JPH0254870A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH0254870A
JPH0254870A JP63205460A JP20546088A JPH0254870A JP H0254870 A JPH0254870 A JP H0254870A JP 63205460 A JP63205460 A JP 63205460A JP 20546088 A JP20546088 A JP 20546088A JP H0254870 A JPH0254870 A JP H0254870A
Authority
JP
Japan
Prior art keywords
manganese dioxide
active material
positive electrode
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63205460A
Other languages
Japanese (ja)
Inventor
Masayuki Nagamine
政幸 永峰
Naoyuki Date
伊達 尚幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63205460A priority Critical patent/JPH0254870A/en
Publication of JPH0254870A publication Critical patent/JPH0254870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To elevate the heavy load discharge characteristics of a battery by putting the average grain diameter of electrolytic manganese dioxide in the specified value. CONSTITUTION:As positive electrode active material 1, for example, a positive compound consisting of electrolytic manganese dioxide with an average grain diameter of 73.5mum, graphite, and polytetrafluoroethylene is pressed and formed in disc-shape. Next, the material 1 is arranged in a positive electrode can 2, and a negative electrode active material 3 is force-bonded and held by a negative electrode can 4, and the space between the negative can 4 and the gasket 6 is compressed so as to maintain the sealing inside a battery. In this case, the average grain diameter of electrolytic manganese dioxide is determined within the range of 50-130mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、負極活物質としてリチウムまたはリチウム合
金を、また正極活物質として電解二酸化マンガンをそれ
ぞれ用いた有機電解液電池に関し、特に、電池の重負荷
放電特性の改良に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an organic electrolyte battery using lithium or a lithium alloy as a negative electrode active material and electrolytic manganese dioxide as a positive electrode active material, and in particular, to This paper relates to improvements in heavy load discharge characteristics.

〔発明の概要〕[Summary of the invention]

本発明は、有機電解液を用いるリチウムマンガン電池な
どの有機電解液電池において、正極活物質として用いる
電解二酸化マンガンの平均粒子径を50〜130μm、
さらに好ましくは60〜120μmとすることによって
、電池の重負荷放電特性を改善するようにしたものであ
る。
The present invention provides an organic electrolyte battery such as a lithium manganese battery using an organic electrolyte, in which the average particle diameter of electrolytic manganese dioxide used as a positive electrode active material is 50 to 130 μm.
More preferably, the thickness is 60 to 120 μm to improve the heavy load discharge characteristics of the battery.

〔従来の技術〕[Conventional technology]

リチウムあるいはリチウム合金を負極活物質として用い
ると共に有機電解液を用いる有機電解液−次電池は、高
エネルギー密度を有し、耐漏液性が良(、また自己放電
が少ないなどの優れた特性をもつことから、近年特に注
目されている。有機電解液−次電池の正極活物質として
は、M n O□、CFxXFe5z 、CuO1Cu
FeSz等を用いたものが実用化されている。これらの
なかでも、MnO,は高い作動電圧が得られ、放電時の
電圧が平坦であり、また安価であるから、MnO2を用
いたリチウムマンガン電池は優れた殻のであって、電卓
、時計、メモリーバックアップなどの各種電子機器用電
源としての需匍が年々高まっている。
Organic electrolyte-based batteries that use lithium or a lithium alloy as a negative electrode active material and an organic electrolyte have excellent characteristics such as high energy density, good leakage resistance (and low self-discharge). Therefore, it has attracted particular attention in recent years.As positive electrode active materials for organic electrolyte-secondary batteries, MnO□, CFxXFe5z, CuO1Cu
Those using FeSz etc. have been put into practical use. Among these, MnO2 can provide high operating voltage, flat discharge voltage, and is inexpensive, making lithium-manganese batteries using MnO2 an excellent choice for use in calculators, watches, and memory. Demand for power supplies for various electronic devices such as backup devices is increasing year by year.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、有機電解液は水溶液系電解液と比べて導
電性が低いことなどの理由で、有機電解液−次電池の用
途は一般に軽負荷で使用するものに限られており、例え
ばカード形FMラジオ等の比較的重負荷(数m A c
s −’以上の電流密度)での放電が必要な用途には、
不向きであった。
However, because organic electrolytes have lower conductivity than aqueous electrolytes, the use of organic electrolyte-secondary batteries is generally limited to light-load applications, such as card-type FM radios. relatively heavy loads such as (several m AC
For applications requiring discharge at a current density of s −' or higher,
It was not suitable.

有機電解液−次電池における重負荷特性の改良方法とし
ては、これまで、正・負極対向面積の拡大、電解液溶媒
組成や塩濃度の検討による電解液の導電性の向上、正極
合剤の組成の検討による正極での電荷易動度の向上など
が試みられてきたが、十分な特性が得られていない。
Up until now, methods for improving the heavy load characteristics of organic electrolyte-secondary batteries have included expanding the facing area of the positive and negative electrodes, improving the conductivity of the electrolyte by examining the electrolyte solvent composition and salt concentration, and the composition of the positive electrode mixture. Attempts have been made to improve the charge mobility at the positive electrode by studying the above, but sufficient characteristics have not been obtained.

従来、この電池の正極活物質材料としては、電解二酸化
マンガンが用いられているが、この正極活物質材料に関
する改良も、例えば特公昭61−49790号公報に開
示されているように、主として軽負荷放電時の活物質利
用率の向上を目的とするものであった。この利用率向上
のために、正極活物質の平均粒子径を小さくして全比表
面積を大きくすることは、電極反応面積が増えて単位面
積当たりの反応量が減少するため、活物質利用率の向上
には有効な手段である。このため、現在、リチウムマン
ガン電池に一般的に用いられている電解二酸化マンガン
は平均粒子径が40μm以下のものである。
Conventionally, electrolytic manganese dioxide has been used as the positive electrode active material of this battery, but improvements to this positive electrode active material have also been made mainly for light load applications, as disclosed in Japanese Patent Publication No. 61-49790. The purpose was to improve the utilization rate of active materials during discharge. In order to improve this utilization rate, decreasing the average particle diameter of the positive electrode active material and increasing the total specific surface area increases the electrode reaction area and reduces the reaction amount per unit area, so the active material utilization rate decreases. It is an effective means for improvement. For this reason, the electrolytic manganese dioxide commonly used in lithium manganese batteries at present has an average particle diameter of 40 μm or less.

先に、本願の発明者の1人は、特願昭62−3;889
3号において、正極活物質として、所定の方法によって
つくられ所定の粒子比表面積を有する化学合成二酸化マ
ンガンを用いることによって、重負荷放電時の放電特性
を向上させた有機電解液電池を、他の発明者と共に提案
した。この場合の化学合成二酸化マンガンは非常にポー
ラスであって、その孔も大きいから、平均粒子径が30
μm前後でも非常に大きな比表面積を有している。
Previously, one of the inventors of the present application filed Japanese Patent Application No. 62-3;889.
In No. 3, an organic electrolyte battery with improved discharge characteristics during heavy load discharge by using chemically synthesized manganese dioxide produced by a predetermined method and having a predetermined particle specific surface area as a positive electrode active material was developed. Proposed together with the inventor. The chemically synthesized manganese dioxide in this case is very porous and has large pores, so the average particle size is 30
It has a very large specific surface area even around μm.

一方、電解二酸化マンガンは、一般に硫酸マンガン(I
I)溶液を不溶性陽極上で電解酸化することにより製造
する。この場合、二酸化マンガンは陽極上に電着して堆
積するから、これを剥離したフレーク状の電着物を機械
的に粉砕し、また他の必要な工程をへて電解二酸化マン
ガンを得るようにしている。この電解二酸化マンガンは
、ポーラスではあるがその孔は小さいから、優れた充填
率を有している。しかしながら、その反面、平均粒子径
が40μm以下と小さい電解二酸化マンガンを正極活物
質として用いると、この正極活′vyJ質を用いて通常
の圧力で成形した正極合剤の内部において粒子間に形成
される個々の間隙も小さくなり、また上記孔は小さいた
めにつまりやすい。従って、上記間隙に浸透して保持さ
れる電解液の量も少なくなる。このため、早い反応速度
が要求される重負荷放電時には、イオンの拡散が円滑に
行なわれずに利用率が低下する。以上の理由によって、
正極活物質として平均粒子径の小さい電解二酸化マンガ
ンを用いた有機電解液−次電池は、重負荷使用には通さ
ない。
On the other hand, electrolytic manganese dioxide is generally used as manganese sulfate (I
I) Produced by electrolytically oxidizing the solution on an insoluble anode. In this case, since manganese dioxide is electrodeposited and deposited on the anode, it is peeled off and the flaky electrodeposit is mechanically crushed and other necessary steps are performed to obtain electrolytic manganese dioxide. There is. Although this electrolytic manganese dioxide is porous, its pores are small, so it has an excellent filling rate. However, on the other hand, when electrolytic manganese dioxide, which has a small average particle diameter of 40 μm or less, is used as a positive electrode active material, formations occur between particles inside a positive electrode mixture formed using this positive electrode active material under normal pressure. The individual gaps between the holes also become smaller, and the pores are so small that they are easily clogged. Therefore, the amount of electrolyte that permeates and is retained in the gap also decreases. For this reason, during heavy load discharge where a fast reaction rate is required, ion diffusion does not occur smoothly and the utilization rate decreases. For the above reasons,
Organic electrolyte secondary batteries using electrolytic manganese dioxide with a small average particle size as a positive electrode active material cannot be used under heavy loads.

本発明の課題は、正極活物質に電解二酸化マンガンを使
用しても、重負荷使用時の放電特性が優れている有機電
解液電池を提供することにある。
An object of the present invention is to provide an organic electrolyte battery that has excellent discharge characteristics during heavy load use even when electrolytic manganese dioxide is used as the positive electrode active material.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、負極活物質としてリチウムまたはリチウム合
金を、また正極活物質として電解二酸化マンガンをそれ
ぞれ用いた有機電解液電池において、前記電解二酸化マ
ンガンの平均粒子径が50〜130μm、さらに好まし
くは60〜120μmの範囲にあることを特徴とする有
機電解液電池に係るものである。
The present invention provides an organic electrolyte battery using lithium or lithium alloy as a negative electrode active material and electrolytic manganese dioxide as a positive electrode active material, wherein the average particle diameter of the electrolytic manganese dioxide is 50 to 130 μm, more preferably 60 to 130 μm. The present invention relates to an organic electrolyte battery characterized in that the thickness is in the range of 120 μm.

本発明において、負極活物質としてリチウムまたはリチ
ウム合金が用いられるが、後者の場合は、A1、p b
 SS n 、、B i、Cd SCu SF eなど
を合金元素として一種類以上添加したものを用いること
ができる。なお、これらの金属はリチウムの電位を大き
く変化させない程度に添加されるのが好ましい。
In the present invention, lithium or a lithium alloy is used as the negative electrode active material, and in the latter case, A1, p b
It is possible to use one or more of SS n , B i , Cd SCu SF e, etc. added as an alloying element. Note that these metals are preferably added to an extent that does not significantly change the potential of lithium.

上記電解液としては、リチウム塩を電解質とし、これを
有機溶剤に溶解した非水系の有機電解液を用いるのが好
ましい。
As the electrolytic solution, it is preferable to use a non-aqueous organic electrolytic solution in which a lithium salt is used as an electrolyte and the electrolyte is dissolved in an organic solvent.

ここで、上記有機溶剤としては、例えば、エステル類、
エーテル類、3置換−2−オキサゾリジノン類及びこれ
らの二種以上の混合溶剤などを挙げることができる。
Here, as the organic solvent, for example, esters,
Examples include ethers, 3-substituted-2-oxazolidinones, and mixed solvents of two or more of these.

上記エステル類としては、例えば、エチレンカーボネー
ト、プロピレンカーボネート、γ−ブチルラクトン、2
−メチル−γ−ブチルラクトンなどのアルキレンカーボ
ネートなどを挙げることができる。
Examples of the above esters include ethylene carbonate, propylene carbonate, γ-butyl lactone, 2
-Methyl-γ-butyl lactone and other alkylene carbonates can be mentioned.

上記エーテル類としては、例えば、ジエチルエーテル、
環状エーテル(例えば、5員環を有するエーテル、6員
環を有するエーテル)、ジメトキシエタンなどを挙げる
ことができる。この場合、5員環を有するエーテルの具
体例としては、テトラヒドロフラン;置換(アルキル、
アルコキシ)テトラヒドロフラン(例えば、2−メチル
テトラヒドロフラン、2,5−ジメチルテトラヒドロフ
ラン、2−エチルテトラヒドロフラン、2−2′−ジメ
チルテトラヒドロフラン、2−メトキシテトラヒドロフ
ラン、2,5−ジメトキシテトラヒドロフランなど)、
ジオキソランなどを挙げることができる。また6員環を
有するエーテルの具体例としては、1,4−ジオキサン
、ピラン、ジヒドロビラン、テトラヒドロピランなどを
挙げることができる。
Examples of the above ethers include diethyl ether,
Examples include cyclic ethers (for example, ethers having a 5-membered ring and ethers having a 6-membered ring), dimethoxyethane, and the like. In this case, specific examples of ethers having a 5-membered ring include tetrahydrofuran; substituted (alkyl,
alkoxy)tetrahydrofuran (e.g., 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2-ethyltetrahydrofuran, 2-2'-dimethyltetrahydrofuran, 2-methoxytetrahydrofuran, 2,5-dimethoxytetrahydrofuran, etc.),
Examples include dioxolane. Further, specific examples of the ether having a 6-membered ring include 1,4-dioxane, pyran, dihydrobyran, and tetrahydropyran.

上記3置換−2−オキサゾリジノン類としては、例えば
、3−アルキル−2−オキサゾリジノン(例えば、3−
メチル−2−オキサゾリジノン、3・−エチル−2−オ
キサゾリジノンなど)、3−シクロアルキル−2−オキ
サゾリジノン(例えば、3−シクロヘキシル−2−オキ
サゾリジノンなど)、3−アラルキル−2−オキサゾリ
ジノン(例えば、3−ベンジル−2−オキサゾリジノン
など)、3−アリール−2−オキサゾリジノン(例えば
、3−フェニル−2−オキサゾリジノンなど)を挙げる
ことができる。
Examples of the above-mentioned 3-substituted-2-oxazolidinones include 3-alkyl-2-oxazolidinones (e.g., 3-
methyl-2-oxazolidinone, 3-ethyl-2-oxazolidinone, etc.), 3-cycloalkyl-2-oxazolidinone (e.g., 3-cyclohexyl-2-oxazolidinone, etc.), 3-aralkyl-2-oxazolidinone (e.g., 3-cyclohexyl-2-oxazolidinone, etc.), (benzyl-2-oxazolidinone, etc.), 3-aryl-2-oxazolidinone (eg, 3-phenyl-2-oxazolidinone, etc.).

これらのなかでも、有機溶剤としては、プロピレンカー
ボネートや5員環を有するエーテル(特に、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、2−エチル
テトラヒドロフラン、25−ジメトキシテトラヒドロフ
ラン、2−メトキンテトラヒドロフラン)、3−メチル
−2−オキサゾリジノンなどが好ましい。
Among these, organic solvents include propylene carbonate, ethers having a 5-membered ring (especially tetrahydrofuran, 2-methyltetrahydrofuran, 2-ethyltetrahydrofuran, 25-dimethoxytetrahydrofuran, 2-methquintetrahydrofuran), 3-methyl- 2-oxazolidinone and the like are preferred.

上記電解質としては、例えば、過塩素酸リチウム、ホウ
フッ化リチウム、リンフッ化リチウム、塩化アルミン酸
リチウム、ハロゲン化リチウム、トリフルオロメタンス
ルホン酸リチウムなどを挙げることができ、特に、過塩
素酸リチウム、ホウフッ化リチウムなどが好ましい。
Examples of the electrolyte include lithium perchlorate, lithium borofluoride, lithium phosphorus fluoride, lithium chloride aluminate, lithium halide, lithium trifluoromethanesulfonate, and in particular, lithium perchlorate, lithium borofluoride, and the like. Lithium and the like are preferred.

〔作用〕[Effect]

正極活物質として用いられる電解二酸化マンガンの平均
粒子径を従来のものよりも前記範囲まで大きくすると、
活物質の充填率をさほど低下させることなく、この二酸
化マンガンを加圧成形した後にできる正極合剤内の粒子
間の間隙が大きくなるから、この間隙に保持される電解
液の量を多くすることができる。このように、正極合剤
内に含ませるこ、とのできる電解液の量を多くすること
ができると、重負荷放電時には活物質と電解液との素早
い反応が可能となる。従って、平均粒子径が小さいとき
よりも活物質利用率が増大する。
When the average particle diameter of electrolytic manganese dioxide used as a positive electrode active material is increased to the above range compared to conventional ones,
Since the gaps between the particles in the positive electrode mixture that are formed after pressure molding this manganese dioxide become larger without significantly reducing the filling rate of the active material, the amount of electrolyte retained in these gaps can be increased. Can be done. In this way, if the amount of electrolyte that can be included in the positive electrode mixture can be increased, rapid reaction between the active material and the electrolyte becomes possible during heavy load discharge. Therefore, the active material utilization rate increases more than when the average particle diameter is small.

〔実施例〕〔Example〕

本発明をコイン型の形状をしたCR2016型リチウム
マンガン電池に適用した一実施例について図面を参照し
ながら説明する。
An embodiment in which the present invention is applied to a coin-shaped CR2016 type lithium manganese battery will be described with reference to the drawings.

第1図はCR2016型リチウムマンガン電池、の縦断
面図を示すものであって、この電池は次に述べるように
して作製された。
FIG. 1 shows a longitudinal cross-sectional view of a CR2016 type lithium manganese battery, which was manufactured as described below.

正極活物質1として、例えば平均粒子径73.5μmの
電解二酸化マンガン88.9重量部、グラファイト9.
3重量部およびポリテトラフルオロエチレン1.8重量
部から成る正極合剤0.36gを直径14.5m+*、
高さ0.64 wの円板状に加圧成型した。
As the positive electrode active material 1, for example, 88.9 parts by weight of electrolytic manganese dioxide with an average particle diameter of 73.5 μm and 9.9 parts by weight of graphite.
0.36 g of a positive electrode mixture consisting of 3 parts by weight and 1.8 parts by weight of polytetrafluoroethylene was heated to a diameter of 14.5 m++,
It was pressure molded into a disc shape with a height of 0.64 W.

なお本文において、電解二酸化マンガンの平均粒子径は
体積加重平均によって求めた。また電解二酸化マンガン
は420℃で4時間の脱水処理を行ってから用いた。次
いで、この正極活物質1を、外側にニッケルメッキを施
したステンレス鋼より成る正極缶2内に配置した。
In the text, the average particle diameter of electrolytic manganese dioxide was determined by volume weighted average. Moreover, electrolytic manganese dioxide was used after being subjected to dehydration treatment at 420° C. for 4 hours. Next, this positive electrode active material 1 was placed in a positive electrode can 2 made of stainless steel whose outside was nickel plated.

負極活物質3は直径16m1、厚さ0.22+nの円板
状の金属リチウムであり、ニッケルメッキを施したステ
ンレス鋼より成る負極缶4によって後述のようにして圧
着支持した。
The negative electrode active material 3 was a disk-shaped metal lithium with a diameter of 16 m1 and a thickness of 0.22+n, and was supported by pressure in a negative electrode can 4 made of nickel-plated stainless steel as described below.

電解?flとしては、プロピレンカーボネートと1.2
−ジメトキシエタンとの体積比1:1の混合溶媒に過塩
素酸リチウムを1モル/1の割合で溶解したものを用い
た。
electrolytic? As fl, propylene carbonate and 1.2
- Lithium perchlorate was dissolved at a ratio of 1 mole/1 in a mixed solvent with dimethoxyethane at a volume ratio of 1:1.

前記正極活物質1と前記負極活物質3とを、ポリプロピ
レン製のセパレータ5を介して互いに対向させてから、
前記正極缶2をかしめることによって、前記負極缶4と
表面にアスファルトを塗布したポリプロピレン製のガス
ケット6との間を圧縮させて、電池の内部の密閉性を保
持した。
After making the positive electrode active material 1 and the negative electrode active material 3 face each other with a polypropylene separator 5 interposed therebetween,
By caulking the positive electrode can 2, the space between the negative electrode can 4 and the gasket 6 made of polypropylene whose surface was coated with asphalt was compressed, and the airtightness of the inside of the battery was maintained.

以上のようにして、直径201m、高さ1.6鶴のコイ
ン形のCR2016型リチウムマンガン電池を作製した
As described above, a coin-shaped CR2016 type lithium manganese battery with a diameter of 201 m and a height of 1.6 m was produced.

次に、電解二酸化マンガンの平均粒子径を6種類に変え
ると共に、上述の場合と全く同様にして、さらに6種類
のリチウムマンガン電池を作製した。
Next, the average particle diameter of the electrolytic manganese dioxide was changed to 6 types, and 6 more types of lithium manganese batteries were produced in exactly the same manner as in the above case.

この結果、次表に示すように、合計7種類の平均粒子径
の電解二酸化マンガンを用いた合計7種類のリチウムマ
ンガン電池が得られた。
As a result, as shown in the following table, a total of seven types of lithium manganese batteries using electrolytic manganese dioxide having seven types of average particle diameters were obtained.

この表において、D、EおよびFの電解二酸化マンガン
はその平均粒子径が50〜130xJmの範囲に含まれ
るものであるから、これらを用いて作製された電池は、
本発明の実施例である。またA、B、CおよびGの電解
二酸化マンガンはその平均粒子径が上記範囲外のもので
あるから、これらを用いて作製された電池は、本発明の
参考例である。
In this table, electrolytic manganese dioxide D, E, and F have average particle diameters in the range of 50 to 130xJm, so batteries made using these are as follows:
This is an example of the present invention. Furthermore, since the average particle diameters of electrolytic manganese dioxide A, B, C, and G are outside the above range, batteries made using these are reference examples of the present invention.

これらの7種類の電池について、20℃で電流密度5m
Acm−”の定電流連続放電試験を行った。
For these seven types of batteries, the current density was 5 m at 20°C.
Acm-'' constant current continuous discharge test was conducted.

この電流密度は、互いに対向した正・負極活物質の対向
面における正極の負極対向面積を基準にした。第2図に
この結果をあられす放電特性図を示す。同図中のA〜G
は、前記表のA−Gに記載した電解二酸化マンガンを正
極活物質として用いたリチウムマンガン電池の各々の放
電特性曲線を示す。
This current density was based on the area of the positive electrode facing the negative electrode on the facing surfaces of the positive and negative electrode active materials facing each other. Figure 2 shows a discharge characteristic diagram showing this result. A to G in the same figure
shows the discharge characteristic curves of each lithium manganese battery using the electrolytic manganese dioxide described in A to G of the table as the positive electrode active material.

第2図から明らかなように、平均粒子径50〜130p
mの範囲の電解二酸化マンガンを用いた本発明の実施例
の電池(図中の曲線り、E、F)は、平均粒子径が40
μmよりも低いもの(曲線A、B、C) 、あるいは平
均粒子径が130μmを超えるもの(曲mG)と比べて
、電流密度5mAcm−”の定電流放電時間が長くなっ
ている。例えば、終止電圧2.0■までの放電時間で比
較すると、平均粒子径が36.5μmのもの(C)を用
いた電池の放電時間は3.0時間であるのに対し、平均
粒子径51.5μmのもの(D)を用いた電池の放電時
間は3.7時間であるから、後者は前者に比べて2割以
上向上している。更に、平均粒子径73.5μmのもの
(E)並びに平均粒子径116.3μmのもの(F)を
用いた各々の電池の放電時間はそれぞれ4.0時間並び
に3.95時間であるから、これらは3割以上向上して
いる。従って、第2図から、電解二酸化マンガンの平均
粒子径が60〜120μmの範囲にあるのがさらに好ま
しいことが明らかである。
As is clear from Figure 2, the average particle size is 50 to 130p.
The battery of the present invention using electrolytic manganese dioxide in the range of m (curves E and F in the figure) has an average particle size of 40
The constant current discharge time at a current density of 5 mAcm is longer than those with an average particle diameter of less than 130 μm (curves A, B, and C) or those with an average particle diameter of more than 130 μm (curve mG). Comparing the discharge time up to a voltage of 2.0 μm, the discharge time of the battery using (C) with an average particle size of 36.5 μm is 3.0 hours, whereas the discharge time of the battery with an average particle size of 51.5 μm is 3.0 hours. Since the discharge time of the battery using the material (D) is 3.7 hours, the latter is improved by more than 20% compared to the former.Furthermore, the battery using the material (E) with an average particle diameter of 73.5 μm and the battery with an average particle size of 73.5 μm The discharge time of each battery using the battery (F) with a diameter of 116.3 μm is 4.0 hours and 3.95 hours, which is an improvement of more than 30%. Therefore, from Fig. 2, It is clear that it is more preferable that the average particle diameter of the electrolytic manganese dioxide is in the range of 60 to 120 μm.

以上説明したように、上述の実施例においては、CR2
016型のリチウムマンガン電池に本発明を適用したが
、本発明は他の型式の有機電解液−次電池にも適用でき
、また有機電解液二次電池にも適用可能である。
As explained above, in the above embodiment, CR2
Although the present invention was applied to a 016 type lithium manganese battery, the present invention can also be applied to other types of organic electrolyte secondary batteries, and can also be applied to organic electrolyte secondary batteries.

〔発明の効果〕〔Effect of the invention〕

本発明による有S電解液電池は、正極活物質として、優
れた充填率を存する電解二酸化マンガンを用いると共に
、この電解二酸化マンガンの平均粒子径を50〜130
μm、好ましくは60〜120μmの範囲としたから、
正極活物質の充填率をさほど低下させることなく、正極
の内部に保持できる電解液の量を多くすることができ、
このために、電池の重負荷放電特性を向上させることが
できる。例えば、CR2016型リチウムマンガン電池
における電流密度5mAc+n−2の定電流連続放電試
験では、本発明による電池の2.0Vまでの放電時間は
、従来の製品に比べ約2〜3割長くなる。
The S-containing electrolyte battery according to the present invention uses electrolytic manganese dioxide having an excellent filling rate as the positive electrode active material, and has an average particle diameter of 50 to 130%.
μm, preferably in the range of 60 to 120 μm,
The amount of electrolyte that can be held inside the positive electrode can be increased without significantly reducing the filling rate of the positive electrode active material.
Therefore, the heavy load discharge characteristics of the battery can be improved. For example, in a constant current continuous discharge test at a current density of 5 mAc+n-2 on a CR2016 type lithium manganese battery, the discharge time of the battery according to the present invention to 2.0 V is approximately 20 to 30% longer than that of conventional products.

2−・−・・−・−・−−−−−−−−m−正極缶3−
・・・・・−・−一−−−−−−−・負極活物質4−・
−−−−−一・−・−・−・・負極缶5−−−−−・−
・・−−−−−−−セパレータである。
2−・−・・−・−・−−−−−−−m−Positive electrode can 3−
・・・・・−・−1−−−−−−・Negative electrode active material 4−・
−−−−−1・−・−・−・・Negative electrode can 5−−−−−・−
...---------Separator.

Claims (1)

【特許請求の範囲】  負極活物質としてリチウムまたはリチウム合金を、ま
た正極活物質として電解二酸化マンガンをそれぞれ用い
た有機電解液電池において、 前記電解二酸化マンガンの平均粒子径が50〜130μ
mの範囲にあることを特徴とする有機電解液電池。
[Scope of Claims] An organic electrolyte battery using lithium or a lithium alloy as a negative electrode active material and electrolytic manganese dioxide as a positive electrode active material, wherein the average particle diameter of the electrolytic manganese dioxide is 50 to 130μ.
An organic electrolyte battery characterized in that the electrolyte is in the range of m.
JP63205460A 1988-08-18 1988-08-18 Organic electrolyte battery Pending JPH0254870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63205460A JPH0254870A (en) 1988-08-18 1988-08-18 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63205460A JPH0254870A (en) 1988-08-18 1988-08-18 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH0254870A true JPH0254870A (en) 1990-02-23

Family

ID=16507244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63205460A Pending JPH0254870A (en) 1988-08-18 1988-08-18 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0254870A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216975A (en) * 1999-11-26 2001-08-10 Hitachi Maxell Ltd Nonaqueous electrolyte battery
JP2006079883A (en) * 2004-09-08 2006-03-23 Hitachi Maxell Ltd Nonaqueous electrolyte solution battery
JP2017084780A (en) * 2015-10-28 2017-05-18 レナタ・アーゲー Electro-active material of cathode of primary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126263A (en) * 1980-03-07 1981-10-03 Fuji Elelctrochem Co Ltd Production of positive electrode active material for nonaqueous electrolyte battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126263A (en) * 1980-03-07 1981-10-03 Fuji Elelctrochem Co Ltd Production of positive electrode active material for nonaqueous electrolyte battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216975A (en) * 1999-11-26 2001-08-10 Hitachi Maxell Ltd Nonaqueous electrolyte battery
JP2006079883A (en) * 2004-09-08 2006-03-23 Hitachi Maxell Ltd Nonaqueous electrolyte solution battery
JP2017084780A (en) * 2015-10-28 2017-05-18 レナタ・アーゲー Electro-active material of cathode of primary battery

Similar Documents

Publication Publication Date Title
US4002492A (en) Rechargeable lithium-aluminum anode
JP2556992B2 (en) Non-aqueous electrochemical secondary cell
JP3369583B2 (en) Non-aqueous electrolyte battery
JP2002124300A (en) Lithium ion secondary electrochemical battery provided with multiple electrode plates having different discharge speed region
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JP2705529B2 (en) Organic electrolyte secondary battery
JPH0254870A (en) Organic electrolyte battery
JPH0456079A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JPH1197062A (en) Organic electrolyte secondary battery
JP2812943B2 (en) Organic electrolyte battery
JPH0770326B2 (en) Organic electrolyte battery
JPH09134720A (en) Lithium secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JPS61294756A (en) Organic electrolyte battery
JPH0353743B2 (en)
JPH0424828B2 (en)
JPS62160671A (en) Nonaqueous solvent secondary battery
JP2991758B2 (en) Non-aqueous electrolyte for lithium secondary batteries
JPH05275083A (en) Lithium cell
JPH0424829B2 (en)
KR20050016856A (en) Coated current collector for reducing self discharge and sulfur battery using same
JP3176703B2 (en) Lithium battery
JP2521909B2 (en) Lithium / manganese dioxide secondary battery
JP3256986B2 (en) Coin type non-aqueous electrolyte battery