JP2009179964A - Underground structure reinforcing method - Google Patents

Underground structure reinforcing method Download PDF

Info

Publication number
JP2009179964A
JP2009179964A JP2008017855A JP2008017855A JP2009179964A JP 2009179964 A JP2009179964 A JP 2009179964A JP 2008017855 A JP2008017855 A JP 2008017855A JP 2008017855 A JP2008017855 A JP 2008017855A JP 2009179964 A JP2009179964 A JP 2009179964A
Authority
JP
Japan
Prior art keywords
underground
building
load
connection structure
basement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008017855A
Other languages
Japanese (ja)
Inventor
Hideo Hirai
秀男 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008017855A priority Critical patent/JP2009179964A/en
Publication of JP2009179964A publication Critical patent/JP2009179964A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground structure reinforcing method which relatively easily allows restoration of a reinforced portion of an underground structure even if a large earthquake beyond assumption has occurred and restoration work of the reinforced portion is necessary, and brings about a reinforced state of the structure before occurrence of the earthquake. <P>SOLUTION: According to the underground structure reinforcing method, excavation of the ground is carried out along side walls 1b, 2b of respective buildings 1, 2, and a joint portion 4, building underground portions 1a, 2a sandwiching the joint portion, and an upper area of an underground connection structure 3 are exposed, followed by mounting load bearing members 8a, 8b that can bear a tensile load of a predetermined value or more on a side surface of the building underground portion and the underground connection structure, in a manner striding the joint portion. Then a deformation absorbing material 7 capable of absorbing earthquake vibration is connected to the load bearing member on the side of the building underground portion and the load bearing member on the side of the underground connection structure, and thus the load on the joint portion is reduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は原子力発電プラントの地下構造物補強工法に係り、特に隣接する建屋の地下部とその間に連結されている地下連結構造物との連結部を補強する地下構造物補強工法に関する。   The present invention relates to an underground structure reinforcing method for a nuclear power plant, and more particularly to an underground structure reinforcing method for reinforcing a connecting portion between an underground portion of an adjacent building and an underground connecting structure connected therebetween.

原子力発電プラントでは一般的に、耐震重要度が高い原子炉建屋などは直接基礎形式を採用して岩盤に直接構築され、大きな地震荷重にも耐え得る強固な構造設計がなされている。したがって、大地震が発生し、大きな地盤荷重が作用しても十分に耐え得る構造となっていることから、原子炉建屋などはそれ自体が大きく変形したり、変動することはない。   Generally in nuclear power plants, reactor buildings with high seismic importance are built directly on the bedrock using a direct foundation format and have a robust structural design that can withstand large earthquake loads. Therefore, the reactor building itself is not greatly deformed or fluctuated because it has a structure that can sufficiently withstand even if a large earthquake occurs and a large ground load is applied.

一方、原子炉建屋周辺に設置されるタービン建屋やコントロール建屋、原子炉補助建屋などは杭を軟弱地盤に貫通させたうえで、その先端を支持基盤に打ち込む杭基礎形式で構築される構造としているものもあり、原子炉建屋に比べて耐震性が低い構造設計なされているため、大地震が発生した場合には地盤荷重によって建屋が変形したり、変動する可能性がある。   On the other hand, the turbine building, control building, reactor auxiliary building, etc. installed around the reactor building are constructed in a pile foundation type where the pile is penetrated into soft ground and the tip is driven into the support base. Some have a structural design that is less earthquake-resistant than the reactor building. If a large earthquake occurs, the building may be deformed or fluctuated due to the ground load.

このような状態において、原子炉建屋と周辺建屋とが地下連結構造物により連結されていると、地震時等において地盤荷重による構造物の挙動に違いが生じ、構造物間の相対変形によって建屋間の連結部の弱いところで損傷が生じる可能性がある。すなわち、原子炉建屋とタービン建屋または原子炉補助建屋とは、互いに隣接して構築されており、これらの建屋地下部においては、地震の際、その振動性状は、基礎形式の違いを含むそれぞれの重量や剛性に応じたものとなるため、固有周期や位相が互いに一致せず、地下連結構造物の間には相対変形が生じる
そのため、これらの損傷が発生しないように、隣接する建屋間を連結している地下連結構造物、例えば建屋間トレンチ等においては、構造的に縁を切ったジョイント部を設けることにより、ある程度の相対変形を吸収することができる構造としている。しかし、従来では、相対変形によって地下連結構造物に大きい土圧が作用し、地下連結構造物に破損が生じる懸念があった。
In such a state, if the reactor building and the surrounding buildings are connected by an underground connection structure, a difference in the behavior of the structure due to ground load occurs during an earthquake, etc., and the relative deformation between the structures causes a difference between the buildings. There is a possibility that damage may occur where the connecting part is weak. That is, the reactor building and the turbine building or the auxiliary reactor building are constructed adjacent to each other, and in the basement of these buildings, in the event of an earthquake, the vibration properties include the differences in the basic form. Because it depends on the weight and rigidity, the natural period and phase do not match each other, and relative deformation occurs between the underground connected structures.Therefore, the adjacent buildings are connected so that these damages do not occur. In an underground connection structure, such as an inter-building trench, a certain degree of relative deformation can be absorbed by providing a joint portion that is structurally cut. However, conventionally, there has been a concern that a large earth pressure acts on the underground connection structure due to relative deformation, and the underground connection structure is damaged.

これに対し、従来の対策として、地下連結構造物が埋設されている軟弱地盤のうち、地表面近傍を変形吸収領域に置換するという提案がある(例えば、特許文献1参照)。この提案の概要としては、互いに隣り合う建屋間の地下連結構造物の埋設地盤領域に構造物の変形吸収領域を設け、構造物と構造物とをそれぞれの周期と位相で固有に振動させるようにし、その結果、両者の地下部分の間に相対変形が発生したとしても、かかる相対変形を変形吸収領域で吸収させ、建屋と地下連結構造物との間に相対変形に起因する土圧が作用しないようにするというものである。   On the other hand, as a conventional countermeasure, there is a proposal to replace the vicinity of the ground surface with a deformation absorption region in the soft ground in which the underground connection structure is embedded (see, for example, Patent Document 1). The outline of this proposal is to provide a deformation absorption area of the structure in the buried ground area of the underground connection structure between adjacent buildings so that the structure and the structure vibrate inherently at their respective periods and phases. As a result, even if relative deformation occurs between the two underground parts, the relative deformation is absorbed in the deformation absorption region, and earth pressure due to the relative deformation does not act between the building and the underground connected structure. It is to do.

構造物間の変形吸収領域には、変形吸収能に富んだ発泡スチロール等の緩衝材を使用するというものであり、地盤領域である軟弱地盤を掘り下げ、次いで、掘削除去された空間に発泡スチロール等の緩衝材を充填し変形吸収領域を形成するものである。
特開平11−323960号公報
In the deformation absorption area between structures, a cushioning material such as expanded polystyrene having a high deformation absorption capacity is used. The soft ground, which is the ground area, is dug down, and then the cushioned foam such as polystyrene is excavated in the excavated space. A material is filled to form a deformation absorption region.
JP-A-11-323960

既設の原子力発電プラントにおいて、今後、大地震などが発生し、地盤の不等沈下による構造物間の相対変形や地盤の揺れによる地震時土圧が発生し、地下連結構造物に大きな荷重が作用して構造物に被害をもたらすことが考えられる。   In existing nuclear power plants, large earthquakes will occur in the future, and relative deformation between structures due to uneven settlement of the ground and earth pressure during earthquakes due to ground shaking will occur, and a large load will be applied to underground connected structures. This may cause damage to the structure.

原子炉建屋とタービン建屋などの周辺建屋とは、構造的には縁が切られているが、重要な配管類が構造物間を連絡しているため、建屋間トレンチなどの地下連結構造物により構造物同士が繋がっている。構造的に構造物間の縁が切られている部分には、ある程度の相対変形が吸収できるように可撓性のあるジョイント部、例えばM型止水ジョイント等が設けられている。   The reactor building and the surrounding buildings such as the turbine building are structurally cut off, but because important piping is connected between the structures, it is not possible to connect them with underground connecting structures such as trenches between buildings. Structures are connected. In a portion where the edge between the structures is cut structurally, a flexible joint portion such as an M-type water-stopping joint is provided so that a certain degree of relative deformation can be absorbed.

しかし、大地震が発生し、隣接する構造物間に想定以上の相対変形が生じたり、大きな地震時土圧を受けた場合には、その構造物間のジョイント部から被害を受け、重要な配管類の破断を招き、大きな被害が発生することが考えられる。   However, if a large earthquake occurs and the relative deformation exceeds the expected value between adjacent structures, or if there is a large earth pressure during an earthquake, the joints between the structures will be damaged, and important piping will be damaged. It is considered that a large damage is caused.

上述した被害の発生を未然に防ぐための対策としては、前述の公知文献に示された軟弱地盤の変形吸収領域化改造工事を行うことも考えられるが、建屋間地下連結構造物については、前記対策だけでは大きな相対変形や地震時土圧から構造物の健全性を確保することが難しく、また変形吸収領域化により改造工事自体を実施することは現実的には多大なコストおよび工期が必要となる。   As a measure for preventing the occurrence of the above-mentioned damage, it is conceivable to carry out the construction work for converting the deformation area into the soft ground shown in the above-mentioned publicly known literature. It is difficult to ensure the soundness of the structure due to large relative deformation and earth pressure during earthquakes only with countermeasures, and it is actually necessary to implement remodeling work by using a deformation absorption area, which requires a lot of cost and construction period. Become.

すなわち、従来工法である、軟弱地盤改良工事(地盤強固化改良工事や変形吸収領域化改造工事)を行った場合には、広範囲の地盤改良となるため掘削物量が多くなり、また、広範囲の施工エリアが必要となるため、大掛かりな改造工事となる。また、建屋間トレンチの下部の基礎改良工事を行った場合においても、地下深くまで掘削する必要があることから、大掛かりな掘削機械が必要となり、また、掘削後の基礎改造工事も大掛かりとなるため、コストおよび工期が膨大となる。   In other words, when soft ground improvement work (consolidation improvement work or modification work for deformation absorption area), which is a conventional method, is performed, the amount of excavated material increases because of the wide ground improvement. Since an area is required, it will be a major remodeling work. In addition, even if the foundation improvement work at the lower part of the inter-building trench is performed, it is necessary to excavate deep underground, so a large excavating machine is necessary, and the foundation remodeling work after excavation will also be large Cost and construction period become enormous.

公知技術例の問題点を解決するためには、掘削物量が少なく、簡易的に建屋間地下連結構造物の健全性を確保するための構造ないし工法が望まれる。   In order to solve the problems of the known technical examples, there is a demand for a structure or method for ensuring the soundness of the inter-building underground connection structure with a small amount of excavated material.

本発明はこのような事情に鑑みてなされたもので、原子力発電プラントにおける建屋間トレンチなどの地下連結構造物に対し、簡易な補強構造を施すだけで地下連結構造物を補強することができる地下構造物補強工法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to reinforce an underground connection structure by simply applying a simple reinforcement structure to an underground connection structure such as an inter-building trench in a nuclear power plant. It aims at providing a structure reinforcement construction method.

前記の目的を達成するために、本発明は、原子力発電プラントの隣り合う建屋間の地盤を掘削し、建屋地下部間を相対変位が可能なジョイント部によって連結されている地下連結構造物に補強材を付加する地下構造物補強工法であって、前記地盤の掘削を建屋の側壁に沿って行い、前記ジョイント部、このジョイント部を挟む前記建屋地下部および前記地下連結構造物の上側部分を表出させ、これら表出部分のうち、前記建屋地下部の側面と前記地下連結構造物とに一定以上の引張り荷重を支持し得る荷重支持部材を前記ジョイント部を跨ぐ配置で取付け、これら建屋地下部側の荷重支持部材と地下連結構造物側の荷重支持部材との間に地震振動を吸収可能な変形吸収材を連結することにより、前記ジョイント部への荷重負荷を低減させることを特徴とする地下構造物補強工法を提供する。   In order to achieve the above-mentioned object, the present invention excavates the ground between adjacent buildings of a nuclear power plant, and reinforces the underground connection structure connected by a joint part capable of relative displacement between the building underground parts. An underground structure reinforcement method for adding material, wherein excavation of the ground is performed along a side wall of the building, and the joint portion, the building underground portion sandwiching the joint portion, and the upper portion of the underground connection structure are represented. Among these exposed parts, a load supporting member capable of supporting a tensile load of a certain level or more is attached to the side surface of the building basement part and the underground connection structure in an arrangement straddling the joint part, and these building basement parts By connecting a deformation absorbing material capable of absorbing seismic vibration between the load supporting member on the side and the load supporting member on the underground connection structure side, the load applied to the joint portion can be reduced. Providing underground construction Retrofit characterized by.

本発明において、前記変形吸収材を引張り材とし、この引張り材の一端側を前記建屋地下部側の荷重支持部材に接続する一方、前記引張り材の他端側を前記地下連結構造物側の荷重支持部材に接続することが望ましい。   In the present invention, the deformation absorbing material is a tensile material, and one end side of the tensile material is connected to the load support member on the building basement side, while the other end side of the tensile material is a load on the underground connected structure side. It is desirable to connect to a support member.

また、前記引張り材の一端側を接続する前記建屋地下部側の荷重支持部材を前記地下連結構造物の外周よりも大径側に配置し、この建屋地下部側の荷重支持部材にローラ部を介して前記引張り材を当該ローラの周方向に屈曲可能とし、前記地下連結構造物をその外周側から揺動可能に支持させることが望ましい。   Further, the load supporting member on the basement side of the building connecting one end side of the tension member is arranged on the larger diameter side than the outer periphery of the underground connecting structure, and a roller portion is provided on the load supporting member on the basement side of the building. It is desirable that the tension member can be bent in the circumferential direction of the roller, and the underground connection structure is supported to be swingable from the outer peripheral side.

さらに、前記引張材および前記荷重支持部材を、土中に埋設したシース内に収容することが望ましい。   Furthermore, it is desirable that the tensile material and the load support member are accommodated in a sheath embedded in the soil.

本発明によれば、既設原子力発電プラントの地下構造物補強工法において、掘削物量を従来工法より少なくすることができる。また、本発明によれば、従来工法に比べて掘削範囲、掘削物量、さらには施工範囲も少なくすることができる。これにより、工事物量を少なくすることができ、工事コスト削減および工期短縮を図ることができる。さらに、地下連結構造物の補強構造の信頼性を高めることができ、想定以上の大地震が発生して修復工事が必要となった場合においても、比較的容易に修復が行え、部品等の交換をすることによって大地震発生前の構造を短期間で回復することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the underground structure reinforcement construction method of an existing nuclear power plant, the amount of excavated material can be made smaller than the conventional construction method. Further, according to the present invention, the excavation range, the amount of excavated material, and the construction range can be reduced as compared with the conventional method. As a result, the amount of the construction work can be reduced, and the construction cost can be reduced and the construction period can be shortened. In addition, the reliability of the reinforcement structure of the underground connection structure can be improved, and even if an earthquake that is larger than expected occurs and repair work is required, repair can be performed relatively easily and replacement of parts, etc. By doing this, the structure before the occurrence of a large earthquake can be restored in a short period of time.

以下、本発明に係る地下構造物補強工法の一実施形態について、図1ないし図3を参照して説明する。図1は、本実施形態による地下構造物補強工法の手順を示す工程図である。図2は図1に示した工程により地下構造物の補強を施した状態を示す縦断面図であり、図3は図2の平面図である。   Hereinafter, an embodiment of the underground structure reinforcing method according to the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a process diagram showing the procedure of the underground structure reinforcing method according to the present embodiment. 2 is a longitudinal sectional view showing a state in which the underground structure is reinforced by the process shown in FIG. 1, and FIG. 3 is a plan view of FIG.

まず、図1を参照して、本実施形態による地下構造物補強工法の手順を概略的に説明する。最初に、原子力発電プラントの隣り合う建屋間の地盤を建屋の側壁に沿って掘削し、建屋地下部と地下連結構造物との連結部であるジョイント部の略上側部分を表出させる(地盤掘削工程S1)。   First, with reference to FIG. 1, the procedure of the underground structure reinforcement construction method by this embodiment is demonstrated roughly. First, the ground between adjacent buildings of the nuclear power plant is excavated along the side wall of the building, and the upper part of the joint part, which is the connection between the building basement and the underground connection structure, is exposed (ground excavation). Step S1).

建屋地下部、地下連結構造物およびジョイント部の略上側部分が表出した状態で、各建屋地下部と、地下連結構造物とにそれぞれ補強材取付け用の固着部を設定する(固着部設定工程S2)。   In the state where the upper part of the building basement, the underground connection structure and the joint part are exposed, the fixing part for fixing the reinforcing material is set in each building basement and the underground connection structure (adhesion part setting process) S2).

固着部設定後には、これらの固着部に引張材をそれぞれ設定し(引張材設定工程S3)、次いで引張材を緊張させる(引張材緊張工程S4)。引張材を緊張させた後、各引張材をそれぞれシース内に収容する(シース設定工程S5)。最後に、地盤を埋め戻す(地盤埋め戻し工程S6)。   After the fixing portions are set, tensile materials are respectively set in these fixing portions (tensile material setting step S3), and then the tensile materials are tensioned (tensile material tensioning step S4). After tensioning the tensile material, each tensile material is accommodated in the sheath (sheath setting step S5). Finally, the ground is backfilled (ground backfilling step S6).

次に、図2および図3を参照して、上記工程順に本実施形態による地下構造物補強工法について具体的に説明する。   Next, with reference to FIG. 2 and FIG. 3, the underground structure reinforcement construction method by this embodiment is demonstrated concretely in order of the said process.

図2および図3には一例として、原子炉建屋などの建屋1とタービン建屋や原子炉補助建屋などの建屋2とが地盤Gに互いに隣接して構築され、これら各建屋1,2の建屋地下部1a,2a間に地下連結構造物として建屋間トレンチ3が埋設され、これら各建屋地下部1a,2aの側壁1b,2bと建屋間トレンチ3の各端部とがジョイント部4を介して連結した状態が示してある。このジョイント部4は上述したように、ある程度の相対変形を吸収できる構造、すなわち構造的には縁が切られた構造とされている。これにより、ジョイント部4を介して建屋間トレンチ3の端部側と中央側との剛性が緩和され、基本的に地震荷重等に対応できる構成となっている。   2 and 3, as an example, a building 1 such as a reactor building and a building 2 such as a turbine building and a reactor auxiliary building are constructed adjacent to the ground G, and the basement of each of these buildings 1 and 2 is built. The inter-building trench 3 is embedded as an underground connection structure between the portions 1a and 2a, and the side walls 1b and 2b of each of the building basement portions 1a and 2a and the end portions of the inter-building trench 3 are connected through the joint portion 4. The state is shown. As described above, the joint portion 4 has a structure capable of absorbing a certain amount of relative deformation, that is, a structure in which an edge is cut structurally. Thereby, the rigidity of the end part side and the center side of the inter-building trench 3 is relaxed via the joint part 4, and it has a configuration that can basically cope with an earthquake load or the like.

なお、隣接する建屋1,2に対する本実施形態の補強構造は同一であり、以下の説明においては主に図2,図3の左側部分にのみ符号を付して説明する。   In addition, the reinforcement structure of this embodiment with respect to the adjacent buildings 1 and 2 is the same, and in the following description, only the left side part of FIG. 2, FIG. 3 is attached | subjected and demonstrated.

[地盤掘削工程S1]
最初に、建屋1,2の側壁1b,2bに沿って地盤Gの掘削を行う。すなわち、地盤Gの表面から建屋間トレンチ3のうち、ジョイント部4の周りを建屋間トレンチ3の上下方向略中間高さ位置まで掘削する。これは、掘削物量が極力少なくなるように、かつ地下連結構造物4の上部側の少ない空間を利用して補強構造を設定するように配慮したものである。これにより、ジョイント部4を挟む建屋地下部1a,1bおよび建屋間トレンチ3の上側部分を表出させる。
[Ground excavation process S1]
First, the ground G is excavated along the side walls 1b and 2b of the buildings 1 and 2. That is, in the inter-building trench 3 from the surface of the ground G, the periphery of the joint portion 4 is excavated to a substantially intermediate height position in the vertical direction of the inter-building trench 3. This takes into consideration that the amount of excavated material is reduced as much as possible and that the reinforcing structure is set using a small space on the upper side of the underground connection structure 4. Thereby, the upper part of the building underground parts 1a and 1b and the inter-building trench 3 sandwiching the joint part 4 is exposed.

[固着部設定工程S2]
次に、表出部分のうち、建屋地下部1aの側面と建屋間トレンチ3の上半部とに対し、ジョイント部4を跨ぐ配置でそれぞれ一定以上の引張り荷重を支持し得る荷重支持部材としての固着部8a,8bを複数箇所に設定する。これらの固着部8a,8bは、下記の引張材7であるPC鋼棒等を固定する治具部を構成するものであり、緊張定着部構造(支圧板でくさびが引っかかるような構造)とされている。具体的には、リングまたはフック状頭部を有するロックボルト等を適用し、これらを建屋地下部1aの側面と建屋間トレンチ3の上半部とに分散して固定する。
[Fixed part setting step S2]
Next, as a load supporting member that can support a tensile load of a certain level or more in an arrangement straddling the joint portion 4 with respect to the side surface of the building underground portion 1a and the upper half portion of the inter-building trench 3 among the exposed portions. The fixing portions 8a and 8b are set at a plurality of locations. These adhering portions 8a and 8b constitute a jig portion for fixing a PC steel rod or the like, which is the following tensile material 7, and have a tension fixing portion structure (a structure in which a wedge is caught by a support plate). ing. Specifically, a lock bolt or the like having a ring or a hook-shaped head is applied, and these are dispersed and fixed to the side surface of the building basement part 1 a and the upper half of the inter-building trench 3.

固着部8a,8bの固定手段としては、例えば打ちアンカなどにより、建屋地下部1aの側面および建屋間トレンチ3にロックボルト等を固着する。なお、設計上、強度的に固定度を高める必要がある場合には、建屋地下部1aおよび建屋間トレンチ3の一部をはつり、そのはつり部分にアンカボルトを設定して、コンクリートを充填したものに固着部8a,8bを取付ける。   As a fixing means for the fixing portions 8a and 8b, for example, a lock bolt or the like is fixed to the side surface of the building basement portion 1a and the trench 3 between the buildings by a driving anchor or the like. In addition, when it is necessary to increase the fixing strength in terms of design, a part of the building basement part 1a and the inter-building trench 3 are suspended, and anchor bolts are set in the suspended part, and concrete is filled. Attach the fixing portions 8a, 8b to.

また、固着部8a,8bの設定箇所は、建屋間トレンチ3が沈下するのを防止するため、建屋間トレンチ3の上部に分散して配置する。これは、図2に矢示したように、上下地盤荷重w1や、図3に矢示したように、水平地盤荷重w2により地盤6が緩むなどにより、建屋地下部1aと建屋間トレンチ3とが別位相で挙動したり、構造物間において相対変形を生じたり、建屋間トレンチ3が建屋地下部1aと相対的に沈下することを防止するためである。   Further, the setting portions of the fixing portions 8a and 8b are distributed and arranged on the upper part of the inter-building trench 3 in order to prevent the inter-building trench 3 from sinking. As shown by the arrow in FIG. 2, this is because the basement floor portion 1a and the inter-building trench 3 are caused by the ground 6 being loosened by the horizontal ground load w2 as shown by the arrow in FIG. This is to prevent the inter-building trench 3 from sinking relative to the building basement portion 1a, or to behave in different phases, to cause relative deformation between structures.

[引張材設定工程S3]
固着部8a,8bを建屋地下部1aと建屋間トレンチ3とに固着させた後、引張材7を建屋地下部1a側の固着部8aと、建屋間トレンチ3側の固着部8bとに亘らせて、各引張材7の端部をそれぞれ止着する。引張材7には、例えば建築構造物で使用されているPC鋼棒などを適用する。なお、この引張材設定工程の段階では引張材7を緊張前の状態(仮設定)とし、一定の緩みを与えておく。
[Tensile material setting step S3]
After fixing the fixing parts 8a and 8b to the building basement part 1a and the inter-building trench 3, the tensile material 7 extends over the fixing part 8a on the building basement part 1a side and the fixing part 8b on the inter-building trench 3 side. The end portions of the tensile members 7 are fastened. As the tension member 7, for example, a PC steel bar used in a building structure is applied. At the stage of the tension material setting step, the tension material 7 is in a pre-tensioned state (temporary setting) and given a certain looseness.

PC鋼棒などの各引張材7は、建屋地下部1a側の固着部8aと建屋間トレンチ3側の固着部8bとの間に地震振動を吸収可能な変形吸収材として機能するものであり、ジョイント部4への荷重負荷を低減させる。建屋間トレンチ3と建屋地下部1a,2aとに相対変形が生じた場合、その変形エネルギーを吸収するものとなる。   Each tensile material 7 such as a PC steel bar functions as a deformation absorbing material capable of absorbing seismic vibration between the fixed portion 8a on the building basement 1a side and the fixed portion 8b on the inter-building trench 3 side, The load applied to the joint part 4 is reduced. When relative deformation occurs in the inter-building trench 3 and the building underground portions 1a and 2a, the deformation energy is absorbed.

建屋地下部1aと建屋間トレンチ3との引張材7の繋げ方については、建屋地下部1aから引張材7により直接斜めに建屋間トレンチ3を吊るような方式でも良い。   About the connection method of the tension | tensile_strength material 7 of the building basement part 1a and the inter-building trench 3, the system which hangs the inter-building trench 3 directly diagonally with the tension | tensile_strength material 7 from the building basement part 1a may be used.

また、図2に示すように、建屋間トレンチ3が比較的地表面Fから浅く埋め込まれていて、直接斜めに建屋間トレンチ3を吊ることが不可能な場合には、ローラ部材5を介して吊る方式とする。このローラ部材5は建屋地下部1aの側面から突出させて固定したローラ支持部材9により、引張材7の軸方向に沿って回転可能に支持したものであり、例えば建屋地下部1aの側面から水平に引出された引張材7をローラ部材5の上面を介して下方に導き、下向き傾斜状態として引張材7の先端を建屋間トレンチ3の固着部8bに固着してある。   In addition, as shown in FIG. 2, when the inter-building trench 3 is relatively shallowly embedded from the ground surface F and it is impossible to hang the inter-building trench 3 directly diagonally, Use a hanging system. The roller member 5 is supported by a roller support member 9 that protrudes from the side surface of the building basement 1a and is rotatably supported along the axial direction of the tensile material 7. For example, the roller member 5 is horizontal from the side of the building basement 1a. The tension member 7 drawn out to the bottom is guided downward through the upper surface of the roller member 5, and the tip of the tension member 7 is fixed to the fixing portion 8 b of the inter-building trench 3 in a downward inclined state.

[引張材緊張工程S4]
固着部8a,8bに引張材7を仮設定した後には、建屋地下部1aと建屋間トレンチ3との各構造物の固着部8a,8bにおいて、引張材7を長さ方向の一端側もしくは両端側から緊張させる。
[Tensile tension process S4]
After temporarily setting the tensile material 7 to the fixing portions 8a and 8b, the tensile material 7 is attached to one end side or both ends in the length direction at the fixing portions 8a and 8b of the structures of the building underground portion 1a and the inter-building trench 3 Tension from the side.

また、建屋地下部1aと建屋間トレンチ3に対する引張材7の連結方法としては、建屋地下部1aから引張材7により直接斜めに建屋間トレンチ3を吊るような方式でも良い。但し、建屋間トレンチ3が比較的地表面Fから浅く埋め込まれていて、直接斜めに建屋間トレンチ3を吊ることが不可能な場合には、上述したように、ローラ部材5を介して吊る方式で緊張させる。   Moreover, as a connection method of the tension | tensile_strength material 7 with respect to the building underground part 1a and the inter-building trench 3, the system which hangs | hangs the inter-building trench 3 directly diagonally with the tensile material 7 from the building underground part 1a may be used. However, when the inter-building trench 3 is relatively shallowly embedded from the ground surface F and it is impossible to suspend the inter-building trench 3 directly obliquely, as described above, the system is suspended through the roller member 5. Tension with.

さらに、固着部8a,8bおよび引張材7の設定箇所については、図3に示したように、特に水平地盤荷重w2により、建屋地下部1aと建屋間トレンチ3とが水平方向に別位相で挙動し、建屋間トレンチ3が建屋地下部1aと相対変形を生じることに対しては、建屋間トレンチ3の両側の側面に固着部8a,8bおよび引張材7を配置することが効果的である。   Further, as shown in FIG. 3, the fixed portions 8a and 8b and the tensile material 7 are set at different positions in the horizontal direction in the building underground portion 1a and the inter-building trench 3 due to the horizontal ground load w2. However, it is effective to arrange the fixing portions 8a and 8b and the tensile material 7 on the side surfaces on both sides of the inter-building trench 3 to cause the inter-building trench 3 to be deformed relative to the building underground portion 1a.

[シース設定工程S5]
固着部8a,8bおよび引張材7の設置が完了し、引張材7を緊張した後には、地盤の埋め戻しを行うことになる。その場合、固着部8a,8bおよび引張材7は土中に埋まることになる。そこで、これらの腐食に対し、設計上配慮する必要がある場合には、腐食防止対策として、固着部8a,8bおよび引張材7をそれぞれ可撓性のあるシース12に納める方法を取る。引張材7をシース12に納めることにより、その後の引張材7のメンテナンスや取替え工事が、直接土中に埋込まれた場合に比して施工し易くなる。
[Sheath setting step S5]
After installation of the fixing portions 8a and 8b and the tension member 7 is completed and the tension member 7 is tensioned, the ground is backfilled. In that case, the adhering portions 8a and 8b and the tensile material 7 are buried in the soil. Therefore, when it is necessary to consider these corrosions in terms of design, a method is adopted in which the fixing portions 8a and 8b and the tension member 7 are respectively housed in a flexible sheath 12 as a corrosion prevention measure. By storing the tensile material 7 in the sheath 12, it becomes easier to perform subsequent maintenance and replacement work of the tensile material 7 as compared with the case where the tensile material 7 is directly embedded in the soil.

[地盤埋め戻し工程S6]
シース12設定後には、最終工程として地盤Gの埋め戻しを行なう。すなわち、固着部8a,8bおよび引張材7の設置が完了し、引張材7を緊張した後に、最終工程としての地盤の埋め戻しを行うものである。これにより、地下構造物補強工法が完了する。
[Ground backfilling step S6]
After the sheath 12 is set, the ground G is backfilled as a final process. That is, after the installation of the fixing portions 8a and 8b and the tension material 7 is completed and the tension material 7 is tensioned, the ground is backfilled as a final process. Thereby, the underground structure reinforcement construction method is completed.

以上の工程(S1−S6)を備えた本実施形態によれば、既設の原子力発電プラントにおける地下連結構造物の改造工事を施工するに当り、地下構造物補強工法を採用することによって地表面から掘削する物量を少なくすることができ、補強部分も建屋間トレンチのうち、ジョイント部の周りのエリアに限られることから、施工エリアが狭くなる各建屋間の敷地でも補強工事の施工が可能となる。   According to this embodiment provided with the above process (S1-S6), when constructing the remodeling work of the underground connection structure in the existing nuclear power plant, by adopting the underground structure reinforcement construction method, The amount of material to be excavated can be reduced, and the reinforcement part is limited to the area around the joint part of the inter-building trench. Therefore, it is possible to perform reinforcement work even on the site between buildings where the construction area is narrow .

従来工法である、軟弱地盤改良工事(地盤強固化改良工事や変形吸収領域化改造工事)を行った場合には、広範囲な地盤改良となるため掘削物量が多くなり、また、広範囲な施工エリアが必要となるため、大掛かりな改造工事となる。また、建屋間トレンチ部の下部の基礎改良工事を行った場合においても、地下深くまで掘削する必要があることから、大掛かりな掘削機械が必要となり、また、掘削後の基礎改造工事も大掛かりとなるため、コストも工期も膨大となる。   When soft ground improvement work (consolidation improvement work or deformation absorption area remodeling work), which is a conventional construction method, is performed, the amount of excavated material increases because of the wide ground improvement, and there is a wide construction area. Because it is necessary, it will be a major remodeling work. In addition, even when the foundation improvement work at the lower part of the trench part between the buildings is carried out, it is necessary to dig deep underground, so a large excavation machine is required, and the foundation remodeling work after excavation becomes large. Therefore, the cost and the construction period become enormous.

これに対し、本実施形態によれば、想定以上の大地震が発生し、地下連結構造物補強部分の修復工事が必要となった場合においても、比較的容易に修復が行え、特に引張材の代わりに変形吸収材を採用する工法では、その部分を取替えさえすれば、地震発生前の補強構造状態に修復することができる。   On the other hand, according to the present embodiment, even when a large earthquake more than expected occurs and repair work for the reinforced portion of the underground connection structure is required, repair can be performed relatively easily, especially for tensile materials. Instead, in the construction method that uses a deformation absorber, it is possible to restore the reinforced structure before the earthquake by simply replacing the part.

(他の実施形態)
本発明の他の実施形態として、引張材7に代えて変形吸収能力を有する変形吸収材を採用することが可能である。変形吸収材を適用した場合には、大きな地震が発生し、建屋間トレンチ3と建屋地下部1aとに相対変形が生じた場合であっても、その変形エネルギーを変形吸収材が吸収することにより、ジョイント部4の損傷を回避することができ、建屋間トレンチ内の重要な配管類の破損も防止することができる。
(Other embodiments)
As another embodiment of the present invention, it is possible to employ a deformation absorbing material having a deformation absorbing capacity instead of the tensile material 7. When a deformation absorber is applied, even if a large earthquake occurs and relative deformation occurs between the inter-building trench 3 and the building basement 1a, the deformation absorbing material absorbs the deformation energy. The damage of the joint part 4 can be avoided, and the breakage of important piping in the inter-building trench can also be prevented.

引張材7に代えて使用する変形吸収材としては、建築構造物の免震装置に採用されているダンパーまたは鋼製のプレートガータ構造のように、変形に対して靱性のあるものを採用することが望ましい。但し、変形吸収材を各構造物に設定する固定部8a,8bについては、引張材7の緊張定着部構造よりも固定度の高い剛結合とする必要がある。   As a deformation absorbing material used in place of the tensile material 7, a material having a toughness against deformation, such as a damper or a steel plate gutter structure used in a seismic isolation device for a building structure, should be adopted. Is desirable. However, the fixing portions 8a and 8b for setting the deformation absorbing material in each structure need to be rigidly coupled with a higher degree of fixing than the tension fixing portion structure of the tensile material 7.

なお、本発明の対象は、建屋間トレンチ3だけでなく、図示省略の建屋跳ね出し部分にも適用可能である。   The object of the present invention can be applied not only to the inter-building trench 3 but also to the protruding portion of the building (not shown).

本発明の一実施形態による施工手順を示す工程図。Process drawing which shows the construction procedure by one Embodiment of this invention. 本発明の一実施形態による施工方法を示す側面図。The side view which shows the construction method by one Embodiment of this invention. 図2の平面図。The top view of FIG.

符号の説明Explanation of symbols

1,2‥建屋、1a,2a‥建屋地下部、1b,2b‥側壁、3‥建屋間トレンチ、4‥ジョイント部、5‥ローラ部材、7‥引張材、8a,8b‥固着部、9‥ローラ支持部材、12‥シース、G‥地盤、F‥地表面、w1‥上下地盤荷重、w2‥水平地盤荷重。   1, 2 building, 1a, 2a building basement, 1b, 2b side wall, 3 building-to-building trench, 4 joint portion, 5 roller member, 7 tension material, 8a, 8b fixing portion, 9 Roller support member, 12 ... sheath, G ... ground, F ... ground surface, w1 ... upper ground load, w2 ... horizontal ground load.

Claims (4)

原子力発電プラントの隣り合う建屋間の地盤を掘削し、建屋地下部間を相対変位が可能なジョイント部によって連結されている地下連結構造物に補強材を付加する地下構造物補強工法であって、前記地盤の掘削を建屋の側壁に沿って行い、前記ジョイント部、このジョイント部を挟む前記建屋地下部および前記地下連結構造物の上側部分を表出させ、これら表出部分のうち、前記建屋地下部の側面と前記地下連結構造物とに一定以上の引張り荷重を支持し得る荷重支持部材を前記ジョイント部を跨ぐ配置で取付け、これら建屋地下部側の荷重支持部材と地下連結構造物側の荷重支持部材との間に地震振動を吸収可能な変形吸収材を連結することにより、前記ジョイント部への荷重負荷を低減させることを特徴とする地下構造物補強工法。 An underground structure reinforcement method for excavating the ground between adjacent buildings of a nuclear power plant and adding a reinforcing material to an underground connection structure connected by a joint part capable of relative displacement between the building underground parts, Excavation of the ground is performed along the side wall of the building, and the joint part, the basement part of the building sandwiching the joint part, and the upper part of the underground connection structure are exposed, and among the exposed parts, the basement of the building A load support member capable of supporting a tensile load of a certain level or more is attached to the side surface of the building and the underground connection structure so as to straddle the joint portion, and the load support member on the building underground side and the load on the underground connection structure side An underground structure reinforcing method characterized by reducing a load applied to the joint portion by connecting a deformation absorbing material capable of absorbing seismic vibration between the supporting member and the supporting member. 前記変形吸収材を引張り材とし、この引張り材の一端側を前記建屋地下部側の荷重支持部材に接続する一方、前記引張り材の他端側を前記地下連結構造物側の荷重支持部材に接続する請求項1記載の地下構造物補強工法。 The deformation absorbing material is a tensile material, and one end side of the tensile material is connected to the load support member on the basement side of the building, while the other end side of the tensile material is connected to the load support member on the underground connection structure side. The underground structure reinforcing method according to claim 1. 前記引張り材の一端側を接続する前記建屋地下部側の荷重支持部材を前記地下連結構造物の外周よりも大径側に配置し、この建屋地下部側の荷重支持部材にローラ部を介して前記引張り材を当該ローラの周方向に屈曲可能とし、前記地下連結構造物をその外周側から揺動可能に支持させる請求項2記載の地下構造物補強工法。 The load supporting member on the basement side of the building connecting one end side of the tensile material is arranged on the larger diameter side than the outer periphery of the underground connection structure, and the load supporting member on the basement side of the building is arranged via a roller part. The underground structure reinforcing method according to claim 2, wherein the tension member is bendable in a circumferential direction of the roller, and the underground connection structure is supported to be swingable from an outer peripheral side thereof. 前記引張材および前記荷重支持部材を、土中に埋設したシース内に収容する請求項2または3記載の地下構造物補強工法。 The underground structure reinforcing method according to claim 2 or 3, wherein the tensile material and the load supporting member are accommodated in a sheath embedded in soil.
JP2008017855A 2008-01-29 2008-01-29 Underground structure reinforcing method Pending JP2009179964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017855A JP2009179964A (en) 2008-01-29 2008-01-29 Underground structure reinforcing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017855A JP2009179964A (en) 2008-01-29 2008-01-29 Underground structure reinforcing method

Publications (1)

Publication Number Publication Date
JP2009179964A true JP2009179964A (en) 2009-08-13

Family

ID=41034152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017855A Pending JP2009179964A (en) 2008-01-29 2008-01-29 Underground structure reinforcing method

Country Status (1)

Country Link
JP (1) JP2009179964A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041809A (en) * 2010-11-17 2011-05-04 中国核工业华兴建设有限公司 Construction method for nuclear island raft foundation of nuclear power station
CN106021755A (en) * 2016-05-26 2016-10-12 中国核工业第二二建设有限公司 Simulation analysis method for temperature stress of mass concrete in raft foundations of nuclear island of nuclear power station

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041809A (en) * 2010-11-17 2011-05-04 中国核工业华兴建设有限公司 Construction method for nuclear island raft foundation of nuclear power station
CN106021755A (en) * 2016-05-26 2016-10-12 中国核工业第二二建设有限公司 Simulation analysis method for temperature stress of mass concrete in raft foundations of nuclear island of nuclear power station
CN106021755B (en) * 2016-05-26 2019-03-15 中国核工业第二二建设有限公司 Nuclear island raft foundation of nuclear power station mass concrete temperature stress simulating analysis

Similar Documents

Publication Publication Date Title
KR100915099B1 (en) Structure for supporting retaining wall of earth with arch material and method constructing the arch structure
JP5180022B2 (en) Constraining method for mountain retaining wall head
JP4914062B2 (en) Two-tiered retaining wall and its construction method
CN105604064A (en) Construction method of comprehensive pipeline protection system supporting system
JP5634931B2 (en) Construction method of underground structure
JP5092705B2 (en) Support structure of structure, construction method of underground structure, replacement method of foundation load
JP5976373B2 (en) Pile foundation reinforcement structure and reinforcement method
KR102223856B1 (en) Foundation structure of waste landfill site and construction method thereof
JP3516391B2 (en) Ground excavation method
JP2007170099A (en) Method for preventing differential settlement by reducing liquefaction of existing building foundation
JP2009179964A (en) Underground structure reinforcing method
JP2011236705A (en) Foundation structure of structure and method of constructing the same
KR101198286B1 (en) Non-wale strut system for top-down construction and top-down construction method thereby
JP5777435B2 (en) Reinforcement method for foundations for small buildings
JP2011246910A (en) Construction method of underground structure
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
JP3963326B2 (en) Seismic reinforcement structure for bridge pier and its construction method
JP5852475B2 (en) Pile foundation reconstruction method
JP2005082995A (en) Pile head connection structure
JP6000414B2 (en) Pile foundation reconstruction method and pile foundation structure
KR102174966B1 (en) Foundation structure of air dome in waste landfill site and construction method thereof
JP6018424B2 (en) Vibration suppression device in pneumatic caisson method for hard ground and vibration suppression method using the same
JP2019157508A (en) Under-ground piled column and seismic base-isolated buildings
JPH07259080A (en) Self-supported sheath wall structure
JP3473009B2 (en) Seismic retrofit structure and construction method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100426

Free format text: JAPANESE INTERMEDIATE CODE: A7424