JPH02234350A - Positive pole of non-aqueous electrolyte battery - Google Patents

Positive pole of non-aqueous electrolyte battery

Info

Publication number
JPH02234350A
JPH02234350A JP5365089A JP5365089A JPH02234350A JP H02234350 A JPH02234350 A JP H02234350A JP 5365089 A JP5365089 A JP 5365089A JP 5365089 A JP5365089 A JP 5365089A JP H02234350 A JPH02234350 A JP H02234350A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
mno2
aqueous electrolyte
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5365089A
Other languages
Japanese (ja)
Other versions
JP2807481B2 (en
Inventor
Kohei Yamamoto
浩平 山本
Yoshihisa Hino
日野 義久
Yoshiro Harada
吉郎 原田
Masanori Nakanishi
正典 中西
Hideaki Nagura
名倉 秀哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP5365089A priority Critical patent/JP2807481B2/en
Publication of JPH02234350A publication Critical patent/JPH02234350A/en
Application granted granted Critical
Publication of JP2807481B2 publication Critical patent/JP2807481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a non-aqueous electrolyte battery with a long service life by laminating a second positive pole primarily made up of a positive-pole active material selected from among gamma-MnO2, beta-MnO2, etc., on the surface of a first positive pole mainly consisting of a positive-pole active material can posed of lambda-MnO2. CONSTITUTION:A portion which is in contact with an electricity collector side on the surface of a first positive pole mainly consisting of lambda-MnO2 is covered with a second positive pole primarily consisting of manganese dioxide other than lambda-MnO2 such as gammaMnO2 and betaMnO2. A negative pole which is formed by pressure-applying metallic lithium to a negative-pole electricity collector and a positive pole are stacked in layers via a separator impregnated with a non-aqueous electrolyte and then they are sealed up in a case to obtain a button-shaped non-aqueous electrolyte lithium battery. This battery is characterized in its initial voltage maintained low, long discharge time and sufficient smoothness. In this manner, it is possible to obtain a battery with prolonged discharge time even at relatively low initial voltage and flatness.

Description

【発明の詳細な説明】 《産業上の利用分野》 この発明は、リチウム電池などの非水電解液電池に関し
、特に正極の改良により放電特性を向上させる技術に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <<Industrial Application Field>> The present invention relates to a non-aqueous electrolyte battery such as a lithium battery, and particularly relates to a technique for improving discharge characteristics by improving a positive electrode.

《従来の技術》 7−MnO., β一Mn o2 , V6 013.
 V20,,MoS2,TiS2などを単独或いは混合
して正極活物質として用いた非水電解液電池は公知であ
る。これらの活物質を用いた電池ではそれぞれの特性に
応じた放電特性を有しているが、般には電圧の平坦性が
悪く、放電途中で階段的に電圧が低下したり、徐々に電
圧が低下することが認められている。
<<Prior art>> 7-MnO. , β-Mno2, V6 013.
Non-aqueous electrolyte batteries using V20, MoS2, TiS2, etc. alone or in combination as positive electrode active materials are known. Batteries using these active materials have discharge characteristics depending on their characteristics, but in general, the flatness of the voltage is poor, and the voltage may drop stepwise or gradually during discharge. It is recognized that this decreases.

ところで、これらの既存の正極活物質に替わる新規な正
極活物質として、λ−M n 0 2を用いる技術があ
る。
By the way, there is a technique using λ-M n 0 2 as a new positive electrode active material to replace these existing positive electrode active materials.

このλ−M n O 2は、例えば特公昭58−344
1号公報に示すごとく、公知物質であるLiMn204
の酸処理によって製造される二酸化マンガンの新規な形
態によるものであって、X線回折によって得られた特異
的な回折模様およびピークの相対強度に基づき命名され
た正極活物質である。
This λ-M n O 2 is, for example,
As shown in Publication No. 1, the known substance LiMn204
This positive electrode active material is based on a novel form of manganese dioxide produced by acid treatment of 100%, and is named based on the specific diffraction pattern and relative intensity of the peaks obtained by X-ray diffraction.

そして、この正極活物質を用いた電池の活性は、特にそ
の初期において、他の一般的な自然または人工的に産出
される7−Mn02.  β−Mn02,γβ−M n
 O 2 1或いは他の金属酸化物を正極活物質として
用いた電池に比べて各段に高い電圧特性を有する。
And the activity of a battery using this cathode active material, especially in its early stages, is different from that of other common naturally or artificially produced 7-Mn02. β-Mn02, γβ-Mn
It has significantly higher voltage characteristics than batteries using O 2 1 or other metal oxides as positive electrode active materials.

《発明が解決しようとする課題》 しかしながら、この正極活物質を用いた電池では、他の
電池に比べて初期電圧が高すぎるため、かえって半導体
の破壊を招く場合があり、また放電途中で電位が階段的
に落ちてしまうため、既存の半導体の駆動用電源電池と
しては不適当であるとされ、高特性でありながら実際に
は実用化が難しかった。
<<Problems to be solved by the invention>> However, in batteries using this positive electrode active material, the initial voltage is too high compared to other batteries, which may actually lead to destruction of the semiconductor, and the potential decreases during discharge. Because it falls in steps, it is considered unsuitable as a power supply battery for driving existing semiconductors, and despite its high characteristics, it has been difficult to put it into practical use.

本発明者らは、前記λ一M n O 2の持つ高電圧特
性を利用した放電寿命の長期化を検討した。
The present inventors investigated extending the discharge life by utilizing the high voltage characteristics of λ-M n O 2 .

そして、λ−M n O 2からなる正極活物質を主剤
とする第1正極の表面に、比較的低電位である公知の7
−Mn02,  β−M n 0 2 、7β−Mn0
2 , V6 013, Mo S2 , T i S
2から選ばれた正極活物質を主剤とする第2正極を積層
し、これを東電体側に接触させることにより、低電位の
活物質の放電特性に近い放電特性であって、しかも平坦
性が良好で、放電寿命も十分に長い非水電解液電池を得
られることを知見した。
Then, on the surface of the first positive electrode whose main ingredient is a positive electrode active material made of λ-M n O 2 , a well-known 7
-Mn02, β-Mn02, 7β-Mn0
2, V6 013, Mo S2, T i S
By laminating a second positive electrode whose main ingredient is a positive electrode active material selected from 2 and bringing it into contact with the TEPCO body, the discharge characteristics are close to those of low-potential active materials and have good flatness. We discovered that it is possible to obtain a non-aqueous electrolyte battery with a sufficiently long discharge life.

この発明は以上の知見に基づきなされたものであって、
電圧の平坦性が良好であり、従来に比べて容量の大きな
非水電解液電池の正極を提供することを目的とする。
This invention was made based on the above knowledge,
The present invention aims to provide a positive electrode for a non-aqueous electrolyte battery that has good voltage flatness and a larger capacity than conventional ones.

《課題を解決するための手段》 前記目的を達成するため、この発明は、λ−Mn02と
導電剤およびバインダからなる第1正極の表面の少なく
とも集重体側に接触する部分の一部ないし全部を、γM
nO2,  βM n 0 2などのスーM n O 
,以外の二酸化マンガンおよび遷移金属酸化物,硫化物
の1種ないしそれ以上の混合物からなる正極活物質と導
電剤およびバインダからなる第2正極によって被覆した
ことを特徴とする。
<<Means for Solving the Problems>> In order to achieve the above object, the present invention provides at least part or all of the surface of the first positive electrode made of λ-Mn02, a conductive agent, and a binder that contacts the aggregate side. , γM
nO2, βM n 0 2, etc.
The second positive electrode is coated with a positive electrode active material made of a mixture of one or more of manganese dioxide, transition metal oxides, and sulfides other than , and a conductive agent and a binder.

前記λ一M n O 2は、特公昭58−344 1号
公報に示すごとく、公知物質であるLiMn204を出
発物質とし、これを水中で懸濁させつつ酸を添加し、p
H2.5以下に安定させ、その後中性となるまで洗浄、
濾過し、得られたM n O 2生成物を乾燥する工程
によって得られるものであり、同公報に示すごとくX線
回折模様とX線回折ピ−クの相対強度が既存のγ−Mn
O2,  β一M n 02,γβ−M n 0 2と
は異なる特性のものである。
As shown in Japanese Patent Publication No. 58-3441, the above-mentioned λ-M n O 2 is obtained by using LiMn204, a known substance, as a starting material, suspending it in water, adding an acid, and p.
Stabilize the temperature to below H2.5, then wash until neutral.
It is obtained by filtering and drying the obtained MnO2 product, and as shown in the same publication, the X-ray diffraction pattern and the relative intensity of the X-ray diffraction peak are different from that of the existing γ-Mn.
It has different characteristics from O2, β-M n 02, and γβ-M n 0 2.

前記7−Mn02, β−Mn02,7β−Mn02 
,Vb 013,V2 0s ,MOS2 ,TiS2
は公知の正極活物質であり、これらを単独または混合し
て正極活物質として用いる。
Said 7-Mn02, β-Mn02, 7β-Mn02
, Vb 013, V2 0s , MOS2 , TiS2
are known positive electrode active materials, and these are used alone or in combination as positive electrode active materials.

そして、以上の正極活物質を用いた非水電解液電池は次
のように組み立てられる。
A non-aqueous electrolyte battery using the above positive electrode active material is assembled as follows.

すなわち、前記λ一M n O ,を正極活物質として
、これに黒鉛などの導電材およびポリテトラフルオ口エ
チレン等からなるバインダを公知の配合比で混合し、プ
レス成形によって適宜厚みの円盤状の第1正極を形成す
る一方で、前記γ−Mn02等から選択した正極活物質
も同様に導電材およびバインダと混合して第2正極を成
形し、次いで両者を積層しプレスすることで二層構造の
正極を作るか、或いは先に成形された第1正極の上部に
続けて、第2正極を積層状態にプレスして二層の正極を
作る。次に、前記正極を240℃で真空乾燥を行なった
後、γ一M n O 2などの正極活物質側の表面にネ
ット状の正極集電体に圧着する。
That is, the above-mentioned λ-M n O is used as a positive electrode active material, and a conductive material such as graphite and a binder such as polytetrafluoroethylene are mixed in a known mixing ratio, and a disc-shaped material of an appropriate thickness is formed by press molding. While forming the first positive electrode, the positive electrode active material selected from the above-mentioned γ-Mn02 etc. is similarly mixed with a conductive material and a binder to form a second positive electrode, and then the two are laminated and pressed to form a two-layer structure. Alternatively, a second positive electrode may be pressed into a laminated state on top of the previously formed first positive electrode to form a two-layer positive electrode. Next, the positive electrode is vacuum-dried at 240° C., and then a net-shaped positive electrode current collector is crimped onto the surface of the positive electrode active material such as γ-M n O 2 .

一方、金属リチウムを負極集電体に圧着しておく。Meanwhile, metallic lithium is pressure-bonded to the negative electrode current collector.

次いで、この金属リチウム負極と正極とを非水電解液を
含浸したセパレー夕を介して積層し、正,負極集重体を
正極缶および負極板からなる電池ケースに接触させた状
態で電池ケース内部に密封することで、ボタン形の非水
電解液リチウム電池が得られる。
Next, this metallic lithium negative electrode and positive electrode are laminated via a separator impregnated with a non-aqueous electrolyte, and the positive and negative electrode assembly is placed inside the battery case in contact with a battery case consisting of a positive electrode can and a negative electrode plate. By sealing, a button-shaped non-aqueous electrolyte lithium battery is obtained.

《作 用》 以上の構成の非水電解液電池によれば、その放電特性は
初期電圧で公知の正極活物質を用いた場合の放電特性と
同様に低く維持され、λ−M n 02単体を正極活物
質としたものよりも放電時間が長く、しかも十分な平滑
性を得られることが判明した。
<<Function>> According to the non-aqueous electrolyte battery having the above configuration, its discharge characteristics are maintained as low as the discharge characteristics when a known positive electrode active material is used at the initial voltage, and λ-M n 02 alone It was found that the discharge time was longer than that of the positive electrode active material, and sufficient smoothness could be obtained.

したがって、正極集電体に接している側の公知の正極活
物質が主として放電反応に関与するものと推定される。
Therefore, it is presumed that the known positive electrode active material on the side that is in contact with the positive electrode current collector is mainly involved in the discharge reaction.

そして、λ一M n 0 2は直接はこの放電反応に関
与しないが、放電反応によって消費された分を充電し、
これによって放電途中での階段的な変化の解消と、放電
時間の長期化を図り、λ一M n O 2のもつ高電圧
分を電池容量に変換しているものと推定される。
Although λ-M n 0 2 does not directly participate in this discharge reaction, it charges the amount consumed by the discharge reaction,
It is presumed that this eliminates stepwise changes during discharge, lengthens the discharge time, and converts the high voltage of λ - M n O 2 into battery capacity.

《発明の効果》 以上のように、この発明の非水電解液電池によれば、従
来公知の正極活物質を用いた場合と同様に比較的低い初
期電圧を維持したまま放電時間の長期化と、平坦性を得
ることができ、半導体の駆動用電源として好適な特性を
得ることができる。
<<Effects of the Invention>> As described above, according to the non-aqueous electrolyte battery of the present invention, the discharge time can be prolonged while maintaining a relatively low initial voltage as in the case of using a conventionally known positive electrode active material. , flatness can be obtained, and characteristics suitable as a power source for driving a semiconductor can be obtained.

《実 施 例》 以下、具体的な実施例を説明する。但し、この発明は実
施例のみに限定されるものでない。
<<Example>> Specific examples will be described below. However, this invention is not limited only to the examples.

実施例l. λ−Mn02と組合わせる公知の正極活物質としてMo
b,を用い、以下のようにして二層型の正極を形成し、
この正極を用いてCR2016型電池を作成した。
Example l. Mo is a known positive electrode active material in combination with λ-Mn02.
b, to form a two-layer positive electrode as follows,
A CR2016 type battery was created using this positive electrode.

■第2正極: MOO3粉末    8重量部 黒鉛粉末      1  // PTEF (バインダ)1 〃 合計      10重量部 以上の組成を混合した後、プレス成形によって直径15
關、厚さ0.21Isの円盤状正極を形成した。
■Second positive electrode: MOO3 powder 8 parts by weight Graphite powder 1 // PTEF (binder) 1 After mixing a total of 10 parts by weight or more, press molding to a diameter of 15
Then, a disk-shaped positive electrode with a thickness of 0.21 Is was formed.

■第1正極 λ−MnO2粉末    8重量部 黒鉛粉末        1 〃 PTEF (バインダ)   1 〃 合計        10重量部 以上の組成を混合した後■の上部に直径15mm,厚さ
0.5mmの円盤状正極を重ねた状態にプレス成形し、
全体の厚みが0。7 amの二層の正極とし(240℃
で真空乾燥の後)、■側の表面をネット状集重体に圧着
した。
■First positive electrode λ-MnO2 powder 8 parts by weight Graphite powder 1 PTEF (binder) 1 After mixing a total of 10 parts by weight or more, a disk-shaped positive electrode with a diameter of 15 mm and a thickness of 0.5 mm is stacked on top of ■. Press molded into a
A two-layer positive electrode with a total thickness of 0.7 am (240°C
After vacuum drying), the surface of the ■ side was pressed onto a net-like aggregate.

一方、0.2mm厚みの金属リチウム板を打ち抜き直径
15龍の負極とし、これを負極集電体に圧着し、この負
極と前記正極とをPC−DME,Li C 1 041
mo 1/j!の非水電解液のを含浸したポリブロビレ
ン不織布からなるセパレータを介在させた状態で積層し
、それぞれの集電体を正極缶および負極板に接触させた
状態で正極缶をガスケットを介して負極板にカシメ付け
、CR2016型のボタン形電池を完成した。
On the other hand, a metal lithium plate with a thickness of 0.2 mm was punched out to form a negative electrode with a diameter of 15 mm, which was crimped to a negative electrode current collector, and this negative electrode and the positive electrode were connected to PC-DME, Li C 1 041
mo 1/j! The layers are stacked with a separator made of polypropylene nonwoven fabric impregnated with a non-aqueous electrolyte, and each current collector is in contact with the positive electrode can and the negative electrode plate, and the positive electrode can is attached to the negative electrode plate via a gasket. The crimping was completed and the CR2016 type button battery was completed.

比較例1. 同様の制作手順で正極活物質がλ一MnO.単体のもの
、およびMob,単体のCR2016型のボタン形電池
を製作した。
Comparative example 1. Using the same production procedure, the positive electrode active material was made of λ-MnO. Single batteries, Mob batteries, and single CR2016 type button batteries were manufactured.

そして、実施例1.で製作した本発明にかかる電池Cと
、比較例の電池A,Bとを1mA定電流で放電し終止電
圧を2vに設定した結果、第1図に示す放電特性を得ら
れた。
And Example 1. As a result of discharging the battery C according to the present invention manufactured in 1 and the batteries A and B of the comparative example at a constant current of 1 mA and setting the final voltage to 2 V, the discharge characteristics shown in FIG. 1 were obtained.

図において、正極活物質がλ−M n O 2単体の電
池Aは、初期電圧が4Vと高く、放tR30〜40時間
後に階段的に電圧が低下65時間後に終止電圧まで下が
る。
In the figure, battery A in which the positive electrode active material is λ-M n O 2 alone has a high initial voltage of 4 V, and after 30 to 40 hours of discharge, the voltage decreases stepwise and reaches the final voltage after 65 hours.

また、M003単体の電池Bは放電初期電圧が3vとこ
の種の電池として通常の特性があるが、20〜30時間
後に階段的な低下があり、その後順次電圧を低下させな
がら、60時間後に終止電圧になる。
In addition, battery B, which is a single M003, has an initial discharge voltage of 3V, which is normal for this type of battery, but there is a stepwise drop after 20 to 30 hours, and after that, the voltage gradually decreases until it stops after 60 hours. becomes voltage.

これに対し、実施例1,で得られた電池は初期電圧は電
池Bとほぼ同一であり、その後、電池Bより高い電圧を
維持し、平滑な状態を保ちながら順次電圧を低下させる
が、その終止電圧は75時間程度であり、いずれの電池
に比べても放電時間が長いことを示している。
On the other hand, the initial voltage of the battery obtained in Example 1 is almost the same as that of battery B, and after that, the voltage is maintained higher than that of battery B, and the voltage is gradually lowered while maintaining a smooth state. The final voltage was about 75 hours, indicating that the discharge time was longer than any other battery.

ここで、本実施例の電池反応について詳述すると、λ−
M n O 2の放電は4vでの反応と、3vでの反応
において、結晶構造に相違が見られ、4Vでは立方晶か
ら立方晶への格子定数の若干の増加が認められる(この
場合のLiのイ1ンターカレートする場所をAサイトと
する。)のに対し、3VではAサイトにLiがつまった
立方晶から正方晶への大きな変化が発生しており(この
場合のLiのインターカレートする場所をBサイトとす
る。
Here, to explain in detail the battery reaction of this example, λ-
In the discharge of M n O 2, a difference in crystal structure is observed between the reaction at 4V and the reaction at 3V, and a slight increase in the lattice constant from cubic to cubic is observed at 4V (in this case, Li In contrast, at 3V, a large change from a cubic crystal filled with Li to a tetragonal crystal occurs at the A site (in this case, the Li intercalation site is the A site). The location where the site is to be accessed is designated as site B.

)、この現象はX線回折により確認されて、λ一M n
 O 2の2段階の放電曲線は、以上の結晶の活性度の
差によるものと推測される。 実施例1による場合、M
 o O 3は放電電圧2.5〜2.3Vに平坦部をも
つ放電特性のものである。反応はMo03の層間にLi
がインターカレートされ、Mob,+L i” +e−
 →Mob,(L i)・・・・・・・・・■となり 電気的中和状態で安定化すると考えられる。
), this phenomenon was confirmed by X-ray diffraction, and λ−M n
It is presumed that the two-stage discharge curve of O 2 is due to the above-mentioned difference in the activity of the crystals. According to Example 1, M
oO3 has a discharge characteristic with a flat portion at a discharge voltage of 2.5 to 2.3V. The reaction takes place between the layers of Mo03.
is intercalated, Mob, +L i” +e−
→Mob, (L i)・・・・・・・・・■It is thought that it becomes stable in an electrically neutralized state.

従って、本発明のように集電体にM o O sが接触
している状態では、発生する電圧は式■によるものとな
る。
Therefore, in a state where M o O s is in contact with the current collector as in the present invention, the generated voltage is expressed by equation (2).

ところが、Mob,はλ−M n O 2と接しており
、M o O ,とλ一M n O ,の活性度の差に
より(λ一M n O 2がM o O ,よりも活性
が高い)、Liは活性度の高いλ一M n O 2のA
サイトに順次移動する。その後Bサイトにリチウムが入
ることになり、放電が終了する。これにより、MoO,
はLiがぬけることにより活性度が回復する。
However, Mob, is in contact with λ-M n O 2, and due to the difference in activity between M o O , and λ-M n O , (λ-M n O 2 has higher activity than M o O , ), Li is A of λ-M n O 2 with high activity.
Move sequentially to the site. After that, lithium will enter the B site, and the discharge will end. As a result, MoO,
The activity is recovered by the removal of Li.

A,Bサイトにリチウムが移動する間、電圧はMo03
の電圧を示すことになり、高電位部はMo03から、L
Lを引き抜くために使われ、M00,はその容量分増加
することになり、電圧平坦性と、高容量が可能になると
考えられる。
While lithium moves to A and B sites, the voltage is Mo03
, and the high potential part is from Mo03 to L
It is used to extract L, and M00 increases by that capacity, which is thought to make voltage flatness and high capacity possible.

実施例2. 正極缶の内底面に予めネット状の集電体が固着されたも
のを準備し、この集電体に以下の組成比率で混合した正
極合剤を塗布し、その後250℃で5時間真空乾燥し、
厚みが20μの第2正極を成形した。
Example 2. A net-like current collector was prepared in advance and fixed to the inner bottom of the positive electrode can, and a positive electrode mixture mixed in the following composition ratio was applied to the current collector, and then vacuum-dried at 250°C for 5 hours. ,
A second positive electrode having a thickness of 20 μm was molded.

水ガラス10%液     50重量部黒鉛粉末   
       5 //M o O i       
    4 5 ”合計      100重量部 第1正極は実施例1と同じ処方により作成し、0,7龍
に成形したものを第2正極の上に圧着した。
10% water glass solution 50 parts by weight graphite powder
5 //M o O i
4.5'' Total: 100 parts by weight The first positive electrode was prepared using the same recipe as in Example 1, molded into a 0.7 mm shape, and crimped onto the second positive electrode.

第2図は、この実施例の正極を用いた電池の放電特性を
示しており、実施例1とほぼ同じ特性が得られた。
FIG. 2 shows the discharge characteristics of a battery using the positive electrode of this example, and almost the same characteristics as in Example 1 were obtained.

なお、この発明では他の例示していない公知の正極活物
質とλ一M n 0 2等の組合わせでも前記と同様の
効果を得られるであろうことは十分に推定することがで
きる。
In addition, in this invention, it can be fully estimated that the same effect as described above will be obtained by a combination of other known positive electrode active materials not exemplified and λ1M n 0 2 or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図,第2図はこの発明にかかる電池と従来の正極活
物質およびλ一M n O 2単体を正極として用いた
電池の放電特性を示すグラフである。 第1図 特特許出願人    富士電気化学株式会社代  理 
 人        弁理士  一  色  健  輔
同           弁理士  松  本  雅 
 利第2図 放電時間(hr) −
FIGS. 1 and 2 are graphs showing the discharge characteristics of a battery according to the present invention, a conventional positive electrode active material, and a battery using λ-M n O 2 as a positive electrode. Figure 1 Patent patent applicant Fuji Electrochemical Co., Ltd. Representative
People Patent Attorney Kensuke Kazuiro Patent Attorney Miyabi Matsumoto
Figure 2 Discharge time (hr) −

Claims (1)

【特許請求の範囲】[Claims] (1)λ−MnO_2と導電剤およびバインダからなる
第1正極の表面の少なくとも集電体側に接触する部分の
一部ないし全部を、γMnO_2、βMnO_2などの
λ−MnO_2以外の二酸化マンガンおよび遷移金属酸
化物、硫化物の1種ないしそれ以上の混合物からなる正
極活物質と導電剤およびバインダからなる第2正極によ
って被覆したことを特徴とする非水電解液電池の正極。
(1) Manganese dioxide other than λ-MnO_2, such as γMnO_2 and βMnO_2, and transition metal oxides, such as γMnO_2 and βMnO_2, 1. A positive electrode for a nonaqueous electrolyte battery, characterized in that the positive electrode is coated with a second positive electrode comprising a positive electrode active material made of a mixture of one or more of sulfides and sulfides, a conductive agent, and a binder.
JP5365089A 1989-03-08 1989-03-08 Cathode of non-aqueous electrolyte battery Expired - Fee Related JP2807481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5365089A JP2807481B2 (en) 1989-03-08 1989-03-08 Cathode of non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5365089A JP2807481B2 (en) 1989-03-08 1989-03-08 Cathode of non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH02234350A true JPH02234350A (en) 1990-09-17
JP2807481B2 JP2807481B2 (en) 1998-10-08

Family

ID=12948757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5365089A Expired - Fee Related JP2807481B2 (en) 1989-03-08 1989-03-08 Cathode of non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2807481B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216354A (en) * 2005-02-03 2006-08-17 Hitachi Maxell Ltd Nonaqueous electrolyte solution primary cell
WO2006113807A3 (en) * 2005-04-20 2009-04-16 A123 Systems Inc High energy pulsed battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216354A (en) * 2005-02-03 2006-08-17 Hitachi Maxell Ltd Nonaqueous electrolyte solution primary cell
WO2006113807A3 (en) * 2005-04-20 2009-04-16 A123 Systems Inc High energy pulsed battery

Also Published As

Publication number Publication date
JP2807481B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
JPS6223433B2 (en)
JP2556992B2 (en) Non-aqueous electrochemical secondary cell
FR2629947A1 (en) NON-AQUEOUS ELECTROLYTE SECONDARY CELL
US4224390A (en) Lithium molybdenum disulphide battery cathode
JPH02234350A (en) Positive pole of non-aqueous electrolyte battery
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JP3185273B2 (en) Non-aqueous electrolyte secondary battery
JPS638588B2 (en)
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPH03196467A (en) Secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPS6153828B2 (en)
JPS59130070A (en) Nonaqueous electrolytic secondary battery
JPS6155738B2 (en)
JPH03285271A (en) Battery
JPS63166166A (en) Lithium secondary cell
JPH0254870A (en) Organic electrolyte battery
JPH0558221B2 (en)
JPS5842175A (en) Nonaqueous electrolyte cell
JPS59130074A (en) Nonaqueous electrolytic secondary battery
JP2594035B2 (en) Rechargeable battery
JPS6191862A (en) Manufacture of nonaqueous electrolyte battery
JPH02220357A (en) Nonaqueous secondary battery
JPS63318070A (en) Lithium secondary cell
JPS62219466A (en) Secondary cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees