JP2006231250A - 排気ガス浄化装置 - Google Patents

排気ガス浄化装置 Download PDF

Info

Publication number
JP2006231250A
JP2006231250A JP2005051967A JP2005051967A JP2006231250A JP 2006231250 A JP2006231250 A JP 2006231250A JP 2005051967 A JP2005051967 A JP 2005051967A JP 2005051967 A JP2005051967 A JP 2005051967A JP 2006231250 A JP2006231250 A JP 2006231250A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
noble metal
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005051967A
Other languages
English (en)
Inventor
Naohisa Watanabe
尚央 渡邊
Yoshihiko Hyodo
義彦 兵道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005051967A priority Critical patent/JP2006231250A/ja
Publication of JP2006231250A publication Critical patent/JP2006231250A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

【課題】 高価な貴金属の使用量を増加することなく、排気ガス流れ方向下流部での触媒浄化能を向上させ、特に触媒床温が低い場合でも良好な浄化能を発揮しうる排気ガス浄化装置を提供する。
【解決手段】 内燃機関の排気ガス通路に配設され、排気ガスの流れ方向に沿って上流側触媒100Aと下流側触媒100Bとを具備し、上流側触媒は予め貴金属を担持させた担体粒子を基材層101上にコーティングして形成した立体構造コート層102を形成するとともに、下流側触媒は担体粒子を基材層111上にコーティングして形成したコート層に貴金属を表層部113に担持させた平面構造コート層112を形成する。
【選択図】 図3

Description

本発明は、内燃機関の排気ガス浄化装置に関する。
一般に、内燃機関の排気ガス浄化装置は、例えばコージェライトからなるモノリス状の耐熱性担体基材層の表面に、白金等の触媒貴金属を担持した、アルミナ等の耐熱性無機酸化物からなる多孔質の担体を支持する構造を有している。かかる排気ガス浄化装置は、排気ガス中に含まれる有害な一酸化炭素(CO)及び炭化水素(HC)を酸化して無害な二酸化炭素(CO)と水(HO)に変換すると同時に、窒素酸化物(NOx)を還元して無害な窒素(N)に変換し得るため、三元触媒とも呼ばれている。
排気ガス中の上記各有害成分の量は、内燃機関の運転状況に応じて変化する。また、排気ガス中にNOxが発生するのを抑制するため、積極的に空燃比(以下において「A/F比」ということがある。)をストイキ、あるいはリッチに制御する方式も試みられており、排気ガス浄化装置に導入される排気ガスの成分はかかる制御によっても変化する。
一方、排気ガス浄化装置の内部では、排気ガスの流れ方向上流側から次第に排気ガスの浄化が行われるので下流側に向かって流れるガスの成分も流れ方向に沿って変化する。
さらに温度に関しては、内燃機関の運転状況によって発生する排気ガスの温度が変化し、また、一般には排気ガス浄化装置の流れ方向に沿って、下流側になるほど排気ガスの温度は低下する。
かかる変化に対応して、排気ガスの浄化を最適化すべく、特許文献1には、浄化装置の上流側に第一の触媒層、下流側に第二の触媒層を設け、これら第一、第二の触媒層間で貴金属の成分、及び量を変えて触媒浄化能を高めるシステムが開示されている。又、特許文献2では、上流側から下流側に向かって、貴金属と遷移金属酸化物の担持量の勾配を設けることにより、触媒浄化能を高める構成が開示されている。さらに特許文献3では、上流側触媒と下流側触媒との貴金属コート比を 1<前側/後側≦3 とすることにより、それぞれ高いNOx浄化効果を得ることが可能であるとしている。
特開2004−283692号公報 特開平9−122443号公報 特開2003−245523号公報
上記各特許文献に開示されている構成では、いずれも上流部触媒と下流部触媒の貴金属の量、密度を変えて浄化能を上げようとするものであり、浄化能の向上を図ろうとするとコストの高い貴金属使用量を多くせざるを得ないという問題があった。
一方、基材層上に予め貴金属を担持した担体粒子をコーティングして、基材層上に立体構造のコート層を形成して、かかる立体構造のコート層内部のガスの拡散を利用して、排気ガスの浄化能を上げようとする構造も試みられている。しかし、このような立体構造をとった場合、耐久性や酸素吸蔵能が高いという利点を有する反面、表層の貴金属担持密度が低いため、表層に到達したガスの反応量が少なくなる。このため、ガス通路との濃度差が小さくなり、拡散能はあるものの、コート層内に拡散してくるガス量が少なくなる。したがって、ガス通路のガスの濃度が高くなる。これを解決しようと貴金属の担持量を増加すると、ここでも触媒のコストが高くなってしまうという問題があった。また、排気ガス流れ方向下流側では温度が低いため拡散能が低下し、Oセンサがうまく機能せず、また貴金属を十分に使用できていないという問題もあった。
そこで本発明は、高価な貴金属の使用量を増加することなく、排気ガス流れ方向下流部での触媒浄化能を向上させ、特に触媒床温が低い場合でも良好な浄化能を発揮しうる排気ガス浄化装置を提供することを課題とする。
上記課題を解決するために、本発明者らは、排気ガス流れ方向上流側の触媒では、予め貴金属を担持させた多孔質担体粒子を基材層上にコーティングして、コート層を立体構造に形成し、一方、排気ガス流れ方向下流側の触媒では貴金属を担持しない多孔質担体粒子を基材層上にコーティングしてコート層を形成後、該コート層の表層のみに貴金属を担持させた平面構造を形成することにより、全体として触媒の浄化能を向上しうることを見出して本発明を完成させた。
かくして、請求項1に記載の発明は、内燃機関の排気ガス通路に配設され、排気ガスの流れ方向に沿って上流側触媒と下流側触媒とを具備し、上流側触媒は予め貴金属を担持させた担体粒子を基材層上にコーティングして形成した立体構造コート層を有するとともに、下流側触媒は担体粒子を基材層上にコーティングして形成したコート層に貴金属を表層部に担持させた平面構造コート層を有することを特徴とする排気ガス浄化装置により、前記課題を解決しようとするものである。
請求項2に記載の発明は、請求項1に記載の排気ガス浄化装置において、単位長さ、単位セルあたりの貴金属量は、上流側触媒と下流側触媒とで同一であることを特徴とする。
請求項3に記載の発明は、請求項1又は2に記載の排気ガス浄化装置において、上流側触媒と下流側触媒とは、一体に形成されていることを特徴とする。
請求項4に記載の発明は、請求項1又は2に記載の排気ガス浄化装置において、上流側触媒と下流側触媒とは、離隔して配置されていることを特徴とする。
請求項1に記載の発明によれば、上流側触媒においては、深さ方向に貴金属の密度が均一な立体構造のコート層が形成されているので、酸素吸蔵量が増大し、触媒の劣化を抑制することができる。また、下流側触媒においては、表層部の貴金属密度が高い平面構造のコート層が形成されているので、時間を要する拡散を原因とする性能低下がないため、高い浄化能を得ることができる。
また、かかる高い浄化能により、HC、COの濃度変化が大となり、排ガスセンサ(Oセンサ)の応答性が向上する。これにより、排気ガスのA/F比制御性が向上し、この面からも高い浄化率が可能となる。
請求項2に記載の発明によれば、浄化性能を維持しつつ高価な貴金属の使用量を抑えることができる。
請求項3に記載の発明によれば、上流側触媒と下流側触媒とが一体に形成されているので、装置の小型化が容易となる。
請求項4に記載の発明によれば、上流側触媒と下流側触媒とが別体に設けられており、上流側触媒の一部のセルが閉塞しても、下流側触媒にはその影響が直接に及ぶことはないので、浄化能の低下や圧力損失の増大を最小限に抑えることができる。また、上流側触媒と下流側触媒とが別体に形成されているので車両への搭載スペースが限られている場合でも、分割して搭載することが容易でありスペースを有効に活用することができる。
以下に図面を参照しつつ本発明の排気ガス浄化装置について、その最良の実施形態をさらに具体的に説明する。
図1は、一般的なガソリンエンジンに本発明の排気ガス浄化装置を用いた場合の概略を示すシステム図である。通常本システム50は車両に搭載されているものである。図1ではエンジン10の左方に混合気供給部20、右方に排気系が表されている。混合気供給部20において、所定のA/F比に混合された燃料及び空気はエンジン10に供給されて燃焼される。エンジン10の各シリンダーにおいて燃焼して生成された排気ガスは、エキゾーストマニホールド11を介し排気管15にまとめられて、排気ガス浄化装置30へと導かれている。なお、図1においては排気ガス浄化装置を示す参照符号として便宜上「30」を使用するが、後に説明する第一実施形態及び第二実施形態にかかる排気ガス浄化装置に対しては、適宜参照符号を変えて説明を行う。
排気ガス浄化装置30にて有害物質が浄化処理された排気は排出管16から大気中に放出される。混合気供給部20にはスロットル弁21が設けられ、その上流側にはエアフローメーター22が、スロットル弁21の近傍にはスロットルセンサ23が設けられている。これらメーター22、センサ23からの出力信号は、原動機電子制御装置(以下において「ECU」という。)40に送られる。
排気ガス浄化装置30の前後には、A/Fセンサ24、Oセンサ25がそれぞれ設けられ、浄化装置30に導入される排気ガスの空燃比、浄化装置30により浄化された排気の酸素濃度を検知している。これらA/Fセンサ24、及びOセンサ25による検知信号も、ECU40に送られている。
ECU40は、これらエアフローメーター22、スロットルセンサ23、A/Fセンサ24、及びOセンサ25による検知信号を受けて、さらに必要により他のセンサからの信号を加えて、最適な制御条件を演算してエンジン10の制御を司っている。
図2は、第一実施形態にかかる排気ガス浄化装置100の構成を概略的に示す図である。図2において、図面左方が排気管15、すなわち排気ガス流れ方向上流側、図面右方が排出管16、すなわち排気ガス流れ方向の下流側である。図示の排気ガス浄化装置100は、上流側から下流側へと貫通する多数のセルc1、c2、c3、…を備えている。一方、排気ガス浄化装置100は、上流側は上流側触媒100A、下流側は下流側触媒100Bとされており、両者は異なる触媒構成を有するとともに、一体に形成されている。
第一実施形態の排気ガス浄化装置100によれば、上流側触媒100Aと下流側触媒100Bとが一体に形成されているので、装置の小型化が容易となる。
図3は、上流側触媒100A内の任意の一セルの部位A(図2参照)、及び下流側触媒100B内の任意の一セルの部位B(図2参照)において、貴金属、担体がどのようにコート層を形成しているのかを示す概念図である。図3(A)は上流側触媒100Aの、(B)は下流側触媒100Bのそれぞれの基材層101、111上にコート形成されたコート層102、112の厚さ方向断面を模式的に示す。それぞれの図において、排気ガス通路はコート層102、112の上方に左側から右方向へと向かっている。
図3(A)に示される上流側触媒100Aでは、基材層101上に、所定粒径の担体A、及び貴金属からなるコート層102が形成されている。上流側触媒100Aにおいては、担体Aには予め貴金属が含浸担持されており、その貴金属を担持した担体Aが基材層101上にコーティングされてコート層102が形成されている。したがってコート層102の表層部103から内部の基材層101に近接する部位に至るまで、深さ方向に貴金属が均一に分散されている。本発明においてはかかる上流側触媒100Aのコート層102の構造を「立体構造」と呼ぶこととする。かかる立体構造により、上流側触媒100Aでは、表層部103の貴金属担持密度が小さく、かつ、担体粒子間の隙間が大きい。したがって酸素吸蔵量が大きくなり、触媒の劣化を抑制することができる。さらに、コート層102内部側への拡散量が増えるので、表層部103での反応量が減少し、内部側での反応量が増える。したがって、コート層102における排気ガス流れ方向に直交する面の中央部側と周辺部側との反応熱の違いによる局所的温度勾配を緩和することができ、熱歪によるコート材の剥離を抑制することができる。
図3(B)に示される下流側触媒100Bでは、基材層111上に、所定粒径の担体B、及び貴金属からなるコート層112が形成されている。下流側触媒100Bにおいては、担体Bには予め貴金属が担持されておらず、その担体Bを基材層111上にコーティングしてコート層112を形成したのちに、コート層112の表層のみに貴金属を担持させて表層部113を形成している。かかる構成により、下流側触媒100Bでは、表層部113のみ貴金属密度が高い。本発明においてはかかる下流側触媒100Bのコート層112の構造を「平面構造」と呼ぶこととする。かかる平面構造により、下流側触媒100Bにおいては、貴金属までのガス拡散距離が大きく短縮され、ガス濃度が薄くなっても拡散量を多くすることができる。また、コート層表面部113の貴金属の面積密度が高いので、ガス濃度が薄くなっても十分な浄化が確保される。もって、排気ガス浄化装置100全体の浄化率を向上させることができる。
さらに、担体粒子の間に十分な空隙が存在するので、エンジンオイルに由来するリン等の触媒に対する被毒物質をトラップして、高い浄化能を長期にわたって維持することが可能となる。
加えて、コート層102は、予め貴金属を含浸担持させた担体を基材層101上にコートして形成しているので、コート層102の内部にまで均一に貴金属が存在するため、触媒浄化ウインドウを広くすることができる。したがってA/F比が変動しても、良好な浄化率を保持することが可能である。
第一実施形態にかかる排気ガス浄化装置100において、貴金属は、上流側触媒100Aと下流側触媒100Bとで、単位長さ単位セルあたり同一量とすることが好ましい。このようにすることによって、浄化性能を維持しつつ高価な貴金属の使用量を抑えることができる。
以上に説明した、図3に示される第一実施形態の排気ガス浄化装置100における上流側触媒100Aと下流側触媒100Bにおける貴金属、担体がコート層101、111を形成する態様、及びそれによる作用効果は、後に説明する第二実施形態にかかる排気ガス浄化装置200においても同様である。
図4は、第一実施形態にかかる排気ガス浄化装置100の製造工程を模式的に示す図である。所定粒径を備える担体粉末Aに貴金属を含浸担持させて上流側に使用する基材の部位上にコーティングする。一方、所定粒径を備え貴金属を含浸担持させていない担体粉末Bを下流側に使用する基材の部位上にコーティングする。かかる基材の既に貴金属を担持させた上流側部位をマスクした後、貴金属を含浸担持させる。これにより下流側のコート層112の表層部113のみに貴金属が担持される。このように処理を行った基材を焼成することにより、上流側、下流側各触媒100A、100Bを備えた排気ガス浄化装置100を得ることができる。
図5は第二実施形態にかかる排気ガス浄化装置200の構成を概略的に示す図である。図5において、図面左方が排気管15、すなわち排気ガス流れ方向上流側、図面右方が排出管16、すなわち排気ガス流れ方向の下流側である。図示の、排気ガス浄化装置200は、上流側触媒200Aと下流側触媒200Bとが別体に形成され、両者は離隔して配置されている。また、上流側触媒200Aと下流側触媒200Bとは、排気ガスの流れ方向の長さが略同一であるとともに、排気ガスの流れ方向に直交する面方向の断面積も略同一となるよう形成されている。これら上流側触媒200Aと下流側触媒200Bとは、排気管15から排出管16へと連通される外套管250に覆われている。
上流側触媒200Aは、排気ガスの流れ方向に沿って上流側から下流側へと貫通する多数のセルc4、c5、c6、…を備えている。一方、下流側触媒200Bも、排気ガスの流れ方向に沿って上流側から下流側へと貫通する多数のセルc7、c8、c9、…を備えている。上流側触媒200Aのセルc4、c5、c6、…と、下流側触媒200Bのセルc7、c8、c9、…の数は略同一に構成されている。かかる構成の排気ガス浄化装置200においては、排気管15から上流側触媒200Aの各セルc4、c5、c6、…内に流れ込んだ排気ガスは上流側触媒200Aにより所定の浄化を受ける。その後、一旦外套管250の中間部251においてひとつの流れとして合流し、再び下流側触媒200Bの各セルc7、c8、c9、…内に導かれる。下流側触媒200Bの各セルc7、c8、c9、…内においてさらに所定の浄化を受けた排気ガスは排出管16に送られて、そこから外部に排出される。
上流側触媒200A内の任意の点A、下流側触媒200B内の任意の点Bにおける貴金属、担体がコート層を形成する態様、及びそれによる作用効果は、図3において説明した第一実施形態の排気ガス浄化装置100におけるものと同様である。よってその説明はここでは省略する。また、第二実施形態にかかる排気ガス浄化装置200においても、貴金属は、上流側触媒200Aと下流側触媒200Bとで、単位長さ単位セルあたり同一量とされていることが好ましい。このようにすることによって、浄化性能を維持しつつ高価な貴金属の使用量を抑えることができる。
第二実施形態にかかる排気ガス浄化装置200によれば、上流側触媒200Aと下流側触媒200Bとが別体に設けられているので、上流側触媒200Aの一部のセルが閉塞しても、下流側触媒200Bにはその影響が直接に及ぶことはない。従って、浄化能の低下や圧力損失の増大を最小限に抑えることができる。また、上流側触媒200Aと下流側触媒200Bとが別体に形成されているので車両への搭載スペースが限られている場合でも、分割して搭載することが容易でありスペースを有効に活用することができる。
図6は、第二実施形態にかかる排気ガス浄化装置200の製造工程を模式的に示す図である。所定粒径を備える担体粉末Aに貴金属を含浸担持させて上流側触媒200Aに使用する基材101上にコーティングする。一方、所定粒径を備える担体粉末Bを下流側触媒200Bに使用する基材111上にコーティングする。かかる基材111に貴金属を含浸担持させる。これにより下流側触媒200Bのコート層112の表層部113のみに貴金属が担持される。このように処理を行った両基材をそれぞれ焼成することにより、排気ガス浄化装置200の上流側触媒200A、および下流側各触媒200Bを得ることができる。
本発明の排気ガス浄化装置100、200において、貴金属の種類は特に限定されるものではないが、白金(Pt)、ロジウム(Rh)、及びパラジウム(Pd)のうちのいずれか、又はこれらを組み合わせて使用することができる。これらの中でも、Pt、及び/又はRhを好ましく使用することができる。
また、本発明の排気ガス浄化装置100、200において、担体の種類は特に限定されるものではないが、多孔質で表面積の大きな材料、例えばセリア/アルミナ、あるいはジルコニア等を好適に使用することができる。
(実施例1)
図7は実施例1の結果をまとめて示す図である。(A)において、縦軸は排気ガス浄化装置を搭載した車両の車速を示し、横軸は時間軸を示す。すなわち(A)は、評価対象たる排気ガス浄化装置を搭載した車両の車速の時間的変化を示すものである。一方(B)において、縦軸は上記車両に搭載された排気ガス浄化装置の触媒浄化能を示し、横軸は時間の経過を示している。なお、(A)と(B)との時間軸は同一となるように表されている。
(A)において、車両は停止状態から、一定の加速を行い、所定の車速に達したらその車速にて定常運転を所定時間連続して行う。その後一定の減速を行い停止する。(B)はこれに対応して表した触媒浄化能の時間的変化を示している。(B)において、点線が本発明第一実施形態の構造を持ったもの(実施例)、破線が触媒全長が図3(A)に示される立体構造を持ったもの(比較例1)、直線は触媒全長が図3(B)に示される平面構造をとったもの(比較例2)の触媒浄化能を表している。
図7から明らかなように、上流側には立体構造の触媒を備え、下流側には平面構造を備えた触媒を配置した実施例の排気ガス浄化装置100によれば非浄化ガス量が少なくなって、同一の貴金属担持量のもとでも触媒の浄化率を高めることが確認された。特に定常運転時において、比較例1、及び2の構造を持ったものより、顕著に高い浄化性能が確認された。
(実施例2)
図8は、実施例1において評価した実施例及び比較例1の各触媒に関して、時間の経過とHC・CO濃度との関係をOセンサ感知濃度下限値とともに示す図である。実施例2により、本発明の排気ガス浄化装置は、Oセンサ感知濃度に達する時間が長く、トータルの非浄化ガス量も少ないので、排気ガスの浄化性能が良好となることが確認された。HC・CO濃度の変化が大きいほうがOセンサの応答性は向上するので排気ガスのA/F比制御性が向上され、高い浄化率が達成された。また、A/F比制御が容易となり排気ガス中のHC・CO等が低減された。
一般的なガソリンエンジンに本発明の排気ガス浄化装置を用いた場合の概略を示すシステム図である。 第一実施形態の排気ガス浄化装置の構成を概略的に示す図である。 (A)は上流側触媒の、(B)は下流側触媒の基材層上に形成されたコート層の厚さ方向断面を模式的に示す図である。 第一実施形態にかかる排気ガス浄化装置の触媒製造工程を模式的に示す図である。 第二実施形態の排気ガス浄化装置の構成を概略的に示す図である。 第二実施形態にかかる排気ガス浄化装置の触媒製造工程を模式的に示す図である。 実施例1を示す図である。 実施例2を示す図である。
符号の説明
c1〜c9… セル
10 エンジン
11 エキゾーストマニホールド
15 排気管
16 排出管
20 混合気供給部
21 スロットル弁
22 エアフローメーター
23 スロットルセンサ
24 A/Fセンサ
25 Oセンサ
40 ECU
50 システム
101、111 基材層
102、112 コート層
103、113 表層部
30、100、200 排気ガス浄化装置
100A、200A 上流側触媒
100B、200B 下流側触媒
250 外套管
251 (外套管)中間部

Claims (4)

  1. 内燃機関の排気ガス通路に配設され、前記排気ガスの流れ方向に沿って上流側触媒と下流側触媒とを具備し、
    前記上流側触媒は予め貴金属を担持させた担体粒子を基材層上にコーティングして形成した立体構造コート層を有するとともに、前記下流側触媒は担体粒子を基材層上にコーティングして形成したコート層に貴金属を表層部に担持させた平面構造コート層を有することを特徴とする排気ガス浄化装置。
  2. 単位長さ、単位セルあたりの前記貴金属量は、前記上流側触媒と下流側触媒とで同一である、ことを特徴とする請求項1に記載の排気ガス浄化装置。
  3. 前記上流側触媒と下流側触媒とは、一体に形成されていることを特徴とする請求項1又は2に記載の排気ガス浄化装置。
  4. 前記上流側触媒と下流側触媒とは、離隔して配置されていることを特徴とする請求項1又は2に記載の排気ガス浄化装置。

JP2005051967A 2005-02-25 2005-02-25 排気ガス浄化装置 Pending JP2006231250A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051967A JP2006231250A (ja) 2005-02-25 2005-02-25 排気ガス浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051967A JP2006231250A (ja) 2005-02-25 2005-02-25 排気ガス浄化装置

Publications (1)

Publication Number Publication Date
JP2006231250A true JP2006231250A (ja) 2006-09-07

Family

ID=37039476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051967A Pending JP2006231250A (ja) 2005-02-25 2005-02-25 排気ガス浄化装置

Country Status (1)

Country Link
JP (1) JP2006231250A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157434A1 (ja) * 2008-06-23 2009-12-30 日揮株式会社 二酸化炭素オフガスの浄化方法および浄化用燃焼触媒、並びに天然ガスの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157434A1 (ja) * 2008-06-23 2009-12-30 日揮株式会社 二酸化炭素オフガスの浄化方法および浄化用燃焼触媒、並びに天然ガスの製造方法

Similar Documents

Publication Publication Date Title
KR101513120B1 (ko) 발열 생성 촉매를 포함하는 배기 시스템
EP1952884B1 (en) Catalyst for exhaust-gas purification
JP5720949B2 (ja) 排ガス浄化用触媒
JP4751917B2 (ja) 排ガス浄化用触媒
KR101529416B1 (ko) 배기 가스 정화용 촉매
KR102117221B1 (ko) 3원 촉매 시스템
JP5337930B2 (ja) 排気浄化方法
US20050217241A1 (en) System and method for purifying an exhaust gas
JP2007199046A (ja) ガスセンサ素子
WO2020195777A1 (ja) 排ガス浄化用触媒
JP6445228B1 (ja) 排ガス浄化用触媒
CN113260777A (zh) 催化制品及其用于处理废气的用途
US11859526B2 (en) Exhaust gas purification system for a gasoline engine
JP2007278100A (ja) 排気ガス浄化装置
US20220193649A1 (en) Exhaust purification filter
JP2013127251A (ja) 火花点火式内燃機関用の排気機構
JP2003170047A (ja) 排気ガス浄化用触媒、及びその触媒の製造方法
US10280822B2 (en) Exhaust gas purifying apparatus
JP2007278101A (ja) 排気ガス浄化用触媒コンバータ装置
JP2007085242A (ja) 触媒コンバータおよび排気システム
US20140005043A1 (en) Catalyst and a manufacturing method thereof
US20090124494A1 (en) Catalyst For Purifying Exhaust Gases and Exhaust-Gas Purification Controller Using the Same
JP2021143625A (ja) 排ガス浄化装置
JP2006231108A (ja) 排気ガス浄化装置
JP2010058069A (ja) 自動二輪車用排ガス浄化触媒