JP2004363087A - Battery and manufacturing method thereof - Google Patents

Battery and manufacturing method thereof Download PDF

Info

Publication number
JP2004363087A
JP2004363087A JP2004074187A JP2004074187A JP2004363087A JP 2004363087 A JP2004363087 A JP 2004363087A JP 2004074187 A JP2004074187 A JP 2004074187A JP 2004074187 A JP2004074187 A JP 2004074187A JP 2004363087 A JP2004363087 A JP 2004363087A
Authority
JP
Japan
Prior art keywords
current collector
sheet
electrode
battery
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004074187A
Other languages
Japanese (ja)
Other versions
JP4129955B2 (en
Inventor
Reiko Masukichi
令子 益吉
Mitsutoshi Watanabe
光俊 渡辺
Tetsuo Kawai
徹夫 川合
Toshiyuki Edamoto
俊之 枝元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004074187A priority Critical patent/JP4129955B2/en
Priority to CNB2004100374580A priority patent/CN1324730C/en
Priority to US10/836,591 priority patent/US20050026034A1/en
Publication of JP2004363087A publication Critical patent/JP2004363087A/en
Application granted granted Critical
Publication of JP4129955B2 publication Critical patent/JP4129955B2/en
Priority to US12/468,921 priority patent/US8221509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery of low cost and high productivity which is suitable for a middle load application. <P>SOLUTION: Sheet-like mixture layers 20 and 21 are arranged on both sides of a collector 22 to constitute an electrode 8 (positive electrode) 1 of laminating structure. The electrode 1 and its counter electrode (negative electrode) 2 are wound with a separator in between while displacement in winding direction occurs between the collector of the electrode and the sheet-like mixture layer. The roll is housed in a battery vessel 2 (package can). The collector of the electrode 1 having the laminated structure is a plain woven wire net, metal foil, expanded metal, lath mesh, or punching metal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、中負荷用途に適した電池に関するものである。   The present invention relates to a battery suitable for medium load use.

筒形の電池には、カメラなどの重負荷対応の捲回式電池と、バックアップなどの高容量ではあるが軽負荷用のボビンタイプの電池が製品化されている。このうち、ボビンタイプの電池は、構造が簡単であり、低コストでの製造が可能であるが、電極面積が小さく負荷特性に劣っている。   As the cylindrical battery, a wound type battery for heavy load such as a camera and a bobbin type battery for high capacity but light load such as a backup for commercial use have been commercialized. Of these, bobbin type batteries have a simple structure and can be manufactured at low cost, but have a small electrode area and poor load characteristics.

重負荷対応の捲回式電池は、たとえば、集電体として金属や炭素などの電導体の箔、網、織布、不織布などを使用して、これに活物質合剤を塗布し圧着して、一体化するなどして、長尺の電極を作製し、これと対極とをセパレータを介して捲回することにより、製造されている(特許文献1参照)。しかしながら、この捲回方式では薄い長尺の電極を巻き込むため構造が複雑であり、製造しにくく、コストがかかるという問題がある。   For a heavy-duty wound-type battery, for example, using a conductor, such as metal or carbon, as a current collector, a foil, a net, a woven fabric, or a non-woven fabric, apply an active material mixture thereto, and press-bond. It is manufactured by forming a long electrode by, for example, integrating and winding this and a counter electrode through a separator (see Patent Document 1). However, this winding method involves a problem that the structure is complicated because a thin long electrode is wound therein, and it is difficult to manufacture the electrode, and the cost is high.

また、非水系の一次電池のうち、リチウム−塩化チオニル電池もボビン構造であり、やはり負荷特性に劣る欠点がある。最近の電池の用途として、たとえば、情報通信などでは数10mAから300mA程度の電流を要求するものが増加しているが、上記電池ではかかる中負荷用途にも適さない。   Further, among the non-aqueous primary batteries, the lithium-thionyl chloride battery also has a bobbin structure, which also has a drawback of poor load characteristics. As a recent application of batteries, for example, information communication and the like that require a current of several tens mA to about 300 mA have increased, but the above batteries are not suitable for such medium-load applications.

実公平6−6460号公報(第2〜3頁)Japanese Utility Model Publication No. 6-6460 (pages 2-3)

本発明は、このような事情に照らし、中負荷用途に適した安価で生産性の良い電池を提供することを目的としている。   In view of such circumstances, an object of the present invention is to provide an inexpensive and highly-productive battery suitable for medium-load applications.

捲回式の電池において、長尺の電極構成では捲回数が多くなり、必然的に電極は薄く長くなり、この場合、電極の厚さのばらつきで捲回精度が得られにくく、また集電体やセパレータなどの占める比率も増大し、コストアップにつながり、安価な製品を供給しにくい。一方、電極を短くし厚い電極とすると、集電体やセパレータなどの占める比率が減り、活物質を多く充填でき、容量アップとなり、また巻きずれも緩和でき、生産性やコスト上、有利となる。   In a wound-type battery, a long electrode configuration requires a large number of windings, which inevitably makes the electrode thin and long. In this case, it is difficult to obtain winding accuracy due to variations in the thickness of the electrode. And the ratio of separators and the like increases, leading to an increase in cost and difficulty in supplying inexpensive products. On the other hand, when the electrodes are made shorter and thicker, the ratio of the current collector and the separator decreases, the active material can be filled more, the capacity can be increased, and the winding deviation can be reduced, which is advantageous in productivity and cost. .

しかし、厚い電極を捲回する場合、電極に大きな応力が加えられるため、集電体と活物質合剤とが完全に一体化されている従来の電極では、活物質合剤が剥離したりクラックを生じたりし、容量の低下や短絡などのトラブルの原因となりやすい。   However, when a thick electrode is wound, a large stress is applied to the electrode. Therefore, in a conventional electrode in which the current collector and the active material mixture are completely integrated, the active material mixture peels or cracks. Or cause troubles such as a decrease in capacity or a short circuit.

本発明者らは、上記の点を考慮して、鋭意検討した結果、あらかじめ作製したシート状合剤層を集電体の両側に配置して積層構造とした電極を、その対極およびセパレータとともに捲回する際に、上記積層構造の電極の集電体とシート状合剤層との間に、捲回方向の位置ずれを生じさせることにより、上記積層構造の電極にかかる応力が大幅に緩和され、上記合剤層を厚くしても、剥離やクラックなどの不具合を生じず、捲回不良や短絡を起こしにくい中負荷用途に適した安価な電池を製造できるものであることがわかった。   The present inventors have conducted intensive studies in consideration of the above points, and as a result, wound an electrode having a laminated structure in which sheet-shaped mixture layers prepared in advance were arranged on both sides of a current collector, together with a counter electrode and a separator. When rotating, by causing a displacement in the winding direction between the current collector of the electrode of the laminated structure and the sheet-shaped mixture layer, the stress applied to the electrode of the laminated structure is greatly reduced. Further, it was found that even if the thickness of the mixture layer was increased, defects such as peeling and cracks did not occur, and an inexpensive battery suitable for medium load applications in which poor winding and short-circuiting were unlikely to occur was found.

本発明は、このような知見をもとにして、完成されたものである。
すなわち、本発明は、集電体の両側にこの集電体に実質的に固定されない状態でシート状合剤層が配置されてなる積層構造の電極と、この電極の対極と、それらの間に介在するセパレータとが渦巻状に捲回されてなる捲回体を電池容器内に収容したことを特徴とする電池に係るものである。とくに、本発明は、上記の積層構造の電極において、集電体が、平織り金網、金属箔、エキスパンドメタル、ラス網またはパンチングメタルである上記構成の電池に係るものである。
The present invention has been completed based on such findings.
That is, the present invention provides an electrode having a laminated structure in which a sheet-shaped mixture layer is disposed on both sides of a current collector without being substantially fixed to the current collector, a counter electrode of the electrode, and a gap between them. The present invention relates to a battery, wherein a wound body formed by spirally winding an intervening separator is accommodated in a battery container. In particular, the present invention relates to the battery having the above-described configuration, in which the current collector is a plain woven metal mesh, a metal foil, an expanded metal, a lath mesh, or a punching metal in the electrode having the above-described laminated structure.

また、本発明は、上記の積層構造の電極において、捲回中心側の端部のみのシート状合剤層が集電体に固定されている上記構成の電池、集電体の端部がシート状合剤層の端部から露出しないように位置している上記構成の電池、集電体の幅がシート状合剤層の幅よりも狭い上記構成の電池、シート状合剤層の空隙率が35〜50%である上記構成の電池、シート状合剤層が電池内径の4〜10%に相当する厚みを有する上記構成の電池、集電体の内側に位置するシート状合剤層の捲回前の長さが集電体の長さより短く、集電体の外側に位置するシート状合剤層の捲回前の長さが集電体の長さより長い上記構成の電池、集電体の内外面全体がシート状合剤層で覆われている捲回体を有し、過塩素酸リチウムを溶質とする非水電解液を用いたものである上記構成の電池、捲回体の捲回数が1周を超え、3周以下である上記構成の電池、対極が金属または金属合金である上記構成の電池、対極がリチウムまたはリチウム合金である上記構成の電池を、提供できるものである。   Further, according to the present invention, in the electrode having the above-mentioned laminated structure, in the battery having the above-described structure, only the end portion on the winding center side is fixed to the current collector, and the end portion of the current collector is a sheet. The battery of the above configuration, which is located so as not to be exposed from the end of the mixture layer, the battery of the above configuration, in which the width of the current collector is smaller than the width of the sheet mixture layer, the porosity of the sheet mixture layer Is 35 to 50%, the battery having the above-described configuration in which the sheet-shaped mixture layer has a thickness corresponding to 4 to 10% of the battery inner diameter, and the sheet-shaped mixture layer located inside the current collector. The battery of the above configuration, wherein the length before winding is shorter than the length of the current collector, and the length of the sheet-shaped mixture layer located outside the current collector before winding is longer than the length of the current collector. A non-aqueous electrolyte having a wound body in which the entire inner and outer surfaces of the body are covered with a sheet-shaped mixture layer and using lithium perchlorate as a solute The battery of the above configuration, the battery of the above configuration, in which the number of turns of the wound body is more than 1 round and 3 or less, the battery of the above configuration, wherein the counter electrode is a metal or a metal alloy, and the above, wherein the counter electrode is lithium or a lithium alloy. A battery having the above configuration can be provided.

さらに、本発明は、集電体の両側にシート状合剤層を配置して積層構造とした電極の、上記集電体とシート状合剤層との間に、捲回方向の位置ずれを生じさせながら、上記電極をその対極およびそれらの間に介在するセパレータとともに捲回して捲回体とし、これを電池容器内に収容することを特徴とする電池の製造方法を提供するものである。   Further, the present invention provides an electrode having a laminated structure in which a sheet-shaped mixture layer is disposed on both sides of a current collector, and the positional deviation in the winding direction between the current collector and the sheet-shaped mixture layer is reduced. It is another object of the present invention to provide a method for producing a battery, characterized in that the electrode is wound together with its counter electrode and a separator interposed therebetween to form a wound body, and this is housed in a battery container.

また、上記電池の製造方法の一態様として、集電体の両側にこの集電体に実質的に固定されない状態でシート状合剤層を配置して積層構造の電極とする工程、上記積層構造の電極とその対極およびそれらの間に介在するセパレータとを、上記積層構造の電極の集電体とシート状合剤層との間に捲回方向の位置ずれを生じさせながら捲回する工程、および上記捲回工程により得られる捲回体を電池容器内に収容する工程を有することを特徴とする電池の製造方法を提供するものである。   In one embodiment of the method for manufacturing a battery, a step of arranging a sheet-shaped mixture layer on both sides of the current collector in a state not being substantially fixed to the current collector to form an electrode having a stacked structure; Winding the electrode and its counter electrode and a separator interposed therebetween, while causing a displacement in the winding direction between the current collector of the electrode having the laminated structure and the sheet-shaped mixture layer, And a step of accommodating the wound body obtained by the winding step in a battery container.

このように、本発明では、集電体の両側にあらかじめ作製したシート状合剤層を配置して積層構造の電極とし、これとその対極とをセパレータを介して捲回する際に、上記積層構造の電極の集電体とシート状合剤層との間に、捲回方向の位置ずれを生じさせるような構成としたことにより、上記合剤層を厚くしても、剥離やクラックなどの不具合を生じず、捲回不良や短絡を起こしにくい中負荷用途に適した安価で生産性の良い電池を提供することができる。   As described above, in the present invention, a sheet-shaped mixture layer prepared beforehand is arranged on both sides of the current collector to form an electrode having a laminated structure, and when this and its counter electrode are wound via a separator, the above-described laminated Between the current collector of the electrode of the structure and the sheet-shaped mixture layer, by such a configuration as to cause displacement in the winding direction, even if the mixture layer is thickened, such as peeling and cracking It is possible to provide a low-cost and high-productivity battery suitable for medium-load applications that does not cause any trouble and is unlikely to cause winding failure or short circuit.

以下に、本発明の実施の形態を、図面を参考にして説明する。
図1ないし図2に、本発明の実施形態に係る電池を示す。図2において、電池1は、電池容器である外装缶2と、外装缶2内に装填された正極3(積層構造の電極)および負極4と、外装缶2の上方開口部を封止する封口構造とからなる。正極3および負極4は、セパレータ5を介して捲回してなる捲回体6として、電解液とともに外装缶2内に収容されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show a battery according to an embodiment of the present invention. In FIG. 2, a battery 1 has an outer can 2, which is a battery container, a positive electrode 3 (electrode having a laminated structure) and a negative electrode 4 loaded in the outer can 2, and a closure for sealing an upper opening of the outer can 2. Structure. The positive electrode 3 and the negative electrode 4 are housed in the outer can 2 together with the electrolytic solution as a wound body 6 wound with a separator 5 interposed therebetween.

封口構造は、外装缶2の上方開口部の内周縁に固定された蓋板8と、蓋板8の中央部に開設された開口に、ゴム製の絶縁パッキン9を介して装着された端子体10と、蓋板8の下部に配置された絶縁板11とからなる。絶縁板11は、円盤状のベース部12の周縁に環状の側壁13を立設した上向きに開口する丸皿形状に形成されており、ベース部12の中央にはガス通口14が開設されている。蓋板8は、側壁13の上端部に受け止められた状態で、外装缶2の上方開口部の内周縁に、レーザ溶接若しくはパッキングを介したクリンプシールで固定されている。蓋板8もしくは外装缶2の缶底2aには薄肉部を設け、内圧が急激に上昇したときの対策としてのベントを設けることができる。正極3と端子体10の下面とは、正極リード体15で接続されており、負極端子4と外装缶2の内面とは負極リード体16で接続されている。   The sealing structure includes a cover plate 8 fixed to the inner peripheral edge of the upper opening of the outer can 2, and a terminal body attached to an opening formed in the center of the cover plate 8 via a rubber insulating packing 9. 10 and an insulating plate 11 arranged below the cover plate 8. The insulating plate 11 is formed in the shape of an upwardly opening round plate with an annular side wall 13 erected on the periphery of a disk-shaped base portion 12, and a gas passage 14 is opened in the center of the base portion 12. I have. The cover plate 8 is fixed to the inner peripheral edge of the upper opening of the outer can 2 by a crimp seal via laser welding or packing while being received by the upper end of the side wall 13. A thin portion may be provided on the lid plate 8 or the can bottom 2a of the outer can 2, and a vent may be provided as a countermeasure when the internal pressure is rapidly increased. The positive electrode 3 and the lower surface of the terminal body 10 are connected by a positive electrode lead body 15, and the negative electrode terminal 4 and the inner surface of the outer can 2 are connected by a negative electrode lead body 16.

本発明の電池の一例を示す横断面図を現す図1において、3は集電体22の両側にシート状合剤層20,21を配置して積層構造の電極とした正極であり、この正極3とその対極である負極2とをセパレータ5を介して捲回し、捲回体6を構成している。   In FIG. 1 showing a cross-sectional view showing an example of the battery of the present invention, reference numeral 3 denotes a positive electrode having a laminated structure in which sheet-shaped mixture layers 20 and 21 are arranged on both sides of a current collector 22; 3 and a negative electrode 2 as a counter electrode thereof are wound via a separator 5 to form a wound body 6.

図3は、上記積層構造の電極(正極)3の捲回前の状態を示す断面図であり、集電体22の両側に、この集電体22の内側に位置するシート状合剤層20と、外側に位置するシート状合剤層21とが、上記集電体22に固定されない状態で、配置された構成となっている。このような構成とすることによって正極3の可撓性や柔軟性を良好に担保できる。かくして、捲回時における活物質合剤の脱落ないし剥離やクラックの発生などを効果的に防いで、短絡や導電不良の発生を確実に抑えることができる。   FIG. 3 is a cross-sectional view showing a state before the winding of the electrode (positive electrode) 3 having the above-mentioned laminated structure, and the sheet-shaped mixture layer 20 located inside the current collector 22 on both sides of the current collector 22. And the sheet-shaped mixture layer 21 located on the outside are arranged without being fixed to the current collector 22. With such a configuration, the flexibility and flexibility of the positive electrode 3 can be secured well. Thus, it is possible to effectively prevent the active material mixture from falling off or peeling or to generate cracks at the time of winding, and it is possible to reliably suppress the occurrence of short circuit and poor conductivity.

また、図1に示すごとく、上記の捲回に際し、積層構造の正極3の捲回中心側の端部である捲回始端部Sでは、あらかじめシート状合剤層20・21を集電体22に固定しておいてもよい(図4(c)参照)。より詳しくは、集電体22が、シート状合剤層20・21よりも数mm内側となるように三者を重ね合わせたうえで、長さ方向の端部から3〜10mmをプレスにより圧着しておいてもよい。すなわち、集電体22にシート状合剤層20・21が固定されずに単に接触しているだけの状態で捲回を行ってもよいが、捲回始端部Sのシート状合剤層20・21は集電体22に固定し、他の部分ではシート状合剤層20・21が集電体22に固定されずに単に接触しているだけの状態としておくことにより、捲回時のセッティングが容易となり、また電極の幅方向(捲回方向と直交する方向)への巻きずれが生じるのを防ぐことができるので、精度よく捲回体6を構成することができる。   As shown in FIG. 1, at the time of the above-mentioned winding, at the winding start end S which is the end of the stacked structure of the positive electrode 3 on the winding center side, the sheet-shaped mixture layers 20 and 21 are previously collected by the current collector 22. (See FIG. 4C). More specifically, after the three members are overlapped so that the current collector 22 is several mm inside the sheet-shaped mixture layers 20 and 21, 3 to 10 mm is pressed from the end in the length direction by pressing. You may keep it. In other words, the winding may be performed in a state where the sheet-shaped mixture layers 20 and 21 are not fixed to the current collector 22 but are simply in contact with each other, but the sheet-shaped mixture layer 20 at the winding start end S may be wound. 21 is fixed to the current collector 22, and in other parts, the sheet-shaped mixture layers 20 and 21 are not fixed to the current collector 22 but are simply in contact with the current collector 22, so that the layers at the time of winding The setting becomes easy, and the occurrence of winding deviation in the width direction of the electrode (the direction orthogonal to the winding direction) can be prevented, so that the wound body 6 can be configured with high accuracy.

なお、上記捲回始端部Sのみの固定は、たとえば、集電体22が網などの多孔質集電体からなるときは、その両側に配置したシート状合剤層20・21の端部のみを圧着して、集電体22の網目などに活物質合剤を密着良好に埋設するなどの方法で行える。ただし、端部のみの固定手段はこれに限定されず、他の任意の手段を採用することができる。   In addition, only the winding start end S is fixed, for example, when the current collector 22 is formed of a porous current collector such as a net, only the ends of the sheet-shaped mixture layers 20 and 21 arranged on both sides thereof. Is pressed, and the active material mixture is buried in the mesh of the current collector 22 with good adhesion. However, the fixing means only at the end is not limited to this, and any other means can be adopted.

このように積層構造の正極3の一方の端部を中心として捲回する構成としたことにより、前記従来の捲回方式とは異なり、また上記積層構造の正極3の全体を圧着などして全体的に固定した状態で捲回するのとは異なり、集電体22の両側に設けたシート状合剤層20・21をかなり厚くしたときでも、捲回時に上記合剤層が集電体22から剥離したりクラックを生じたりするなどの不具合もなく、非常に良好に捲回でき、また短絡などの問題も起こらず、中負荷用途に適した安価で生産性の良い電池を得ることができる。   By thus being wound around one end of the positive electrode 3 having a laminated structure as a center, unlike the conventional winding method, the whole of the positive electrode 3 having the laminated structure is press-bonded or the like. Unlike the case where the current-collecting layer 20 and 21 provided on both sides of the current collector 22 are considerably thickened, unlike the case where the current-collecting layer is It is possible to obtain an inexpensive and highly-productive battery suitable for medium-load applications without any problems such as peeling or cracking from the film, and being able to be wound very well and without problems such as short circuit. .

積層構造の正極3において、集電体22は、金属や炭素の導電体からなるものであればよく、具体的には、ステンレス316や430、444などからなる平織り金網、金属箔、エキスパンドメタル、ラス網またはパンチングメタルなどが挙げられる。この集電体22は、短絡防止などの観点から、その両端部がシート状合剤層20・21の端部から露出しないような位置構成とされているのが好ましく、またその幅がシート状合剤層20・21の幅よりも狭くされているのが望ましい。この場合、集電体22の端部は、シート状合剤層20・21の端部から5mmまでの範囲で合剤層の内部に収容されているのがよい。   In the positive electrode 3 having a laminated structure, the current collector 22 may be made of a metal or carbon conductor. Specifically, the current collector 22 may be a plain woven wire mesh made of stainless steel 316, 430, or 444, a metal foil, an expanded metal, or the like. A lath net or a punching metal may be used. From the viewpoint of preventing short circuit, the current collector 22 is preferably configured so that both ends are not exposed from the ends of the sheet-shaped mixture layers 20 and 21. It is desirable that the width is smaller than the width of the mixture layers 20 and 21. In this case, the end of the current collector 22 is preferably accommodated in the mixture layer within a range of 5 mm from the ends of the sheet-like mixture layers 20 and 21.

また、積層構造の正極3において、集電体22が網などの多孔質集電体からなる場合に、捲回体6とした状態において集電体22の内部に残存する隙間がある。つまり、多孔質集電体は、シート状合剤層20・21を設ける前の状態において、それ自体、網目状の隙間を有している。しかし、この隙間のうち、多孔質集電体の中心から集電体厚さの20〜90%の部分に上記隙間を有し、その他の部分には、捲回時の圧によりシート状合剤層が埋設された構成となっている。   Further, in the positive electrode 3 having a laminated structure, when the current collector 22 is formed of a porous current collector such as a net, there is a gap that remains inside the current collector 22 in the state of the wound body 6. That is, the porous current collector itself has a mesh-shaped gap before the sheet-shaped mixture layers 20 and 21 are provided. However, among the gaps, the gap is provided at a portion of 20 to 90% of the thickness of the current collector from the center of the porous current collector, and the other portions are formed of a sheet-shaped mixture by the pressure during winding. The layers are buried.

集電体22の表面には、ペースト状の導電剤が塗布されていることが好ましい。集電体22として立体構造を有する網状集電体22を用いた場合も、金属箔などの本質的に平板からなる材料を用いた場合と同様に、導電材の塗布により集電効果の著しい改善が認められる。これは、網状集電体22の金属部分がシート状合剤層20・21と直接的に接触する経路のみならず、網目内に充填された導電材を介しての経路が有効に利用されていることに拠るものと推定される。   Preferably, a paste-like conductive agent is applied to the surface of the current collector 22. In the case where the net-like current collector 22 having a three-dimensional structure is used as the current collector 22, similar to the case where a material consisting essentially of a flat plate such as a metal foil is used, the current collection effect is significantly improved by applying a conductive material. Is recognized. This is because not only the path in which the metal part of the net-like current collector 22 directly contacts the sheet-like mixture layers 20 and 21 but also the path through the conductive material filled in the mesh are effectively used. It is presumed to be due to

導電材の具体例としては、銀ペーストやカーボンペーストなどを挙げることができる。とくにカーボンペーストは、銀ペーストに比べて材料費が安く済み、しかも銀ペーストと略同等の接触効果が得られるため、非水電解液電池の製造コストの低減化を図るうえで好適である。導電材のバインダとしては、水ガラスやイミド系のバインダなどの耐熱性の材料を用いることが望ましい。これはシート状合剤層20・21中の水分を除去する際に200℃を超える高温で乾燥処理するためである。   Specific examples of the conductive material include a silver paste and a carbon paste. In particular, the carbon paste requires less material cost than the silver paste, and can provide a contact effect substantially equal to that of the silver paste. Therefore, the carbon paste is suitable for reducing the manufacturing cost of the nonaqueous electrolyte battery. As the binder of the conductive material, it is desirable to use a heat-resistant material such as water glass or an imide-based binder. This is because the moisture in the sheet-shaped mixture layers 20 and 21 is removed at a high temperature exceeding 200 ° C.

この集電体22の両側に設けられるシート状合剤層20・21は、通常、正極活物質と導電助剤とバインダとを含んでなるものであり、これらの合剤を公知の塗布方式、加圧方式、これらの併用方式などにより、所定厚さのシート状に成形することにより、作製される。   The sheet-shaped mixture layers 20 and 21 provided on both sides of the current collector 22 usually include a positive electrode active material, a conductive auxiliary agent, and a binder. It is manufactured by molding into a sheet having a predetermined thickness by a pressurizing method, a combination method thereof, or the like.

正極活物質には、二酸化マンガン、フッ化カーボン、リチウムコバルト複合酸化物、スピネル型リチウムマンガン複合酸化物などが用いられる。導電助剤には、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラックから選択される一種、または2種以上の複合物などが用いられるが、主成分としてケッチェンブラックを用いるのが好ましい。バインダには、ポリテトラフルオロエチレンディスパージョン、粉末のポリテトラフルオロエチレン、ゴム系バインダなどが用いられるが、ポリテトラフルオロエチレンディスパージョンを用いるのが好ましい。   As the positive electrode active material, manganese dioxide, carbon fluoride, lithium cobalt composite oxide, spinel type lithium manganese composite oxide, or the like is used. As the conductive assistant, one selected from graphite, carbon black, acetylene black, and Ketjen black, or a composite of two or more kinds is used, but Ketjen black is preferably used as a main component. As the binder, polytetrafluoroethylene dispersion, powdered polytetrafluoroethylene, a rubber-based binder, or the like is used, and it is preferable to use polytetrafluoroethylene dispersion.

このシート状合剤層20・21は、空隙率が35〜50%であるのが望ましい。空隙率が小さすぎると、合剤密度が高くなりすぎて、柔軟性がなくなり、捲回時に割れが起こりやすい。また、空隙率が大きすぎると、電池容量が低下する。また、このシート状合剤層20・21は、中負荷用途として、電池内径の4〜10%に相当する厚みを有しているのが望ましい。   The sheet mixture layers 20 and 21 preferably have a porosity of 35 to 50%. If the porosity is too small, the mixture density becomes too high, the flexibility is lost, and cracks are likely to occur during winding. On the other hand, if the porosity is too large, the battery capacity decreases. Further, it is desirable that the sheet-shaped mixture layers 20 and 21 have a thickness corresponding to 4 to 10% of the inner diameter of the battery for medium load use.

シート状合剤層20・21の厚みが薄すぎると、捲回数が増え、捲回に手間がかかり、巻きずれが生じて短絡の原因となりやすく、逆に厚すぎると、パルス放電特性が劣化するなど、電池特性が損なわれやすい。   If the thickness of the sheet-shaped mixture layers 20 and 21 is too thin, the number of windings increases, and it takes time and effort to wind the windings, which may cause a winding shift and cause a short circuit. Conversely, if the thickness is too large, the pulse discharge characteristics deteriorate. Battery characteristics are easily damaged.

なお、このような比較的厚めのシート状合剤層20・21を用い、これと負極4を捲回する場合、捲回時に集電体22とシート状合剤層20・21との間に生じる捲回方向の位置ずれを考慮して、通常、シート状合剤層20・21のうち、集電体22の内側に位置するシート状合剤層20の捲回前の長さは、集電体22の長さより短く、集電体22の外側に位置するシート状合剤層21の捲回前の長さは、集電体22の長さより長くなるように、各長さが適宜設定される。   When such a relatively thick sheet-shaped mixture layer 20/21 is used and the negative electrode 4 is wound therearound, the current collector 22 and the sheet-shaped mixture layer 20/21 are wound at the time of winding. In consideration of the resulting positional deviation in the winding direction, the length of the sheet-shaped mixture layer 20 that is located inside the current collector 22 among the sheet-shaped mixture layers 20 and 21 before the winding is usually Each length is appropriately set so that the length of the sheet-shaped mixture layer 21 positioned outside the current collector 22 before winding is shorter than the length of the current collector 22 so as to be longer than the length of the current collector 22. Is done.

すなわち、捲回が進行するにつれ、シート状合剤層20の捲回中心付近を除く部分は、集電体22に対して外方(捲回中心と反対方向)にずれていき、一方、シート状合剤層21の捲回中心付近を除く部分は、集電体22に対して内方(捲回中心の方向)にずれていく。このずれの量は、捲回中心から離れるほど大きくなる。したがって、シート状合剤層20・21および集電体22の長さを適宜設定しておくことにより、図3に示すように、捲回前には集電体の端部がシート状合剤層20・21の間に露出していても、捲回後には、図1に示すようにシート状合剤層20・21の内部に収容することが可能となる。   That is, as the winding proceeds, the portion of the sheet-shaped mixture layer 20 except for the vicinity of the center of the winding shifts outward (in the direction opposite to the center of the winding) with respect to the current collector 22, while The portion of the mixture layer 21 other than the vicinity of the center of the winding shifts inward (in the direction of the center of the winding) with respect to the current collector 22. The amount of this shift increases as the distance from the center of the winding increases. Therefore, by appropriately setting the lengths of the sheet-shaped mixture layers 20 and 21 and the current collector 22, as shown in FIG. Even if it is exposed between the layers 20 and 21, after winding, it can be accommodated inside the sheet-shaped mixture layers 20 and 21 as shown in FIG.

集電体22の内外面全体の全体がシート状合剤層20・21で覆われていることによって、集電体22の表面への露出をなくした場合、過塩素酸リチウムを溶質とする電解液のように、伝導度の高い電解液を使用した場合においても、該集電体22の表面にデンドライト状リチウムが析出することを抑えて、非水電解液電池の異常放電を防ぐことができる。   When the entire inner and outer surfaces of the current collector 22 are covered with the sheet-shaped mixture layers 20 and 21, when exposure to the surface of the current collector 22 is eliminated, an electrolytic solution using lithium perchlorate as a solute is used. Even when an electrolytic solution having high conductivity is used like a liquid, it is possible to prevent the dendrite-like lithium from depositing on the surface of the current collector 22, thereby preventing abnormal discharge of the nonaqueous electrolyte battery. .

すなわち、本発明に係る非水電解液電池の異常放電は、集電体22の表面に析出したデンドライト状リチウムを介して該集電体22と負極4とが短絡することによるものであるから、集電体22の内外面の全体をシート状合剤層20・21で覆っておけば、高伝導度の電解液を使用した場合でも集電体22の表面にデンドライト状リチウムが析出する不具合は一切生じず、従って、集電体22−負極4間の短絡を抑えて電池の異常発熱を確実に防ぐことができる。   That is, the abnormal discharge of the nonaqueous electrolyte battery according to the present invention is due to a short circuit between the current collector 22 and the negative electrode 4 via dendritic lithium deposited on the surface of the current collector 22, If the entire inner and outer surfaces of the current collector 22 are covered with the sheet-shaped mixture layers 20 and 21, even when a high-conductivity electrolyte is used, the problem of precipitation of dendritic lithium on the surface of the current collector 22 is as follows. Therefore, no short circuit occurs between the current collector 22 and the negative electrode 4, and abnormal heat generation of the battery can be reliably prevented.

ここで「集電体22の内外面の全体が、両シート状合剤層20・21で覆われている」とは、図1に示すごとく捲回始端部Sおよび捲回末端部Eに係る集電体22が、両シート状合剤層20・21で覆われているだけでなく、図2に示すごとく集電体22の幅寸法(図2における上下方向の長さ寸法)が、シート状合剤層20・21の幅寸法よりも小さく設定されていて、該集電体22の幅方向の両端部がシート状合剤層20・21よりも内方側に位置していて、該シート状合剤層20・21で覆われていることを意味する。   Here, "the entire inner and outer surfaces of the current collector 22 are covered with the two sheet-shaped mixture layers 20 and 21" refers to the winding start end S and the winding end E as shown in FIG. Not only is the current collector 22 covered with the two sheet-shaped mixture layers 20 and 21, but also as shown in FIG. 2, the width of the current collector 22 (the length in the vertical direction in FIG. 2) is a sheet. The width of both ends of the current collector 22 in the width direction is set to be smaller than the width of the mixture layers 20 and 21, and the widthwise ends of the current collector 22 are located more inward than the sheet-form mixture layers 20 and 21. It means that it is covered with the sheet-shaped mixture layers 20 and 21.

捲回末端部Eにおけるシート状合剤層20および21の端部が集電体22の端部よりも長く延出された形態としておけば、集電体22の捲回末端部Eの露出を確実に阻止できる。そのうえで、シート状合剤層20・21の集電体22に対する延出寸法は0.5mm以上、1.5mm以下に設定する。延出寸法が0.5mm未満であると、捲回末端部Eに係る集電体22が表面に露出するおそれがあり、延出寸法が1.5mmを超えると、集電体22に裏打ちされないシート状合剤層20・21が長くなるため、放電容量の向上が期待できない。   If the end portions of the sheet-shaped mixture layers 20 and 21 at the winding end portion E are formed to be longer than the end portions of the current collector 22, the winding end portion E of the current collector 22 can be exposed. Can be reliably blocked. Then, the extension of the sheet-shaped mixture layers 20 and 21 with respect to the current collector 22 is set to 0.5 mm or more and 1.5 mm or less. When the extension dimension is less than 0.5 mm, the current collector 22 related to the winding end portion E may be exposed on the surface, and when the extension dimension exceeds 1.5 mm, the current collector 22 is not backed by the current collector 22. Since the sheet-shaped mixture layers 20 and 21 become longer, improvement in discharge capacity cannot be expected.

セパレータ5には、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイドなどの不織布や、微孔性フィルムなどが用いられる。   As the separator 5, a nonwoven fabric such as polypropylene, polyethylene, polyethylene terephthalate, polybutylene terephthalate, or polyphenylene sulfide, or a microporous film is used.

その厚さは、とくに限定されないが、通常は、不織布では50〜200μm、微孔性フィルムでは10〜50μmであるのがよい。   The thickness is not particularly limited, but is usually preferably 50 to 200 μm for a nonwoven fabric and 10 to 50 μm for a microporous film.

負極4は、薄い板状(箔状)に形成されており、その材料としては、リチウム金属、リチウムとアルミニウムなどの合金、黒鉛などの炭素材料を挙げることができる。この負極4の厚さは、通常0.2〜0.6mmとするのがよい。負極4は、図1および図4(b)に示すごとく、短尺と長尺の2枚の負極4a・4bを、貼り合わしてなるものであり、これらを正極3、セパレータ5とともに捲回して捲回体6を作製する。なお、負極4には銅箔などの集電体を基材として用いる事も可能である。   The negative electrode 4 is formed in a thin plate shape (foil shape), and examples of the material include lithium metal, alloys such as lithium and aluminum, and carbon materials such as graphite. The thickness of the negative electrode 4 is usually preferably 0.2 to 0.6 mm. As shown in FIG. 1 and FIG. 4 (b), the negative electrode 4 is formed by laminating two short and long negative electrodes 4a and 4b. The rotator 6 is manufactured. Note that a current collector such as a copper foil can be used as the base material for the negative electrode 4.

このような負極4と前記の正極3をセパレータ5を介して捲回するが、図1に示すごとく、捲回体6は、正極3の捲回始端部Sと捲回末端部Eとで規定される捲回数が1周を超え、3周以下、好ましくは2周以下することで全体として略円柱形状に形成され、捲回操作が容易で低コストである、中負荷用途に適した容量を持つ電池を製造できる。なお、図1には捲回数が1.7周程度の形態を示す。   Such a negative electrode 4 and the positive electrode 3 are wound with a separator 5 interposed therebetween. As shown in FIG. 1, the wound body 6 is defined by a winding start end S and a winding end E of the positive electrode 3. When the number of windings exceeds 1 round and 3 rounds or less, preferably 2 rounds or less, the whole is formed in a substantially cylindrical shape, and the winding operation is easy and low cost, and the capacity suitable for medium load use is obtained. Can be manufactured. FIG. 1 shows an embodiment in which the number of windings is about 1.7 turns.

捲回体6は、図4に示すような手順で作製することができる。まず、図4(a)に示すごとく、セパレータ5を2つ割の捲芯25に挟んで1周巻く。次に図4(b)に示すごとく、負極4を短尺4aのみの一層部分から捲芯25に向けて挿入して、セパレータ5とともに1周巻き込む(図4(c)参照)。続いて、図4(c)に示すごとく、正極3をセパレータ5を介して負極4上に載置して捲芯25で捲回する。ここでは、正極3は、両シート状合剤層20・21および集電体22を固定した捲回始端部Sの側から捲回されるようにしてあり、長尺の負極4b上にセパレータ5を介して載置された状態で捲回される。捲回終了後は、セパレータ5が最外周を覆う形となる。セパレータ5の捲回末端部Eを固定テープで固定する。以上より、図1に示すような形態の捲回体6を得ることができる。   The wound body 6 can be manufactured by a procedure as shown in FIG. First, as shown in FIG. 4 (a), the separator 5 is wound around the core 25 in one turn. Next, as shown in FIG. 4B, the negative electrode 4 is inserted from one layer portion of only the short length 4a toward the winding core 25 and wound around the separator 5 one round (see FIG. 4C). Subsequently, as shown in FIG. 4C, the positive electrode 3 is placed on the negative electrode 4 via the separator 5 and wound around the core 25. Here, the positive electrode 3 is wound from the side of the winding start end S to which the two sheet-shaped mixture layers 20 and 21 and the current collector 22 are fixed, and the separator 5 is placed on the long negative electrode 4b. Is wound in a state of being placed via the After the end of the winding, the separator 5 covers the outermost periphery. The wound end portion E of the separator 5 is fixed with a fixing tape. From the above, a wound body 6 having the form shown in FIG. 1 can be obtained.

電池容器である外装缶2は、鉄またはステンレス鋼製の有底円筒形の容器であり、その蓋はレーザー溶接やパッキングを介したクリンプシールで密封される。また、密封は端子部のカシメ封止やガラスハーメチックシールで行ってもよい。さらに、通常は、蓋または缶底に薄肉部を設けて、内圧が急激に上昇したときの対策として、ベントが設けられる。   The outer can 2 as a battery container is a bottomed cylindrical container made of iron or stainless steel, and its lid is sealed with a crimp seal via laser welding or packing. Further, the sealing may be performed by caulking or glass hermetic sealing of the terminal portion. Further, usually, a thin portion is provided on the lid or the bottom of the can, and a vent is provided as a countermeasure when the internal pressure is rapidly increased.

この電池容器である外装缶2には、非水電解液が注入される。非水電解液には、溶媒として、プロピレンカーボネート、エチレンカーボネートなどの環状カーボネートにジメトキシエタンなどの鎖状エーテルを混合したものを使用し、これに溶質として、LiPF6 、LiClO4 、LiCF3 SO3 、(CF3 SO22 NLiなどを0.3〜1.5モル/リットルの割合で溶解したものが用いられる。なかでも、過塩素酸リチウム(LiClO)は伝導度が高く、電池特性の向上効果を得るために好ましい。 A non-aqueous electrolyte is injected into the outer can 2 which is a battery container. For the non-aqueous electrolyte, a mixture of a cyclic carbonate such as propylene carbonate and ethylene carbonate and a chain ether such as dimethoxyethane is used as a solvent, and LiPF 6 , LiClO 4 , and LiCF 3 SO 3 are used as solutes. , (CF 3 SO 2 ) 2 NLi or the like dissolved at a ratio of 0.3 to 1.5 mol / liter. Among them, lithium perchlorate (LiClO 4 ) has a high conductivity and is preferable for obtaining an effect of improving battery characteristics.

過塩素酸リチウムのように伝導度の高い電解液を採用した場合、シート状合剤層20・21の面積で規定される電極面積が、25cm以上、60cm以下に設定することができる。かかる電極面積は、この種の捲回式の電極体としては比較的小さな値であるが、過塩素酸リチウムのような伝導度の高い電解液を採用した場合、良好な放電容量が得られる。60cmを超えると、活物質の充填性が低下し、軽負荷容量が減少する。 When an electrolytic solution having high conductivity such as lithium perchlorate is employed, the electrode area defined by the area of the sheet-shaped mixture layers 20 and 21 can be set to 25 cm 2 or more and 60 cm 2 or less. Such an electrode area has a relatively small value for this kind of wound electrode body, but when an electrolytic solution having high conductivity such as lithium perchlorate is employed, a good discharge capacity can be obtained. If it exceeds 60 cm 2 , the filling property of the active material is reduced, and the light load capacity is reduced.

上記構成の非水電解液電池には、リチウム−二酸化マンガン電池、リチウム−フツ化カーボン電池、リチウムイオン電池などが含まれる。   The non-aqueous electrolyte battery having the above configuration includes a lithium-manganese dioxide battery, a lithium-fluorocarbon battery, a lithium ion battery, and the like.

なお、本発明の電池には、上記構成の非水電解液電池のほか、乾電池、アルカリマンガン電池などの他の一次電池、さらに、ニッケル−カドミニウム電池、ニッケル−水素電池、リチウムイオン電池などの二次電池も含まれる。   The battery of the present invention includes, in addition to the nonaqueous electrolyte battery having the above configuration, other primary batteries such as a dry battery and an alkaline manganese battery, and further includes a nickel-cadmium battery, a nickel-hydrogen battery, and a lithium ion battery. Secondary batteries are also included.

これらの各電池構成に応じて、公知の正極活物質(正極合剤)、負極活物質(負極合剤)、電解液などが適宜選択使用されるものである。また、前記の図1では、正極に対して本発明の構成を適用した例を示しているが、負極に対し同様に適用できることはいうまでもない。
(実施例)
A known positive electrode active material (positive electrode mixture), a negative electrode active material (negative electrode mixture), an electrolytic solution, and the like are appropriately selected and used depending on each of these battery configurations. Although FIG. 1 shows an example in which the configuration of the present invention is applied to the positive electrode, it goes without saying that the same can be applied to the negative electrode.
(Example)

次に、実施例を挙げて本発明をより具体的に説明する。但し、本発明はこれら実施例に限定されるものではない。なお、この実施例においては、リチウム−二酸化マンガン電池(CR電池)を例にして説明する。また、以下において、シート状合剤層の空隙率は、下記のようにして求めたものである。   Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In this embodiment, a lithium-manganese dioxide battery (CR battery) will be described as an example. In the following, the porosity of the sheet-shaped mixture layer is determined as follows.

<空隙率の測定>
シート状合剤層を構成させる二酸化マンガン、ケッチェンブラックおよびポリテトラフルオロエチレンの真比重を、それぞれ、4.5g/cm3 、2.0g/cm3 、および2.2g/cm3 として、単位体積あたりのシート状合剤層中に含まれる各構成要素の計算上の重量の合計X(g)を求め、実際のシート状合剤層の密度Y(g)との差から〔(X−Y)/X〕×100として、空隙率(%)を求めた。
<Measurement of porosity>
The true specific gravity of manganese dioxide, Ketjen black and polytetrafluoroethylene constituting the sheet mixture layer was 4.5 g / cm 3 , 2.0 g / cm 3 , and 2.2 g / cm 3 , respectively. The total X (g) of the calculated weights of the respective constituent elements contained in the sheet-shaped mixture layer per volume is calculated, and the difference from the actual density Y (g) of the sheet-shaped mixture layer is obtained by [(X− Y) / X] × 100, and the porosity (%) was determined.

〈正極の製法〉
(配合) ケッチェンブラック3重量部と、二酸化マンガン(東ソー社製)92重量部の比率でプラネタリーミキサーを用いて乾式で5分間混合したのち、水を重量比で固形分の20重量部添加して5分間混合した。バインダとしてポリテトラフルオロエチレンのディスパージョン(D-1:ダイキン工業社製)を固形分として5重量部を残りの水に希釈した状態で添加し、5分間混合した。配合剤中の水分は、固形分100に対し25〜30に調整した。
<Positive electrode manufacturing method>
(Blending) Dry mixing was performed for 5 minutes using a planetary mixer at a ratio of 3 parts by weight of Ketjen black and 92 parts by weight of manganese dioxide (manufactured by Tosoh Corporation), and then 20 parts by weight of water was added at a weight ratio of solids. And mixed for 5 minutes. As a binder, a dispersion of polytetrafluoroethylene (D-1: manufactured by Daikin Industries, Ltd.) was added in a state where 5 parts by weight as a solid content was diluted in the remaining water, and mixed for 5 minutes. The water content in the compounding agent was adjusted to 25 to 30 with respect to 100 solids.

(シート化) 混合した配合剤を直径250mmの2本ロールを用い、ロール温度を130±5℃に調整し、プレス圧7トン/cm、ロール間隔0.4mm、回転速度10rpmで、ロールによる圧延、シート化を行った。ロールを通過した配合剤(予備シート)を105℃±5℃で残水分が1%以下になるまで乾燥した。次いで乾燥後の予備シートを粉砕器を用いて粉砕した。ここでは、プレスされた予備シートが、元の見かけ体積の2倍以上になるまでコーヒーミルで粉砕した。粉砕された粒子径は、大部分が1mm以下であり、バインダとして添加したポリテトラフルオロエチレンの繊維も1mm以下の長さに切断されていた。   (Sheet forming) Rolling the mixed compound using two rolls with a diameter of 250 mm, adjusting the roll temperature to 130 ± 5 ° C., press pressure of 7 tons / cm, roll interval of 0.4 mm, rotation speed of 10 rpm, and rolls. , Into sheets. The compounding agent (preliminary sheet) passed through the roll was dried at 105 ° C. ± 5 ° C. until the residual moisture became 1% or less. Next, the dried preliminary sheet was pulverized using a pulverizer. Here, the pressed spare sheet was pulverized with a coffee mill until it reached at least twice the original apparent volume. Most of the pulverized particle diameter was 1 mm or less, and the polytetrafluoroethylene fiber added as a binder was also cut to a length of 1 mm or less.

粉砕された材料に対して、再度ロールによるシート化を行った。ロールの間隔は0.6±0.05mmに調整し、ロール温度は120±10℃、プレス圧7トン/cm、回転速度10rpmでシート化を行い、シート状合剤層を得た。シート状合剤層は、厚さが1.0mm、密度が2.5g/cm3、空隙率が42% であった。このシート状合剤層の厚さ1.0mmは、後記のように組み立てた電池内径の5.9%に相当する。 The pulverized material was again rolled into a sheet. The roll interval was adjusted to 0.6 ± 0.05 mm, the roll temperature was set to 120 ± 10 ° C., the press pressure was set to 7 ton / cm, and the rotation speed was set to 10 rpm to obtain a sheet-like mixture layer. The sheet mixture layer had a thickness of 1.0 mm, a density of 2.5 g / cm 3 , and a porosity of 42%. The thickness of the sheet-shaped mixture layer of 1.0 mm corresponds to 5.9% of the inner diameter of the battery assembled as described later.

以上のようにして、内周用と外周用の2枚のシート状合剤層20・21(図1、図3(c)参照)を作製した。内周用のシート状合剤層20は、幅37mm、長さ51mmに切断した。外周用のシート状合剤層21は、幅37mm、長さ61mmに切断した。この時のシート状合剤層20.21で規定される正極面積は、3.7×5.1+3.7×6.1=41.44cmとなる。 As described above, two sheet-shaped mixture layers 20 and 21 for the inner periphery and the outer periphery (see FIGS. 1 and 3C) were produced. The sheet-shaped mixture layer 20 for the inner periphery was cut into a width of 37 mm and a length of 51 mm. The outer peripheral sheet-shaped mixture layer 21 was cut into a width of 37 mm and a length of 61 mm. At this time, the positive electrode area defined by the sheet-like mixture layer 20.21 is 3.7 × 5.1 + 3.7 × 6.1 = 41.44 cm 2 .

(集電体) ステンレス316からなる厚さ0.2mmのエキスパンドメタルを集電体22として用いた。このエキスパンドメタルは、幅34mm、長さ56mmに切断し、その長さ方向の中央部に、厚さ0.3mm、幅3mmのステンレスリボン製の正極リード体15を抵抗溶接により取り付けた。集電体22にカーボンペースト(日本黒鉛社製)を網の目をつぶさない程度に塗布したのち、105℃±5℃の加熱温度条件で2時間以上乾燥した。尚、ここでは4mg/cm2 となるようにカーボンペーストを塗布した。 (Current Collector) An expanded metal made of stainless steel 316 and having a thickness of 0.2 mm was used as the current collector 22. The expanded metal was cut into a width of 34 mm and a length of 56 mm, and a positive electrode lead 15 made of a stainless steel ribbon having a thickness of 0.3 mm and a width of 3 mm was attached by resistance welding to the center in the length direction. After a carbon paste (manufactured by Nippon Graphite Co., Ltd.) was applied to the current collector 22 to such an extent that the mesh was not broken, it was dried at a heating temperature of 105 ° C. ± 5 ° C. for 2 hours or more. Here, the carbon paste was applied so as to be 4 mg / cm 2 .

次に、図4(c)に示すごとく、2枚のシート状合剤層20・21を、その間に集電体22を介装した状態で長さ方向の一端部のみを固定して三者を一体化した。具体的には、内・外周用の2枚のシート状合剤層20・21は、長さ方向の一端を揃えるとともに、集電体22の端部をシート状合剤層20・21の端部から1mm内側になるようにセットし、幅方向にも、はみ出さないようにセットし、その状態で長さ方向の端部から5mmをプレスにより圧着することで、3者を一体化した。続いて、これらシート状合剤層20・21および集電体22を250℃±10℃で6時間熱風乾燥して正極3を得た。尚、ここでシート状合剤層20・21と集電体22とを一体化したのは、作業上の問題であり、尤も独立したシート状合剤層20・21と集電体22とを、捲回時に一体化しても特性上の問題はない。   Next, as shown in FIG. 4 (c), the two sheet-shaped mixture layers 20 and 21 are fixed with only one end in the length direction with the current collector 22 interposed therebetween. Was integrated. More specifically, the two sheet-shaped mixture layers 20 and 21 for the inner and outer circumferences are aligned at one end in the length direction, and the ends of the current collector 22 are connected to the ends of the sheet-shaped mixture layers 20 and 21. It was set so as to be 1 mm inward from the part, and was set so as not to protrude also in the width direction. In this state, 5 mm was pressed from an end in the length direction by a press to integrate the three members. Subsequently, the sheet-shaped mixture layers 20 and 21 and the current collector 22 were dried with hot air at 250 ° C. ± 10 ° C. for 6 hours to obtain a positive electrode 3. Here, the integration of the sheet-shaped mixture layers 20 and 21 and the current collector 22 is a problem in operation, and the independent sheet-shaped mixture layers 20 and 21 and the current collector 22 may be combined. However, there is no problem in characteristics even when integrated at the time of winding.

〈負極の製法〉
負極4は、幅37mm、厚さ0.3mmのリチウム箔を46mmと96mmに切断し、短尺側の箔4aの一端から10mmを除き、36mmを長尺側の箔4bと重ねて圧着した。負極リード体16は、厚さ0.1mm、幅3mmのニッケルリボンの一端をエンボス加工してなるものとし、2枚の箔の間に挟んで圧着して固定した。
<Negative electrode manufacturing method>
The negative electrode 4 was obtained by cutting a lithium foil having a width of 37 mm and a thickness of 0.3 mm into 46 mm and 96 mm, and excluding 10 mm from one end of the short side foil 4a, 36 mm was overlapped with the long side foil 4b and pressed. The negative electrode lead body 16 was formed by embossing one end of a nickel ribbon having a thickness of 0.1 mm and a width of 3 mm, and was fixed by being pressed between two foils.

〈組み立て方法〉
幅44mm、厚さ0.025mmの微孔性ポリエチレンフィルムからなるセパレータ(旭化成社製ハイポア)を220mmに切断し、図4(a)に示すごとく2つ割の直径4mmの捲芯25に挟んで1周巻いた。次いで、図4(b)・(c)に示すごとく、負極4のリチウム金属箔の一重長さが10mmの方を捲芯25側にして、セパレータ5と同時に1周巻き込んだのち、シート状合剤層20・21を固定した方を捲芯25側に載置して捲回した。捲回終了後は、セパレータ5が最外周を覆う形となり、セパレータ5の巻き終わり部を固定テープで固定した。捲回末端部Eに係るセパレータ5を折り曲げ、該セパレータ5でシート状合剤層20・21が被覆されるようにした。以上より捲回数が2周程度の捲回体6を得た。
<Assembly method>
A separator made of a microporous polyethylene film having a width of 44 mm and a thickness of 0.025 mm (Hypore manufactured by Asahi Kasei Corporation) is cut into 220 mm and sandwiched between two cores 25 each having a diameter of 4 mm as shown in FIG. I wrapped one lap. Next, as shown in FIGS. 4B and 4C, the lithium metal foil of the negative electrode 4 having a single length of 10 mm is wound around the winding core 25 with the one-side length of 10 mm, and is wound around the separator 5 one time. The side on which the agent layers 20 and 21 were fixed was placed on the winding core 25 side and wound. After the completion of the winding, the separator 5 covered the outermost periphery, and the winding end portion of the separator 5 was fixed with a fixing tape. The separator 5 related to the winding end portion E was bent so that the sheet-shaped mixture layers 20 and 21 were covered with the separator 5. Thus, a wound body 6 having a number of turns of about 2 was obtained.

ニッケルメッキした鉄缶からなる外装缶2の底に、厚さ0.2mmのポリプロピレン製絶縁板を挿入し、その上に捲回体6を正負極のリード体15・16が上側に向く姿勢で挿入した。負極リード体16は、外装缶2の上部内面に抵抗溶接した。正極リード体15は、絶縁板11を挿入したのち、端子体10の下面に抵抗溶接した。この時点で絶縁抵抗を測定し、短絡がないことを確認した。   A 0.2 mm thick polypropylene insulating plate is inserted into the bottom of the outer can 2 made of a nickel-plated iron can, and the wound body 6 is placed thereon with the positive and negative lead members 15 and 16 facing upward. Inserted. The negative electrode lead body 16 was resistance-welded to the upper inner surface of the outer can 2. The positive electrode lead body 15 was resistance-welded to the lower surface of the terminal body 10 after the insulating plate 11 was inserted. At this time, the insulation resistance was measured, and it was confirmed that there was no short circuit.

電解液は、0.5M LiClO4 /(PC+DME=1:2)を、外装缶2内に3.3±0.1ml注入した。注入は3度に分け、最終工程で減圧にして全量を注入した。電解液の注入後、蓋体8を嵌合・レーザ溶接により封口した。以上により、実施例1に係る非水電解液電池を得た。 As the electrolytic solution, 3.3 ± 0.1 ml of 0.5 M LiClO 4 / (PC + DME = 1: 2) was injected into the outer can 2. The injection was divided into three times, and the whole amount was injected under reduced pressure in the final step. After the injection of the electrolyte, the lid 8 was fitted and sealed by laser welding. Thus, a nonaqueous electrolyte battery according to Example 1 was obtained.

(後処理:予備放電、エージング)
封口した電池は、1Ωの抵抗で30秒間予備放電し、45℃で24時間保管した後、1Aの定電流で3分間2次予備放電を行った。予備放電後の電池を、室温で7日間エージングした。
(Post-treatment: pre-discharge, aging)
The sealed battery was pre-discharged at a resistance of 1Ω for 30 seconds, stored at 45 ° C. for 24 hours, and then subjected to a secondary pre-discharge at a constant current of 1 A for 3 minutes. The battery after the preliminary discharge was aged at room temperature for 7 days.

内周側のシート状合剤層20は、厚さ1.6mm、幅37mm、長さ33mmとし、外周側のシート状合剤層21は、厚さ1.6mm、幅37mm、長さ43mmとし、両シート状合剤層20・21の間に介装される集電体22であるエキスパンドメタルは、幅34mm、長さ37mmとして正極3を作製した。負極4bの寸法は、厚さ0.5mm、幅37mm、長さ80mmとし、微孔性ポリエチレンフィルムからなるセパレータは幅44mm、厚さ0.025mm、長さ150mmとした。これら以外は実施例1と同様にして、実施例2に係るリチウム−二酸化マンガン電池を得た。なお、捲回体6の捲回数は、ほぼ1.5周であり、上記シート状合剤層の厚さ1.6mmは、組み立てた電池内径の9.4%に相当していた。この時のシート状合剤層で規定される正極面積は、3.7×3.3+3.7×4.3=28.12cmとなる。 The inner-side sheet-shaped mixture layer 20 has a thickness of 1.6 mm, a width of 37 mm, and a length of 33 mm, and the outer-side sheet-shaped mixture layer 21 has a thickness of 1.6 mm, a width of 37 mm, and a length of 43 mm. The positive electrode 3 was manufactured with an expanded metal as the current collector 22 interposed between the two sheet-shaped mixture layers 20 and 21 having a width of 34 mm and a length of 37 mm. The dimensions of the negative electrode 4b were 0.5 mm thick, 37 mm wide and 80 mm long, and the separator made of a microporous polyethylene film was 44 mm wide, 0.025 mm thick and 150 mm long. Except for these, in the same manner as in Example 1, a lithium-manganese dioxide battery according to Example 2 was obtained. The number of turns of the wound body 6 was approximately 1.5 turns, and the thickness of the sheet-shaped mixture layer of 1.6 mm was equivalent to 9.4% of the inner diameter of the assembled battery. At this time, the area of the positive electrode defined by the sheet mixture layer is 3.7 × 3.3 + 3.7 × 4.3 = 28.12 cm 2 .

内周側のシート状合剤層20は、厚さ0.7mm、幅37mm、長さ73mmとし、外周側のシート状合剤層21は、厚さ0.7mm、幅37mm、長さ83mmとし、両シート状合剤層20・21の間に介装される集電体22であるエキスパンドメタルは、幅34mm、長さ78mmとして正極3を作製した。負極4bの寸法は、厚さ0.5mm、幅37mm、長さ80mmとし、微孔性ポリエチレンフィルムからなるセパレータは幅44mm、厚さ0.025mm、長さ300mmとした。これら以外は実施例1と同様にして、実施例3に係るリチウム−二酸化マンガン電池を得た。なお、捲回体6の捲回数はほぼ3周であり、上記シート状合剤層の厚さ0.7mmは、組み立てた電池内径の4.1%に相当していた。この時のシート状合剤層20・21で規定される正極面積は、3.7×7.3+3.7×8.3=57.72cmとなる。 The inner-side sheet-shaped mixture layer 20 has a thickness of 0.7 mm, a width of 37 mm, and a length of 73 mm, and the outer-side sheet-shaped mixture layer 21 has a thickness of 0.7 mm, a width of 37 mm, and a length of 83 mm. The positive electrode 3 was manufactured with an expanded metal as the current collector 22 interposed between the two sheet-shaped mixture layers 20 and 21 having a width of 34 mm and a length of 78 mm. The dimensions of the negative electrode 4b were 0.5 mm thick, 37 mm wide and 80 mm long, and the separator made of a microporous polyethylene film was 44 mm wide, 0.025 mm thick and 300 mm long. Except for these, in the same manner as in Example 1, a lithium-manganese dioxide battery according to Example 3 was obtained. The number of turns of the wound body 6 was approximately three times, and the thickness of the sheet-shaped mixture layer of 0.7 mm was equivalent to 4.1% of the inner diameter of the assembled battery. At this time, the positive electrode area defined by the sheet-shaped mixture layers 20 and 21 is 3.7 × 7.3 + 3.7 × 8.3 = 57.72 cm 2 .

シート状合剤層20・21の密度を2.8g/cm3 、空隙率を35%に変更した以外は、実施例1と同様にして、正極3を作製した。また、この正極3を用いて、実施例1と同様にして、リチウム−二酸化マンガン電池を作製した。 The positive electrode 3 was produced in the same manner as in Example 1 except that the density of the sheet-shaped mixture layers 20 and 21 was changed to 2.8 g / cm 3 and the porosity was changed to 35%. Using this positive electrode 3, a lithium-manganese dioxide battery was produced in the same manner as in Example 1.

シート状合剤層20・21の密度を2.16g/cm3 、空隙率を50%に変更した以外は、実施例1と同様にして、正極3を作製した。また、この正極3を用いて、実施例1と同様にして、リチウム−二酸化マンガン電池を作製した。 The positive electrode 3 was produced in the same manner as in Example 1 except that the density of the sheet-shaped mixture layers 20 and 21 was changed to 2.16 g / cm 3 and the porosity was changed to 50%. Using this positive electrode 3, a lithium-manganese dioxide battery was produced in the same manner as in Example 1.

集電体22として厚さ0.2mm、幅34mm、長さ56mmのステンレス製の平織り金網を用いた以外は、実施例1と同様にして、正極3を作製した。また、この正極3を用いて、実施例1と同様にして、リチウム−二酸化マンガン電池を作製した。   The positive electrode 3 was produced in the same manner as in Example 1 except that a stainless steel plain-woven wire mesh having a thickness of 0.2 mm, a width of 34 mm, and a length of 56 mm was used as the current collector 22. Using this positive electrode 3, a lithium-manganese dioxide battery was produced in the same manner as in Example 1.

シート状合剤層20・21の密度を3.0g/cm3 、空隙率を30%に変更した以外は、実施例1と同様にして、正極3を作製した。また、この正極3を用いて、実施例1と同様にして、リチウム−二酸化マンガン電池を作製した。 The positive electrode 3 was produced in the same manner as in Example 1 except that the density of the sheet-shaped mixture layers 20 and 21 was changed to 3.0 g / cm 3 and the porosity was changed to 30%. Using this positive electrode 3, a lithium-manganese dioxide battery was produced in the same manner as in Example 1.

電解液として、0.5M LiCF3 SO3 /(PC+DME=1:2)としたこと以外は、実施例1と同様にしてリチウム−二酸化マンガン電池を得た。 A lithium-manganese dioxide battery was obtained in the same manner as in Example 1, except that 0.5 M LiCF 3 SO 3 / (PC + DME = 1: 2) was used as the electrolytic solution.

集電体22の幅をシート状合剤層20・21の幅と同じ37mmとなるようにした以外は、実施例1と同様にして、正極3を作製した。また、この正極3を用いて、実施例1と同様にして、リチウム−二酸化マンガン電池を作製した。このとき集電体22の上下両端は、シート状合剤層20・21から露出していた。
《比較例1》
The positive electrode 3 was produced in the same manner as in Example 1 except that the width of the current collector 22 was set to 37 mm, which was the same as the width of the sheet-shaped mixture layers 20 and 21. Using this positive electrode 3, a lithium-manganese dioxide battery was produced in the same manner as in Example 1. At this time, both upper and lower ends of the current collector 22 were exposed from the sheet mixture layers 20 and 21.
<< Comparative Example 1 >>

シート状合剤層20・21と集電体22の長さをいずれも56mmに変更し、かつ電極全体にわたってプレス圧着処理を施した以外は、実施例1と同様にして、正極3を作製した。また、この正極3を用いて、実施例1と同様にして、捲回を行ったが、合剤層が剥離し、捲回体を作製することができなかった。したがって、電池の作製もできなかった。
《比較例2》
The positive electrode 3 was produced in the same manner as in Example 1 except that the length of each of the sheet-shaped mixture layers 20 and 21 and the current collector 22 was changed to 56 mm, and that the entire electrode was subjected to press-compression treatment. . In addition, winding was performed using this positive electrode 3 in the same manner as in Example 1, but the mixture layer was peeled off, and a wound body could not be produced. Therefore, a battery could not be manufactured.
<< Comparative Example 2 >>

内周側のシート状合剤層20は、厚さ0.28mm、幅37mm、長150mmとし、外周側のシート状合剤層21は、厚さ0.28mm、幅37mm、長さ150mmとし、両シート状合剤層20・21の間に介装される集電体22であるエキスパンドメタルは、幅34mm、長さ148mmとし、比較例1と同様に電極全体に渡ってプレス圧着処理をした以外は、実施例1と同様にして、正極を作製した。負極4bの寸法は、厚さ0.2mm、幅37mm、長さ184mmとし、微孔性ポリエチレンフィルムからなるセパレータは幅44mm、厚さ0.025mm、長さ600mmとした。このときのシート状合剤層で規定される正極面積は、3.7×22.4+3.7×22.4=165.76cmとなる。なお、捲回体6の捲回数は、ほぼ6周であり、上記シート状合剤層の厚さ:0.28mmは、組み立てた電池内径の1.6%に相当していた。
《比較例3》
The inner peripheral sheet-shaped mixture layer 20 has a thickness of 0.28 mm, a width of 37 mm, and a length of 150 mm, and the outer peripheral sheet-shaped mixture layer 21 has a thickness of 0.28 mm, a width of 37 mm, and a length of 150 mm. The expanded metal as the current collector 22 interposed between the two sheet-shaped mixture layers 20 and 21 was 34 mm in width and 148 mm in length, and was subjected to press-bonding treatment over the entire electrode as in Comparative Example 1. Except for the above, a cathode was produced in the same manner as in Example 1. The dimensions of the negative electrode 4b were 0.2 mm in thickness, 37 mm in width, and 184 mm in length. The separator made of a microporous polyethylene film was 44 mm in width, 0.025 mm in thickness, and 600 mm in length. At this time, the area of the positive electrode defined by the sheet mixture layer is 3.7 × 22.4 + 3.7 × 22.4 = 165.76 cm 2 . The number of turns of the wound body 6 was approximately 6 turns, and the thickness of the sheet-shaped mixture layer: 0.28 mm was equivalent to 1.6% of the inner diameter of the assembled battery.
<< Comparative Example 3 >>

正極合剤を外径17mm、内径11mmで高さ37mmの中空円筒状に成形し、セパレータを介して上記正極合剤内部に負極としてリチウムを配することにより、ボビンタイプのリチウム−二酸化マンガン電池を作製した。このとき、正極と負極の対向した電極面積は、約13cmであった。 By forming a positive electrode mixture into a hollow cylindrical shape having an outer diameter of 17 mm, an inner diameter of 11 mm and a height of 37 mm, and disposing lithium as a negative electrode inside the positive electrode mixture through a separator, a bobbin type lithium-manganese dioxide battery is obtained. Produced. At this time, the facing electrode area of the positive electrode and the negative electrode was about 13 cm 2 .

実施例1〜9および比較例1〜3に係るリチウム−二酸化マンガン電池の特性評価に先立ち、以下のような試験を行った。   Prior to the evaluation of the characteristics of the lithium-manganese dioxide batteries according to Examples 1 to 9 and Comparative Examples 1 to 3, the following tests were performed.

実施例1に係る捲回体6に対して、図5(a)〜(c)に示すように正負極3・4を短絡させた。すなわち、図5(a)に示すように、セパレータ5に直接0.25cm2 の穴30を開けて、シート状合剤層21の表面と負極4とが接触するようにしたもの、図5(b)に示すように、シート状合剤層21の表面と負極4との間にφ0.065mmのステンレス線31で短絡経路を設けたもの、図5(c)に示すように、正極3の集電体22と負極4との間にφ0.065mmのステンレス線31で短絡経路を設けたもの、以上の3種の捲回体6を用意した。それぞれの捲回体6を外装缶2内に装填して(a)・(b)・(c)の三つのモデルの非水電解液電池を作製した。 The positive and negative electrodes 3 and 4 were short-circuited to the wound body 6 according to Example 1 as shown in FIGS. That is, as shown in FIG. 5A, a hole 30 of 0.25 cm 2 is directly formed in the separator 5 so that the surface of the sheet-shaped mixture layer 21 and the negative electrode 4 come into contact with each other. As shown in FIG. 5B, a short circuit path is provided between the surface of the sheet-shaped mixture layer 21 and the negative electrode 4 with a stainless steel wire 31 having a diameter of 0.065 mm, and as shown in FIG. The above three types of wound bodies 6 were prepared in which a short circuit path was provided between the current collector 22 and the negative electrode 4 with a stainless steel wire 31 of φ0.065 mm. Each of the wound bodies 6 was loaded into the outer can 2 to produce three types of nonaqueous electrolyte batteries (a), (b), and (c).

(a)〜(c)の3種のリチウム−二酸化マンガン電池に電解液(0.5M LiClO4 /(PC+DME=1:2))を注液した際の温度上昇を計測した。その結果を表1に示す。 The temperature rise when the electrolyte (0.5 M LiClO 4 / (PC + DME = 1: 2)) was injected into the three types of lithium-manganese dioxide batteries (a) to (c) was measured. Table 1 shows the results.

Figure 2004363087
Figure 2004363087

表1に示すように、(c)モデルの場合のみ温度が急激に上昇して110℃を超えた。さらに試験後の電池を分解すると、(a)モデルと(b)モデルの電池では、セパレータ5等に異常が見られないが、(c)モデルにおいては短絡経路に使用したステンレス線31が消失し、その近傍のセパレータ5に黒くこげたあとが見られた。   As shown in Table 1, only in the case of the model (c), the temperature rose rapidly and exceeded 110 ° C. When the battery after the test is further disassembled, in the batteries of the models (a) and (b), no abnormality is seen in the separator 5 and the like, but in the model (c), the stainless wire 31 used for the short-circuit path disappears. After that, the separator 5 in the vicinity thereof was darkened.

この結果より、電池内部における短絡部位として正極3の集電体22と負極4との間に短絡経路が形成された場合のみ、異常発熱が生じることがわかる。これを踏まえて、過放電時の安全性を正極3の集電体22に対するリチウムの析出の有無に基づいて判断する。   From this result, it can be seen that abnormal heat generation occurs only when a short-circuit path is formed between the current collector 22 of the positive electrode 3 and the negative electrode 4 as a short-circuit site inside the battery. Based on this, safety at the time of overdischarge is determined based on whether or not lithium is deposited on the current collector 22 of the positive electrode 3.

実施例1および比較例9の電池を完全放電後、電池の端子間電圧を−3Vに1時間強制放電後、集電体22にリチウムの析出がみられるかどうかを観察した。その結果を表2に示す。   After the batteries of Example 1 and Comparative Example 9 were completely discharged, the voltage between the terminals of the batteries was forcibly discharged to -3 V for 1 hour, and then whether or not lithium was deposited on the current collector 22 was observed. Table 2 shows the results.

Figure 2004363087
Figure 2004363087

表2に示すように、集電体22の露出のなく、かつ高伝導度の電解液としてLiClO4を採用した実施例1および、集電体22の露出のなく、かつ電解液としてLiCF3 SO3を採用した実施例8係る電池では、集電体22への直接のリチウムの析出は見られなかった。これに対して、捲回体6の上下両端部の集電体22が露出していて、かつ高伝導度の電解液を採用した実施例9に係る電池では、集電体22へのリチウムの析出が見られた。以上より、集電体22の内外面の全体をシート状合剤層20・21で覆う形態とすれば、過塩素酸リチウムを溶質とする電解液のごとく、伝導度の高い電解質を採用した場合でも、過放電時におけるデンドライト状リチウムの析出を確実に抑え得ることが確認できた。 As shown in Table 2, Example 1 in which the current collector 22 was not exposed and LiClO 4 was employed as the high-conductivity electrolytic solution, and in which the current collector 22 was not exposed and LiCF 3 SO was used as the electrolytic solution, In the battery according to Example 8 employing No. 3 , no direct deposition of lithium on the current collector 22 was observed. On the other hand, in the battery according to the ninth embodiment in which the current collectors 22 at both upper and lower ends of the wound body 6 are exposed and the electrolytic solution having a high conductivity is used, lithium is collected on the current collector 22. Precipitation was observed. As described above, when the entire inner and outer surfaces of the current collector 22 are covered with the sheet-shaped mixture layers 20 and 21, when an electrolyte having high conductivity is used, such as an electrolyte using lithium perchlorate as a solute. However, it was confirmed that the precipitation of dendritic lithium during overdischarge can be reliably suppressed.

表3に実施例1および実施例8の電池を、300mAの負荷にて放電し、2.0Vに達するまでの放電容量を測定した結果を示す。   Table 3 shows the results obtained by discharging the batteries of Example 1 and Example 8 at a load of 300 mA, and measuring the discharge capacity until the battery voltage reached 2.0 V.

Figure 2004363087
Figure 2004363087

表3に示すように、LiCF3 SO3 を電解液の溶質として用いた実施例8に係る電池では、LiClO4 を電解液の溶質に用いた実施例1に係る電池と比較して電解液の伝導度が低いため、放電容量の低下が生じた。 As shown in Table 3, in the battery according to Example 8 using LiCF 3 SO 3 as the solute of the electrolyte, the battery according to Example 1 in which LiClO 4 was used as the solute of the electrolyte was used. Due to the low conductivity, the discharge capacity was reduced.

上記実施例1〜8および比較例1〜3の各リチウム−二酸化マンガン電池100個について、電池組み立て時の不良率と短絡発生比率を調べた。 また、上記各リチウム−二酸化マンガン電池について、20℃、5mAで2.0Vまで放電させて、放電容量を測定した。さらに、別の電池を用い、100mAで2.0Vまで放電させて、放電容量を測定し、中負荷での特性を調べた。これらの結果は、表4に示されるとおりであった。   With respect to 100 lithium-manganese dioxide batteries of each of Examples 1 to 8 and Comparative Examples 1 to 3, the failure rate and the short circuit occurrence rate during battery assembly were examined. Moreover, about each said lithium-manganese dioxide battery, it discharged at 20 degreeC and 5 mA to 2.0 V, and measured discharge capacity. Using another battery, the battery was discharged to 2.0 V at 100 mA, the discharge capacity was measured, and the characteristics at a medium load were examined. These results were as shown in Table 4.

Figure 2004363087
Figure 2004363087

上記表4の結果から明らかなように、実施例1では組み立て時のトラブルもなく短絡も発生しなかった。実施例2では厚めのシート状合剤層を用いても割れや短絡がなく良好な電池が得られた。実施例3では電極が長くなるため、いくらか容量は低下するが、中負荷での特性は改善された。実施例4,5ではシート状合剤層の空隙率を35〜50%に設定したことにより、中負荷での特性の劣化もみられず、捲回時の割れや短路もなかった。実施例6では集電体を変更しても上記と変わらない良好な結果が得られた。実施例7では、シート状合剤層の空隙率が好適な範囲より低くなったため、実施例1と比較して5mAでの放電容量は増加したが、捲回が多少困難となり、組み立て時に若干の不良発生が認められた。実施例8ではLiCF3 SO3 を電解液の溶質として用いたため、LiClO4 を電解液の溶質に用いた実施例1に係る電池よりも100mAh放電が若干低下した。実施例9では集電体とシート状合剤層の幅が同じであり、捲回のばらつきにより集電体の端部がシート状合剤層の端部に大きく露出するものが生じるため、若干の短絡発生が認められた。 As is clear from the results in Table 4, in Example 1, there was no trouble during assembly and no short circuit occurred. In Example 2, a good battery was obtained without cracks or short circuits even when a thicker sheet-like mixture layer was used. In Example 3, although the capacity was somewhat reduced due to the length of the electrode, the characteristics under a medium load were improved. In Examples 4 and 5, by setting the porosity of the sheet-shaped mixture layer to 35 to 50%, no deterioration in characteristics under a medium load was observed, and no cracks or short paths occurred during winding. In Example 6, even if the current collector was changed, a good result which was not different from the above was obtained. In Example 7, since the porosity of the sheet-shaped mixture layer was lower than the preferred range, the discharge capacity at 5 mA was increased as compared with Example 1, but winding was somewhat difficult, and a slight Failure occurred. In Example 8, since LiCF 3 SO 3 was used as the solute of the electrolytic solution, the discharge of 100 mAh was slightly lower than that of the battery according to Example 1 in which LiClO 4 was used as the solute of the electrolytic solution. In Example 9, the width of the current collector and the sheet-shaped mixture layer were the same, and the current collector slightly exposed to the edge of the sheet-shaped mixture layer due to variations in winding. Occurrence of short circuit was observed.

これに対し、実施例1と同じ厚みのシート状合剤層を集電体に完全に固定して正極とした比較例1では、捲回体を作製することができなかった。また、薄い合剤層を集電体と一体化した長尺の正極を用いた従来の捲回形電池と同様の比較例2では、反応面積が広いため、中負荷での容量の低下は少ないものの、活物質の充填量が限定されてしまうため、電池の容量が小さいものとなった。また、長尺であるため、捲回時に幅方向の巻きずれが生じやすく、短絡の発生も認められた。さらに、ボビン形の構造を有する比較例3では、電
池の容量自体は大きいものの、中負荷では大幅な容量低下が生じ、低負荷でのみ使用可能な電池であった。
On the other hand, in Comparative Example 1 in which the sheet-shaped mixture layer having the same thickness as in Example 1 was completely fixed to the current collector to form a positive electrode, a wound body could not be produced. In Comparative Example 2 similar to the conventional wound type battery using the long positive electrode in which the thin mixture layer was integrated with the current collector, the reaction area was large, and the decrease in capacity under a medium load was small. However, the amount of the active material to be filled was limited, so that the capacity of the battery was small. In addition, since it is long, it is easy to cause winding deviation in the width direction at the time of winding, and occurrence of short circuit was also recognized. Further, in Comparative Example 3 having a bobbin-type structure, although the capacity of the battery itself was large, the capacity was significantly reduced at a medium load, and the battery was usable only at a low load.

このように、本発明の実施例1〜9では、従来の捲回形の比較例2に比べて容量が大きく、ボビン形の比較例3よりも中負荷での使用に適する捲回形の電池を構成することができた。また、集電体の端部をシート状合剤層の端部から露出させないようにした実施例1〜8の電池では、短絡発生が認められず、合剤層の空隙率を35〜50%とした実施例1〜6および実施例8の電池では、捲回に際しての合剤層の剥離やクラック発生などの不良発生が認められなかった。また、電解液に過塩素酸リチウムを用いた実施例8では、さらに負荷特性を向上させることができた。上述したことから明らかなように、本発明により、容量が大きくかつ中負荷での使用に適する電池を容易に組み立てることができる。   As described above, in Examples 1 to 9 of the present invention, the capacity of the wound-type battery is larger than that of the conventional wound-type comparative example 2, and the wound-type battery more suitable for use under a medium load than the bobbin-type comparative example 3. Could be configured. Further, in the batteries of Examples 1 to 8 in which the end of the current collector was not exposed from the end of the sheet-shaped mixture layer, no short circuit occurred, and the porosity of the mixture layer was 35 to 50%. In the batteries of Examples 1 to 6 and Example 8 described above, occurrence of defects such as peeling of the mixture layer and generation of cracks at the time of winding was not observed. In Example 8 using lithium perchlorate as the electrolyte, the load characteristics could be further improved. As is apparent from the above description, the present invention makes it possible to easily assemble a battery having a large capacity and suitable for use under a medium load.

本発明の第1実施形態に係る非水電解液電池の横断平面図である。1 is a cross-sectional plan view of a nonaqueous electrolyte battery according to a first embodiment of the present invention. 本発明の非水電解液電池の縦断正面図である。It is a vertical front view of the nonaqueous electrolyte battery of the present invention. 本発明の積層構造の電極(正極)の捲回前の状態を示す図である。It is a figure showing the state before winding of the electrode (positive electrode) of the layered structure of the present invention. 捲回体の作製方法を説明するための図である。It is a figure for explaining a manufacturing method of a roll. (a)・(b)・(c)は、過放電状態における安全性を検証するためのテストモデルに係る捲回体の正負極の状態を示す図である。(A), (b), (c) is a figure which shows the state of the positive and negative electrodes of the wound body which concerns on the test model for verifying the safety in an overdischarge state.

符号の説明Explanation of reference numerals

1 非水電解液電池
2 外装缶
3 正極
4 負極
5 セパレータ
6 捲回体
20 内周側に位置するシート状合剤層
21 外周側に位置するシート状合剤層
22 集電体
S 正極の捲回始端部
E 正極の捲回末端部
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte battery 2 Outer can 3 Positive electrode 4 Negative electrode 5 Separator 6 Winding body 20 Sheet-shaped mixture layer located on the inner peripheral side 21 Sheet-shaped mixture layer located on the outer peripheral side 22 Current collector S Positive electrode winding Start end E Winding end of positive electrode

Claims (16)

集電体の両側にこの集電体に実質的に固定されない状態でシート状合剤層が配置されてなる積層構造の電極と、この電極の対極と、それらの間に介在するセパレータとが渦巻状に捲回されてなる捲回体を電池容器内に収容したことを特徴とする電池。   An electrode having a laminated structure in which a sheet-shaped mixture layer is disposed on both sides of the current collector without being substantially fixed to the current collector, a counter electrode of the electrode, and a separator interposed therebetween are swirled. A battery characterized in that a wound body wound in a shape is housed in a battery container. 積層構造の電極において、集電体は、平織り金網、金属箔、エキスパンドメタル、ラス網またはパンチングメタルである請求項1に記載の電池。   The battery according to claim 1, wherein in the electrode having a laminated structure, the current collector is a plain woven wire mesh, a metal foil, an expanded metal, a lath mesh, or a punching metal. 積層構造の電極において、捲回中心側の端部のみのシート状合剤層が集電体に固定されている請求項1または2に記載の電池。   3. The battery according to claim 1, wherein in the electrode having a laminated structure, the sheet-shaped mixture layer only at the end on the winding center side is fixed to the current collector. 4. 積層構造の電極において、集電体の端部は、シート状合剤層の端部から露出しないように位置している請求項1〜3のいずれかに記載の電池。   The battery according to any one of claims 1 to 3, wherein in the electrode having a laminated structure, an end of the current collector is located so as not to be exposed from an end of the sheet-shaped mixture layer. 積層構造の電極において、集電体の幅は、シート状合剤層の幅よりも狭い請求項1〜4のいずれかに記載の電池。   The battery according to any one of claims 1 to 4, wherein in the electrode having a laminated structure, the width of the current collector is smaller than the width of the sheet-shaped mixture layer. 積層構造の電極において、シート状合剤層は、空隙率が35〜50%である請求項1〜5のいずれかに記載の電池。   The battery according to any one of claims 1 to 5, wherein in the electrode having a laminated structure, the porosity of the sheet mixture layer is 35 to 50%. 積層構造の電極において、シート状合剤層は、電池内径の4〜10%に相当する厚みを有する請求項1〜6のいずれかに記載の電池。   The battery according to any one of claims 1 to 6, wherein in the electrode having a laminated structure, the sheet-shaped mixture layer has a thickness corresponding to 4 to 10% of the battery inner diameter. 積層構造の電極において、集電体の内側に位置するシート状合剤層の捲回前の長さが集電体の長さより短く、集電体の外側に位置するシート状合剤層の捲回前の長さが集電体の長さより長い請求項1〜7のいずれかに記載の電池。   In the electrode having a laminated structure, the length of the sheet-shaped mixture layer located inside the current collector before winding is shorter than the length of the current collector, and the length of the sheet-shaped mixture layer located outside the current collector is reduced. The battery according to any one of claims 1 to 7, wherein a length of the battery before rotation is longer than a length of the current collector. 積層構造の電極において、集電体の内外面全体がシート状合剤層で覆われてなる捲回体を有し、過塩素酸リチウムを溶質とする非水電解液を用いた請求項1〜8のいずれかに記載の電池。   An electrode having a laminated structure, wherein the current collector has a wound body in which the entire inner and outer surfaces are covered with a sheet-shaped mixture layer, and a non-aqueous electrolyte containing lithium perchlorate as a solute is used. 9. The battery according to any one of 8 above. 捲回体の捲回数が1周を超え、3周以下である請求項1〜9のいずれかに記載の電池。   The battery according to any one of claims 1 to 9, wherein the number of turns of the wound body is more than one turn and not more than 3 turns. 対極は、金属または金属合金である請求項1〜10のいずれかに記載の電池。   The battery according to claim 1, wherein the counter electrode is a metal or a metal alloy. 対極は、リチウムまたはリチウム合金である請求項11に記載の電池。   The battery according to claim 11, wherein the counter electrode is lithium or a lithium alloy. 集電体の両側にシート状合剤層を配置して積層構造とした電極の、上記集電体とシート状合剤層との間に、捲回方向の位置ずれを生じさせながら、上記電極をその対極およびそれらの間に介在するセパレータとともに捲回して捲回体とし、これを電池容器内に収容することを特徴とする電池の製造方法。   The electrode having a laminated structure in which sheet-shaped mixture layers are disposed on both sides of the current collector, while causing a displacement in the winding direction between the current collector and the sheet-shaped mixture layer, With a counter electrode and a separator interposed therebetween to form a wound body, which is housed in a battery container. 集電体の両側にこの集電体に実質的に固定されない状態でシート状合剤層を配置して積層構造の電極とする工程、上記積層構造の電極とその対極およびそれらの間に介在するセパレータとを、上記積層構造の電極の集電体とシート状合剤層との間に捲回方向の位置ずれを生じさせながら捲回する工程、および上記捲回工程により得られる捲回体を電池容器内に収容する工程を有する請求項13に記載の電池の製造方法。   A step of arranging a sheet-shaped mixture layer on both sides of the current collector in a state not being substantially fixed to the current collector to form an electrode of a laminated structure, the electrode of the laminated structure and its counter electrode and interposed therebetween. Separator, a step of winding while causing a displacement in the winding direction between the current collector of the electrode of the laminated structure and the sheet-shaped mixture layer, and the wound body obtained by the winding step 14. The method for manufacturing a battery according to claim 13, further comprising a step of housing the battery in a battery container. 積層構造の電極の捲回中心側の端部のみのシート状合剤層を集電体に固定した請求項13または14に記載の電池の製造方法。   The method for producing a battery according to claim 13 or 14, wherein the sheet-shaped mixture layer only at the end on the winding center side of the electrode having a laminated structure is fixed to the current collector. 集電体の両側に、集電体の長さよりも短いシート状合剤層と集電体の長さよりも長いシート状合剤層を各々配置して積層構造の電極とする請求項13〜15のいずれかに記載の電池の製造方法。
16. An electrode having a laminated structure in which a sheet-like mixture layer shorter than the length of the current collector and a sheet-like mixture layer longer than the length of the current collector are arranged on both sides of the current collector. The method for producing a battery according to any one of the above.
JP2004074187A 2003-03-17 2004-03-16 Battery and battery manufacturing method Expired - Lifetime JP4129955B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004074187A JP4129955B2 (en) 2003-03-17 2004-03-16 Battery and battery manufacturing method
CNB2004100374580A CN1324730C (en) 2003-04-30 2004-04-29 Battery and method for manufacturing the same
US10/836,591 US20050026034A1 (en) 2003-04-30 2004-04-30 Battery and method for producing the same
US12/468,921 US8221509B2 (en) 2003-04-30 2009-05-20 Battery and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003071118 2003-03-17
JP2003125134 2003-04-30
JP2003132248 2003-05-09
JP2004074187A JP4129955B2 (en) 2003-03-17 2004-03-16 Battery and battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2004363087A true JP2004363087A (en) 2004-12-24
JP4129955B2 JP4129955B2 (en) 2008-08-06

Family

ID=34069233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074187A Expired - Lifetime JP4129955B2 (en) 2003-03-17 2004-03-16 Battery and battery manufacturing method

Country Status (1)

Country Link
JP (1) JP4129955B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166227A (en) * 2007-01-05 2008-07-17 Hitachi Maxell Ltd Nonaqueous electrolyte primary battery
JP2009252731A (en) * 2008-04-11 2009-10-29 Hitachi Maxell Ltd Lithium primary battery
JP2016184528A (en) * 2015-03-26 2016-10-20 日産自動車株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
CN109449372A (en) * 2018-11-01 2019-03-08 贵州梅岭电源有限公司 A kind of preparation method and applications of lithium-thionyl chloride porous anode
JP2021120954A (en) * 2016-06-30 2021-08-19 南通沃▲徳▼材料科技有限公司Nantong Volta Materials Ltd. Method of preparing battery electrode plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166227A (en) * 2007-01-05 2008-07-17 Hitachi Maxell Ltd Nonaqueous electrolyte primary battery
JP2009252731A (en) * 2008-04-11 2009-10-29 Hitachi Maxell Ltd Lithium primary battery
JP2016184528A (en) * 2015-03-26 2016-10-20 日産自動車株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2021120954A (en) * 2016-06-30 2021-08-19 南通沃▲徳▼材料科技有限公司Nantong Volta Materials Ltd. Method of preparing battery electrode plate
JP7427149B2 (en) 2016-06-30 2024-02-05 合肥集新能源科技有限公司 How to prepare battery plates
CN109449372A (en) * 2018-11-01 2019-03-08 贵州梅岭电源有限公司 A kind of preparation method and applications of lithium-thionyl chloride porous anode
CN109449372B (en) * 2018-11-01 2020-07-14 贵州梅岭电源有限公司 Preparation method and application of lithium thionyl chloride porous anode

Also Published As

Publication number Publication date
JP4129955B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
WO2011001617A1 (en) Winding electrode group and battery
US20110223455A1 (en) Lithium-ion secondary cell
JP4968768B2 (en) Cylindrical non-aqueous electrolyte battery
WO2018079291A1 (en) Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4993860B2 (en) Non-aqueous electrolyte primary battery
JP2008192524A (en) Cylindrical nonaqueous electrolyte solution primary battery
JP4993859B2 (en) Non-aqueous electrolyte primary battery
US8221509B2 (en) Battery and method for producing the same
JP7190018B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP4129955B2 (en) Battery and battery manufacturing method
JP5620811B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP5252691B2 (en) Cylindrical non-aqueous electrolyte primary battery and manufacturing method thereof
JP2006139918A (en) Cylinder-shaped nonaqueous electrolyte battery
JP4129966B2 (en) Non-aqueous electrolyte battery
JP2004335380A (en) Nonaqueous electrolyte battery
JP4151840B2 (en) Non-aqueous electrolyte battery
JP4079326B2 (en) Non-aqueous electrolyte battery
JP4255013B2 (en) Non-aqueous electrolyte battery
JPH11354125A (en) Lithium secondary battery
JP5019557B2 (en) Cylindrical non-aqueous electrolyte primary battery
JP4129965B2 (en) Non-aqueous electrolyte battery
JP4129740B2 (en) Non-aqueous electrolyte battery
JP4129952B2 (en) Non-aqueous electrolyte battery
JP5377472B2 (en) Lithium ion secondary battery
JP2011154788A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070619

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080516

R150 Certificate of patent or registration of utility model

Ref document number: 4129955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250