JP2006224060A - マイクロチップ用の温度制御装置 - Google Patents

マイクロチップ用の温度制御装置 Download PDF

Info

Publication number
JP2006224060A
JP2006224060A JP2005044130A JP2005044130A JP2006224060A JP 2006224060 A JP2006224060 A JP 2006224060A JP 2005044130 A JP2005044130 A JP 2005044130A JP 2005044130 A JP2005044130 A JP 2005044130A JP 2006224060 A JP2006224060 A JP 2006224060A
Authority
JP
Japan
Prior art keywords
microchip
temperature
temperature control
peltier element
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005044130A
Other languages
English (en)
Inventor
Soichi Takigawa
宗一 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2005044130A priority Critical patent/JP2006224060A/ja
Publication of JP2006224060A publication Critical patent/JP2006224060A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】 マイクロチップの被温度調節部の温度を高精度かつ局所的に制御するマイクロチップ用の温度制御装置を提供する。
【解決手段】 温度制御装置10の温度調節部20は弾性体23によりマイクロチップ30に対し三次元方向に移動可能に支持されつつマイクロチップ30の面30aに押し付けられている。これにより、温度調節部20の接触面201およびマイクロチップ30の被温度調節部が均一な平面上に形成されない場合、またはマイクロチップ30に反りが生じる場合でも、温度調節部20はマイクロチップ30の形状に追従してマイクロチップ30の所定の位置に密着する。弾性体23はペルチェ素子部21とヒートシンク22との間に設置されている。弾性体23は、シリコーン樹脂など熱伝導性を有する材料で形成されている。そのため、ペルチェ素子部21の排熱は、弾性体23を通してヒートシンク22に放熱される。
【選択図】 図1

Description

本発明は、マイクロチップ用の温度制御装置に関し、特にマイクロチップの微細な流路または所定領域ごとに温度を制御するマイクロチップ用の温度制御装置に関する。
マイクロチップでは、薄い板状のチップ上に微細な流路または槽領域などが形成されている。このマイクロチップ上の流路または槽領域において、試料の分離、合成あるいは観察、または細胞の培養などが行われる。このようなマイクロチップでは、流路または槽領域などの複数の被温度調節部ごとに、異なる温度で高精度かつ局所的に温度を制御する必要がある。
上記のようにマイクロチップの被温度調節部の温度を局所的に制御する技術として、例えば特許文献1、2または非特許文献1に開示されている技術が公知である。特許文献1では、マイクロチップの分析電極ごとに分析電極を加熱する加熱電極を備えている。これにより、マイクロチップの分析電極は個別に温度調節される。また、特許文献2では、熱伝導体で構成される複数のアイランドを個別に温度調節する温度調節器を備えている。これにより、アイランドごとに温度調節が可能となり、アイランドに接するサンプル溶液の温度が制御される。さらに、非特許文献1では、被温度調節部を有するチップの一方の面側に微小のペルチェ素子を有するヒートシンクが設置されている。これにより、チップの被温度調節部はペルチェ素子によって温度調節が行われる。
特開平11−127900号公報 特開平13−235474号公報 シチズン時計株式会社のウェブサイトURL:http://www.citizen.co.jp/med/field/index.html
しかしながら、特許文献1に開示されている発明の場合、分析電極には加熱電極が設置されるのみである。そのため、分析電極を冷却することは困難である。その結果、設定温度が雰囲気温度に近いとき、精密な温度調節は困難である。また、特許文献2に開示されている発明も、特許文献1と同様にアイランドは加熱されるのみである。そのため、アイランドと接するサンプル容器の冷却は困難であり、精密な温度調節は困難である。さらに、特許文献1に開示されている発明の場合、チップと一体に分析電極および加熱電極が設置されている。そのため、チップを分析電極および加熱電極と分離して交換することは困難である。
一方、非特許文献1に開示されている発明の場合、ペルチェ素子を用いることにより、被温度調節部は加熱だけでなく冷却も可能となる。また、チップとペルチェ素子とは分離しているため、チップのみを容易に交換することができる。しかしながら、薄い板状のチップに流路および反応領域を形成する場合、チップには反りが生じやすい。そのため、非特許文献1に開示されている発明の場合、チップの被温度調節部にペルチェ素子が密着せず、高精度かつ局所的な温度調節は困難である。また、チップの反りが微小な場合でも、複数のペルチェ素子の被温度調節部に接する面を同一の平面上に設置することは困難である。また、チップを局所的に温度制御すると、チップには反りが生じる。そのため、すべてのペルチェ素子をチップに均一に密着させることは困難である。したがって、非特許文献1に開示されている発明では、チップの高精度かつ局所的な温度制御は困難になるおそれがある。
そこで、本発明の目的は、マイクロチップの被温度調節部の温度を高精度かつ局所的に制御するマイクロチップ用の温度制御装置を提供することにある。
本発明のマイクロチップ用の温度制御装置によると、複数の被温度調節部を有する薄板状のマイクロチップを一方の面側から加熱または冷却し、前記被温度調節部の温度を制御するマイクロチップ用の温度制御装置であって、熱伝導体から形成され、前記マイクロチップの前記一方の面側から前記被温度調節部にそれぞれ接する温度調節部と、前記温度調節部の前記マイクロチップとは反対側に設置され、通電することにより前記温度調節部を加熱または冷却するペルチェ素子部と、前記ペルチェ素子部の前記温度調節部とは反対側に設置され、前記ペルチェ素子部の加熱または冷却を補助するヒートシンクと、前記温度調節部から前記ヒートシンクまでの間に設置され、少なくとも前記マイクロチップの板厚方向へ弾性変形し、前記マイクロチップに対し前記温度調節部を押し付ける弾性体と、を備えることを特徴とする。弾性体は、少なくともマイクロチップの板厚方向へ弾性変形する。これにより、温度調節部は、チップの形状および変形にかかわらず、弾性体により常にマイクロチップの一方の面側に押し付けられる。そのため、温度調節部はマイクロチップの一方の面側に密着する。温度調節部は、ペルチェ素子部によって加熱または冷却される。したがって、マイクロチップの被温度調節部の温度を高精度かつ局所的に制御することができる。
また、本発明のマイクロチップ用の温度制御装置によると、前記弾性体は、前記ペルチェ素子部と前記ヒートシンクとの間に設置されている。これにより、温度調節部はペルチェ素子部に密着する。そのため、温度調節部は、ペルチェ素子部によって迅速に加熱または冷却される。また、温度調節部は、弾性体の弾性変形によってマイクロチップの被温度調節部に密着する。したがって、マイクロチップの被温度調節部の温度を迅速、高精度かつ局所的に制御することができる。
さらに、本発明のマイクロチップ用の温度制御装置によると、前記弾性体は、前記温度調節部と前記ペルチェ素子部との間に設置されている。これにより、ペルチェ素子部はヒートシンクに密着する。そのため、温度調節部の温度を調節するとき、ペルチェ素子部とヒートシンクとの間で熱の移動が迅速に行われる。一般にヒートシンクを用いることにより、ペルチェ素子の加熱側の面と冷却側の面との間で過度に温度差が形成されることは防止され、ΔTは小さくなる。その結果、吸熱量QCを大きくすることができ、効率よく温度を調節することができる。また、温度調節部は、弾性体の弾性変形によってマイクロチップの被温度調節部に密着する。したがって、マイクロチップの被温度調節部の温度を迅速、高精度かつ局所的に制御することができる。
さらにまた、本発明のマイクロチップ用の温度制御装置によると、前記弾性体は、熱伝導性を有する柔軟な材料から形成されている。例えばペルチェ素子部とヒートシンクとの間に弾性体が設置されるとき、ペルチェ素子部からの排熱は弾性体を通して速やかにヒートシンクに伝達される。また、例えば温度調節部とペルチェ素子部との間に弾性体が設置されるとき、温度調節部は弾性体を通してペルチェ素子部により加熱または冷却される。弾性体は熱伝導性を有しているため、ペルチェ素子部とヒートシンクとの間または温度調節部とペルチェ素子部との間に弾性体が設置される場合でも、ペルチェ素子部からヒートシンクまたは温度調節部には速やかに熱が伝達される。したがって、弾性体を設置する場合でも、マイクロチップの被温度調節部の温度を迅速、高精度かつ局所的に制御することができる。また、弾性体は、柔軟な材料から形成されている。そのため、弾性体は、マイクロチップの板厚方向だけでなくマイクロチップに対し三次元の方向へ弾性変形し、温度調節部やペルチェ素子部をマイクロチップ方向へ押し付ける。これにより、温度調節部はマイクロチップに密着する。したがって、マイクロチップの被温度調節部の温度を迅速、高精度かつ局所的に制御することができる。
さらにまた、本発明のマイクロチップ用の温度制御装置によると、前記弾性体は、シリコーン樹脂またはアクリル系エラストマーから形成されている。シリコーン樹脂またはアクリル系エラストマーは柔軟性および熱伝導性を有するとともに、安価で安全性が高い。したがって、マイクロチップの被温度調節部の温度を迅速、高精度かつ局所的に制御することができるとともに、コストの上昇を招くことなく安全性を高めることができる。
以下、本発明の複数の実施例を図面に基づいて説明する。
(第1実施例)
本発明の第1実施例によるマイクロチップ用の温度制御装置を図1に示す。図1は、本発明の第1実施例による温度制御装置を適用したマイクロチップの断面を示す概略図である。
図1に示すように、第1実施例によるマイクロチップ用の温度制御装置10は上方にマイクロチップ30が搭載される。温度制御装置10は、温度調節部20、ペルチェ素子部21、ヒートシンク22、および弾性体23を備えている。
マイクロチップ30は、例えばガラス、シリコン、セラミックス、金属、プラスチック、シリコンゴムなどのゴム、あるいはこれらの複合材料によって任意の形状に形成されている。なお、マイクロチップ30は、単一の部材に限らず、例えば基板とカバーなどの二以上の部材から形成してもよい。マイクロチップ30は、例えばエッチング加工などにより、管路および槽領域が形成されている。
温度調節部20は、例えば銅、アルミニウムまたは各種の金属の合金など、熱伝導体により形成されている。温度調節部20は、金属に限らず例えば熱伝導性を有するセラミックスや樹脂などで形成してもよい。温度調節部20は、図示しない温度検出部が設置されている。温度検出部は、例えばサーミスタなどを有しており、温度調節部20の温度を検出する。温度検出部は、検出した温度調節部20の温度を信号として図示しない制御部に出力する。
ペルチェ素子部21は、温度調節部20のマイクロチップ30とは反対側の面に接している。温度調節部20とペルチェ素子部21とは例えば接着剤により接着されている。ペルチェ素子部21は、通電することにより一方の面が発熱し、他方の面が吸熱するペルチェ素子を有している。ペルチェ素子は、印加される電流の向きによって一方の端面から熱を吸収し、他方の端面に排熱する。これにより、ペルチェ素子に印加する電流の向きおよび大きさを制御することにより、温度調節部20は加熱または冷却され、温度調節部20は所定の温度に制御される。温度調節部20は、図示しない制御部によって制御される。制御部は、図示しない温度検出部で検出された温度に基づいて、ペルチェ素子部21に供給する電流の向きおよび大きさ、または電流の供給の断続を制御する。
なお、第1実施例では、温度調節部20とペルチェ素子部21とは接着剤により接着する例を説明した。接着剤は、例えばエポキシ樹脂などの熱伝導性の高い接着剤、シリコーン変性ポリマーなどの弾性接着剤、反応形アクリルなどの反応形樹脂系接着剤、痾−シアノアクリレートなどの瞬間接着剤、SBS、CR、NBRなどのゴム系溶剤形接着剤、またはEVA、オレフィン、合成ゴムなどのホットメルト系接着剤などを適用することができる。また、温度調節部20とペルチェ素子部21とは、例えば銀、銅、アルミニウムまたははんだなどの金属のろう材により接着してもよい。
ヒートシンク22は、例えば銅、アルミニウムまたは各種の金属の合金など、熱伝導体により形成されている。ヒートシンク22は、ペルチェ素子部21の温度調節部20とは反対側に設置されている。ヒートシンク22は、熱伝導率の大きな熱伝導体で形成することにより、ペルチェ素子部21からの排熱を放熱する。なお、ヒートシンク22には、例えばファンなどから送風してもよい。これにより、ヒートシンク22は放熱が促進される。
弾性体23は、ペルチェ素子部21とヒートシンク22との間に設置されている。弾性体23は、一方の面がペルチェ素子部21に接し、他方の面がヒートシンク22に接している。これにより、弾性体23は、ペルチェ素子部21とヒートシンク22との間に挟み込まれている。
弾性体23は、熱伝導性を有する柔軟な材料から形成されている。弾性体23は、シリコーン樹脂製のシート状のゲル、あるいはシリコーンゴムなどのシリコーン樹脂から形成されている。シリコーン樹脂は、熱伝導率が約1.0〜5.0(W/m・K)と大きく、熱抵抗が小さい。また、シリコーン樹脂からなるゲルやシリコーンゴムは、柔軟で弾性変形するとともに、接する他の部材の表面形状への追従性が高い。一方、シリコーン樹脂は、難燃性が高く、生体への影響もなく、かつ導電性が低い。さらに、シリコーン樹脂は安価である。そのため、シリコーン樹脂により弾性体32を形成することにより、コストの上昇を招くことなく、安全性が高められる。
また、シリコーン樹脂は接着性を有している。そのため、シリコーン樹脂製のゲルまたはゴムなどからなる弾性体23をペルチェ素子部21とヒートシンク22との間に設置したとき、ペルチェ素子部21とヒートシンク22とは弾性体23によって接着される。そのため、ペルチェ素子部21とヒートシンク22との間には、接着剤の塗布、あるいは金属のろう付が不要となる。
弾性体23は熱伝導性を有しているため、ペルチェ素子部21とヒートシンク22との間に弾性体23を設置したとき、ペルチェ素子部21の排熱は弾性体23を通してヒートシンク22に放熱される。また、弾性体23は柔軟であり弾性変形可能であるため、ペルチェ素子部21とヒートシンク22との間に設置したとき、弾性体23はペルチェ素子部21とヒートシンク22の形状にあわせて変形するともに、変形方向とは逆方向へ反発力を生じる。
弾性体23は、柔軟で弾性変形可能である。そのため、弾性体23は、一体の温度調節部20およびペルチェ素子部21を支持するともに、一体の温度調節部20およびペルチェ素子部21をマイクロチップ30方向へ押し上げている。すなわち、弾性体23は、温度調節部20にマイクロチップ30を搭載したとき、マイクロチップ30の自重によりヒートシンク22側へ圧縮される。このとき、弾性体23は、弾性変形可能であるため、圧縮とは逆方向であるマイクロチップ30方向へ一体の温度調節部20およびペルチェ素子部21を押し上げる。
弾性体23は、マイクロチップ30の板厚方向に限らず、マイクロチップ30の平面方向へ変形可能である。そのため、弾性体23は、マイクロチップ30に対し三次元の方向へ変形する。これにより、一体の温度調節部20およびペルチェ素子部21は、弾性体23によりマイクロチップ30の三次元の方向へ自由な移動が許容されつつ、マイクロチップ30側へ押し付けられる。
図2に示すように、温度制御装置10にマイクロチップ30を搭載しないとき、一体の温度調節部20およびペルチェ素子部21は、温度調節部20のマイクロチップ30搭載側の接触面201が同一平面状に位置しない。これは、温度調節部20およびペルチェ素子部21の寸法のばらつき、各温度調節部20の温度差による寸法の変化、あるいはヒートシンク22の温度調節部20側の端面の凹凸などが原因となり、温度調節部20の図2の上下方向の位置がずれたり、温度調節部20が傾斜するためである。すなわち、温度調節部20のマイクロチップ30搭載側の接触面201は、各部品の寸法および傾きの調整が困難なため、同一の平面上に配置することが困難である。
これに対し、弾性体23を設置することにより、温度制御装置10にマイクロチップ30を搭載したとき、温度調節部20の位置のずれは弾性体23が弾性変形よって吸収する。その結果、温度調節部20の接触面201は、常にマイクロチップ30の温度調節部20側の面30aに接する。これにより、各温度調節部20の接触面201が同一平面上に位置していないときだけでなく、マイクロチップ30に反りが生じたり、マイクロチップ30が変形しているときでも、温度調節部20はマイクロチップ30の一方の面30aに密着する。
次に、上記の構成による温度制御装置10を用いた温度制御の実験例について説明する。ここでは、マイクロチップ30に形成された被温度調節部である図示しない任意の槽領域における温度変化を測定した。比較例として、上述の温度制御装置10における弾性体23に代えて、ペルチェ素子部21とヒートシンク22とを接着剤で接着したものを使用した。第1実施例の温度制御装置10と比較例とでは、弾性体23を接着剤に変更した他は、同一の形状および同一の構成である。
図3に示すように、第1実施例の温度制御装置10の場合、時間の経過とともに目標温度まで温度が上昇するとともに、所定の時間が経過すると、目標温度で一定になる。これにより、一体の温度調節部20およびペルチェ素子部21を弾性体23で支持することにより、温度調節部20はマイクロチップ30の被温度調節部に密着し、温度が精密に制御されていることが分かる。
これに対し、比較例の場合、時間の経過とともに温度が上昇するものの、目標温度に到達することなく、一定の温度となる。比較例では、ペルチェ素子部21とヒートシンク22とを接着剤で接着するため、温度調節部20はマイクロチップ30にあわせて位置が変化しない。そのため、温度調節部20は、マイクロチップ30の被温度調節部に均一に密着しない。その結果、温度調節部20の温度とマイクロチップ30の被温度調節部の温度とが異なり、被温度調節部の加熱が不足する。
第1実施例では、温度制御装置10の温度調節部20は弾性体23によりマイクロチップ30に対し三次元方向に移動可能に支持されつつマイクロチップ30の面30aに押し付けられている。これにより、温度調節部20の接触面201およびマイクロチップ30の被温度調節部が均一な平面上に形成されない場合、またはマイクロチップ30に反りが生じる場合でも、温度調節部20はマイクロチップ30の形状に追従してマイクロチップ30の所定の位置に密着する。したがって、温度制御装置10はマイクロチップ30の被温度調節部の温度を個別に高精度に制御することができる。
また、第1実施例では、弾性体23はペルチェ素子部21とヒートシンク22との間に設置されている。弾性体23は、シリコーン樹脂など熱伝導性を有する材料で形成されている。そのため、ペルチェ素子部21の排熱は、弾性体23を通してヒートシンク22に放熱される。これにより、ペルチェ素子部21とヒートシンク22との間に弾性体23が設置される場合でも、ペルチェ素子部21からヒートシンク22には速やかに熱が伝達される。一方、温度調節部20は、ペルチェ素子部21と接している。そのため、温度調節部20は、ペルチェ素子部21によって迅速に加熱または冷却される。したがって、弾性体23を設置する場合でも、マイクロチップ30の被温度調節部の温度を迅速、高精度かつ局所的に制御することができる。
さらに、第1実施例では、マイクロチップ30を交換する場合でも、温度調節部20はマイクロチップ30の被温度調節部に密着する。そのため、マイクロチップ30の形状に個体差がある場合でも、温度制御装置10はマイクロチップ30の被温度調節部の温度を個別に高精度に制御することができる。
さらに、第1実施例では、弾性体23をシリコーン樹脂で形成することにより、一体の温度調節部20およびペルチェ素子部21は弾性体23の接着力によってヒートシンク22に固定される。弾性体23を形成するシリコーン樹脂の接着力は、一体の温度調節部20およびペルチェ素子部21をヒートシンク22に固定するのに十分である一方、ヒートシンク22から容易に取り外すことができる程度である。そのため、ヒートシンク22上に設置される一体の温度調節部20およびペルチェ素子部21は、弾性体23でヒートシンク22に接着することにより、容易に配置を変更することができる。その結果、マイクロチップ30における槽領域および流路の配置に応じて、温度調節部20の配置を容易に変更することができる。
(第2実施例)
本発明の第2実施例による温度制御装置を適用したマイクロチップを図4に示す。第1実施例と実質的に同一の構成部位には同一の符号を付し、説明を省略する。
図4は、本発明の第2実施例による温度制御装置を適用したマイクロチップの断面を示す概略図である。
図4に示すように、第2実施例によるマイクロチップ用の温度制御装置10は、第1実施例と同様に上方にマイクロチップ30が搭載される。また、温度制御装置10は、第1実施例と同様に温度調節部20、ペルチェ素子部21、ヒートシンク22および弾性体24を備えている。
第2実施例では、弾性体24は、温度調節部20とペルチェ素子部21との間に設置されている。弾性体24は、一方の面が温度調節部20に接し、他方の面がペルチェ素子部21に接している。これにより、弾性体24は、温度調節部20とペルチェ素子部21との間に挟み込まれる。弾性体24の材質、構成および機能などは、第1実施例と同一であるので説明を省略する。また、ペルチェ素子部21とヒートシンク22とは、例えば接着剤またはろう付などにより固定されている。
第2実施例では、温度制御装置10の温度調節部20は弾性体24によりマイクロチップ30に対し三次元方向へ移動可能に支持されつつマイクロチップ30の面30aに押し付けられている。これにより、温度調節部20の接触面201およびマイクロチップ30の被温度調節部が均一な平面上に形成されない場合、またはマイクロチップ30に反りが生じる場合でも、温度調節部20はマイクロチップ30の形状に追従してマイクロチップ30の所定の位置に密着する。したがって、温度制御装置10はマイクロチップ30の被温度調節部の温度を個別に高精度に制御することができる。
また、第2実施例では、弾性体24は温度調節部20とペルチェ素子部21との間に設置されている。弾性体24は、シリコーン樹脂など熱伝導性を有する材料で形成されている。そのため、温度調節部20は、弾性体24を通してペルチェ素子部21により加熱または冷却される。これにより、温度調節部20とペルチェ素子部21との間に弾性体24が設置される場合でも、ペルチェ素子部21から温度調節部20には速やかに熱が伝達される。一方、ペルチェ素子部21は、ヒートシンク22と接している。そのため、ペルチェ素子部21の排熱は、直接ヒートシンク22に放熱される。したがって、ペルチェ素子部21の排熱が促進されるとともに、弾性体24を設置する場合でも、マイクロチップ30の被温度調節部の温度を迅速、高精度かつ局所的に制御することができる。
次に、上述の第1実施例による温度制御装置10を用いた実験例について説明する。
(第1実験例)
第1実験例に用いるマイクロチップ50は、図5に示すように基板51を備えている。なお、基板51には、図示しないカバーを設置してもよい。基板51は、図5に示すように槽領域としての反応槽53および生成槽54と、管路55とを備えている。基板51は、例えばガラス、シリコン、セラミックス、金属、プラスチック、シリコンゴムなどのゴム、あるいはこれらの複合材料によって矩形状に形成されている。基板51には、例えばエッチング加工などにより、反応槽53、生成槽54および管路55が形成されている。
反応槽53は、平面視において略矩形の凹状に形成されている。反応槽53には、注入された試料が蓄えられる。反応槽53では、蓄えられた試料が反応可能である。生成槽54は、反応槽53と同様に平面視において略矩形の凹状に形成されている。生成槽54は、反応槽53における反応によって生成した物質が蓄えられる。管路55は、反応槽53と生成槽54とを接続している。管路55は、反応槽53における反応によって生成した物質が生成槽54へ移動する。管路55から分岐する分岐管路56の端部には、開口部57が形成されている。開口部57からは、管路55において不要となる気体が外部へ排出される。
マイクロチップ50の下部には、温度調節部20が複数設置されている。本実験例の場合、反応槽53の下部に温度調節部20aが設置され、反応槽53の近傍における管路55の下部に温度調節部20bが設置され、反応槽53と生成槽54との間における管路55の下部に温度調節部20cが設置され、生成槽54の近傍における管路55の下部に温度調節部20dが設置されている。これらマイクロチップ50において温度調節部20a、温度調節部20b、温度調節部20cおよび温度調節部20dによって温度調節される部位が被温度調節部である。温度調節部20a、20b、20c、20dは、それぞれ個別にマイクロチップ50の被温度調節部の温度を調節する。
次に、上記の構成のマイクロチップ50を適用し、溶解度の差を利用して物質を生成する例を説明する。ここでは、石英ガラスで形成されたマイクロチップ50を適用して、エステル交換反応を実施する場合について説明する。
反応槽53には、プロピオン酸メチル(CH3CH2COOCH3)およびエタノール(CH3CH2OH)を注入した。また、反応槽53には、触媒としてp−トルエンスルホン酸を加えた。そして、温度調節部20a、温度調節部20bおよび温度調節部20cに接するペルチェ素子部21に通電し、それぞれ70℃まで加熱した。一方、温度調節部20dに接するペルチェ素子部21に通電し、20℃に制御した。これにより、プロピオン酸メチルとエタノールとを反応させた。その結果、生成槽54にはメタノール(CH3OH)が生成するとともに、反応槽53にはプロピオン酸エチル(CH3CH2COOCH2CH3)が生成した。
また、このマイクロチップ50を適用し、沸点の差を利用して物質を精製する例について説明する。ここでは、例えばシリコンによって形成されたマイクロチップ50を適用して、アルコールの分離を実施する場合について説明する。
あらかじめ開口部57は図示しない栓などにより塞いだ。反応槽53には、エタノール(CH3CH2OH)およびメトキシエタノール(CH3OCH2CH2OH)の混合物を注入した。そして、温度調節部20aおよび温度調節部20bに接するペルチェ素子部21に通電し、それぞれ100℃および80℃に加熱した。一方、温度調節部20cおよび温度調節部20dに接するペルチェ素子部21に通電し、いずれも10℃に制御した。その結果、生成槽54にはエタノールが分離され、反応槽53にはメトキシエタノールが分離された。
以上のように、第1実験例では、マイクロチップ50の反応槽53、生成槽54および管路55を任意に温度制御できることが検証された。また、第1実施例では、マイクロチップ50を温度制御することにより、化学反応および物質の精製が行えることが検証された。
(第2実験例)
第2実験例では、図6に示すようにマイクロチップ60は、三つの貯留槽61、62、63と、各貯留槽61、62、63に連通する三本の管路64、65、66とを有している。第2実験例に適用されるマイクロチップ60は、パラフィンバルブ71、72、73を有している。パラフィンバルブ71、72、73は、各管路64、65、66の途中にそれぞれ設置されている。パラフィンバルブ71、72、73は、例えば融点が50℃前後のパラフィンで形成されている。そのため、パラフィンバルブ71、72、73の近傍が室温のとき、パラフィンバルブ71、72、73は固形となって管路64、65、66を閉塞している。一方、パラフィンバルブ71、72、73を融点以上に加熱すると、パラフィンバルブ71、72、73は溶解し、管路64、65、66を開放する。管路64、65、66には、それぞれ途中に拡大部67、68、69が形成されている。三つの貯留槽61、62、63には、図6(A)に示すようにそれぞれ任意の試料が蓄えられている。
パラフィンバルブ71、72、73の下方には、温度制御装置10の温度調節部20e、20f、20gがそれぞれ設置されている。温度制御装置10の温度調節部20の構成は、温度調節部20の配置以外は第1実施例と同一である。これにより、温度調節部20eは、マイクロチップ60においてパラフィンバルブ71の下方に接し、パラフィンバルブ71の温度を調節する。同様に、温度調節部20fはパラフィンバルブ72の温度を調節し、温度調節部20gはパラフィンバルブ73の温度を調節する。すなわち、パラフィンバルブ71、72、73は被温度調節部となる。
温度調節部20e、20f、20gの各ペルチェ素子部21への通電を停止しているとき、パラフィンバルブ71、パラフィンバルブ72およびパラフィンバルブ73は室温に近似する温度となっている。そのため、図6(A)に示すように、パラフィンバルブ71は管路64を閉塞し、パラフィンバルブ72は管路65を閉塞し、パラフィンバルブ73は管路66を閉塞している。
ここで貯留槽62に連通する管路65を開放するとき、パラフィンバルブ72の温度を調節する温度調節部20fのペルチェ素子部21に通電し、パラフィンバルブ72を加熱した。一方、パラフィンバルブ71の温度を調節する温度調節部20eのペルチェ素子部21、およびパラフィンバルブ73の温度を調節する温度調節部20gのペルチェ素子部21にも逆方向に通電し、パラフィンバルブ71およびパラフィンバルブ73を冷却した。マイクロチップ60のように、微小なチップの場合、管路64と管路65および管路65と管路66との距離は数mm程度である。そのため、管路65のパラフィンバルブ72を加熱したとき、熱伝導により隣接するパラフィンバルブ71およびパラフィンバルブ73も加熱され、パラフィンバルブ71およびパラフィンバルブ73は溶融するおそれがある。そこで、第2実験例では、温度調節部20fによりパラフィンバルブ72が加熱されるとき、隣接するパラフィンバルブ71およびパラフィンバルブ73は温度調節部20eまたは温度調節部20gにより融点以下に冷却した。
パラフィンバルブ72を融点以上に加熱すると、パラフィンバルブ72は溶融し、図6(B)に示すように管路65は開放した。管路65において溶融したパラフィンは、拡大部68で捕集した。一方、管路64のパラフィンバルブ71および管路66のパラフィンバルブ73は冷却されるため、融点以上の温度に達しない。そのため、管路64および管路66は閉塞状態を維持した。したがって、管路65のみが開放され、貯留槽62に蓄えられた試料は管路65を通して図示しない所定の部位へ供給された。
以上のように、第2実施例では、各管路64、65、66の各パラフィンバルブ71、72、73にそれぞれ温度制御装置10の温度調節部20e、20f、20gが接している。そのため、各パラフィンバルブ71、72、73は個別に高精度に温度制御された。したがって、マイクロチップ60のように各管路64、65、66の間隔が小さなときでも、各パラフィンバルブ71、72、73の開閉を精密に制御することができた。
(第3実験例)
第3実験例では、図7に示すようにマイクロチップ80は、二つの貯留槽81、82と、これらの貯留槽81、82を連通する一本の管路83とを有している。第3実験例に適用されるマイクロチップ80は、遺伝子の複製、いわゆるPCRサイクルに適用される。貯留槽81には、複製前の遺伝子を含む試料が蓄えられる。貯留槽82には、複製後の遺伝子を含む試料が蓄えられる。
マイクロチップ80は、貯留槽81と貯留槽82との間に温度調節領域91、温度調節領域92および温度調節領域93を有している。温度調節領域91、92、93には、それぞれ温度制御装置10の温度調節部20h、20i、20jが接している。温度調節領域91における管路83は、温度調節部20hにより94℃で一定に制御される。同様に、温度調節領域92における管路83は温度調節部20iにより73℃で一定に制御され、温度調節領域93における管路83は温度調節部20jにより53℃で一定に制御される。
貯留槽81および貯留槽82には、それぞれ温度制御装置10の温度調節部20k、20lが接している。貯留槽81は、温度調節部20kによりあらかじめ設定された所定の温度(本実施例では25℃)に制御される。同様に、貯留槽82は、温度調節部20lにより4℃で一定に制御される。
被温度調節部である管路83は、マイクロチップ80の温度調節領域91と温度調節領域93との間を繰り返し往復しながら、貯留槽81と貯留槽82とを連通している。これにより、貯留槽81から貯留槽82へ管路83を流れる試料は、温度調節領域91、92、93において、25℃−94℃−53℃−73℃−94℃−53℃−73℃−94℃−53℃−73℃−4℃のPCRサイクルが実行される。これにより、貯留槽81に蓄えられる試料に含まれる遺伝子は、管路83を経由して貯留槽81から貯留槽82へ流れる間にPCRサイクルによって複製される。
実験例3において管路83を流れる試料の温度を測定したところ、図8に示すような温度変化が得られた。これにより、試料は、管路83を流れる間に所定の温度変化を繰り返すことが明らかになった。したがって、実験例3では、温度制御装置10を用いたマイクロチップ80によってPCRサイクルを実行できることが検証された。
本発明の第1実施例による温度制御装置を適用したマイクロチップの断面を示す概略図である。 本発明の第1実施例による温度制御装置の側面視を示す概略図である。 マイクロチップの槽領域における経時的な時間変化を示す概略図である。 本発明の第2実施例による温度制御装置を適用したマイクロチップの断面を示す概略図である。 本発明の温度制御装置を適用した第1実験例に用いたマイクロチップの平面視を示す概略図である。 本発明の温度制御装置を適用した第2実験例に用いたマイクロチップの平面視を示す概略図である。 本発明の温度制御装置を適用した第3実験例に用いたマイクロチップの平面視を示す概略図である。 本発明の温度制御装置を適用した第3実験例において、流路を流れる試料の温度変化を示す概略図である。
符号の説明
10 温度制御装置、20、20a〜20l 温度調節部、21 ペルチェ素子部、22 ヒートシンク、23、24 弾性体、30、50、60、80 マイクロチップ、30a 面、53 反応槽(被温度調節部)、54 生成槽(被温度調節部)、55、81、82 貯留槽(被温度調節部)、83 管路(被温度調節部)、71、72、73 パラフィンバルブ(被温度調節部)

Claims (5)

  1. 複数の被温度調節部を有する薄板状のマイクロチップを一方の面側から加熱または冷却し、前記被温度調節部の温度を制御するマイクロチップ用の温度制御装置であって、
    熱伝導体から形成され、前記マイクロチップの前記一方の面側から前記被温度調節部にそれぞれ接する温度調節部と、
    前記温度調節部の前記マイクロチップとは反対側に設置され、通電することにより前記温度調節部を加熱または冷却するペルチェ素子部と、
    前記ペルチェ素子部の前記温度調節部とは反対側に設置され、前記ペルチェ素子部の加熱または冷却を補助するヒートシンクと、
    前記温度調節部から前記ヒートシンクまでの間に設置され、少なくとも前記マイクロチップの板厚方向へ弾性変形し、前記マイクロチップに対し前記温度調節部を押し付ける弾性体と、
    を備えることを特徴とするマイクロチップ用の温度制御装置。
  2. 前記弾性体は、前記ペルチェ素子部と前記ヒートシンクとの間に設置されていることを特徴とする請求項1記載のマイクロチップ用の温度制御装置。
  3. 前記弾性体は、前記温度調節部と前記ペルチェ素子部との間に設置されていることを特徴とする請求項1記載のマイクロチップ用の温度制御装置。
  4. 前記弾性体は、熱伝導性を有する柔軟な材料から形成されていることを特徴とする請求項1、2または3記載のマイクロチップ用の温度制御装置。
  5. 前記弾性体は、シリコーン樹脂から形成されていることを特徴とする請求項4記載のマイクロチップ用の温度制御装置。
JP2005044130A 2005-02-21 2005-02-21 マイクロチップ用の温度制御装置 Pending JP2006224060A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044130A JP2006224060A (ja) 2005-02-21 2005-02-21 マイクロチップ用の温度制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044130A JP2006224060A (ja) 2005-02-21 2005-02-21 マイクロチップ用の温度制御装置

Publications (1)

Publication Number Publication Date
JP2006224060A true JP2006224060A (ja) 2006-08-31

Family

ID=36985876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044130A Pending JP2006224060A (ja) 2005-02-21 2005-02-21 マイクロチップ用の温度制御装置

Country Status (1)

Country Link
JP (1) JP2006224060A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203823A (ja) * 2009-03-02 2010-09-16 Shimadzu Corp 温度制御装置
JP2014504853A (ja) * 2010-12-03 2014-02-27 バイオファイアー ダイアグノスティックス,インコーポレイテッド 熱循環装置および関連方法
JP2017063779A (ja) * 2015-05-12 2017-04-06 積水化学工業株式会社 Pcr用温度調節装置及び核酸増幅装置
CN109187616A (zh) * 2018-06-27 2019-01-11 苏州华兴源创科技股份有限公司 基于tec的液晶屏的温度冲击装置和液晶屏测试方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203823A (ja) * 2009-03-02 2010-09-16 Shimadzu Corp 温度制御装置
JP2014504853A (ja) * 2010-12-03 2014-02-27 バイオファイアー ダイアグノスティックス,インコーポレイテッド 熱循環装置および関連方法
US9446410B2 (en) 2010-12-03 2016-09-20 Biofire Defense, Llc Thermal cycler apparatus with elastomeric adhesive
JP2016215190A (ja) * 2010-12-03 2016-12-22 バイオファイアー・ディフェンス・エルエルシー 熱循環装置および関連方法
EP2646542A4 (en) * 2010-12-03 2017-11-08 BioFire Diagnostics, Inc. Thermal cycler apparatus and related methods
US11376599B2 (en) 2010-12-03 2022-07-05 Biofire Defense, Llc Thermal cycler apparatus and related methods
JP2017063779A (ja) * 2015-05-12 2017-04-06 積水化学工業株式会社 Pcr用温度調節装置及び核酸増幅装置
JP2017063778A (ja) * 2015-05-12 2017-04-06 積水化学工業株式会社 温度制御装置、核酸増幅装置及び温度制御方法
CN109187616A (zh) * 2018-06-27 2019-01-11 苏州华兴源创科技股份有限公司 基于tec的液晶屏的温度冲击装置和液晶屏测试方法

Similar Documents

Publication Publication Date Title
JP2005040784A (ja) マイクロ化学チップ温度調節装置
JP4626891B2 (ja) 温度制御装置
US9683792B2 (en) Floating thermal contact enabled PCR
US8663976B2 (en) Polymerase chain reaction apparatus
JP2006224060A (ja) マイクロチップ用の温度制御装置
US10139134B2 (en) Sample heating method and heating control device
TW200700583A (en) Apparatus for spatial and temporal control of temperature on a substrate
JP2006234467A (ja) マイクロチップ用の温度制御装置
WO2009030908A3 (en) Thermal control apparatus for chemical and biochemical reactions
CN101689481B (zh) 基板温度控制装置用工作台
KR100900956B1 (ko) 일회용 폴리머 칩을 이용한 자연대류 pcr 장치 및 그방법
JPWO2007049530A1 (ja) 型保持具、加工対象物保持具、微細加工装置および型取付方法
JP2017029136A (ja) マイクロ流路チップ、pcr方法、及び加熱冷却制御装置
JP2007078393A (ja) マイクロチップ
JP4206390B2 (ja) 遺伝子検査用温度調節装置
JP4506472B2 (ja) 分析チップ用の温度制御装置
US20110220332A1 (en) Micro channel device temperature control
JP4482684B2 (ja) マイクロ流体デバイス反応用温度調節器
JP2006275723A (ja) マイクロチップ用温度制御装置の製造方法
US7691334B2 (en) Temperature control apparatus for microchemical chip
US10663989B2 (en) Micro channel device temperature control
JP4851822B2 (ja) マイクロ化学チップ
JP2008145113A (ja) 試料温度調節機構
CN113169095A (zh) 用于在基板上烧结电子器件的烧结压机
JP2007114189A (ja) マイクロ化学チップ用温度制御装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060705