JP2006216354A - Nonaqueous electrolyte solution primary cell - Google Patents

Nonaqueous electrolyte solution primary cell Download PDF

Info

Publication number
JP2006216354A
JP2006216354A JP2005027500A JP2005027500A JP2006216354A JP 2006216354 A JP2006216354 A JP 2006216354A JP 2005027500 A JP2005027500 A JP 2005027500A JP 2005027500 A JP2005027500 A JP 2005027500A JP 2006216354 A JP2006216354 A JP 2006216354A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
active material
mixture layer
layer containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005027500A
Other languages
Japanese (ja)
Other versions
JP4993860B2 (en
Inventor
Atsushi Yamano
淳 山野
Mitsutoshi Watanabe
光俊 渡辺
Reiko Masukichi
令子 益吉
Kazuo Ishida
和雄 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005027500A priority Critical patent/JP4993860B2/en
Publication of JP2006216354A publication Critical patent/JP2006216354A/en
Application granted granted Critical
Publication of JP4993860B2 publication Critical patent/JP4993860B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte solution primary cell excellent in long-term reliability capable of constant ratio discharge at a comparatively low load for a long period of time, with excellent heavy-load pulse discharge characteristics maintained. <P>SOLUTION: For the nonaqueous electrolyte solution primary cell equipped with a cathode made by laminating two cathode mixture layers containing active matters and conductive additives through a collector, the two cathode mixture layers contain the active matters with different potentials. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解液一次電池に関するものである。   The present invention relates to a non-aqueous electrolyte primary battery.

現行の非水電解液一次電池では、例えば、比較的軽負荷で、長期間継続して使用されるような機器の駆動電源としての用途に対応した高容量タイプのもの(特許文献1など)がある一方、パルス放電などが要求される機器用のように瞬間的に重負荷がかかるような用途に対応したタイプのもの(特許文献2など)もある。ところが、カメラの電源用電池のように、重負荷のパルス放電(フラッシュ用)と、比較的軽負荷での長期間にわたる定率放電(フラッシュ以外の駆動用)の両者が要求される場合もある。   As the current non-aqueous electrolyte primary battery, for example, a high-capacity type battery (for example, Patent Document 1) corresponding to a use as a drive power source of a device that is used for a long time with a relatively light load. On the other hand, there is a type (for example, Patent Document 2) corresponding to an application in which a heavy load is instantaneously applied, such as for a device requiring pulse discharge. However, there are cases where both heavy load pulse discharge (for flash) and constant rate discharge (for driving other than flash) at a relatively light load for a long period of time are required, like a battery for a power supply of a camera.

特開2000−315497号公報JP 2000-315497 A 特開昭59−78460号公報JP 59-78460 A

非水電解液一次電池の重負荷パルス放電特性を向上させる方法としては、例えば、(1)電極の面積を大きくする、(2)セパレータを改良する、ことが挙げられる。ところが、従来の軽負荷用途に適した高容量タイプの非水電解液一次電池において、上記(1)や(2)の方法で重負荷パルス放電特性を向上させて、上述のカメラ用駆動電源などに適した電池としようとしても、以下のような問題がある。   Examples of the method for improving the heavy load pulse discharge characteristics of the nonaqueous electrolyte primary battery include (1) increasing the area of the electrode and (2) improving the separator. However, in the conventional high-capacity non-aqueous electrolyte primary battery suitable for light load applications, the heavy load pulse discharge characteristics are improved by the above methods (1) and (2), and the above-described camera driving power source and the like. Even when trying to make a battery suitable for the above, there are the following problems.

すなわち、(1)の方法では、例えば、電極を巻回電極体としたりするなどして対応しているが、このように巻回電極体とする場合でも、電池内容積には限りがあることから、電極を重負荷パルス放電特性に好適な構成としつつ、軽負荷での長期間定率放電に対応できる容量を確保するのには限界がある。また、(2)の方法でも、セパレータの改良の結果、これらの厚みの減少する必要が生じる場合が多い。そのため、生産時および長期間保存時に短絡が生じる危険性が高まり、長期信頼性が損なわれる問題がある。このように、従来の手法では、良好な重負荷パルス放電特性を有しながら、比較的軽負荷での定率放電が長期にわたって可能な電池を提供することは困難である。   That is, in the method (1), for example, the electrode is formed as a wound electrode body. However, even when the electrode is formed as described above, the volume of the battery is limited. Therefore, there is a limit to securing a capacity suitable for long-term constant rate discharge with a light load while making the electrode suitable for heavy load pulse discharge characteristics. Also, in the method (2), it is often necessary to reduce the thickness as a result of improvement of the separator. For this reason, there is a problem that the risk of short-circuiting during production and long-term storage increases, and long-term reliability is impaired. Thus, with the conventional method, it is difficult to provide a battery that has a good heavy-load pulse discharge characteristic and can perform a constant rate discharge at a relatively light load over a long period of time.

本発明は、上記事情に鑑みてなされたものであり、その目的は、優れた重負荷パルス放電特性を有しつつ、比較的軽負荷での定率放電が長期にわたって可能で、長期信頼性に優れた非水電解液一次電池を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to have excellent heavy-load pulse discharge characteristics, and capable of constant rate discharge at a relatively light load over a long period of time, and excellent long-term reliability. Another object is to provide a non-aqueous electrolyte primary battery.

上記目的を達成し得た本発明の非水電解液一次電池は、活物質および導電助剤を含有する2つの正極合剤層が、集電体を介して積層されてなる正極を有するものであって、上記2つの正極合剤層は、含有する活物質の電位が異なっていることを特徴とするものである。   The non-aqueous electrolyte primary battery of the present invention that has achieved the above object has a positive electrode in which two positive electrode mixture layers containing an active material and a conductive additive are laminated via a current collector. In addition, the two positive electrode mixture layers are characterized in that the potentials of the active materials contained are different.

本発明によれば、重負荷パルス放電特性と、比較的軽負荷での定率放電の長期にわたる継続性の両者に優れた非水電解液一次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte primary battery excellent in both heavy load pulse discharge characteristics and long-term continuity of constant rate discharge at a relatively light load.

以下、本発明の非水電解液一次電池の構成を詳細に説明する。   Hereinafter, the configuration of the nonaqueous electrolyte primary battery of the present invention will be described in detail.

本発明の電池に係る正極は、活物質および導電助剤を含有し、これらがバインダで結着されてなる2つの正極合剤層が、集電体の両面に形成されてなるものである。これら2つの正極合剤層は、互いに異なる電位の活物質を含有しており、そのうち、より高電位の活物質を含有する層(すなわち、高電位の活物質を含有する正極合剤層)が、比較的軽負荷での定率放電の際により優位に作用する。また、重負荷パルス放電の際には、より高電位の活物質を含有する層と共に、より低電位の活物質を含有する層(すなわち、低電位の活物質を含有する正極合剤層)も作用する。そして、これら2つの正極合剤層は、間に介在する集電体によって並列接続されており、要求される放電に応じて、各正極合剤層が好適に作用できるように構成されている。   The positive electrode according to the battery of the present invention includes an active material and a conductive auxiliary agent, and two positive electrode mixture layers formed by binding them with a binder are formed on both surfaces of a current collector. These two positive electrode mixture layers contain active materials having different potentials, and a layer containing a higher potential active material (that is, a positive electrode mixture layer containing a high potential active material) is included. It works more preferentially during constant rate discharge at relatively light loads. In addition, during heavy load pulse discharge, a layer containing a higher potential active material and a layer containing a lower potential active material (that is, a positive electrode mixture layer containing a lower potential active material) Works. These two positive electrode mixture layers are connected in parallel by a current collector interposed therebetween, and are configured such that each positive electrode mixture layer can suitably act according to a required discharge.

本発明に係る正極に使用できる正極活物質としては、例えば、二酸化マンガン(MnO)、マンガン酸リチウム、フッ化カーボン、チタン酸リチウム、二硫化鉄、酸化銅などが挙げられる。そして、低電位の活物質を含有する正極合剤層における活物質と、高電位の活物質を含有する正極合剤層における活物質の組み合わせとしては、例えば、マンガン酸リチウム/二酸化マンガン、チタン酸リチウム/二酸化マンガン、チタン酸リチウム/マンガン酸リチウム、チタン酸リチウム/二硫化鉄、チタン酸リチウム/酸化銅(以上、低電位の活物質を含有する正極合剤層に係る活物質/高電位の活物質を含有する正極合剤層に係る活物質、を意味する)が挙げられる。これらの電位差は金属Li基準の電位により比較できる。例えばマンガン酸リチウム(LiMn)は3.5Vで、二酸化マンガン(MnO)は3.6Vであり、また、それぞれの理論電気容量は、マンガン酸リチウムが202mAh/gで、二酸化マンガンが308mAh/gである。 Examples of the positive electrode active material that can be used for the positive electrode according to the present invention include manganese dioxide (MnO 2 ), lithium manganate, carbon fluoride, lithium titanate, iron disulfide, and copper oxide. Examples of the combination of the active material in the positive electrode mixture layer containing the low potential active material and the active material in the positive electrode mixture layer containing the high potential active material include, for example, lithium manganate / manganese dioxide, titanic acid Lithium / manganese dioxide, lithium titanate / lithium manganate, lithium titanate / iron disulfide, lithium titanate / copper oxide (the active material / high potential of the positive electrode mixture layer containing the low potential active material) Means an active material related to a positive electrode mixture layer containing an active material). These potential differences can be compared with the potential based on the metal Li. For example, lithium manganate (LiMn 3 O 6 ) is 3.5 V, manganese dioxide (MnO 2 ) is 3.6 V, and the theoretical electric capacity of each is lithium manganate is 202 mAh / g, and manganese dioxide is 308 mAh / g.

このように、集電体を介して形成されている各正極合剤層の含有する活物質に、電位の異なるものを用いることにより、例えば、比較的軽負荷での放電が要求される際には、高電位の活物質を含有し、より高電位となっている正極合剤層が優位に作用して効率的な放電が達成される。重負荷での放電が要求される際にも、放電当初は、より高電位の正極合剤層(すなわち、高電位の活物質を含有している正極合剤層)が優位に作用して放電がされるが、放電に伴い該合剤層の放電容量をほとんど消費できずに大幅な電位の低下が生じ、より低電位の正極合剤層(すなわち、低電位の活物質を含有している正極合剤層)の電位まで達すると、より低電位の正極合剤層が、より高電位の正極合剤層と共に作用する。そのため、重負荷放電においても、大きな電気量の放電か可能となる。   As described above, by using materials having different potentials as the active materials contained in each positive electrode mixture layer formed through the current collector, for example, when discharge at a relatively light load is required. Contains a high-potential active material, and the positive electrode mixture layer having a higher potential acts preferentially to achieve efficient discharge. Even when discharge under heavy load is required, at the beginning of discharge, a positive electrode mixture layer having a higher potential (that is, a positive electrode mixture layer containing a high-potential active material) acts preferentially and discharges. However, with the discharge, the discharge capacity of the mixture layer can hardly be consumed and a significant potential drop occurs, and a positive electrode mixture layer having a lower potential (that is, containing a low potential active material). When the potential of the positive electrode mixture layer) is reached, the lower potential positive electrode mixture layer acts together with the higher potential positive electrode mixture layer. Therefore, even in heavy load discharge, a large amount of electricity can be discharged.

また、低電位の活物質を含有する正極合剤層に係る活物質を、二次電池の正極材料として使用可能である活物質であり、例えば、Liイオンを用いた電池においては、Liイオンの吸蔵・放出が可能なサイトを有するものとすることも好ましい。低電位の活物質としてこのような活物質を用いた場合には、例えば、低電位の活物質を含有する正極合剤層が優位に作用する放電(重負荷パルス放電)により、該層において容量の消費が進んだとしても、該層に取り込まれたLiイオンが、集電体を介して存在している高電位の活物質を含有する正極合剤層側に移動することで、低電位の活物質を含有する正極合剤層が充電される。よって、低電位の活物質を含有する正極合剤層の理論的な電気容量以上に、重負荷パルス放電が可能となる。   An active material related to a positive electrode mixture layer containing a low potential active material is an active material that can be used as a positive electrode material of a secondary battery. For example, in a battery using Li ions, It is also preferable to have a site that can be occluded / released. When such an active material is used as the low-potential active material, for example, the capacity of the positive electrode mixture layer containing the low-potential active material is increased in the layer due to the discharge (heavy load pulse discharge) that acts preferentially. Even if the consumption of the lithium ion proceeds, the Li ions taken into the layer move to the positive electrode mixture layer side containing the high-potential active material that exists via the current collector, so that the low-potential layer has a low potential. The positive electrode mixture layer containing the active material is charged. Therefore, a heavy load pulse discharge can be performed more than the theoretical electric capacity of the positive electrode mixture layer containing the active material having a low potential.

低電位の活物質を含有する正極合剤層において、上記の充電効果を確保するための活物質としては、例えば、従来公知の非水二次電池において正極活物質として用いられている各種化合物が使用できる。具体的には、マンガン酸リチウム、チタン酸リチウムなどのリチウム複合酸化物が挙げられる。そして、低電位の活物質を含有する正極合剤層に上記活物質を使用する場合における、低電位の活物質を含有する正極合剤層の活物質と、高電位の活物質を含有する正極合剤層の活物質との組み合わせとしては、マンガン酸リチウム/二酸化マンガン、チタン酸リチウム/二酸化マンガン、チタン酸リチウム/マンガン酸リチウム(以上、低電位の活物質を含有する正極合剤層に係る活物質/高電位の活物質を含有する正極合剤層に係る活物質、を意味する)などが挙げられる。   In the positive electrode mixture layer containing a low-potential active material, examples of the active material for ensuring the charging effect include various compounds used as the positive electrode active material in conventionally known non-aqueous secondary batteries. Can be used. Specific examples include lithium composite oxides such as lithium manganate and lithium titanate. And when using the said active material for the positive mix layer containing a low potential active material, the active material of the positive mix layer containing a low potential active material, and the positive electrode containing a high potential active material As a combination with the active material of the mixture layer, lithium manganate / manganese dioxide, lithium titanate / manganese dioxide, lithium titanate / lithium manganate (above, the positive electrode mixture layer containing a low potential active material) Active material / active material relating to positive electrode mixture layer containing high-potential active material).

正極合剤層における導電助剤としては、例えば、鱗片状黒鉛、アセチレンブラック、ケッチェンブラック、カーボンブラックなどが挙げられ、これらを1種単独で、または2種以上を同時に使用することができる。上記2つの正極合剤層は、いずれも同じ種類の導電助剤を含有していてもよく、互いに異なる種類の導電助剤を含有していても構わない。   Examples of the conductive auxiliary in the positive electrode mixture layer include flaky graphite, acetylene black, ketjen black, carbon black, and the like, and these can be used alone or in combination of two or more. Each of the two positive electrode mixture layers may contain the same type of conductive assistant, or may contain different types of conductive assistants.

正極合剤層におけるバインダとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、六フッ化プロピレンの重合体などのフッ素樹脂などが挙げられる。   Examples of the binder in the positive electrode mixture layer include fluororesins such as polyvinylidene fluoride, polytetrafluoroethylene, and a polymer of propylene hexafluoride.

各正極合剤層における活物質含有率は、各正極合剤層の全構成成分量を100質量%としたとき、例えば、73質量%以上、より好ましくは80質量%以上であって、91質量%以下、より好ましくは87質量%以下とすることが望ましい。各正極合剤層における活物質含有率が小さすぎると、電池容量の低下を引き起こしてしまうことがあり、多すぎると、他の構成成分量が低下するため、それに伴う不都合が生じることがある。   The active material content in each positive electrode mixture layer is, for example, 73% by mass or more, more preferably 80% by mass or more, and 91% by mass when the total component amount of each positive electrode mixture layer is 100% by mass. % Or less, more preferably 87% by mass or less. If the content of the active material in each positive electrode mixture layer is too small, the battery capacity may be reduced. If the content is too large, the amount of other components may be reduced, which may cause inconvenience.

また、各正極合剤層における導電助剤含有率は、例えば、これらの層の全構成成分量を100質量%としたとき、2質量%以上、より好ましくは3質量%以上であって、25質量%以下、より好ましくは20質量%以下とすることが好ましい。各正極合剤層における導電助剤含有率が小さすぎると、正極合剤層の導電性が不十分となることがあり、多すぎると、他の構成成分量が低下するため、それに伴う不都合が生じることがある。   In addition, the content of the conductive additive in each positive electrode mixture layer is, for example, 2% by mass or more, more preferably 3% by mass or more, assuming that the total component amount of these layers is 100% by mass, and 25 It is preferable to set it as mass% or less, More preferably, it is 20 mass% or less. If the content of the conductive auxiliary agent in each positive electrode mixture layer is too small, the conductivity of the positive electrode mixture layer may be insufficient. May occur.

また、両正極合剤層は、導電助剤含有率が同じであってもよく、本発明の効果の損なわない範囲で異なっていても構わないが、低電位の活物質を含有する正極合剤層における導電助剤含有率が、高電位の活物質を含有する正極合剤層における導電助剤含有率よりも高いことが好ましい。重負荷パルス放電特性を高める観点からは、正極合剤層の導電性を向上させることが好ましい一方、軽負荷での放電特性を確保するには、重負荷パルス放電特性を確保するのに好適なほどの導電性は要求されず、寧ろ、放電容量確保の観点から、導電助剤量を減らして活物質量を増加させることが好ましい。よって、低電位の活物質を含有する正極合剤層における導電助剤含有率を、高電位の活物質を含有する正極合剤層における導電助剤含有率よりも高くすることで、低電位の活物質を含有する正極合剤層では、導電性を高めて、重負荷パルス放電により良好な構成とする一方、高電位の活物質を含有する正極合剤層では電気容量を高めて、軽負荷での放電の継続性を確保するのにより良好な構成とすることができる。この場合、低電位の活物質を含有する正極合剤層における導電助剤含有率は、該層の全構成成分量を100質量%としたとき、例えば、7質量%以上、より好ましくは10質量%以上であって、25質量%以下、より好ましくは20質量%以下とすることが、また、高電位の活物質を含有する正極合剤層における導電助剤含有率は、該層の全構成成分量を100質量%としたとき、例えば、2質量%以上、より好ましくは3質量%以上であって、7質量%以下、より好ましくは5質量%以下とすることが望ましく、このような導電助剤含有率を満足しつつ、低電位の活物質を含有する正極合剤層の方が、高電位の活物質を含有する正極合剤層よりも、導電助剤含有率が高くなるようにすればよい。また、低電位の活物質を含有する正極合剤層と、高電位の活物質を含有する正極合剤層の導電助剤含有率の差は、例えば、高電位の活物質を含有する正極合剤層における導電助剤含有率(質量基準)に対して、低電位の活物質を含有する正極合剤層における導電助剤含有率(質量基準)が、2〜10倍程度であることが好ましい。   Further, the positive electrode mixture layers may have the same conductive auxiliary agent content and may be different within a range not impairing the effects of the present invention, but the positive electrode mixture containing a low potential active material. It is preferable that the conductive auxiliary agent content rate in a layer is higher than the conductive auxiliary agent content rate in the positive mix layer containing an active material of high potential. From the viewpoint of enhancing the heavy load pulse discharge characteristics, it is preferable to improve the conductivity of the positive electrode mixture layer. On the other hand, in order to ensure the light load discharge characteristics, it is preferable to ensure the heavy load pulse discharge characteristics. However, it is preferable to decrease the amount of the conductive auxiliary agent and increase the amount of the active material from the viewpoint of securing the discharge capacity. Therefore, by making the conductive additive content in the positive electrode mixture layer containing the low potential active material higher than the conductive auxiliary agent content in the positive electrode mixture layer containing the high potential active material, In the positive electrode mixture layer containing the active material, the conductivity is increased and a good structure is obtained by heavy load pulse discharge, while in the positive electrode mixture layer containing the high potential active material, the electric capacity is increased and the light load is increased. In order to secure the continuity of discharge in the case, a better configuration can be obtained. In this case, the content of the conductive additive in the positive electrode mixture layer containing the low-potential active material is, for example, 7% by mass or more, more preferably 10% by mass, when the total component amount of the layer is 100% by mass. % Or more and 25% by mass or less, more preferably 20% by mass or less, and the content of the conductive assistant in the positive electrode mixture layer containing the high-potential active material is the total composition of the layer. When the amount of the component is 100% by mass, for example, it is desirably 2% by mass or more, more preferably 3% by mass or more and 7% by mass or less, more preferably 5% by mass or less. While satisfying the auxiliary agent content, the positive electrode mixture layer containing a low potential active material has a higher conductive auxiliary agent content than the positive electrode mixture layer containing a high potential active material. do it. In addition, the difference in the content of the conductive additive between the positive electrode mixture layer containing the low potential active material and the positive electrode mixture layer containing the high potential active material is, for example, the positive electrode mixture containing the high potential active material. The conductive auxiliary agent content (mass basis) in the positive electrode mixture layer containing the low potential active material is preferably about 2 to 10 times the conductive auxiliary agent content (mass basis) in the agent layer. .

各正極合剤層におけるバインダ含有率は、各正極合剤層の全構成成分量を100質量%としたとき、例えば、2質量%以上、より好ましくは3質量%以上であって、8質量%以下、より好ましくは5質量%以下とすることが望ましい。各正極合剤層におけるバインダ含有率が小さすぎると、活物質や導電助剤などの結着が不十分となることがあり、多すぎると、他の構成成分量が低下するため、それに伴う不都合が生じることがある。   The binder content in each positive electrode mixture layer is, for example, 2% by mass or more, more preferably 3% by mass or more, and 8% by mass, when the total constituent amount of each positive electrode mixture layer is 100% by mass. Hereinafter, it is more preferable that the content be 5% by mass or less. If the binder content in each positive electrode mixture layer is too small, the binding of the active material or the conductive auxiliary agent may be insufficient, and if it is too large, the amount of other components will decrease, resulting in inconvenience. May occur.

高電位の活物質を有する正極合剤層は、比較的軽負荷での放電が長期間にわたって可能であることが要求されるため、それに見合った電気容量を備えていることが好ましく、他方、低電位の活物質を含有する正極合剤層においても、1回の重負荷パルス放電では、さほどの容量が要求されなくても、ある程度の回数の放電が可能なように、それに見合った電気容量を備えていることが望ましい。このように、重負荷パルス放電用の容量と、軽負荷での長期間放電用の容量をバランスよく確保するには、例えば、低電位の活物質を含有する正極合剤層の電気容量に対して、高電位の活物質を含有する正極合剤層の電気容量が、1.0倍以上、より好ましくは2倍以上であって、10倍以下、より好ましくは8倍以下であることが推奨される。なお、本発明でいう電気容量は、理論容量を意味している。   The positive electrode mixture layer having a high-potential active material is required to have a relatively light load for a long period of time. Therefore, it is preferable that the positive electrode mixture layer has a suitable electric capacity. Even in a positive electrode mixture layer containing an active material having a potential, an electric capacity corresponding to a certain number of times of discharge is possible even if a large amount of discharge is not required in one heavy-load pulse discharge. It is desirable to have it. Thus, in order to ensure a good balance between the capacity for heavy load pulse discharge and the capacity for long-term discharge at a light load, for example, with respect to the electric capacity of the positive electrode mixture layer containing a low-potential active material. It is recommended that the electric capacity of the positive electrode mixture layer containing the active material having a high potential is 1.0 times or more, more preferably 2 times or more, and 10 times or less, more preferably 8 times or less. Is done. The electric capacity referred to in the present invention means a theoretical capacity.

低電位の活物質を含有する正極合剤層の厚みは、例えば、0.1mm以上、より好ましくは0.2mm以上であって、1.0mm以下、より好ましくは0.7mm以下であることが望ましい。また、高電位の活物質を含有する正極合剤層の厚みは、例えば、0.2mm以上、より好ましくは0.3mm以上であって、2.0mm以下、より好ましくは1.5mm以下であることが望ましい。これらの2つの正極合剤層の厚みは、上記の電気容量比を満足させつつ、上記の好適厚みから選択することが推奨される。   The thickness of the positive electrode mixture layer containing the low-potential active material is, for example, 0.1 mm or more, more preferably 0.2 mm or more, and 1.0 mm or less, more preferably 0.7 mm or less. desirable. The thickness of the positive electrode mixture layer containing the active material having a high potential is, for example, 0.2 mm or more, more preferably 0.3 mm or more, and 2.0 mm or less, more preferably 1.5 mm or less. It is desirable. It is recommended that the thicknesses of these two positive electrode mixture layers be selected from the above preferred thicknesses while satisfying the above electric capacity ratio.

正極に用いる集電体としては、例えば、SUS316、SUS430、SUS444などのステンレス鋼を素材とするものが挙げられ、その形態としては、平織り金網、エキスパンドメタル、ラス網、パンチングメタル、金属発泡体、箔(板)などが例示できる。集電体の厚みとしては、例えば、0.05mm〜0.2mmであることが好ましい。このような集電体の表面には、カーボンペーストや銀ペーストなどのペースト状導電材を塗布しておくことも望ましい。   Examples of the current collector used for the positive electrode include those made of stainless steel such as SUS316, SUS430, and SUS444. Examples of the current collector include plain weave metal mesh, expanded metal, lath net, punching metal, metal foam, A foil (plate) etc. can be illustrated. The thickness of the current collector is preferably, for example, 0.05 mm to 0.2 mm. It is also desirable to apply a paste-like conductive material such as carbon paste or silver paste to the surface of such a current collector.

正極は、正極活物質に、導電助剤やバインダを配合し、必要に応じて水などを添加してなる正極合剤(スラリー)を、ロールなどを用いて圧延するなどして予備シート化し、これを乾燥・粉砕したものを再度ロール圧延などしてシート形状に成形したもの(すなわち、正極合剤層となるシート)を、集電体にプレスなどして圧着することで製造できる。   The positive electrode is made into a pre-sheet by, for example, rolling a positive electrode mixture (slurry) formed by adding a conductive additive or a binder to the positive electrode active material and adding water or the like as necessary, using a roll or the like, A product obtained by drying and pulverizing this product and rolling it again into a sheet shape (that is, a sheet serving as a positive electrode mixture layer) can be manufactured by pressing the current collector and pressing it.

なお、本発明の非水電解液一次電池において、より重負荷特性を向上させる観点からは、低電位の活物質を含有している正極合剤層が、放電の際により優位に作用しやすい構造を有していることが好ましい。具体的には、上記2つの正極合剤層のうち、少なくとも、低電位の活物質を含有する正極合剤層が、負極と対向するように配置されていることが好ましい。   In the non-aqueous electrolyte primary battery of the present invention, from the viewpoint of improving the heavy load characteristics, the positive electrode mixture layer containing a low potential active material is more likely to act more preferentially during discharge. It is preferable to have. Specifically, it is preferable that at least a positive electrode mixture layer containing a low-potential active material is disposed so as to face the negative electrode among the two positive electrode mixture layers.

本発明に係る負極は、例えば、負極活物質であるリチウム箔と、負極集電体である金属箔とで構成される。リチウム箔の材料としてはリチウム金属のみならず、リチウム−アルミニウムなどのリチウム合金を挙げることができる。特に、負極活物質には、リチウム金属箔とアルミニウムの薄箔とを貼り合わせてなる積層体を用い、アルミニウムの薄箔側を、少なくとも、低電位の活物質を含有する正極合剤層側に配置することが好ましい。リチウム金属箔とアルミニウム箔との積層体は、電池内で後記の非水電解液と触れることで、その界面においてリチウム−アルミニウム合金を生成する。よって、リチウム金属箔とアルミニウム薄箔との積層体を用いると、電池内において、リチウム金属箔表面でリチウム−アルミニウム合金が生成するが、このとき、リチウム−アルミニウム合金が微粉化するため、リチウム金属箔の上記合金含有面では、その比表面積が増大する。従って、この合金含有面を、低電位の活物質を含有する正極合剤層との対向面とすることで、より効率よく放電できるようになる。なお、リチウム箔の厚みとしては、例えば、0.1mm〜1mmであることが好ましい。また、上記のリチウム金属箔とアルミニウムの薄箔との積層体を用いる場合には、リチウム金属箔の厚みを0.1mm〜1mmとし、アルミニウムの薄箔の厚みを0.005mm〜0.05mmとすることが望ましい。   The negative electrode according to the present invention includes, for example, a lithium foil that is a negative electrode active material and a metal foil that is a negative electrode current collector. Examples of the material of the lithium foil include not only lithium metal but also lithium alloys such as lithium-aluminum. In particular, the negative electrode active material is a laminate obtained by bonding a lithium metal foil and an aluminum thin foil, and the aluminum thin foil side is at least a positive electrode mixture layer side containing a low potential active material. It is preferable to arrange. The laminated body of lithium metal foil and aluminum foil produces a lithium-aluminum alloy at the interface by touching the nonaqueous electrolyte described later in the battery. Therefore, when a laminate of a lithium metal foil and an aluminum thin foil is used, a lithium-aluminum alloy is formed on the surface of the lithium metal foil in the battery. At this time, the lithium-aluminum alloy is pulverized, so that the lithium metal On the alloy-containing surface of the foil, the specific surface area increases. Therefore, it becomes possible to discharge more efficiently by making this alloy-containing surface a surface facing the positive electrode mixture layer containing the active material having a low potential. In addition, as thickness of lithium foil, it is preferable that it is 0.1 mm-1 mm, for example. Moreover, when using the laminated body of said lithium metal foil and aluminum thin foil, the thickness of lithium metal foil shall be 0.1 mm-1 mm, and the thickness of aluminum thin foil is 0.005 mm-0.05 mm. It is desirable to do.

負極集電体の素材としては、銅、ニッケル、鉄、ステンレスなどを挙げることができる。負極集電体の厚み分だけ外装缶の内部体積が減少するため、負極集電体の厚み寸法は可及的に小さいことが好ましく、具体的には、例えば、0.1mm以下とすることが推奨される。すなわち、負極集電体が厚すぎると、負極活物質であるリチウム箔などの仕込み量を少なくせざるを得ず、電池容量の低下を招く虞がある。また、負極集電体が薄すぎると、破れやすくなるため、負極集電体の厚みは、0.005mm以上とすることが望ましい。また、負極集電体は、その幅がリチウム箔の幅と同じか、それよりも広いことが好ましく、また、その面積が、リチウム箔の面積の100〜130%であることが好ましい。負極集電体の面積を上記のようにすることによって、負極集電体の幅がリチウム箔の幅と同じかまたは広く、長さが長くなるため、負極集電体の周囲に沿ってリチウム箔が切れて電気的接続が断たれることを防ぐことができる。   Examples of the material for the negative electrode current collector include copper, nickel, iron, and stainless steel. Since the internal volume of the outer can decreases by the thickness of the negative electrode current collector, the thickness dimension of the negative electrode current collector is preferably as small as possible, specifically, for example, 0.1 mm or less. Recommended. That is, if the negative electrode current collector is too thick, the amount of the lithium foil that is the negative electrode active material must be reduced, and the battery capacity may be reduced. Moreover, since it will be easy to tear when a negative electrode collector is too thin, it is desirable that the thickness of a negative electrode collector be 0.005 mm or more. Moreover, it is preferable that the width | variety of a negative electrode collector is the same as that of a lithium foil, or it is wider than it, and it is preferable that the area is 100 to 130% of the area of a lithium foil. By making the area of the negative electrode current collector as described above, the width of the negative electrode current collector is the same as or wider than the width of the lithium foil, and the length becomes longer, so the lithium foil along the periphery of the negative electrode current collector It is possible to prevent the electrical connection from being cut off due to disconnection.

本発明の非水電解液一次電池の形態の一例(縦断側面図)を図1に示す。図1において、非水電解液一次電池1は、上方開口部を有する有底円筒状の外装缶2と、外装缶2内に装填された正極と負極とをセパレータを介して巻回してなる巻回電極体3と、非水電解液(以下、単に「電解液」という)と、外装缶2の上方開口部を封止する封口構造を有している。言い換えれば、図1の非水電解液一次電池1は、外装缶2と外装缶2の上方開口部を封止する封口構造とで囲まれる空間内に、正極と負極とをセパレータを介して巻回してなる巻回電極体3や電解液といった発電要素を有するものである。上記外装缶2は、鉄やステンレス鋼などを素材とする。   An example (vertical side view) of the form of the nonaqueous electrolyte primary battery of the present invention is shown in FIG. In FIG. 1, a non-aqueous electrolyte primary battery 1 is formed by winding a bottomed cylindrical outer can 2 having an upper opening, and a positive electrode and a negative electrode loaded in the outer can 2 via a separator. It has a sealing structure for sealing the upper electrode 3, the non-aqueous electrolyte (hereinafter simply referred to as “electrolyte”), and the upper opening of the outer can 2. In other words, the non-aqueous electrolyte primary battery 1 of FIG. 1 has a positive electrode and a negative electrode wound via a separator in a space surrounded by an outer can 2 and a sealing structure that seals the upper opening of the outer can 2. It has a power generation element such as a wound wound electrode body 3 and an electrolytic solution. The outer can 2 is made of iron or stainless steel.

封口構造は、外装缶2の上方開口部の内周縁に固定された蓋板8と、蓋板8の中央部に開設された開口に、ポリプロピレンなどを素材とする絶縁パッキング9を介して装着された端子体10と、蓋板8の下部に配置された絶縁板11とを有している。絶縁板11は、円盤状のベース部12の周縁に環状の側壁13を立設した上向きに開口する丸皿形状に形成されており、ベース部12の中央にはガス通口14が開設されている。蓋板8は、側壁13の上端部に受け止められた状態で、外装缶2の上方開口部の内周縁に、レーザー溶接で固定するか、またはパッキングを介したクリンプシールで固定されている。電池内圧が急激に上昇したときの対策として、蓋板8または外装缶2の缶底2aには、薄肉部(ベント)を設けることができる。正極4と端子体10の下面とは、正極リード体15で接続されている。また、負極5に取り付けられた負極リード体16は、外装缶2の上部内面に溶接されている。   The sealing structure is attached to the cover plate 8 fixed to the inner peripheral edge of the upper opening of the outer can 2 and the opening formed in the center of the cover plate 8 through an insulating packing 9 made of polypropylene or the like. Terminal body 10 and insulating plate 11 disposed below cover plate 8. The insulating plate 11 is formed in a round plate shape that opens upward with an annular side wall 13 standing on the periphery of the disk-shaped base portion 12, and a gas passage 14 is opened at the center of the base portion 12. Yes. The cover plate 8 is fixed to the inner peripheral edge of the upper opening of the outer can 2 by laser welding or a crimp seal through packing while being received by the upper end of the side wall 13. As a countermeasure when the battery internal pressure suddenly increases, a thin portion (vent) can be provided on the lid 8 or the can bottom 2a of the outer can 2. The positive electrode 4 and the lower surface of the terminal body 10 are connected by a positive electrode lead body 15. Further, the negative electrode lead body 16 attached to the negative electrode 5 is welded to the upper inner surface of the outer can 2.

図2には、図1に示した非水電解液一次電池の横断平面図を示している。図2に示すように、巻回電極体3は、正極4と負極5とを、セパレータ6を介して巻回してなるものであり、全体として略円柱形状に形成されている。図2に示す非水電解液一次電池では、正極4は、低電位の活物質を含有する正極合剤層20と、高電位の活物質を含有する正極合剤層21とが、集電体22を介して積層されてなる構造を有している。また、負極5は、リチウム箔25と集電体26が積層されてなる構造を有している。27は、正極4側表面にリチウム−アルミニウム合金を有するリチウム金属箔であり、リチウム金属箔とアルミニウム箔との積層体を用い、電池1内で電解液に触れさせてリチウム−アルミニウム合金を形成させたものである。ここで、図2中、Cは巻回電極体3の巻回中心部、Sは巻回電極体3における正極4の巻回始端部、Eは巻回電極体3の巻回終端部である(詳しくは、後述する)。なお、図1および図2では、本発明の電池が円筒形である場合を示しているが、本発明の電池は円筒形以外の筒形(例えば、角筒形)であってもよい。また、金属を蒸着したラミネートフィルムを外装材として使用したラミネート電池とすることもできる。更に、電極体としても、図1や図2に示す巻回電極体ではなく、正極と負極とがセパレータを介して1回または複数回にわたって積層されてなる積層電極体であってもよい。なお、図1および図2では、各構成要素を概略的に示しており、例えば、各構成要素の厚みの関係は、必ずしもこれらの図の通りでなくてもよい(後記の図3や図4においても、同じ)。   FIG. 2 shows a cross-sectional plan view of the non-aqueous electrolyte primary battery shown in FIG. As shown in FIG. 2, the wound electrode body 3 is formed by winding a positive electrode 4 and a negative electrode 5 with a separator 6 interposed therebetween, and is formed in a substantially cylindrical shape as a whole. In the non-aqueous electrolyte primary battery shown in FIG. 2, the positive electrode 4 includes a positive electrode mixture layer 20 containing a low potential active material and a positive electrode mixture layer 21 containing a high potential active material. 22 is laminated. The negative electrode 5 has a structure in which a lithium foil 25 and a current collector 26 are laminated. 27 is a lithium metal foil having a lithium-aluminum alloy on the surface of the positive electrode 4, and a lithium-aluminum alloy is formed by using a laminate of the lithium metal foil and the aluminum foil and contacting the electrolyte in the battery 1. It is a thing. Here, in FIG. 2, C is a winding center portion of the wound electrode body 3, S is a winding start end portion of the positive electrode 4 in the wound electrode body 3, and E is a winding end portion of the wound electrode body 3. (Details will be described later). 1 and 2 show the case where the battery of the present invention has a cylindrical shape, the battery of the present invention may have a cylindrical shape (for example, a rectangular tube shape) other than the cylindrical shape. Moreover, it can also be set as the laminated battery which uses the laminated film which vapor-deposited the metal as an exterior material. Further, the electrode body may be a laminated electrode body in which the positive electrode and the negative electrode are laminated one or more times via a separator, instead of the wound electrode body shown in FIGS. 1 and 2 schematically show each component, and for example, the relationship of the thickness of each component does not necessarily have to be as shown in these drawings (FIGS. 3 and 4 described later). The same applies to

本発明で用い得るセパレータとしては、従来公知の非水電解液一次電池で用いられているセパレータ、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン製の不織布や微孔性フィルムが使用できる。例えば、PE製の微孔性フィルムとしては、旭化成社製「ハイポア(商品名)」、東燃化学社製「セティーラ(商品名)」などが使用できる。   As a separator that can be used in the present invention, a separator used in a conventionally known nonaqueous electrolyte primary battery, for example, a nonwoven fabric made of polyolefin such as polyethylene (PE) or polypropylene (PP), or a microporous film can be used. . For example, as a microporous film made of PE, “Hypore (trade name)” manufactured by Asahi Kasei Co., Ltd., “Cetilla (trade name)” manufactured by Tonen Chemical Co., Ltd., and the like can be used.

本発明の非水電解液一次電池に係る電解液としては、有機溶媒などの非水系溶媒に電解質としてLiBF、LiPF、LiClO、LiCFSOなどを溶解して調製したものが挙げられる。その溶媒としてはエチレンカーボネート、プロピレンカーボネートなどの環状エステルにジメトキシエタンなどの鎖状エーテル、ジメチルカーボネートなどの鎖状エステルを混合したものが例示できる。電解液中の電解質の濃度としては0.3〜1.5mol/lが好ましい。 Examples of the electrolyte solution according to the non-aqueous electrolyte primary battery of the present invention include those prepared by dissolving LiBF 6 , LiPF 6 , LiClO 4 , LiCF 3 SO 3, etc., as an electrolyte in a non-aqueous solvent such as an organic solvent. . Examples of the solvent include a mixture of a cyclic ester such as ethylene carbonate and propylene carbonate with a chain ether such as dimethoxyethane and a chain ester such as dimethyl carbonate. The concentration of the electrolyte in the electrolytic solution is preferably 0.3 to 1.5 mol / l.

巻回電極体3は、例えば、図3および図4に示すような手順で作製することができる。なお、図3(拡大図を除く)および図4では、リチウム金属箔−アルミニウム箔積層体28は簡略化して単層構造のように示しているが、実際には、図3の拡大図のように、リチウム金属箔28aとアルミニウム箔28bとの積層体であり、電池内に装填されて電解液と接触することで、セパレータ6側表面(正極4との対向面)にリチウム−アルミニウム合金が形成されたリチウム金属箔(図2中、27)となる。まず、図3に示すように、負極集電体26の長さ方向の中央部の上面に、熱溶融性のテープ31、次いでセパレータ6を載置する。   The spirally wound electrode body 3 can be produced, for example, according to a procedure as shown in FIGS. In FIG. 3 (excluding the enlarged view) and FIG. 4, the lithium metal foil-aluminum foil laminate 28 is simplified and shown as a single layer structure, but actually, as shown in the enlarged view of FIG. In addition, it is a laminate of lithium metal foil 28a and aluminum foil 28b, and is loaded into the battery and brought into contact with the electrolyte solution, thereby forming a lithium-aluminum alloy on the separator 6 side surface (opposite surface to the positive electrode 4). Lithium metal foil (27 in FIG. 2). First, as shown in FIG. 3, the heat-meltable tape 31 and then the separator 6 are placed on the upper surface of the central portion in the length direction of the negative electrode current collector 26.

次いで、この状態からテープ31を加熱して、該テープ31を介して負極集電体26にセパレータ6を不離一体的に溶融固着させる。テープ31には、片面または両面の粘着テープを用いることができる。次に、セパレータ6の固着部分を挟む負極集電体26の長さ方向の前後位置に、リチウム金属箔25および積層体28を圧着固定する。換言すれば、負極集電体26の片側面に、負極活物質であるリチウム金属箔25および積層体28の無い負極集電体26が露出する部分を設け、この露出部分30にセパレータ6を固着する。このようにして、負極集電体26、リチウム金属箔25、リチウム金属箔−アルミニウム箔積層体28、およびセパレータ6が不離一体的に結合された積層体32を得ることができる。   Next, the tape 31 is heated from this state, and the separator 6 is melted and fixed to the negative electrode current collector 26 through the tape 31 in an integral manner. The tape 31 can be a single-sided or double-sided adhesive tape. Next, the lithium metal foil 25 and the laminated body 28 are pressure-bonded and fixed at front and rear positions in the length direction of the negative electrode current collector 26 sandwiching the fixing portion of the separator 6. In other words, on one side of the negative electrode current collector 26, a portion where the lithium metal foil 25 as the negative electrode active material and the negative electrode current collector 26 without the laminated body 28 are exposed is provided, and the separator 6 is fixed to the exposed portion 30. To do. In this way, it is possible to obtain a laminate 32 in which the negative electrode current collector 26, the lithium metal foil 25, the lithium metal foil-aluminum foil laminate 28, and the separator 6 are bonded together in an integrated manner.

次に図4(a)に示すように、巻回芯33の横割溝35の間に積層体32を挿入する。ここでは、先の露出部分30、つまりテープ31によるセパレータ6の固着部分が、巻回芯33の横割溝35の間に来るように位置合わせする。巻回芯33を一方向(図4では時計まわり方向)に半周程度回転させて、図4(b)に示すように積層体32を巻回芯33の外周面に巻き付ける。次に、正極合剤層20、21と集電体22とからなる正極4を、巻回始端部S側(図2参照)が巻回芯33側となるようにセパレータ6上に載置して、積層体32と共に、巻回芯33で巻回する。積層体32と正極4とを巻回芯で巻き取ったのち、該巻回芯31を巻回中心部C(図2参照)から抜き取り、最後に負極集電体26の巻回終端部E(図2参照)を固定テープで固定する。このようにして、図2に示すように、露出部分30を巻回中心部Cとして、正極4と負極5とをセパレータ6を介して巻回してなる巻回電極体3を得ることができる。   Next, as shown in FIG. 4A, the laminate 32 is inserted between the transverse grooves 35 of the winding core 33. Here, alignment is performed so that the previous exposed portion 30, that is, the portion where the separator 6 is fixed by the tape 31 is located between the transverse grooves 35 of the winding core 33. The winding core 33 is rotated about a half circumference in one direction (clockwise in FIG. 4), and the laminate 32 is wound around the outer peripheral surface of the winding core 33 as shown in FIG. Next, the positive electrode 4 composed of the positive electrode mixture layers 20 and 21 and the current collector 22 is placed on the separator 6 so that the winding start end S side (see FIG. 2) is the winding core 33 side. Then, the laminate 32 is wound around the winding core 33. After winding the laminated body 32 and the positive electrode 4 with a winding core, the winding core 31 is extracted from the winding center C (see FIG. 2), and finally the winding termination E ( 2) is fixed with a fixing tape. In this way, as shown in FIG. 2, a wound electrode body 3 in which the exposed portion 30 is the winding center C and the positive electrode 4 and the negative electrode 5 are wound through the separator 6 can be obtained.

なお、負極集電体を予め巻回芯に1周程度巻き込んだ後、負極を構成するリチウム金属箔およびリチウム金属箔−アルミニウム箔積層体とセパレータとを重ねて正極を包み込むようにして折り返した電極群を挿入し、巻回して巻回電極体としても構わない。この場合、負極集電体にはリチウム金属箔およびリチウム金属箔−アルミニウム箔積層体は全く圧着されていないことになる。   The negative electrode current collector was previously wound around the winding core for about one turn, and then the lithium metal foil and the lithium metal foil-aluminum foil laminate constituting the negative electrode and the separator were overlapped to wrap around the positive electrode. A group may be inserted and wound to form a wound electrode body. In this case, the lithium metal foil and the lithium metal foil-aluminum foil laminate are not bonded to the negative electrode current collector at all.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。なお、本実施例で使用する「%」は、特に断らない限り質量基準(質量%)である。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention. In addition, "%" used in a present Example is a mass reference | standard (mass%) unless there is particular notice.

実施例1
[正極の作製]
まず、以下の手順で、低電位の活物質を含有する正極合剤層を形成するための正極合剤(質量比で、固形分:水分=100:30のもの)を調製し、該正極合剤層とするための正極合剤シートを作製した。カーボンブラック:10%とマンガン酸リチウム(LiMn):85%とを、プラネタリーミキサーを用いて乾式で5分間混合した後、水を固形分の20%(質量比)となるように添加して5分間混合した。PVDFディスパージョン(ダイキン工業社製「D−1」)を、固形分が、正極合剤の固形分で5%に当たる量だけ用意し、これを残りの水で希釈して、上記の混合物に添加し、5分間混合して低電位の活物質を含有する正極合剤層形成用の正極合剤を得た。
Example 1
[Production of positive electrode]
First, in the following procedure, a positive electrode mixture (in mass ratio, solid content: moisture = 100: 30) for forming a positive electrode mixture layer containing a low potential active material is prepared, and the positive electrode mixture is prepared. A positive electrode mixture sheet for preparing an agent layer was prepared. Carbon black: 10% and lithium manganate (LiMn 3 O 6 ): 85% are mixed by dry using a planetary mixer for 5 minutes, and then water is adjusted to 20% (mass ratio) of solid content. Added and mixed for 5 minutes. PVDF dispersion ("D-1" manufactured by Daikin Industries, Ltd.) is prepared in an amount corresponding to 5% of the solid content of the positive electrode mixture, diluted with the remaining water, and added to the above mixture Then, a positive electrode mixture for forming a positive electrode mixture layer containing a low potential active material was obtained by mixing for 5 minutes.

上記の正極合剤を、直径:250mmの2本ロールを用い、ロール温度を125±5℃に調整し、プレス圧:7トン/cm、ロール間隔:0.4mm、回転速度:10rpmの条件で、ロール圧延してシート化した。ロールを通過した正極合剤(予備シート)を105±5℃で残水分が2%以下になるまで乾燥した。次いで乾燥後の予備シートを粉砕機で粉砕した。この際、上記予備シートが、元の見かけ体積の2倍以上になるまで粉砕した。粉砕後の粒子径は、大部分が1mm以下であり、バインダとして添加したPVDFも1mm以下の長さの繊維状に切断されていた。粉砕後の材料について、再度ロールによるシート化を行った。ロールの間隔は0.6±0.05mmに調整し、ロール温度:125±10℃、プレス圧:7トン/cm、回転速度:10rpmの条件でシート化して低電位の活物質を含有する正極合剤層となる正極合剤シートを得た。得られた正極合剤シートは、厚みが0.5mmで、電気容量(理論値)は約350mAhである。この正極合剤シートを裁断して、幅:37mm、長さ:51mmのシート(図2中、20)を得た。   Using the above positive electrode mixture, two rolls having a diameter of 250 mm, adjusting the roll temperature to 125 ± 5 ° C., press pressure: 7 ton / cm, roll interval: 0.4 mm, rotation speed: 10 rpm The sheet was rolled and rolled. The positive electrode mixture (preliminary sheet) that passed through the roll was dried at 105 ± 5 ° C. until the residual moisture was 2% or less. Next, the dried preliminary sheet was pulverized by a pulverizer. At this time, the preliminary sheet was pulverized until it became twice or more the original apparent volume. Most of the particle size after pulverization was 1 mm or less, and PVDF added as a binder was also cut into fibers having a length of 1 mm or less. The pulverized material was formed into a sheet again by a roll. The positive electrode contains a low potential active material by adjusting the roll interval to 0.6 ± 0.05 mm, forming a sheet under the conditions of roll temperature: 125 ± 10 ° C., press pressure: 7 tons / cm, and rotation speed: 10 rpm. A positive electrode mixture sheet serving as a mixture layer was obtained. The obtained positive electrode mixture sheet has a thickness of 0.5 mm and an electric capacity (theoretical value) of about 350 mAh. The positive electrode mixture sheet was cut to obtain a sheet (20 in FIG. 2) having a width of 37 mm and a length of 51 mm.

次に、以下の手順で、高電位の活物質を含有する正極合剤層を形成するための正極合剤(質量比で、固形分:水分=100:30のもの)を調製し、該正極合剤層とするための正極合剤シートを作製した。カーボンブラック:3%と二酸化マンガン(東ソー社製):92%とを、プラネタリーミキサーを用いて乾式で5分間混合した後、水を固形分の20%(質量比)となるように添加して5分間混合した。PVDFディスパージョン(ダイキン工業社製「D−1」)を、固形分が、正極合剤の固形分で5%に当たる量だけ用意し、これを残りの水で希釈して、上記の混合物に添加し、5分間混合して高電位の活物質を含有する正極合剤層形成用の正極合剤を得た。   Next, a positive electrode mixture (in mass ratio, solid content: moisture = 100: 30) for forming a positive electrode mixture layer containing a high-potential active material is prepared by the following procedure. A positive electrode mixture sheet for preparing a mixture layer was prepared. Carbon black: 3% and manganese dioxide (manufactured by Tosoh Corporation): 92% were mixed using a planetary mixer in a dry process for 5 minutes, and then water was added to a solid content of 20% (mass ratio). And mixed for 5 minutes. PVDF dispersion ("D-1" manufactured by Daikin Industries, Ltd.) is prepared in an amount corresponding to 5% of the solid content of the positive electrode mixture, diluted with the remaining water, and added to the above mixture And mixing for 5 minutes to obtain a positive electrode mixture for forming a positive electrode mixture layer containing a high-potential active material.

上記の正極合剤を、直径:250mmの2本ロールを用い、ロール温度を125±5℃に調整し、プレス圧:7トン/cm、ロール間隔:0.4mm、回転速度:10rpmの条件で、ロール圧延してシート化した。ロールを通過した正極合剤(予備シート)を105±5℃で残水分が2%以下になるまで乾燥した。次いで乾燥後の予備シートを粉砕機で粉砕した。この際、上記予備シートが、元の見かけ体積の2倍以上になるまで粉砕した。粉砕後の粒子径は、大部分が1mm以下であり、バインダとして添加したPVDFも1mm以下の長さの繊維状に切断されていた。粉砕後の材料について、再度ロールによるシート化を行った。ロールの間隔は0.6±0.05mmに調整し、ロール温度:125±10℃、プレス圧:7トン/cm、回転速度:10rpmの条件でシート化して高電位の活物質を含有する正極合剤層となる正極合剤シートを得た。得られた正極合剤シートは、厚みが1.5mmで、電気容量(理論値)は約2150mAhである。この正極合剤シートを裁断して、幅:37mm、長さ:62mmのシート(図2中、21)を得た。   Using the above positive electrode mixture, two rolls having a diameter of 250 mm, adjusting the roll temperature to 125 ± 5 ° C., press pressure: 7 ton / cm, roll interval: 0.4 mm, rotation speed: 10 rpm The sheet was rolled and rolled. The positive electrode mixture (preliminary sheet) that passed through the roll was dried at 105 ± 5 ° C. until the residual moisture was 2% or less. Next, the dried preliminary sheet was pulverized by a pulverizer. At this time, the preliminary sheet was pulverized until it became twice or more the original apparent volume. Most of the particle size after pulverization was 1 mm or less, and PVDF added as a binder was also cut into fibers having a length of 1 mm or less. The pulverized material was formed into a sheet again by a roll. The positive electrode containing a high potential active material by adjusting the roll interval to 0.6 ± 0.05 mm, forming a sheet under the conditions of roll temperature: 125 ± 10 ° C., press pressure: 7 ton / cm, rotation speed: 10 rpm A positive electrode mixture sheet serving as a mixture layer was obtained. The obtained positive electrode mixture sheet has a thickness of 1.5 mm and an electric capacity (theoretical value) of about 2150 mAh. The positive electrode mixture sheet was cut to obtain a sheet (21 in FIG. 2) having a width of 37 mm and a length of 62 mm.

正極集電体には、ステンレス鋼(SUS316)製のエキスパンドメタルを用いた。このエキスパンドメタルを、幅:34mm、長さ:56mmに切断し、長さ方向の中央部に、厚み:0.1mm、幅;3mmのステンレス鋼製のリボンを正極リード体として抵抗溶接により取り付けた。更にこのエキスパンドメタルに、カーボンペースト(日本黒鉛社製)を、網の目をつぶさない程度に塗布した後、105±5℃の温度で乾燥して正極集電体とした。なお、カーボンペーストの塗布量は、乾燥後の塗布量で5mg/cmとなるようにした。 As the positive electrode current collector, an expanded metal made of stainless steel (SUS316) was used. This expanded metal was cut into a width of 34 mm and a length of 56 mm, and a stainless steel ribbon having a thickness of 0.1 mm and a width of 3 mm was attached to the central portion in the length direction by resistance welding as a positive electrode lead body. . Further, a carbon paste (manufactured by Nippon Graphite Co., Ltd.) was applied to the expanded metal so as not to crush the mesh, and then dried at a temperature of 105 ± 5 ° C. to obtain a positive electrode current collector. The coating amount of the carbon paste was set to 5 mg / cm 2 after drying.

次に、低電位の活物質を含有する正極合剤シートと高電位の活物質を含有する正極合剤シートの間に正極集電体を介在させた状態で、長さ方向の片端部のみを固定して三者を一体化した。具体的には、低電位の活物質を含有する正極合剤シートと高電位の活物質を含有する正極合剤シートを、長さ方向の片端を揃えると共に、正極集電体の端部が、2枚の正極合剤シートの、両者を揃えた片端部からはみ出ないようにセットし、その状態で、2枚の正極合剤シートの、両者を揃えた片端部から5mmの箇所をプレスにより圧着することで、三者を一体化した。その後、2枚の正極合剤シートと正極集電体とを一体化したものを250±10℃で6時間熱風乾燥して正極を得た。   Next, in a state where the positive electrode current collector is interposed between the positive electrode mixture sheet containing the low-potential active material and the positive electrode mixture sheet containing the high-potential active material, Fixed and united the three. Specifically, the positive electrode mixture sheet containing a low-potential active material and the positive electrode mixture sheet containing a high-potential active material are aligned at one end in the length direction, and the end of the positive electrode current collector is Set the two positive electrode mixture sheets so that they do not protrude from one end of the two positive electrode mixture sheets. In this state, press the 5 mm portion of the two positive electrode mixture sheets from one end of the two positive electrode mixture sheets by pressing. By doing so, the three parties were integrated. Thereafter, the two positive electrode mixture sheets and the positive electrode current collector were integrated, and dried with hot air at 250 ± 10 ° C. for 6 hours to obtain a positive electrode.

[負極の作製]
負極は、幅:39mm、長さ:170mm、厚み:0.01mmの銅箔(負極集電体)上に、幅:37mm、長さ:87mmで、厚み:0.30mmのリチウム金属箔に厚み:0.006mmのアルミニウム箔を貼り合わせた積層体と、幅:37mm、長さ:50mmで、厚み:0.3mmのリチウム金属箔とを配置して構成した。この際、リチウム金属箔とアルミニウム箔の積層体については、リチウム金属箔側が銅箔側になるようにした。まず、リチウム金属箔に、幅:3mm、長さ:20mm、厚み:0.1mmのニッケル製の負極リード体を圧着した。その後、上記の2枚の積層体を、図3に示すように、離間させた状態で上記銅箔上に配置して、負極を作製した。
[Production of negative electrode]
The negative electrode has a width: 39 mm, length: 170 mm, thickness: 0.01 mm on a copper foil (negative electrode current collector), width: 37 mm, length: 87 mm, and thickness: 0.30 mm lithium metal foil. A laminate obtained by bonding aluminum foil of 0.006 mm and a lithium metal foil having a width of 37 mm, a length of 50 mm, and a thickness of 0.3 mm were arranged. At this time, the lithium metal foil and the aluminum foil were laminated such that the lithium metal foil side was the copper foil side. First, a nickel negative electrode lead body having a width of 3 mm, a length of 20 mm, and a thickness of 0.1 mm was pressure-bonded to a lithium metal foil. Thereafter, as shown in FIG. 3, the two laminates were placed on the copper foil in a separated state to produce a negative electrode.

[巻回電極体の作製]
セパレータとして、幅:44mm、長さ:170mm、厚み:20μmの微孔性ポリエチレンフィルム[旭化成社製「ハイポア」(商品名)]を用い、図3に示すように、負極の銅箔上に、接着テープを介してセパレータを貼り付けた。これを2つ割の直径:3.5mmの巻回芯に挟み、1周巻いた[図4の(a)、(b)]。次いで、負極をセパレータと共に1周巻き込んだ後、正極の固定した側を巻回芯側に載置して巻回した。巻回終了後は、銅箔が最外周を覆う形となった。以上により、図2に示すような巻回電極体を得た。
[Production of wound electrode body]
As a separator, using a microporous polyethylene film ["Hypore" (trade name) manufactured by Asahi Kasei Co., Ltd.] having a width: 44 mm, a length: 170 mm, and a thickness: 20 μm, as shown in FIG. A separator was attached via an adhesive tape. This was sandwiched between two winding cores having a diameter of 3.5 mm and wound once (FIGS. 4A and 4B). Next, the negative electrode was wound once with the separator, and then the side on which the positive electrode was fixed was placed on the winding core side and wound. After winding, the copper foil covered the outermost periphery. Thus, a wound electrode body as shown in FIG. 2 was obtained.

[電池組み立て]
非水電解液一次電池の組み立て工程を、図1を参照して説明する。ニッケルメッキした鉄缶からなる有底円筒形の外装缶2の内底部2aに、厚み:0.2mmのポリプロピレン製の絶縁板を挿入し、その上に巻回電極体3を、正極リード体15が上側を向く姿勢で挿入した。巻回電極体3の負極リード体16を外装缶2の内面に抵抗溶接し、正極リード体15は、絶縁板11を挿入した後に、端子板10の下面に抵抗溶接した。この時点で絶縁抵抗を測定し、短絡がないことを確認した。
[Battery assembly]
The assembly process of the nonaqueous electrolyte primary battery will be described with reference to FIG. An insulating plate made of polypropylene having a thickness of 0.2 mm is inserted into the inner bottom portion 2a of the bottomed cylindrical outer can 2 made of nickel-plated iron can, and the wound electrode body 3 is placed thereon, and the positive electrode lead body 15 Was inserted in a posture facing upward. The negative electrode lead body 16 of the wound electrode body 3 was resistance welded to the inner surface of the outer can 2, and the positive electrode lead body 15 was resistance welded to the lower surface of the terminal plate 10 after inserting the insulating plate 11. At this point, the insulation resistance was measured and it was confirmed that there was no short circuit.

電解液には、プロピレンカーボネートとジメトキシエタンとの混合溶媒(体積比で1:2)に、LiClOを0.5mol/lの濃度で溶解させた非水系の溶液を用意し、これを外装缶2内に3.5ml注入した。注入は3回に分け、最終工程で減圧しつつ全量を注入した。電解液の注入後、蓋板8を外装缶2の上方開口部に嵌合し、レーザー溶接により外装缶2の開口端部の内周部と蓋板8の外周部とを溶接して外装缶2の開口部を封口した。 As the electrolyte, a non-aqueous solution prepared by dissolving LiClO 4 at a concentration of 0.5 mol / l in a mixed solvent of propylene carbonate and dimethoxyethane (volume ratio of 1: 2) was prepared, and this was used as an outer can. 3.5 ml was injected into 2. The injection was divided into three times, and the whole amount was injected while reducing the pressure in the final step. After the electrolyte solution is injected, the cover plate 8 is fitted into the upper opening of the outer can 2, and the inner peripheral portion of the opening end of the outer can 2 and the outer peripheral portion of the cover plate 8 are welded by laser welding. 2 openings were sealed.

[後処理(予備放電、エージング)]
封口した電池を、1Ωの抵抗で30秒間予備放電し、70℃で6時間保管した後、1Ωの定抵抗で1分間、2次予備放電を行った。予備放電後の電池を、室温で7日間エージングし、開路電圧を測定して安定電圧が得られていることを確認して、外径:17mm、総高:45mmの非水電解液一次電池を得た。この電池における正極の電気容量(理論値)は2500mAhであった。
[Post-treatment (preliminary discharge, aging)]
The sealed battery was preliminarily discharged with a resistance of 1Ω for 30 seconds, stored at 70 ° C. for 6 hours, and then subjected to a secondary preliminary discharge with a constant resistance of 1Ω for 1 minute. The battery after the preliminary discharge was aged at room temperature for 7 days, the open circuit voltage was measured to confirm that a stable voltage was obtained, and a nonaqueous electrolyte primary battery having an outer diameter of 17 mm and a total height of 45 mm was obtained. Obtained. The electric capacity (theoretical value) of the positive electrode in this battery was 2500 mAh.

比較例1
実施例1の、高電位の活物質を含有する正極合剤層形成用の正極合剤シート作製方法と同じ方法で、厚みが1.0mmの正極合剤シートを作製した。この正極合剤シートから、長さが51mm、幅が37mmの内周用の正極合剤シート(図2中、20に相当)と、長さが62mm、幅が37mmの外周用の正極合剤シート(図2中、21に相当)を得た。これらの正極合剤シートを、低電位の活物質を含有する正極合剤シートおよび高電位の活物質を含有する正極合剤シートの代わりに用いた他は、実施例1と同様にして非水電解液一次電池を作製した。この電池における正極の電気容量(理論値)は2600mAhであった。
Comparative Example 1
A positive electrode mixture sheet having a thickness of 1.0 mm was prepared in the same manner as the positive electrode mixture sheet forming method for forming a positive electrode mixture layer containing a high potential active material in Example 1. From this positive electrode mixture sheet, an inner periphery positive electrode mixture sheet (corresponding to 20 in FIG. 2) having a length of 51 mm and a width of 37 mm, and an outer periphery positive electrode mixture having a length of 62 mm and a width of 37 mm A sheet (corresponding to 21 in FIG. 2) was obtained. These positive electrode mixture sheets were used in the same manner as in Example 1 except that they were used instead of the positive electrode mixture sheet containing a low potential active material and the positive electrode mixture sheet containing a high potential active material. An electrolyte primary battery was produced. The electric capacity (theoretical value) of the positive electrode in this battery was 2600 mAh.

比較例2
実施例1の、低電位の活物質を含有する正極合剤層形成用の正極合剤シート作製方法と同じ方法で、厚みが1.0mmの正極合剤シートを作製した。この正極合剤シートから、長さが51mm、幅が37mmの内周用の正極合剤シート(図2中、20に相当)と、長さが62mm、幅が37mmの外周用の正極合剤シート(図2中、21に相当)を得た。これらの正極合剤シートを、低電位の活物質を含有する正極合剤シートおよび高電位の活物質を含有する正極合剤シートの代わりに用いた他は、実施例1と同様にして非水電解液一次電池を作製した。この電池における正極の電気容量(理論値)は1700mAhであった。
Comparative Example 2
A positive electrode mixture sheet having a thickness of 1.0 mm was prepared in the same manner as the positive electrode mixture sheet preparation method for forming a positive electrode mixture layer containing a low-potential active material in Example 1. From this positive electrode mixture sheet, an inner periphery positive electrode mixture sheet (corresponding to 20 in FIG. 2) having a length of 51 mm and a width of 37 mm, and an outer periphery positive electrode mixture having a length of 62 mm and a width of 37 mm A sheet (corresponding to 21 in FIG. 2) was obtained. These positive electrode mixture sheets were used in the same manner as in Example 1 except that they were used instead of the positive electrode mixture sheet containing a low potential active material and the positive electrode mixture sheet containing a high potential active material. An electrolyte primary battery was produced. The electric capacity (theoretical value) of the positive electrode in this battery was 1700 mAh.

実施例および比較例の各電池について、以下のパルス放電試験と、定率放電試験を行った。結果を表1に示す。   The following pulse discharge tests and constant rate discharge tests were performed on the batteries of the examples and comparative examples. The results are shown in Table 1.

<パルス放電試験>
上記の各電池について、20℃で、ベース放電電流を20μAとし、5分間隔で1Aのパルス電流を3秒間放電するパルス放電を行い、1Aのパルス電流が流れた時点の電圧が2.0V以下に低下するまでに要するパルス放電の回数を測定した。なお、各電池の試料数は5個とし、その平均値を各実施例、比較例のパルス放電容量とした。
<Pulse discharge test>
For each of the above batteries, the base discharge current is 20 μA at 20 ° C., the pulse discharge is performed by discharging the 1 A pulse current for 3 seconds at intervals of 5 minutes, and the voltage when the 1 A pulse current flows is 2.0 V or less. The number of pulse discharges required to decrease to a maximum was measured. In addition, the number of samples of each battery was set to five, and the average value was made into the pulse discharge capacity of each Example and a comparative example.

Figure 2006216354
Figure 2006216354

表1から分かるように、実施例1の非水電解液一次電池は、電池内の正極理論容量が大きい比較例1の電池よりもパルス放電回数が多く重負荷パルス放電特性が優れていた。また、重負荷特性に優れる正極を用いた比較例2の電池よりもパルス放電回数が多く重負荷パルス放電特性が優れていた。   As can be seen from Table 1, the nonaqueous electrolyte primary battery of Example 1 had a higher number of pulse discharges and superior heavy load pulse discharge characteristics than the battery of Comparative Example 1 having a large positive electrode theoretical capacity in the battery. Moreover, the number of pulse discharges was larger and the heavy load pulse discharge characteristics were superior to those of the battery of Comparative Example 2 using the positive electrode having excellent heavy load characteristics.

なお、実施例1の電池100個について、20℃で30日間保管した後の開路電圧を測定したところ、3.24Vを下回るものが発生せず、長期信頼性を満足する電池であることが確認できた。   In addition, about 100 batteries of Example 1, when the open circuit voltage after storing for 30 days at 20 degreeC was measured, what is less than 3.24V does not generate | occur | produce and it is confirmed that it is a battery satisfying long-term reliability. did it.

更に、実施例および比較例の各電池について、20℃で、5mAの定電流放電を行い、2.0V以下に電圧が低下するまでの放電容量を、正極理論容量で割ることによって、利用率を求めたところ、いずれの電池も95%以上であり、定率放電特性については、各電池間に差は見られなかった。   Furthermore, about each battery of an Example and a comparative example, at 20 degreeC, 5 mA constant current discharge is performed, and a utilization rate is divided by dividing the discharge capacity until a voltage falls to 2.0 V or less by the positive electrode theoretical capacity. As a result, all the batteries were 95% or more, and no difference was observed between the batteries with respect to the constant rate discharge characteristics.

このように、実施例1の非水電解液一次電池は、重負荷パルス放電特性が優れているのみならず、比較的軽負荷での定率放電特性についても、従来の非水電解液一次電池(比較例の電池)と同等程度に良好であり、また、優れた長期信頼性も保持している。   Thus, the nonaqueous electrolyte primary battery of Example 1 not only has excellent heavy load pulse discharge characteristics, but also has a constant rate discharge characteristic at a relatively light load. It is as good as the comparative example battery) and also has excellent long-term reliability.

本発明の非水電解液一次電池の一例を示す縦断側面図である。It is a vertical side view which shows an example of the nonaqueous electrolyte primary battery of this invention. 本発明の非水電解液一次電池の一例を示す横断平面図である。It is a cross-sectional top view which shows an example of the nonaqueous electrolyte primary battery of this invention. 本発明の非水電解液一次電池に係る巻回電極体の作製方法を説明するための図である。It is a figure for demonstrating the preparation methods of the winding electrode body which concerns on the nonaqueous electrolyte primary battery of this invention. 本発明の非水電解液一次電池に係る巻回電極体の作製方法を説明するための図である。It is a figure for demonstrating the preparation methods of the winding electrode body which concerns on the nonaqueous electrolyte primary battery of this invention.

符号の説明Explanation of symbols

1 非水電解液一次電池
2 外装缶
3 巻回電極体
4 正極
5 負極
6 セパレータ
20 低電位の活物質を含有する正極合剤層
21 高電位の活物質を含有する正極合剤層
22 正極集電体
25 リチウム金属箔
26 負極集電体
27 リチウム−アルミニウム合金含有リチウム金属箔
28 リチウム金属箔−アルミニウム箔積層体
28a リチウム金属箔
28b アルミニウム箔
31 テープ
33 巻回芯
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte primary battery 2 Exterior can 3 Winding electrode body 4 Positive electrode 5 Negative electrode 6 Separator 20 Positive electrode mixture layer containing a low potential active material 21 Positive electrode mixture layer containing a high potential active material 22 Positive electrode collection Electric current 25 Lithium metal foil 26 Negative electrode current collector 27 Lithium-aluminum alloy-containing lithium metal foil 28 Lithium metal foil-aluminum foil laminate 28a Lithium metal foil 28b Aluminum foil 31 Tape 33 Winding core

Claims (4)

活物質および導電助剤を含有する2つの正極合剤層が、集電体を介して積層されてなる正極を有する非水電解液一次電池であって、
上記2つの正極合剤層は、含有する活物質の電位が異なっていることを特徴とする非水電解液一次電池。
A nonaqueous electrolyte primary battery having a positive electrode in which two positive electrode mixture layers containing an active material and a conductive additive are laminated via a current collector,
The non-aqueous electrolyte primary battery, wherein the two positive electrode mixture layers have different potentials of active materials contained therein.
上記2つの正極合剤層のうち、少なくとも、低電位の活物質を含有する正極合剤層は、負極と対向するように配置されている請求項1に記載の非水電解液一次電池。   2. The non-aqueous electrolyte primary battery according to claim 1, wherein at least a positive electrode mixture layer containing an active material having a low potential is disposed so as to face the negative electrode. 上記負極は、少なくとも、低電位の活物質を含有する正極合剤層との対向面に、リチウム−アルミニウム合金を含有するリチウム金属箔を有する請求項2に記載の非水電解液一次電池。   The non-aqueous electrolyte primary battery according to claim 2, wherein the negative electrode has a lithium metal foil containing a lithium-aluminum alloy on a surface facing at least a positive electrode mixture layer containing a low potential active material. 低電位の活物質を含有する正極合剤層の電気容量に対して、高電位の活物質を含有する正極合剤層の電気容量が、1.0〜10倍である請求項1〜3のいずれかに記載の非水電解液一次電池。
The electric capacity of a positive electrode mixture layer containing a high potential active material is 1.0 to 10 times that of a positive electrode mixture layer containing a low potential active material. The nonaqueous electrolyte primary battery according to any one of the above.
JP2005027500A 2005-02-03 2005-02-03 Non-aqueous electrolyte primary battery Expired - Fee Related JP4993860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027500A JP4993860B2 (en) 2005-02-03 2005-02-03 Non-aqueous electrolyte primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027500A JP4993860B2 (en) 2005-02-03 2005-02-03 Non-aqueous electrolyte primary battery

Publications (2)

Publication Number Publication Date
JP2006216354A true JP2006216354A (en) 2006-08-17
JP4993860B2 JP4993860B2 (en) 2012-08-08

Family

ID=36979394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027500A Expired - Fee Related JP4993860B2 (en) 2005-02-03 2005-02-03 Non-aqueous electrolyte primary battery

Country Status (1)

Country Link
JP (1) JP4993860B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158236A (en) * 2007-12-26 2009-07-16 Panasonic Corp Positive electrode, and organic electrolyte battery using it
JP2009266715A (en) * 2008-04-28 2009-11-12 Hitachi Maxell Ltd Cylindrical nonaqueous electrolyte primary battery and its manufacturing method
KR101373723B1 (en) * 2013-07-23 2014-03-13 주식회사 비츠로셀 Manufacturing method of cathode of lithium primary battery
KR101383054B1 (en) * 2012-04-19 2014-04-10 한국세라믹기술원 Manufacturing method of cathode of lithium primary battery
JP2016122592A (en) * 2014-12-25 2016-07-07 Fdk鳥取株式会社 Spiral type lithium battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159059A (en) * 1980-05-13 1981-12-08 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPS58150273A (en) * 1982-03-02 1983-09-06 Hitachi Maxell Ltd Organic electrolyte battery
JPS59134559A (en) * 1983-01-20 1984-08-02 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPH02234350A (en) * 1989-03-08 1990-09-17 Fuji Elelctrochem Co Ltd Positive pole of non-aqueous electrolyte battery
JP2002198061A (en) * 2000-11-17 2002-07-12 Wilson Greatbatch Ltd Alkaline metal electrochemical cell with short-circuit safety characteristic using double-collector cathode structure
JP2006134770A (en) * 2004-11-08 2006-05-25 Sony Corp Cathode and battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159059A (en) * 1980-05-13 1981-12-08 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPS58150273A (en) * 1982-03-02 1983-09-06 Hitachi Maxell Ltd Organic electrolyte battery
JPS59134559A (en) * 1983-01-20 1984-08-02 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPH02234350A (en) * 1989-03-08 1990-09-17 Fuji Elelctrochem Co Ltd Positive pole of non-aqueous electrolyte battery
JP2002198061A (en) * 2000-11-17 2002-07-12 Wilson Greatbatch Ltd Alkaline metal electrochemical cell with short-circuit safety characteristic using double-collector cathode structure
JP2002270162A (en) * 2000-11-17 2002-09-20 Wilson Greatbatch Ltd Electrochemical cell constituted by alkaline metal battery or ion electrochemical battery containing double current collecting body cathode structure with usage of two kinds of active material mixtures
JP2006134770A (en) * 2004-11-08 2006-05-25 Sony Corp Cathode and battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158236A (en) * 2007-12-26 2009-07-16 Panasonic Corp Positive electrode, and organic electrolyte battery using it
JP2009266715A (en) * 2008-04-28 2009-11-12 Hitachi Maxell Ltd Cylindrical nonaqueous electrolyte primary battery and its manufacturing method
KR101383054B1 (en) * 2012-04-19 2014-04-10 한국세라믹기술원 Manufacturing method of cathode of lithium primary battery
KR101373723B1 (en) * 2013-07-23 2014-03-13 주식회사 비츠로셀 Manufacturing method of cathode of lithium primary battery
JP2016122592A (en) * 2014-12-25 2016-07-07 Fdk鳥取株式会社 Spiral type lithium battery

Also Published As

Publication number Publication date
JP4993860B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2002013305A1 (en) Coin-shaped battery
JPH11283588A (en) Sealed battery
WO2014050114A1 (en) Non-aqueous electrolyte secondary battery
JP4968768B2 (en) Cylindrical non-aqueous electrolyte battery
JP4993860B2 (en) Non-aqueous electrolyte primary battery
JP4993859B2 (en) Non-aqueous electrolyte primary battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP2011129446A (en) Laminated type battery
JP2012064366A (en) Flat-shaped nonaqueous secondary battery and manufacturing method thereof
JP2008192524A (en) Cylindrical nonaqueous electrolyte solution primary battery
JP5620811B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP7190018B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP2006139918A (en) Cylinder-shaped nonaqueous electrolyte battery
JP5252691B2 (en) Cylindrical non-aqueous electrolyte primary battery and manufacturing method thereof
JP5334109B2 (en) Laminated battery
JP4079326B2 (en) Non-aqueous electrolyte battery
JP4255013B2 (en) Non-aqueous electrolyte battery
JPH11354125A (en) Lithium secondary battery
JP2004335380A (en) Nonaqueous electrolyte battery
JP5019557B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP2011108538A (en) Laminate battery
JP2007207640A (en) Cylindrical non-aqueous electrolytic solution primary battery
JP2004363087A (en) Battery and manufacturing method thereof
JP4129952B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees