JPS5842175A - Nonaqueous electrolyte cell - Google Patents

Nonaqueous electrolyte cell

Info

Publication number
JPS5842175A
JPS5842175A JP14140181A JP14140181A JPS5842175A JP S5842175 A JPS5842175 A JP S5842175A JP 14140181 A JP14140181 A JP 14140181A JP 14140181 A JP14140181 A JP 14140181A JP S5842175 A JPS5842175 A JP S5842175A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
value
electrolyte
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14140181A
Other languages
Japanese (ja)
Inventor
Kensuke Tawara
謙介 田原
Yuzuru Ito
譲 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP14140181A priority Critical patent/JPS5842175A/en
Publication of JPS5842175A publication Critical patent/JPS5842175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To obtain the nonaqueous electrolyte cell having a superior discharge characteristic, in particular superior low temperature heavy load characteristic in the last period of electric discharge by regulating the S-value defined as the amount (mul) of electrolyte per active mass (mAH) in positive or negative electrode. CONSTITUTION:This nonaqueous electrolyte cell is based on the finding that the low temperature heavy load characteristic in the last period of electric discharge is markedly improved in consideration of the balance between the amount of active mass and the amount of electrolyte, and the S-value defined as[amount E(mul) of electolyte/capacity C (mAH) of active mass]is regulated within 0.8<= S+<=1.3 and 0.8<=S-<=1.2 in which S+ E/C+, S- E/C- for each of positive elec trode active mass C+ and negative electrode active mass C-.

Description

【発明の詳細な説明】 本発明は、リチウムを負極活物質とし、金属酸化物、硫
化物、ハロゲン化物等を正極とし、PO9γ−ブチロラ
クトン、DMIIi、テトラヒト四フラン等の単独また
は混合溶媒中に、支持電解質として、Li0J104.
LiBF’4.LiAs1F4等のイオン解離偏塩を溶
解した非水電解液を用いる非水電解液電池に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses lithium as a negative electrode active material, metal oxides, sulfides, halides, etc. as a positive electrode, and PO9γ-butyrolactone, DMIIi, tetrahydrofuran, etc. alone or in a mixed solvent, As a supporting electrolyte, Li0J104.
LiBF'4. The present invention relates to a nonaqueous electrolyte battery using a nonaqueous electrolyte in which an ionically dissociated polarized salt such as LiAs1F4 is dissolved.

本発明の目的は、高エネルギー密度を有すると共和、放
電特性、特に放電末期における低温での重負荷特性の優
れた非水電解液電池を提供することである。
An object of the present invention is to provide a nonaqueous electrolyte battery that has high energy density and excellent discharge characteristics, especially heavy load characteristics at low temperatures at the end of discharge.

電池においては、単位体積当りの取り出し可能なエネル
ギー(エネルギー密度)もしくは電気量(容量密度)は
、最も重要な特性の一つである。
In a battery, one of the most important characteristics is the energy that can be taken out per unit volume (energy density) or the amount of electricity (capacity density).

q#に、近年の様に小型電子機器の進歩が著しく、電池
に対してもより小型で、より高エネルギー密置、高容量
密度のものが要求されている時代においては、尚更であ
る。
This is especially true in an era where small electronic devices have made remarkable progress in recent years, and batteries are required to be smaller, have higher energy density, and have higher capacity density.

一方、非水電解液電池は、一般に放電末期に内部抵抗の
増加が大きく、特に0℃以下のような低温での内部抵抗
の増加が大きく、このため放電末期において重負荷放電
させたときの出力電圧の低下が着しい、仁の為、上記の
様な小型電子機器にしばしば組込まれているランプやス
ピーカー等パルス的な大電流放電を必要とする素子に接
続されたとき、電池の出力電圧が着しく低下し、あるし
きい値以下になり、XOの動作不良や液晶ディスプレイ
の表示不良等が起こる仁とがある。このため、従来、軽
負荷での通常的な使用条件下では十分な電池残存容量と
特性を有しながら、上記の様な重負荷パルス放電時にお
いて(特に低温において)、電圧低下による動作不良を
起こし、電池寿命切れと判断されるため、実質的な電池
容量が小さくなるという問題があった。
On the other hand, in non-aqueous electrolyte batteries, the increase in internal resistance is generally large at the end of discharge, especially at low temperatures below 0°C, so the output when discharging under heavy load at the end of discharge is large. Because of the tendency for voltage to drop rapidly, when connected to elements that require pulsed large current discharges, such as lamps and speakers, which are often incorporated in small electronic devices such as those mentioned above, the output voltage of the battery decreases. In some cases, the temperature gradually decreases to below a certain threshold value, causing malfunction of the XO or display failure of the liquid crystal display. For this reason, conventional batteries have had sufficient remaining capacity and characteristics under normal usage conditions under light loads, but have been shown to suffer from malfunctions due to voltage drops during heavy load pulse discharges (especially at low temperatures). This causes the problem that the actual battery capacity decreases because it is determined that the battery life has expired.

この原因はいくつかあげられる。先ず、前記のような非
水電解液は、一般に水溶液系の電解液に比ベイオン導電
率が2〜5ケタ低いため、本質的に内部抵抗が大きくな
ることがあげられる。また、この種の電池においては、
多くの場合、正極が放電の進行につれて膨潤し、電解液
が正極合剤中に吸収さ九、負極(時には正極自身も)が
一種の電解液不足を米たし、電池反応の有効反応面積が
低下することが考えられる。更に、従来、高容量化。
There are several reasons for this. First, the non-aqueous electrolyte described above generally has a specific ion conductivity that is 2 to 5 orders of magnitude lower than that of an aqueous electrolyte, and thus inherently has a large internal resistance. In addition, in this type of battery,
In many cases, the positive electrode swells as discharge progresses, and the electrolyte is absorbed into the positive electrode mix, causing the negative electrode (and sometimes the positive electrode itself) to suffer from a kind of electrolyte shortage, and the effective reaction area for battery reactions is reduced. It is possible that this will decrease. Furthermore, conventionally, high capacity.

高エネルギー密度化をはかるために、活物質を出釆釆る
だけ多く充填する方法がとられてきた。この場合、放電
初期から中期にかけては問題がないが、中期から末期に
かけて、やはり活物質の液不足状態が起こり、内部抵抗
が増加するものと考えられる。
In order to achieve high energy density, methods have been used to fill as much active material as possible. In this case, there is no problem from the early stage to the middle stage of discharge, but from the middle stage to the final stage, the active material is considered to be in a liquid shortage state and the internal resistance increases.

本発明は、上記のような問題点を考慮してなされたもの
で、非水電解液電池において、活物質量と電解液量との
バランスを考慮することによって、放電末期の低温重負
荷特性が著しく改善されるという発見にもとづくもので
ある。即ち、(電解液量m[:、aA)/活物質容量c
(sAg)) として定義される5flits正極活物
質容量0+及び負極活物質容量C−それぞれに対して、
B+目X / O+ *s−wmz7a−とすると、 a8≦S+≦t5かつα8≦8−≦t2に規制すること
を提案するものである。
The present invention was made in consideration of the above-mentioned problems, and by considering the balance between the amount of active material and the amount of electrolyte in a non-aqueous electrolyte battery, the low-temperature heavy load characteristics at the end of discharge can be improved. This is based on the discovery that there is a significant improvement. That is, (electrolyte amount m[:, aA)/active material capacity c
(sAg)) For each of the 5flits positive electrode active material capacity 0+ and negative electrode active material capacity C−,
When B+th X/O+ *s-wmz7a-, it is proposed to restrict a8≦S+≦t5 and α8≦8-≦t2.

以下、実施例により本発明を更に、詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例を 粒91 S OOtl s以下の二硫化鉄yes@粒子
と導電剤としてグラファイト及びアセチレンプラ?りを
、組成比85:!:5の割合で混合し穴合剤12、テフ
ロンダイスバージョン液に水とエチルアルコールを加え
た液を加え、十分混練した。このスラリー状合剤を幅1
0 es 、 JILさ1.61Bのシートにして、7
0℃以下の温度で半乾燥後、正極台座6とともにペレッ
ト状に一体成形した。乙の底形合剤t−50℃で1時間
、次に200℃で2時間加熱乾燥したものを正極とした
Examples of iron disulfide yes @ particles below 91 S OOtl s and graphite and acetylene plastic as conductive agents? The composition ratio is 85:! :5, a hole mixture of 12 and a solution obtained by adding water and ethyl alcohol to the Teflon dicing solution were added and thoroughly kneaded. The width of this slurry mixture is 1
0 es, JIL size 1.61B sheet, 7
After semi-drying at a temperature of 0° C. or lower, it was integrally formed into a pellet together with the positive electrode pedestal 6. A positive electrode was prepared by heating and drying the bottom-shaped mixture of Otsu at t-50°C for 1 hour and then at 200°C for 2 hours.

第1図は、本実施例の一例を示す電池断面図である0図
において、1は負極亀子を兼ねぇ負極缶であり、8U8
製ネツトからなる負極集電体2が溶接されている。負極
5は、リチウムシートを打ち抜いたもので、負極集電体
2に圧着されている。
FIG. 1 is a cross-sectional view of a battery showing an example of this embodiment. In FIG. 0, 1 is a negative electrode can that also serves as a negative electrode frame, and
A negative electrode current collector 2 made of a metal net is welded. The negative electrode 5 is made by punching out a lithium sheet, and is crimped onto the negative electrode current collector 2.

4はSVS製の正極缶で、正極亀子を兼ねている。4 is a positive electrode can made by SVS, which also serves as a positive electrode cape.

5は、前記の正極である。7はポリプロピレン製不織布
からなるセパレータであり、8はポリプロピレンを主体
とするガスケットである。電%液は、PCとDMIHの
2≦1混合溶媒に1モル/LのLieμ04 を溶解し
几非水溶液を用いた。電池の大きさは、外径11.6襲
、総厚五〇SSである。
5 is the above-mentioned positive electrode. 7 is a separator made of a nonwoven fabric made of polypropylene, and 8 is a gasket mainly made of polypropylene. The electrolyte solution used was a non-aqueous solution prepared by dissolving 1 mol/L of Lieμ04 in a 2≦1 mixed solvent of PC and DMIH. The size of the battery is 11.6 mm in outer diameter and 50 mm in total thickness.

この様な電池構成において、正極容量、負極容量及び電
解液量を調整することKよって、種々の日ヤ値及び8−
値を有する電池を作った。これらの電池を外部負荷7.
5 RΩの定抵抗で65sAH放電後、2MΩの軽負荷
に切り換えた後、−10℃の低温で、負荷2RΩで2秒
間パルス放電したときの最終電圧E1を測定し友。この
結果を第2図と第5図に示した。
In such a battery configuration, various daily values and 8-
Created a battery with value. 7. Connect these batteries to an external load.
After discharging for 65 s with a constant resistance of 5 RΩ, switching to a light load of 2 MΩ, and then pulse discharging for 2 seconds at a low temperature of -10°C with a load of 2 RΩ, the final voltage E1 was measured. The results are shown in FIGS. 2 and 5.

図から明らかなように、E、には、日や値及び8−値に
対して最大となるところがあり、αB≦8や 、8−≦
1.2において、Elが高いことが分かる。
As is clear from the figure, E has a maximum value for days, values, and 8-values, and αB≦8, 8-≦
It can be seen that El is high at 1.2.

実施例2 本実格例の電池断面図を第4図に示した。15は正極で
あり、電解二酸化マンガンを400℃で2時間加熱処理
したもの85重量%に、導電剤としてグラファイト及び
アセチレンブラックを合わせて11重量−1結着剤とし
てフッ素樹脂4重量−金加えて十分混合し穴径、2.5
t/−で加圧底形して直vk1&7111)のペレット
にしtものを用いた。16は負極であり、リチウムシー
トを直径1511)&C打ち抜いて、5trs製の負極
集電体12及びそれが溶接されているBUEl製の負極
缶11からなるセパレータであり、18Fiポリプロピ
レン製のガスケットである。電解液は、POとDMEの
1=1混合溶媒に、L i OIt Oaを1モル/L
flj解した溶液を用いた。電池の大きさは、外径2α
6ms、高さL6111である。
Example 2 A cross-sectional view of the battery of this practical example is shown in FIG. 15 is a positive electrode, which is made of 85% by weight of electrolytic manganese dioxide heated at 400°C for 2 hours, 11% by weight of graphite and acetylene black as a conductive agent, 1% by weight of fluororesin as a binder, and 4% by weight of fluororesin as a binder and gold. Mix well and hole diameter: 2.5
The pellets were pressurized at t/- and made into pellets (vk1 & 7111). 16 is a negative electrode, a separator consisting of a 5trs negative electrode current collector 12 punched out of a lithium sheet with a diameter of 1511cm and a BUEL negative electrode can 11 to which it is welded, and a 18Fi polypropylene gasket. . The electrolyte was a 1=1 mixed solvent of PO and DME with 1 mol/L of Li OIt Oa.
A flj solution was used. The size of the battery is outer diameter 2α
6ms and height L6111.

この様な電池構成において、正極容量、負極容量及び電
解液量を調整することによって、種々の8+値及び日−
値を有する電池を作った。これらの電池を外部負荷15
RΩの定抵抗で52fiAI[放電後、2MΩの軽負荷
に切り換えた後、−10℃の低温で、負荷500Ωで5
秒間パルス放電したときの最終電圧E!を測定した。こ
の結果を第5図と第6図に示し九。
In such a battery configuration, by adjusting the positive electrode capacity, negative electrode capacity and electrolyte amount, various 8+ values and day-
Created a battery with value. Connect these batteries to an external load of 15
52fiAI with a constant resistance of RΩ [After discharging and switching to a light load of 2MΩ, at a low temperature of -10℃, with a load of 500Ω
Final voltage E when pulse discharged for seconds! was measured. The results are shown in Figures 5 and 6.

図から明らかな様に、m雪は、l1lL8≦8+。As is clear from the figure, m snow is l1lL8≦8+.

F3−≦t5の範囲において高い値を示し、特に、α9
≦8−≦1.2において蝦大値を有することが分かる。
It shows a high value in the range of F3-≦t5, especially α9
It can be seen that it has a large shrimp value in ≦8-≦1.2.

実施例五 電解液として、r−ブチロラクトンとジオキソランとテ
トラヒドロフランの3:1:1混合溶媒に、LiBF4
を1モル/L溶解したものを用いた他は、実施例1と同
じ様に作った電池を、実施例1と同じ放電試験を行なっ
た。この場合も%11と8+値、S−値との関係は、実
施例1とほぼ同じ傾向を示した。
Example 5 As an electrolyte, LiBF4 was added to a 3:1:1 mixed solvent of r-butyrolactone, dioxolane, and tetrahydrofuran.
A battery prepared in the same manner as in Example 1 was subjected to the same discharge test as in Example 1, except that a 1 mol/L solution was used. In this case as well, the relationship between %11, 8+ value, and S- value showed almost the same tendency as in Example 1.

実施例4゜ 正極として、活物質である酸化銅Cu0B7重量嘔、導
電剤としてグラファイト10重量%及び結着剤としてフ
ッ素樹脂3重量%を混合し、2t/−で加圧成形したペ
レットを用いた他は、実施例1と同様にして作った電池
においても%IC1と8+値及びB−値との傾向は、類
似したものであった。
Example 4 As a positive electrode, a pellet was used which was prepared by mixing copper oxide Cu0B7 as an active material, 10% by weight of graphite as a conductive agent, and 3% by weight of a fluororesin as a binder, and press-molding the mixture at 2t/-. In other respects, the trends of %IC1, 8+ value, and B- value were similar in batteries made in the same manner as in Example 1.

以上詳述した様に、本発明は、正極又は負極の活物質1
sAHJりの電解液量〔μL〕として定義されるs値を
規制することによって、放電特性、特に放電末期の低温
重負荷特性の優れた非水電解液電池を提供するものであ
る。
As described in detail above, the present invention provides an active material 1 for a positive electrode or a negative electrode.
By regulating the s value defined as the amount of electrolyte [μL] per sAHJ, a non-aqueous electrolyte battery with excellent discharge characteristics, particularly low-temperature heavy load characteristics at the end of discharge, is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で実施した電池の断面図である。第
2図は、Fe8B正極の8+値と放電特性を示すグラフ
、第3図は、負極の日−値と放電特性の関係を示すダラ
7である。 第4図は、実施例2で実施した電池の断面図である。第
5図は、M n O2正極の8+値と放電特性を示すグ
ラフ、第6図は、負極のS−値と放電特性の関係を示す
グラフである。 1.11・・・負極缶    5,15・・・正極2.
12・・・負極集電体  6 ・・・・・・正極台座5
.13・・・負極リチウム 7.17・・・セパレータ  4.14・・・正極缶8
.18・・・ガスケット 以上 出願人 株式会社第二精工舎 @1図 S+II! /117AH7 14al 第5図 !h II/alH1
FIG. 1 is a cross-sectional view of the battery implemented in Example 1. FIG. 2 is a graph showing the 8+ value and discharge characteristics of the Fe8B positive electrode, and FIG. 3 is a graph showing the relationship between the negative electrode value and the discharge characteristics. FIG. 4 is a cross-sectional view of the battery implemented in Example 2. FIG. 5 is a graph showing the 8+ value and discharge characteristics of the MnO2 positive electrode, and FIG. 6 is a graph showing the relationship between the S- value and discharge characteristics of the negative electrode. 1.11... Negative electrode can 5,15... Positive electrode 2.
12... Negative electrode current collector 6... Positive electrode pedestal 5
.. 13... Negative electrode lithium 7.17... Separator 4.14... Positive electrode can 8
.. 18...Applicant for gaskets and above Daini Seikosha Co., Ltd. @1 Figure S+II! /117AH7 14al Figure 5! h II/alH1

Claims (3)

【特許請求の範囲】[Claims] (1)  正極とリチウムを主活物質とする負極と非水
電解液とから少なくともなり、総電解液量(μm単位)
と正極tfは負極の活物質容量(惰ムH単位)2:の比
として定義されるB値(pi1mムH〕が 、α8≦B+≦t5でありかつα8≦8−≦t2(ここ
に、B−は負極の、S+は正極のS値である) の範囲に規制されたことを特徴とする非水電解液電池。
(1) Consisting of at least a positive electrode, a negative electrode containing lithium as the main active material, and a nonaqueous electrolyte, the total amount of electrolyte (in μm)
and the positive electrode tf have a B value (pi1mH) defined as the ratio of the active material capacity (inertumH unit) of the negative electrode 2: α8≦B+≦t5 and α8≦8−≦t2 (here, B- is the S value of the negative electrode, and S+ is the S value of the positive electrode.
(2)  正極は二硫化鉄を生活物質とし、電解液がプ
ロピレンカーボネイト(以下PCと略記)とジメトキシ
エタン(以下DMiCと略記)の混合溶媒に過塩素酸リ
チウムを溶解した非水電解液であり、正極の8億(8+
)と負極の8値(日−)がともに、α80以上t、10
以下に規制されたことを特徴とする特許請求の範囲第(
1)項記載の非水電解液電池。
(2) The positive electrode uses iron disulfide as a living material, and the electrolyte is a nonaqueous electrolyte in which lithium perchlorate is dissolved in a mixed solvent of propylene carbonate (hereinafter abbreviated as PC) and dimethoxyethane (hereinafter abbreviated as DMiC). , 800 million (8+
) and negative electrode 8 value (day -) are both α80 or more t, 10
Claim No. 1 characterized in that it is controlled as follows (
1) The non-aqueous electrolyte battery described in section 1).
(3)正極の生活物質が二酸化マンガンであり、電解液
が、paとDMI!!の混合溶媒に過塩素酸リチウムL
i0J104を溶解した非水電解液であり、正極の8値
がα80≦8+≦t30に、かつ負極のS値が190≦
8−≦L20に規制されたことを特徴とする特許請求の
範囲第(1)項記載の非水電解液電池。
(3) The life substance of the positive electrode is manganese dioxide, and the electrolyte is PA and DMI! ! Lithium perchlorate L in a mixed solvent of
It is a nonaqueous electrolyte in which i0J104 is dissolved, and the 8 value of the positive electrode is α80≦8+≦t30, and the S value of the negative electrode is 190≦
The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte battery is regulated to 8-≦L20.
JP14140181A 1981-09-08 1981-09-08 Nonaqueous electrolyte cell Pending JPS5842175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14140181A JPS5842175A (en) 1981-09-08 1981-09-08 Nonaqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14140181A JPS5842175A (en) 1981-09-08 1981-09-08 Nonaqueous electrolyte cell

Publications (1)

Publication Number Publication Date
JPS5842175A true JPS5842175A (en) 1983-03-11

Family

ID=15291140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14140181A Pending JPS5842175A (en) 1981-09-08 1981-09-08 Nonaqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JPS5842175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627779A1 (en) * 1993-05-31 1994-12-07 SANYO ELECTRIC Co., Ltd. Sealed type nickel-metal hydride alkaline storage cell
JP2001216975A (en) * 1999-11-26 2001-08-10 Hitachi Maxell Ltd Nonaqueous electrolyte battery
US6833481B2 (en) 2001-11-30 2004-12-21 Takasago International Corporation Process for producing 2-alkyl-2cyclopentenones

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547131A (en) * 1977-06-17 1979-01-19 Matsushita Electric Ind Co Ltd Organic electrolyte cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547131A (en) * 1977-06-17 1979-01-19 Matsushita Electric Ind Co Ltd Organic electrolyte cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627779A1 (en) * 1993-05-31 1994-12-07 SANYO ELECTRIC Co., Ltd. Sealed type nickel-metal hydride alkaline storage cell
JP2001216975A (en) * 1999-11-26 2001-08-10 Hitachi Maxell Ltd Nonaqueous electrolyte battery
US6833481B2 (en) 2001-11-30 2004-12-21 Takasago International Corporation Process for producing 2-alkyl-2cyclopentenones

Similar Documents

Publication Publication Date Title
US4464447A (en) Rechargeable lithium batteries with non-metal electrodes
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
JP3462877B2 (en) Electrochemical battery using zinc anode
JPS6117102B2 (en)
CA1121448A (en) Cell having improved chargeability by oxidation of lower manganese oxides
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
US4751157A (en) Cathode material for use in lithium electrochemical cell and lithium electrochemical cell including said cathode material
JPH01204361A (en) Secondary battery
CA1061859A (en) Electrochemical cell with cathode containing silver carbonate
CA1123898A (en) Lithium-lead sulfate primary electrochemical cell
JPS5842175A (en) Nonaqueous electrolyte cell
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP3707801B2 (en) Non-aqueous electrolyte secondary battery
JP2615854B2 (en) Non-aqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP2812943B2 (en) Organic electrolyte battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JP2865387B2 (en) Non-aqueous electrolyte secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JPH0329135B2 (en)
JP2001023697A (en) Nonaqueous electrolyte secondary battery
JP2807481B2 (en) Cathode of non-aqueous electrolyte battery
JPS63166166A (en) Lithium secondary cell
JP2001052701A (en) Electrode for lithium secondary battery and lithium secondary battery