tunnel
JP4013232B2 (en) Seismic structure at tunnel junction
US11598210B1 (en) Tunnel protection structure suitable for active fault areas and high ground stress areas
US8206064B2 (en) Voided drilled shafts
JP2009179964A (en) Underground structure reinforcing method
JPS6245834A (en) Earthquake insulating pile and its construction
CN116378710A (en) Semi-rigid shield tunnel segment for crossing fault
JP2622945B2 (en) Underground construction fittings
JP5634920B2 (en) Shield tunnel connection structure
CN116006213A (en) Shock insulation structure of shield tunnel and construction method
JP2004116225A (en) Pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees