JPS58150273A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS58150273A
JPS58150273A JP3369182A JP3369182A JPS58150273A JP S58150273 A JPS58150273 A JP S58150273A JP 3369182 A JP3369182 A JP 3369182A JP 3369182 A JP3369182 A JP 3369182A JP S58150273 A JPS58150273 A JP S58150273A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
cupric oxide
layer
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3369182A
Other languages
Japanese (ja)
Other versions
JPH0410707B2 (en
Inventor
Osamu Okamoto
修 岡本
Kenichi Yokoyama
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP3369182A priority Critical patent/JPS58150273A/en
Publication of JPS58150273A publication Critical patent/JPS58150273A/en
Publication of JPH0410707B2 publication Critical patent/JPH0410707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To flatten the electric-discharge voltage of an organic electrolyte battery, and increase the closed-circuit voltage of the battery by installing at least two layers containing cupric oxide used as a positive active material on the separator side and on the bottom side of a positive can, and positioning a layer containing an iron sulfide used as a positive active material between said layers. CONSTITUTION:A positive electrode 1 is composed of a layer 1a containing an iron sulfide used as a positive active material, and two layers 1 containing cupric oxide used as a positive active material. One of the layers 1b touches a separator 2, and the other layer 1b touches the bottom of a positive can 3. The layer 1a containing an iron sulfide used as a positive active material, is positioned between the two layers 1b containing cupric oxide used as a positive active material. The separator 2 is made of a nonwoven polypropylene fabric. The positive can 3 is made of a nickel-plated iron plate. The symbol 5 represents a negative can made of a nickel stainless-steel clad plate. A negative electrode 7 is made by pressing and attaching a disk-like lithium to a stainless-steel net 6.

Description

【発明の詳細な説明】 本発明は負極活物質としてリチウムを用い、正極活物質
として鉄の硫化物と酸化第二銅とを用い入る有機電解質
電池の改良に係り、特に放電電圧の平担化と放電中の閉
路電圧の向上をはかることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the improvement of an organic electrolyte battery using lithium as a negative electrode active material and iron sulfide and cupric oxide as positive electrode active materials. The purpose is to improve the closed circuit voltage during discharge.

正極活物質として鉄の硫化物や酸化第二銅を用いる有機
電解質電池は、二酸化マンガンやフッ化炭素を正極活物
質として用いる有機電解質電池に比べて、単位体積あた
りの電気容量が大きく、また放電電圧が約1.5Vで一
般市販のルクランシエ電池や酸化銀電池と互換性を有す
るという特徴があり、電気容量の大きい高エネルギー密
度電池と1〜てその発展が期待されている。
Organic electrolyte batteries that use iron sulfide or cupric oxide as positive electrode active materials have a larger electrical capacity per unit volume and have a higher discharge capacity than organic electrolyte batteries that use manganese dioxide or carbon fluoride as positive electrode active materials. It has a voltage of about 1.5V and is compatible with commercially available Lecrancier batteries and silver oxide batteries, and is expected to develop as a high energy density battery with a large electrical capacity.

しかしながら、鉄の硫化物を正極活物質として用いた場
合は、放電生成物が正極に蓄積して正極を膨潤させ体積
増加を引き起して電池にふくれが生じ電池使用機器を破
損するなどの問題があり、また酸化第二銅を正極活物質
として用いた場合は放電反応が2段になり放電電圧が平
担性に欠けるなどの欠点があるため、前記のような長所
は認めながらも、充分に活用されるまでにはいたらなか
った。
However, when iron sulfide is used as a positive electrode active material, there are problems such as discharge products accumulating on the positive electrode, causing the positive electrode to swell and increase in volume, causing the battery to swell and damaging equipment using the battery. In addition, when cupric oxide is used as a positive electrode active material, there are disadvantages such as a two-stage discharge reaction and a lack of flatness of the discharge voltage. It never got to the point where it was put to use.

そのため、本発明者らは鉄の硫化物や酸化第二銅の長所
を生かしつつ、それらの欠点を解消した電池を得るべく
鋭意研究を重ね、そわら鉄の硫化物と酸化第二銅とを混
合して正極活物質として用いることにより、放電電圧が
平担で、かつ放電に伴なう電池ふくれが少なく、しかも
それらをそれぞれ単独で用いた場合のいずれよりも放電
容量が大きい有機電解質電池が得られることを見出し、
それについて既に特許出願をしたが、さらに研究を重ね
た結果、鉄の硫化物と酸化第二銅とをそれぞれ単独で正
極活物質とする正極合剤を調製して加圧成形し、鉄の硫
化物を正極活物質とする層と酸化第二銅を正極活物質と
する層とで正極を構成し、酸化第二銅を正極活物質とす
る層を少なくともセパレータ側と正極缶の缶底側に配置
し、その間に鉄の硫化物を正極活物質とする層を配置す
るときけ、鉄の硫化物と酸化第二銅との混合物を正極活
物質々して用いる場合の特徴をすべて具備しながら、放
電電圧がさらに平担になり、かつ放電中の閉路電圧がさ
らに向上することを見出し、本発明を完成するにいたっ
た。
Therefore, the present inventors have conducted extensive research in order to obtain a battery that takes advantage of the advantages of iron sulfide and cupric oxide while eliminating their drawbacks, and have mixed iron sulfide and cupric oxide. By using these as positive electrode active materials, it is possible to obtain an organic electrolyte battery with a flat discharge voltage, less battery swelling due to discharge, and a larger discharge capacity than when each of these is used alone. I discovered that
A patent application has already been filed for this, but as a result of further research, a positive electrode mixture containing iron sulfide and cupric oxide as positive electrode active materials was prepared and pressure-molded, and iron sulfide and cupric oxide were used as positive electrode active materials. A positive electrode is constituted by a layer using copper oxide as a positive electrode active material and a layer using cupric oxide as a positive electrode active material, and a layer using cupric oxide as a positive electrode active material is provided at least on the separator side and on the bottom side of the positive electrode can. When a layer containing iron sulfide as the cathode active material is placed between them, it has all the characteristics of using a mixture of iron sulfide and cupric oxide as the cathode active material. The present invention was completed based on the discovery that the discharge voltage becomes even more even and the closed circuit voltage during discharge is further improved.

正極を鉄の硫化物を正極活物質とする層と酸化第二銅を
正極活物質とする層とで構成し、酸化第二銅を正極活物
質とする層を少なくともセパレータ側と正極缶の缶底側
に配置し、その間に鉄の硫化物を正極活物質とする層を
配置することにより、放電電圧が平担化しかつ閉路電圧
が向上する理由は、現在のと仁ろ必らずしも明確ではな
いが、放電電圧の平担化け、放電電圧が鉄の硫化物より
若干低い酸化第二銅を放電反応が生じやすい位置に配置
しているので、最初に酸化第二銅の放電電圧が現われ、
酸化第二銅の放電がほぼ終了した時点から鉄の硫化物が
放電しはじめるが、放電によって正極の抵抗が少し増大
していくため、電圧は酸化第二銅の電位程度にしかなら
ず、放電初期から放電末期まで酸化第二銅の電位近くの
電圧で放電が進行することによるものと考えられる。ま
た放電途中の閉路電圧が向上するのは放電初期に導電性
のよい金属鋼が生成されることに基づくものと考えられ
る。
The positive electrode is composed of a layer using iron sulfide as a positive electrode active material and a layer using cupric oxide as a positive electrode active material, and the layer using cupric oxide as a positive electrode active material is formed at least on the separator side and the positive electrode can. The reason why the discharging voltage is leveled and the closed circuit voltage is improved by placing the iron sulfide on the bottom side and a layer containing iron sulfide as the positive electrode active material is that it is not necessarily the case with the current method. Although it is not clear, the discharge voltage is flattened and the discharge voltage is slightly lower than iron sulfide because cupric oxide is placed in a position where the discharge reaction is likely to occur, so the discharge voltage of cupric oxide is initially appear,
Iron sulfide begins to discharge when the discharge of cupric oxide is almost completed, but as the resistance of the positive electrode increases slightly due to discharge, the voltage is only about the potential of cupric oxide, and from the beginning of discharge This is thought to be due to the fact that the discharge progresses at a voltage close to the potential of cupric oxide until the end of the discharge. Furthermore, the improvement in the closed-circuit voltage during discharge is considered to be due to the formation of highly conductive metallic steel in the early stage of discharge.

本発明において鉄の硫化物としては、たとえば硫化第一
鉄(Fe S )、硫化第二鉄(Fe2S3)、二硫化
鉄(FeS2)などが用いられ、また一般に硫化第一鉄
として市販されているような一般式FexSで表わすと
きXが1より若干小さいものもFeS同様に使用するこ
とができる。捷だ電解液としては、たとえばプロピレン
カーボネート、γ−ブチロラクトン、テトラヒドロフラ
ン、1.2−ジメトキシエタン、ジオキソランなどの単
独または2種以上の混合溶媒に過塩素酸リチウム、ホウ
フッ化リチウムなどの電解質を溶解させたものが好まし
く使用される◇ つぎに本発明の実施例を図面とともに説明する。
In the present invention, iron sulfides used include, for example, ferrous sulfide (FeS), ferric sulfide (Fe2S3), iron disulfide (FeS2), etc., and are generally commercially available as ferrous sulfide. When expressed by the general formula FexS, X is slightly smaller than 1, which can also be used in the same way as FeS. As the frozen electrolyte, for example, an electrolyte such as lithium perchlorate or lithium borofluoride is dissolved in a solvent such as propylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,2-dimethoxyethane, dioxolane, etc. alone or in a mixture of two or more thereof. ◇ Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の有機電解質電池を示す断面図であり、
(1)は正極で、この正極(1)は鉄の硫化物を正極活
物質とする層(la)と酸化第二銅を正極活物質とする
層(1b)とで構成されている0そして酸化第二銅を正
極活物質とする層(1b)は2層設けられ、そのうちの
1層はセパレータ(2)と接する側に、他の1層は正極
缶(3)の缶底側に配置され、その2つの酸化第二銅を
正極活物質とする層(1b)の間に鉄の硫化物を正極活
物質とする層(la)が配置されている。(4)は正極
(1)を補強するステンレス鋼製の環状台座で、セパレ
ータ(2)はポリプロピレン不織布からなり、正極缶(
3)は外面にニッケルメッキを施した鉄製である。(5
)はニッケルーステンレス鋼クラッド板製の負極缶で、
この負極缶(5)の内面にステンレス鋼製網(6)がス
ポット溶接され、該網(6)部分に円板状のリチウムが
圧着されて負極(7)が構成されている。そして(8)
はポリプロピレン製の環状ガスケットである。
FIG. 1 is a sectional view showing an organic electrolyte battery of the present invention,
(1) is a positive electrode, and this positive electrode (1) is composed of a layer (la) using iron sulfide as a positive electrode active material and a layer (1b) using cupric oxide as a positive electrode active material. Two layers (1b) containing cupric oxide as a positive electrode active material are provided, one of which is placed on the side in contact with the separator (2), and the other layer is placed on the bottom side of the positive electrode can (3). A layer (la) using iron sulfide as a positive electrode active material is arranged between the two layers (1b) using cupric oxide as a positive electrode active material. (4) is a stainless steel annular pedestal that reinforces the positive electrode (1), the separator (2) is made of polypropylene nonwoven fabric, and the positive electrode can (
3) is made of iron with nickel plating on the outside. (5
) is a negative electrode can made of nickel-stainless steel clad plate.
A stainless steel mesh (6) is spot-welded to the inner surface of the negative electrode can (5), and a disc-shaped lithium is crimped onto the mesh (6) to form a negative electrode (7). and (8)
is an annular gasket made of polypropylene.

上記のような8層構造の正極(1)はたとえば下記に示
すようにしてつくられる。まず金型に環状台座を第1図
に示す状態とは上下を反転させた状態で入れ、ついで酸
化第二銅を正極活物質とする顆粒状ないしは粉末状の正
極合剤を充填する。この正極合剤はたとえば酸化第二銅
88部(重量部、以下同様)、アセチレンブラック15
部およびポリテトラフルオルエチレン2部よりなる。上
記正極合剤の充填後、軽く加圧して予備成形し、つぎに
その上に鉄の硫化物を正極活物質とする顆粒状ないしは
粉末状の正極合剤を充填する。なお、この正極合剤はた
とえば二硫化鉄(FeS2)83部、アセチレンブラッ
ク15部およびポリテトラフルオルエチレン2部よりな
る。つぎに軽く加圧して再び予備成形し、その上に前記
と同様の酸化第二銅を正極活物質とする正極合剤を充填
し、加圧して本成形する。
The positive electrode (1) having an eight-layer structure as described above is produced, for example, as shown below. First, an annular pedestal is placed in a mold with its top and bottom reversed from the state shown in FIG. 1, and then a granular or powdered positive electrode mixture containing cupric oxide as a positive electrode active material is filled. This positive electrode mixture includes, for example, 88 parts of cupric oxide (parts by weight, hereinafter the same) and 15 parts of acetylene black.
1 part and 2 parts of polytetrafluoroethylene. After filling the positive electrode mixture, it is preformed by slight pressure, and then a granular or powdered positive electrode mixture containing iron sulfide as the positive electrode active material is filled thereon. Note that this positive electrode mixture consists of, for example, 83 parts of iron disulfide (FeS2), 15 parts of acetylene black, and 2 parts of polytetrafluoroethylene. Next, it is lightly pressurized and preformed again, and a positive electrode mixture containing cupric oxide as the positive electrode active material as described above is filled thereon, and pressurized and main molded.

本考案において、鉄の硫化物と酸化第二銅との使用割合
と(−では、鉄の硫化物が50〜80%(重量係、以下
同様)、酸化第二銅が50〜20%の範囲、特に鉄の硫
化物が50〜75%、酸化第二銅が50〜25%の範囲
が好ましい。なお、上記のごとく正極を3層構造にする
場合においては、酸化第二銅:鉄の硫化物:酸化第二銅
が重量比で1:2:l〜1:8:1の範囲、特に1:2
:1〜1.25 : 7.50 : 1.25の範囲に
するのが好ましい。
In the present invention, the usage ratio of iron sulfide and cupric oxide (-) is in the range of 50 to 80% iron sulfide (by weight, the same applies hereinafter) and 50 to 20% cupric oxide. In particular, a range of 50 to 75% iron sulfide and 50 to 25% cupric oxide is preferable.In addition, when the positive electrode has a three-layer structure as described above, cupric oxide: iron sulfide substance: cupric oxide in a weight ratio of 1:2:l to 1:8:1, especially 1:2
The range is preferably 1 to 1.25: 7.50: 1.25.

上記のごとき構成の電池Aと第2図に示すように正極(
1)が単層構造で、二硫化鉄と酸化第二銅との混合物を
正極活物質として用いた電池Bの20°C115にΩで
終止電圧1.2vまで連続放電させたときの放電電気量
と電池のふくれを第3図に、また80%放電時における
一10°C1負荷2にΩで0.1秒間放電後の閉路電圧
を第4図に示す。
Battery A with the above configuration and the positive electrode (
1) is the amount of electricity discharged when battery B, which has a single layer structure and uses a mixture of iron disulfide and cupric oxide as the positive electrode active material, is continuously discharged at 115Ω at 20°C to a final voltage of 1.2V. Fig. 3 shows the swelling of the battery, and Fig. 4 shows the closed circuit voltage after discharging for 0.1 second at -10°C, load 2, and Ω at 80% discharge.

また、二硫化鉄と酸化第二銅との使用比率が50 : 
50の場合における上記電池Aおよび電池B、ならびに
正極活物質として二硫化鉄のみを用いた電池Cおよび正
極活物質として酸化第二銅のみを用いた電池りの20°
C1負荷15にΩで連続放電させたときの放電特性を第
5図に示す。なお電池Aにおける正極はCu O: F
e S 2 : Cu Oが重量比で1:2:1である
In addition, the usage ratio of iron disulfide and cupric oxide is 50:
Battery A and Battery B in the case of 50 °C, Battery C using only iron disulfide as the positive electrode active material, and Battery C using only cupric oxide as the positive electrode active material in the case of 20°
FIG. 5 shows the discharge characteristics when the C1 load 15 is continuously discharged at Ω. Note that the positive electrode in battery A is CuO:F
The weight ratio of eS2:CuO is 1:2:1.

いずれの電池においても、正極合剤組成は正極活物質8
3部、アセチレンブラック15部およびポリテトラフル
オルエチレン2部からなり、電池Aおよび電池Bはそれ
ぞれ第1図および第2図に示すような正極構造をとりな
がら正極活物質である二硫化鉄と酸化第二銅との使用比
率を種々変化させている。そして、電池A−B、Cおよ
びDとも正極1個あたりの正極合剤使用量は140岬で
あり、負極としては直径6.81M、厚さ1.8flの
リチウム板が使用され、電解液はプロピレンカーボネー
トと1.3−ジオキソランとの容量比が1:1の混合溶
媒に過塩素酸リチウムを0.5モル/lの割合で溶解さ
せたものであり、電池は直径9.5MM%高さ8.6絹
である。
In both batteries, the positive electrode mixture composition was 8
Battery A and Battery B each have a positive electrode structure as shown in Figures 1 and 2, respectively, and contain iron disulfide, which is a positive electrode active material. The ratio of use with cupric oxide is varied. For batteries A-B, C, and D, the amount of positive electrode mixture used per positive electrode was 140 capes, and a lithium plate with a diameter of 6.81 M and a thickness of 1.8 fl was used as the negative electrode, and the electrolyte was Lithium perchlorate is dissolved in a mixed solvent with a volume ratio of propylene carbonate and 1.3-dioxolane of 1:1 at a ratio of 0.5 mol/l, and the battery has a diameter of 9.5 mm% and a height of 8.6 It is silk.

第3図に示すように、本発明の電池Aは二硫化鉄と酸化
第二銅を混合した電池Bの特徴を備えながら、第4〜5
図に示すように電池Bより閉路電圧が高く、かつ放電電
圧が平担である。
As shown in FIG. 3, battery A of the present invention has the characteristics of battery B in which iron disulfide and cupric oxide are mixed, but
As shown in the figure, the closed circuit voltage is higher than that of battery B, and the discharge voltage is flat.

なお実施例では正極(1)を8層構造にし、酸化第二銅
を正極活物質とする層(1b)をセパレータ(2)ト接
する側および正極缶(3)の缶底と接する側に配置し、
鉄の硫化物を正極活物質とする層(1b)をその間に配
置したが、本発明において正極はそれのみに限られるも
のではなく、たとえば5層構造にし、第1層目すなわち
セパレータと接する側と第5層目すなわち正極缶の缶底
に接する側に酸化第二銅を正極活物質とする層(1b)
を配置(〜、第2層目に鉄の硫化物を正極活物質とする
層(1a)を−第3層目に酸化第二銅を正極活物質とす
る層(1b)を、第4層目に鉄の硫化物を正極活物質と
する層(la)を配IWシてもよいし、さらには鉄の硫
化物を正極活物質とする層(la)の全周囲を酸化第二
銅を正極活物質とする層(II))が被接するように形
成してもよい。
In the example, the positive electrode (1) has an eight-layer structure, and the layer (1b) containing cupric oxide as the positive electrode active material is arranged on the side in contact with the separator (2) and on the side in contact with the bottom of the positive electrode can (3). death,
Although the layer (1b) containing iron sulfide as the positive electrode active material is placed between them, the positive electrode in the present invention is not limited to this. For example, the positive electrode may have a five-layer structure, and the first layer, that is, the side in contact with the separator. and the fifth layer, that is, the layer (1b) containing cupric oxide as the positive electrode active material on the side in contact with the bottom of the positive electrode can.
(~, the second layer is a layer (1a) using iron sulfide as a positive electrode active material, the third layer is a layer (1b) using cupric oxide as a positive electrode active material, and the fourth layer is a layer (1b) using cupric oxide as a positive electrode active material. A layer (la) containing iron sulfide as a positive electrode active material may be disposed on the surface of the layer (la), and cupric oxide may be further placed around the entire periphery of the layer (la) containing iron sulfide as a positive electrode active material. The layer (II) which is a positive electrode active material may be formed so as to be in contact with the layer (II).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の有機電解質電池の一実施例を示す断面
図、第2図は本発明とは異なる構成の有機電解質電池の
断面図である。第8図は第1〜2図に示す電池の放電電
気量と電池のふくれを二硫化鉄(Fe S2 )と酸化
第二銅(Cub)の使用比率の変化とともに示す図であ
り、第4図は第1〜2図に示す電池の閉路電圧を二硫化
鉄と酸化第二銅の使用比率の変化とともに示す図である
。第5図は本発明の電池と、本発明以外の構成の電池の
放電特性図である。 (1)・・・正極、(1a)・・・鉄の硫化物を正極活
物質とする層、(1b)・・・酸化第二銅を正極活物質
とする層、(2)・・・セパレータ、(3)・・・正極
缶、(7)・・・負極4     1 2   3 第3図 Cub(%)100  75  50  25   0
正極のFeS2とCuOの比率
FIG. 1 is a cross-sectional view showing an embodiment of an organic electrolyte battery of the present invention, and FIG. 2 is a cross-sectional view of an organic electrolyte battery having a structure different from that of the present invention. Figure 8 is a diagram showing the amount of electricity discharged and the swelling of the battery shown in Figures 1 and 2, along with changes in the usage ratio of iron disulfide (Fe S2 ) and cupric oxide (Cub); 2 is a diagram showing the closed circuit voltage of the battery shown in FIGS. 1 and 2 together with changes in the usage ratio of iron disulfide and cupric oxide. FIG. FIG. 5 is a discharge characteristic diagram of a battery according to the present invention and a battery having a configuration other than the present invention. (1)... Positive electrode, (1a)... Layer using iron sulfide as positive electrode active material, (1b)... Layer using cupric oxide as positive electrode active material, (2)... Separator, (3)...Positive electrode can, (7)...Negative electrode 4 1 2 3 Figure 3 Cub (%) 100 75 50 25 0
Ratio of FeS2 and CuO in positive electrode

Claims (1)

【特許請求の範囲】 1、負極活物質としてリチウムを用い、正極活物質とし
て鉄の硫化物と酸化第二銅とを用いる有機電解質電池で
あって、正極を鉄の硫化物を正極活物質とする層と酸化
第二銅を正極活物質とする層とで構成し、酸化第二銅を
正極活物質とする層を少なくともセパレータ側と正極缶
の缶底側に配置し、その間に鉄の硫化物を正極活物質と
する層を配置することを特徴とする有機電解質電池。 2、鉄の硫化物と酸化第二銅との割合を鉄の硫化物が5
0〜75重量係、酸化第二銅が50〜25重量係とした
特許請求の範囲第1項記載の有機電解質電池。
[Claims] 1. An organic electrolyte battery that uses lithium as a negative electrode active material and iron sulfide and cupric oxide as positive electrode active materials, the positive electrode comprising iron sulfide as the positive electrode active material. and a layer using cupric oxide as a positive electrode active material, and the layer using cupric oxide as a positive electrode active material is arranged at least on the separator side and the bottom side of the positive electrode can, and the iron sulfide layer is disposed in between. An organic electrolyte battery characterized by arranging a layer in which a substance is used as a positive electrode active material. 2. The ratio of iron sulfide to cupric oxide is 5.
The organic electrolyte battery according to claim 1, wherein the weight ratio is 0 to 75 and the cupric oxide content is 50 to 25.
JP3369182A 1982-03-02 1982-03-02 Organic electrolyte battery Granted JPS58150273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3369182A JPS58150273A (en) 1982-03-02 1982-03-02 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3369182A JPS58150273A (en) 1982-03-02 1982-03-02 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS58150273A true JPS58150273A (en) 1983-09-06
JPH0410707B2 JPH0410707B2 (en) 1992-02-26

Family

ID=12393441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3369182A Granted JPS58150273A (en) 1982-03-02 1982-03-02 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS58150273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216354A (en) * 2005-02-03 2006-08-17 Hitachi Maxell Ltd Nonaqueous electrolyte solution primary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216354A (en) * 2005-02-03 2006-08-17 Hitachi Maxell Ltd Nonaqueous electrolyte solution primary cell

Also Published As

Publication number Publication date
JPH0410707B2 (en) 1992-02-26

Similar Documents

Publication Publication Date Title
US5744258A (en) High power, high energy, hybrid electrode and electrical energy storage device made therefrom
US5262255A (en) Negative electrode for non-aqueous electrolyte secondary battery
US20210135276A1 (en) Coin-shaped battery and method for producing same
US3655450A (en) Battery electrode and method of making the same
WO2023168845A1 (en) Button cell, preparation method therefor and electronic device
EP0408249B1 (en) Non-aqueous alkali metal battery having an improved cathode
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JPS58150273A (en) Organic electrolyte battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP3316219B2 (en) Non-aqueous electrolyte battery
JPS58150272A (en) Organic electrolyte battery
JPH09129240A (en) Nonaqueous electrolytic secondary battery
JP2000195523A (en) Nonaqueous secondary battery
JPH08138726A (en) Layer-built lithium secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
WO2023189693A1 (en) Battery and method for producing same
JP2707638B2 (en) Alkaline manganese battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPS5920757Y2 (en) silver oxide battery
JPH01272049A (en) Lithium secondary battery
JPS5978461A (en) Spiral-electrode nonaqueous solvent battery
JP3325967B2 (en) Non-aqueous solvent secondary battery
JP3100155B2 (en) Coin-shaped lithium secondary battery
JPS61237369A (en) Organic electrolyte cell
JPH01128370A (en) Nonaqueous solvent secondary cell