JPH09134720A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH09134720A
JPH09134720A JP7317409A JP31740995A JPH09134720A JP H09134720 A JPH09134720 A JP H09134720A JP 7317409 A JP7317409 A JP 7317409A JP 31740995 A JP31740995 A JP 31740995A JP H09134720 A JPH09134720 A JP H09134720A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
lithium
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7317409A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Kojima
由継 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP7317409A priority Critical patent/JPH09134720A/en
Publication of JPH09134720A publication Critical patent/JPH09134720A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery which is capable of taking-out of a large current and excellent in the charge/discharge cyclic characteristics. SOLUTION: A lithium secondary battery concerned is composed of a negative electrode 2 made of lithium metal, a positive electrode 3, separator 5 installed between the negative and positive electrodes, and an electrolyte 6. The surface of the negative electrode 2 is covered with a porous substance 1 having communication holes of mean diameter 0.3nm to 1μm. It is preferable that the porous substance 1 is installed on the surface of negative electrode 2 on the separator 5 side. The specific surface area of this porous substance 1 is 100-3000m<2> /g. Examples of porous substance 1 are activated coal, method porous crystal, zeolite, zeolite-series compound, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,リチウム二次電池に関し,特
に,大電流の取り出しが可能で,充放電サイクル特性に
優れたリチウム二次電池用負極に関する。
TECHNICAL FIELD The present invention relates to a lithium secondary battery, and more particularly, to a negative electrode for a lithium secondary battery which is capable of extracting a large current and has excellent charge / discharge cycle characteristics.

【0002】[0002]

【従来技術】リチウム金属は,電気的に陰性であり,活
性度が高いため,リチウム電池の負極材料として用いら
れている。かかるリチウム金属を用いたリチウム電池
は,高エネルギー密度(大容量)で,小型軽量化するこ
とができ,一次電池として広く実用化されている。ま
た,リチウム電池を二次電池として用いることも実用化
されつつある。
2. Description of the Related Art Lithium metal is used as a negative electrode material of a lithium battery because it is electronegative and highly active. A lithium battery using such lithium metal has a high energy density (large capacity), can be made compact and lightweight, and is widely put into practical use as a primary battery. Also, the use of lithium batteries as secondary batteries is being put to practical use.

【0003】[0003]

【解決しようとする課題】しかしながら,リチウム金属
を二次電池用負極として用いるに当たっては,充放電に
よりリチウムデンドライト(樹枝状結晶)が析出する。
このデンドライトは,幅が数μm程度あり〔第36回電
池討論会講演集,p.151(1995)斉藤景一,根
本康恵,鳶島真一,山本準一〕,ショートの原因とな
る。また,負極から脱落する等の問題がある。
However, when lithium metal is used as a negative electrode for a secondary battery, lithium dendrite (dendritic crystal) is deposited by charging and discharging.
This dendrite has a width of several μm [36th Symposium on Battery Symposium, p. 151 (1995) Keiichi Saito, Yasue Nemoto, Shinichi Tobishima, Junichi Yamamoto], causing a short circuit. In addition, there is a problem such as falling off from the negative electrode.

【0004】また,リチウムデンドライトに対処するた
め,負極にリチウム─アルミニウム合金を用いた電池が
提案されている(特開昭52─5423号公報)。ここ
に,リチウム─アルミニウム合金は,電気化学電池のエ
ネルギー密度が高いため,充放電時の過電圧が低くな
り,そのため,デンドライトの成長が抑制できる。しか
し,この合金は硬く加工が困難であり,充放電の繰り返
しにより劣化がおこり十分な充放電サイクル寿命が得ら
れない等の問題がある。
In order to cope with lithium dendrites, a battery using a lithium-aluminum alloy for the negative electrode has been proposed (Japanese Patent Laid-Open No. 52-5423). Here, since the lithium-aluminum alloy has a high energy density in the electrochemical cell, the overvoltage at the time of charging / discharging becomes low, so that the growth of dendrites can be suppressed. However, this alloy is hard and difficult to work, and there is a problem that sufficient charge / discharge cycle life cannot be obtained due to deterioration due to repeated charge / discharge.

【0005】また,リチウム二次電池用負極としては,
孔径10μm〜1mmの多孔質カーボンを基材として,
その表面又は内部にリチウムを吸蔵させたものが知られ
ている(特開平3─216960号公報)。しかし,こ
の負極を用いた場合においても,基材の孔径が大きいた
め,充放電を繰り返すことによりリチウムデンドライト
が成長してショートしたり,基材が負極から脱落する等
の問題が生じることがあった。
Further, as a negative electrode for a lithium secondary battery,
Using porous carbon with a pore size of 10 μm to 1 mm as a base material,
It is known that lithium is occluded on its surface or inside (JP-A-3-216960). However, even when this negative electrode is used, since the pore size of the base material is large, problems such as lithium dendrite growing and short-circuiting due to repeated charging and discharging and the base material falling off from the negative electrode may occur. It was

【0006】本発明はかかる従来の問題点に鑑み,大電
流の取り出しが可能で,かつ充放電サイクル特性に優れ
たリチウム二次電池を提供しようとするものである。
In view of the above conventional problems, the present invention is to provide a lithium secondary battery capable of extracting a large current and excellent in charge / discharge cycle characteristics.

【0007】[0007]

【課題の解決手段】請求項1の発明は,リチウム金属か
らなる負極と,正極と,上記負極と正極との間に設けた
セパレータと,電解質とよりなるリチウム二次電池にお
いて,上記負極の表面は,平均孔径0.3nm〜1μm
の連通孔を有する多孔体により被覆されていることを特
徴とするリチウム二次電池である。
According to a first aspect of the present invention, in a lithium secondary battery including a negative electrode made of lithium metal, a positive electrode, a separator provided between the negative electrode and the positive electrode, and an electrolyte, the surface of the negative electrode. Has an average pore diameter of 0.3 nm to 1 μm
The lithium secondary battery is characterized in that it is covered with a porous body having a communication hole.

【0008】上記多孔体の連通孔の平均孔径が0.3n
m未満の場合には,リチウムイオン(大きさが0.1n
m程度)の出入りが妨げられることがある。一方,1μ
mを越える場合には,リチウムデンドライトが成長しや
すくなる。
The average pore diameter of the communicating pores of the porous body is 0.3 n.
If less than m, lithium ion (size 0.1n
Approximately m) may be blocked. On the other hand, 1μ
If it exceeds m, lithium dendrites are likely to grow.

【0009】本発明のリチウム二次電池は,リチウム金
属からなる負極の表面に多孔体を被覆してなる。そのた
め,負極において生成したリチウムイオンが多孔体の連
通孔を通過して,電解質に至る。その多孔体を通過する
際,リチウムイオンは,多孔体の連通孔(細孔)中を通
過するが,一方,リチウムデンドライトは通過できな
い。そのため,リチウムデンドライトの成長を抑制する
ことができ,優れた充放電サイクル特性を発揮すること
ができる。また,負極にリチウム金属を使用し,リチウ
ムデンドライトの成長を抑制しているため,安定して大
電流の取り出しが可能である。
The lithium secondary battery of the present invention comprises a negative electrode made of lithium metal and a porous body coated on the surface of the negative electrode. Therefore, the lithium ions generated in the negative electrode pass through the communication holes of the porous body and reach the electrolyte. When passing through the porous body, lithium ions pass through the communication holes (pores) of the porous body, while lithium dendrites cannot pass through. Therefore, the growth of lithium dendrite can be suppressed, and excellent charge / discharge cycle characteristics can be exhibited. In addition, since lithium metal is used for the negative electrode and the growth of lithium dendrite is suppressed, it is possible to stably extract a large current.

【0010】そして,更に,上記多孔体は,請求項2に
記載のように,負極のセパレータ側の表面に設けること
が好ましい。その理由は,充電時にセパレータ側の負極
表面にリチウムイオンが金属となって析出するため負極
から生成するリチウムデンドライトはセパレータの方向
に向かって成長する傾向にある。そのため,多孔体を負
極のセパレータ側に設けることにより,デンドライトの
生成を妨げることができるからである。
Further, it is preferable that the porous body is provided on the surface of the negative electrode on the side of the separator. The reason is that since lithium ions are deposited as metal on the surface of the negative electrode on the separator side during charging, the lithium dendrite generated from the negative electrode tends to grow in the direction of the separator. Therefore, the formation of dendrites can be prevented by providing the porous body on the separator side of the negative electrode.

【0011】上記多孔体としては,請求項3に記載のよ
うに,比表面積が100〜3000m2 /gであること
が好ましい。100m2 /g未満の場合には,多孔体中
の電解液の割合が低下してリチウムイオンの移動を妨害
するおそれがある。一方,3000m2 /gを越える場
合には,多孔体の強度が低下してリチウムデンドライト
が多孔体を破壊しながら成長するおそれがある。
As described in claim 3, the porous body preferably has a specific surface area of 100 to 3000 m 2 / g. If it is less than 100 m 2 / g, the proportion of the electrolytic solution in the porous body may decrease, which may hinder the movement of lithium ions. On the other hand, when it exceeds 3000 m 2 / g, the strength of the porous body is lowered and lithium dendrite may grow while destroying the porous body.

【0012】また,上記の平均孔径及び比表面積を有す
る多孔体としては,例えば,請求項4に記載のように,
活性炭,メソ多孔結晶体,ゼオライト,及びゼオライト
類縁化合物のグループから選ばれる1種又は2種以上を
用いることができる。なお,メソ多孔結晶体とは,孔径
がメソオーダー(1〜10nm)の細孔を有する結晶性
のシリカであり,3次元構造体をなすものである。
As the porous body having the above-mentioned average pore size and specific surface area, for example, as described in claim 4,
One or more selected from the group of activated carbon, mesoporous crystal, zeolite, and zeolite-related compounds can be used. The mesoporous crystal is a crystalline silica having pores of meso-order (1 to 10 nm) in pore size and forms a three-dimensional structure.

【0013】上記多孔体の厚みは,0.001mm〜1
0mmであることが好ましい。0.001mm未満の場
合には,リチウムデンドライトが成長して,充放電時に
ショートが発生したり,多孔体が負極表面から脱落する
おそれがある。一方,10mmを越える場合には,負極
において発生するリチウムイオンの電解質への移動が妨
げられ,大量の電流を取り出すことができないおそれが
ある。
The thickness of the porous body is 0.001 mm to 1
It is preferably 0 mm. If the thickness is less than 0.001 mm, lithium dendrite may grow, short circuit may occur during charging / discharging, or the porous body may drop off from the negative electrode surface. On the other hand, when it exceeds 10 mm, the migration of lithium ions generated in the negative electrode to the electrolyte is hindered, and a large amount of current may not be able to be taken out.

【0014】リチウム金属表面への多孔体の被覆方法と
しては,例えば,多孔体に少量の結着剤を加えて混合し
プレス成形したものをリチウム金属上に重ねる方法,結
着剤を溶剤に溶かして多孔体と混合しリチウム金属上に
被覆した後に溶剤を蒸発させる方法等がある。上記結着
剤としては,例えば,ポリエチレン,ポリテトラフルオ
ロエチレン,ポリプロピレン,ポリふっ化ビニリデンを
用いる。
As a method for coating the surface of the lithium metal with the porous body, for example, a method in which a small amount of a binder is added to the porous body and mixed and press-molded is stacked on the lithium metal, or the binder is dissolved in a solvent. There is a method in which the solvent is evaporated after being mixed with the porous body and coated on the lithium metal. As the binder, for example, polyethylene, polytetrafluoroethylene, polypropylene, or polyvinylidene fluoride is used.

【0015】上記正極としては,例えば,LiMO
2 (Mは,Mn,Co,Niの少なくとも1種を表
す。),又はLiMn2 4 からなる複合金属酸化物を
用いる。また,上記正極には,導電性を向上させるため
に,アセチレンブラック,ケチェンブラック等の導電材
を添加することが好ましい。また,ポリテトラフルオロ
エチレン又はポリエチレン等の結着剤を添加することも
できる。上記正極は,キャスト成形,圧縮成形,ロール
成形等の方法により成形することができる。
Examples of the positive electrode include LiMO
2 (M represents at least one of Mn, Co, and Ni), or a composite metal oxide composed of LiMn 2 O 4 is used. In addition, it is preferable to add a conductive material such as acetylene black or ketjen black to the positive electrode in order to improve conductivity. Also, a binder such as polytetrafluoroethylene or polyethylene can be added. The positive electrode can be molded by a method such as cast molding, compression molding, roll molding and the like.

【0016】上記電解質としては,例えば,有機溶媒に
可溶な塩類を溶解させた電解液,又は固体電解質を用い
ることができる。塩類は,例えば,有機溶媒に溶解し
て,濃度0.1〜3モル/リットルに調製して用いる。
上記塩類としては,例えば,LiClO4 ,LiB
4 ,LiPF6 ,LiAsF6 ,LiCF3 SO3
LiAlCl4 ,Li(CF3 SO2 2 Nのグループ
から選ばれる1種又は2種以上を用いる。
As the electrolyte, for example, an electrolyte solution in which salts soluble in an organic solvent are dissolved, or a solid electrolyte can be used. The salt is dissolved in an organic solvent and adjusted to a concentration of 0.1 to 3 mol / liter before use.
Examples of the salts include, for example, LiClO 4 , LiB
F 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 ,
At least one selected from the group consisting of LiAlCl 4 and Li (CF 3 SO 2 ) 2 N is used.

【0017】上記有機溶媒としては,例えば,エチレン
カーボネート,プロピレンカーボネート,ジメチルスル
ホキシド,スルホラン,γ─ブチロラクトン,1,2─
ジメトキシエタン,N,N−ジメチルホルムアミド,テ
トラヒドロフラン,1,3─ジオキソラン,2─メチル
テトラヒドロフラン,ジエチルエーテル及びこれらの混
合物のグループから選ばれる1種又は2種以上を用い
る。
Examples of the organic solvent include ethylene carbonate, propylene carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, 1,2-
One or more selected from the group of dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, 1,3-dioxolane, 2-methyltetrahydrofuran, diethyl ether and mixtures thereof are used.

【0018】電解質が固体電解質の場合には,上記塩類
を,ポリエチレンオキシド,ポリプロピレンオキシド,
ポリホスファゼン,ポリアジリジン,ポリエチレンスル
フィド等の有機物若しくはこれらの誘導体,又はこれら
の混合物等のイオン伝導性高分子に添加して用いること
ができる。
When the electrolyte is a solid electrolyte, the above salts are added to polyethylene oxide, polypropylene oxide,
It can be used by adding it to an organic compound such as polyphosphazene, polyaziridine, or polyethylene sulfide, or a derivative thereof, or an ion conductive polymer such as a mixture thereof.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかるリチウム二次電池につい
て,図1,図2を用いて説明する。本例のリチウム二次
電池7は,図1に示すごとく,リチウム金属からなる負
極2と,正極3と,負極2と正極3との間に設けたセパ
レータ5と,電解液6とよりなる。負極2のセパレータ
5側の表面は,平均孔径0.3nm〜1μmである多孔
体1により被覆されている。多孔体1は活性炭であり,
その比表面積は100〜3000m2 /gであり,その
厚みは0.8mmである。
First Exemplary Embodiment A lithium secondary battery according to an exemplary embodiment of the present invention will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the lithium secondary battery 7 of this example includes a negative electrode 2 made of lithium metal, a positive electrode 3, a separator 5 provided between the negative electrode 2 and the positive electrode 3, and an electrolytic solution 6. The surface of the negative electrode 2 on the separator 5 side is covered with the porous body 1 having an average pore diameter of 0.3 nm to 1 μm. Porous body 1 is activated carbon,
Its specific surface area is 100 to 3000 m 2 / g and its thickness is 0.8 mm.

【0020】また,負極2および正極3の間には,電解
液6が充填されている。負極2,正極3の表面には,負
極集電体21,正極集電体31が設けられている。負極
集電体21,正極集電体31は,いずれもステンレス鋼
よりなる。
An electrolytic solution 6 is filled between the negative electrode 2 and the positive electrode 3. A negative electrode current collector 21 and a positive electrode current collector 31 are provided on the surfaces of the negative electrode 2 and the positive electrode 3. Both the negative electrode current collector 21 and the positive electrode current collector 31 are made of stainless steel.

【0021】次に,上記リチウム二次電池の製造方法に
ついて説明する。まず,多孔体としての活性炭(平均孔
径2nmの連通孔を有するもの,比表面積3000m2
/g,関西熱化学製)50mgに,結着剤としてのポリ
テトラフルオロエチレン(ダイキン工業製)を混合し
た。上記結着剤の混合比は,多孔体及び結着剤の合計重
量に対して,4重量%である。次に,これらを0.3G
Paの圧力で直径15mmの円板状に成形して,多孔体
1を得た。次に,この多孔体1の表面に,負極2として
のリチウム金属と,負極集電体21としてのステンレス
鋼メッシュ(SUS304)とを順に積層し,これらを
圧着した。
Next, a method of manufacturing the above lithium secondary battery will be described. First, activated carbon as a porous material (having continuous pores with an average pore diameter of 2 nm, specific surface area of 3000 m 2
/ G, manufactured by Kansai Thermochemical Co., Ltd.) was mixed with polytetrafluoroethylene (manufactured by Daikin Industries, Ltd.) as a binder. The mixing ratio of the binder is 4% by weight based on the total weight of the porous body and the binder. Next, add these to 0.3G
A porous body 1 was obtained by molding with a pressure of Pa into a disk shape having a diameter of 15 mm. Next, on the surface of the porous body 1, a lithium metal as the negative electrode 2 and a stainless steel mesh (SUS304) as the negative electrode current collector 21 were sequentially laminated, and these were pressure-bonded.

【0022】また,正極としてのLiMn2 4 50m
g,導電材としてのアセチレンブラック3.3mg及
び,結着剤としてのポリテトラフルオロエチレン2.3
mgを十分に混合した。次いで,正極集電体31として
のステンレス鋼メッシュ(SUS304)上に,上記混
合物を圧力0.27GPaで成形して,円板状の正極3
を得た。
Also, as a positive electrode, LiMn 2 O 4 50m
g, acetylene black 3.3 mg as a conductive material, and polytetrafluoroethylene 2.3 as a binder
mg was mixed well. Then, the above mixture was molded at a pressure of 0.27 GPa on a stainless steel mesh (SUS304) serving as the positive electrode current collector 31, and the disk-shaped positive electrode 3 was formed.
I got

【0023】また,プロピレンカーボネート(三菱化学
製)と1,2─ジメトキシエタン(三菱化学製)との体
積比1:1の混合物に,1モル/リットルのLiPF6
を溶解して,電解液6を得た。また,ポリプロピレン
(ヘキストジャパン製セルガード#2400)を,直径
15mmに打ち抜いて,セパレータ5を得た。
Further, 1 mol / liter of LiPF 6 was added to a mixture of propylene carbonate (manufactured by Mitsubishi Chemical) and 1,2-dimethoxyethane (manufactured by Mitsubishi Chemical) at a volume ratio of 1: 1.
Was dissolved to obtain an electrolytic solution 6. Further, polypropylene (Celgard # 2400 manufactured by Hoechst Japan) was punched into a diameter of 15 mm to obtain a separator 5.

【0024】次いで,セパレータ5の片側に正極2及び
正極集電体21を,その反対側には負極3及び負極集電
体31を配置した。これらに電解液を注入した。これに
より,リチウム二次電池7を得た。
Next, the positive electrode 2 and the positive electrode current collector 21 were arranged on one side of the separator 5, and the negative electrode 3 and the negative electrode current collector 31 were arranged on the opposite side. An electrolyte solution was injected into these. As a result, a lithium secondary battery 7 was obtained.

【0025】実施形態例2 本例のリチウム二次電池は,多孔体としてのメソ多孔結
晶体(以下,FSMという。)を準備する。このFSM
は,平均孔径3nmの連通孔を有する。FSMの比表面
積は1000m2 /gである。そして,このFSM50
mgに,4重量%の割合で,結着剤としてのポリテトラ
フルオロエチレン(ダイキン工業製)を混合し,0.0
5GPaの圧力で直径15mm,厚み0.4mmの円板
状に成形し,多孔体を得た。この多孔体に負極であるリ
チウム金属を圧着した。本例のリチウム二次電池は,上
記の多孔体を用いる他は,上記実施形態例1と同様であ
る。
Embodiment 2 In the lithium secondary battery of this embodiment, a mesoporous crystal body (hereinafter referred to as FSM) as a porous body is prepared. This FSM
Have communication holes with an average pore diameter of 3 nm. The specific surface area of FSM is 1000 m 2 / g. And this FSM50
Polytetrafluoroethylene (manufactured by Daikin Industries, Ltd.) as a binder was mixed with mg at a ratio of 4% by weight to obtain 0.0
It was molded into a disk shape having a diameter of 15 mm and a thickness of 0.4 mm under a pressure of 5 GPa to obtain a porous body. Lithium metal as a negative electrode was pressure-bonded to this porous body. The lithium secondary battery of this example is the same as that of the first embodiment except that the above porous body is used.

【0026】(比較例1)本例のリチウム二次電池は,
負極の表面に多孔体を被覆していない点で,実施形態例
1とは異なる。その他は,実施形態例1と同様である。
Comparative Example 1 The lithium secondary battery of this example is
This is different from Embodiment 1 in that the surface of the negative electrode is not covered with the porous body. Others are the same as those in the first embodiment.

【0027】(比較例2)本例のリチウム二次電池は,
多孔体として,連通孔の平均孔径が300μmの多孔質
カーボンを用いている。この多孔体の孔内には,孔を塞
がない程度に,負極材料であるリチウム金属層が形成さ
れている。その他は,実施形態例1と同様である。
Comparative Example 2 The lithium secondary battery of this example is
As the porous body, porous carbon having an average pore diameter of the communication holes of 300 μm is used. A lithium metal layer, which is a negative electrode material, is formed in the pores of this porous body to the extent that the pores are not blocked. Others are the same as those in the first embodiment.

【0028】(実験例)本例においては,上記実施形態
例1,2及び比較例1,2のリチウム二次電池につい
て,その充放電サイクル特性を測定した。測定に際し,
上記の各リチウム二次電池を,試験用の電池ケースに組
み付けた。
(Experimental Example) In this example, the charge / discharge cycle characteristics of the lithium secondary batteries of Embodiments 1 and 2 and Comparative Examples 1 and 2 were measured. When measuring
Each of the above lithium secondary batteries was assembled in a battery case for testing.

【0029】試験用の電池ケースは,図2に示すごと
く,リチウム二次電池7を正極側,負極側から支持する
T字状の正極支持体731および円柱状の負極支持体7
21と,正極支持体731を通じてリチウム二次電池7
の電気を外部に取り出すための正極端子732と,上記
負極支持体721及び容器723を通じてリチウム二次
電池7の電気を取り出すための負極端子724とを有し
ている。
As shown in FIG. 2, the battery case for the test includes a T-shaped positive electrode support 731 and a cylindrical negative electrode support 7 for supporting the lithium secondary battery 7 from the positive electrode side and the negative electrode side.
21 and the lithium secondary battery 7 through the positive electrode support 731.
And a negative electrode terminal 724 for extracting the electricity of the lithium secondary battery 7 through the negative electrode support 721 and the container 723.

【0030】負極支持体721及び負極端子724は,
下部絶縁体763に固定されている。正極支持体731
及び正極端子732は,上部絶縁体764に固定されて
いる。また,T字状の正極支持体731の中央は,下部
絶縁体763と上部絶縁体764との間に設けた筒状の
中間絶縁体762に挿入されている。
The negative electrode support 721 and the negative electrode terminal 724 are
It is fixed to the lower insulator 763. Positive electrode support 731
The positive electrode terminal 732 is fixed to the upper insulator 764. The center of the T-shaped positive electrode support 731 is inserted into a tubular intermediate insulator 762 provided between the lower insulator 763 and the upper insulator 764.

【0031】そして,中間絶縁体762及び下部絶縁体
763は,容器723の中に一体的に配置されている。
また,上部絶縁体764は,キャップ75により,容器
723に対して螺合固定されている。尚,図2における
符号765は,位置決めピンである。
The intermediate insulator 762 and the lower insulator 763 are integrally arranged in the container 723.
The upper insulator 764 is screwed and fixed to the container 723 by the cap 75. The reference numeral 765 in FIG. 2 is a positioning pin.

【0032】上部絶縁体764,中間絶縁体762,下
部絶縁体763及び位置決めピン765は,ポリプロピ
レンよりなる。負極支持体721,正極支持体731,
キャップ75,容器723,正極端子732及び負極端
子724は,ステンレス鋼(SUS316)よりなる。
The upper insulator 764, the intermediate insulator 762, the lower insulator 763 and the positioning pin 765 are made of polypropylene. Negative electrode support 721, positive electrode support 731,
The cap 75, the container 723, the positive electrode terminal 732, and the negative electrode terminal 724 are made of stainless steel (SUS316).

【0033】上記電池ケースにリチウム二次電池を組み
付けて,電流密度2.0mA/cm2 で,充電電圧4.
1V,放電電圧2Vに設定して充放電を繰り返した。そ
の結果を図3に示した。
A lithium secondary battery was assembled in the above battery case, the current density was 2.0 mA / cm 2 , and the charging voltage was 4.
Charging and discharging were repeated by setting the discharge voltage to 1V and the discharge voltage to 2V. The results are shown in Fig. 3.

【0034】同図より知られるように,10サイクル後
の放電容量は,多孔体として活性炭を用いた場合(実施
形態例1)には,149mAh/gであり,1サイクル
時の場合に比べてあまり高くなかった。また,多孔体と
してFSMを用いた場合(実施形態例2)にも,109
mAh/gとあまり変化しなかった。
As can be seen from the figure, the discharge capacity after 10 cycles is 149 mAh / g when activated carbon is used as the porous body (Embodiment 1), which is higher than that at the time of 1 cycle. It wasn't too expensive. In addition, when FSM is used as the porous body (Embodiment 2),
It did not change much with mAh / g.

【0035】これに対して,多孔体を設けない場合(比
較例1)には,73mAh/gと大きく減少した。ま
た,本発明外の連通孔の平均孔径が300μmの多孔体
を用いた場合(比較例2)には,82mAh/gと大き
く減少した。また,同図より知られるように,本発明の
実施形態例1,2では,サイクル数が増加しても,放電
容量は3回目或いは5回目以降は殆ど変化しなかった。
一方,比較例1,2では,サイクル数が増加するに伴
い,放電容量が大きく減少している。以上より,知られ
るごとく,本発明のリチウム二次電池は,放電容量が大
きくかつ充放電サイクル特性にも優れていることが分か
る。
On the other hand, in the case where the porous body was not provided (Comparative Example 1), it was greatly reduced to 73 mAh / g. Further, when a porous body having an average pore diameter of the communicating pores outside the present invention of 300 μm was used (Comparative Example 2), it was significantly reduced to 82 mAh / g. Further, as is known from the figure, in the first and second embodiments of the present invention, the discharge capacity hardly changed after the third or fifth time even if the number of cycles increased.
On the other hand, in Comparative Examples 1 and 2, the discharge capacity greatly decreased as the number of cycles increased. As described above, it is known that the lithium secondary battery of the present invention has a large discharge capacity and excellent charge / discharge cycle characteristics.

【0036】[0036]

【発明の効果】本発明によれば,大電流の取り出しが可
能で,充放電サイクル特性に優れたリチウム二次電池を
提供することができる。
According to the present invention, it is possible to provide a lithium secondary battery capable of extracting a large current and having excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1のリチウム二次電池の要部説明
図。
FIG. 1 is an explanatory view of a main part of a lithium secondary battery according to a first embodiment.

【図2】実験例における,試験用電池ケースの全体構造
を示す説明図。
FIG. 2 is an explanatory diagram showing the overall structure of a test battery case in an experimental example.

【図3】実験例における,リチウム二次電池の放電容量
とサイクル数との関係を示す線図。
FIG. 3 is a graph showing the relationship between the discharge capacity and the number of cycles of a lithium secondary battery in an experimental example.

【符号の説明】[Explanation of symbols]

1...多孔体, 2...負極, 3...正極, 5...セパレータ, 6...電解液, 7...リチウム二次電池, 1. . . Porous body, 2. . . Negative electrode, 3. . . Positive electrode, 5. . . Separator, 6. . . Electrolyte, 7. . . Lithium secondary battery,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム金属からなる負極と,正極と,
上記負極と正極との間に設けたセパレータと,電解質と
よりなるリチウム二次電池において,上記負極の表面
は,平均孔径0.3nm〜1μmの連通孔を有する多孔
体により被覆されていることを特徴とするリチウム二次
電池。
1. A negative electrode made of lithium metal, and a positive electrode,
In a lithium secondary battery including a separator provided between the negative electrode and the positive electrode and an electrolyte, the surface of the negative electrode is covered with a porous body having communication holes with an average pore diameter of 0.3 nm to 1 μm. Characteristic lithium secondary battery.
【請求項2】 請求項1において,上記多孔体は,負極
のセパレータ側の表面に設けられていることを特徴とす
るリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the porous body is provided on the surface of the negative electrode on the separator side.
【請求項3】 請求項1又は2において,上記多孔体の
比表面積は,100〜3000m2 /gであることを特
徴とするリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the porous body has a specific surface area of 100 to 3000 m 2 / g.
【請求項4】 請求項1〜3のいずれか一項において,
上記多孔体は,活性炭,メソ多孔結晶体,ゼオライト,
及びゼオライト類縁化合物のグループから選ばれる1種
又は2種以上であることを特徴とするリチウム二次電
池。
4. The method according to claim 1, wherein
The porous material is activated carbon, mesoporous crystal, zeolite,
And one or more selected from the group of zeolite-related compounds, a lithium secondary battery.
JP7317409A 1995-11-10 1995-11-10 Lithium secondary battery Pending JPH09134720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7317409A JPH09134720A (en) 1995-11-10 1995-11-10 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7317409A JPH09134720A (en) 1995-11-10 1995-11-10 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH09134720A true JPH09134720A (en) 1997-05-20

Family

ID=18087918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7317409A Pending JPH09134720A (en) 1995-11-10 1995-11-10 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH09134720A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942485A1 (en) * 1998-03-11 1999-09-15 Ngk Insulators, Ltd. Lithium secondary battery
JP2000067854A (en) * 1998-08-19 2000-03-03 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2005515601A (en) * 2002-01-19 2005-05-26 ハンビッツァー,ギュンター Rechargeable electrochemical cell
JP2005317266A (en) * 2004-04-27 2005-11-10 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte battery
JP2006147405A (en) * 2004-11-22 2006-06-08 Nissan Motor Co Ltd Electrode for lithium ion secondary battery, and lithium ion secondary battery using it
JP2013246960A (en) * 2012-05-25 2013-12-09 Acr Co Ltd Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942485A1 (en) * 1998-03-11 1999-09-15 Ngk Insulators, Ltd. Lithium secondary battery
US6632565B2 (en) 1998-03-11 2003-10-14 Ngk Insulators, Ltd. Lithium secondary battery
JP2000067854A (en) * 1998-08-19 2000-03-03 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2005515601A (en) * 2002-01-19 2005-05-26 ハンビッツァー,ギュンター Rechargeable electrochemical cell
US7901811B2 (en) 2002-01-19 2011-03-08 G. Hambitzer Rechargeable electrochemical battery cell
JP2005317266A (en) * 2004-04-27 2005-11-10 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte battery
JP2006147405A (en) * 2004-11-22 2006-06-08 Nissan Motor Co Ltd Electrode for lithium ion secondary battery, and lithium ion secondary battery using it
JP2013246960A (en) * 2012-05-25 2013-12-09 Acr Co Ltd Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US7316868B2 (en) Electrolytes for lithium-sulfur electrochemical cells
US5576119A (en) Rechargeable electrochemical alkali-metal cells
US20080318128A1 (en) Lithium alloy/sulfur batteries
US20130095377A1 (en) Lithium cell and method of forming same
EP1936731A1 (en) Rechargeable lithium battery
KR101097244B1 (en) Negative electrode for lithium battery and lithium battery comprising the same
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
CN111081968B (en) Negative electrode for lithium secondary battery and method for manufacturing same
JP2004146348A (en) Negative electrode for lithium secondary battery, and the lithium secondary battery containing same
JP3525553B2 (en) Non-aqueous polymer battery
WO2019230322A1 (en) Negative electrode for lithium ion secondary battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
JPH0636800A (en) Lithium secondary battery
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JPH08115742A (en) Lithium secondary battery
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JPH09134720A (en) Lithium secondary battery
JP2004158441A (en) Nonaqueous electrolyte secondary battery
JPH08171934A (en) Lithium secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
KR102654676B1 (en) Operation method for lithium secondary battery
JP2886331B2 (en) Lithium secondary battery
JP4543831B2 (en) Lithium secondary battery
JPH09171839A (en) Secondary battery having nonaqueous solvent electrolyte
JP2002056848A (en) Lithium ion secondary battery