JP2012064366A - Flat-shaped nonaqueous secondary battery and manufacturing method thereof - Google Patents

Flat-shaped nonaqueous secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2012064366A
JP2012064366A JP2010206252A JP2010206252A JP2012064366A JP 2012064366 A JP2012064366 A JP 2012064366A JP 2010206252 A JP2010206252 A JP 2010206252A JP 2010206252 A JP2010206252 A JP 2010206252A JP 2012064366 A JP2012064366 A JP 2012064366A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
positive electrode
main body
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010206252A
Other languages
Japanese (ja)
Inventor
Toku Takai
徳 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2010206252A priority Critical patent/JP2012064366A/en
Publication of JP2012064366A publication Critical patent/JP2012064366A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flat-shaped nonaqueous secondary battery with a high capacity and a manufacturing method thereof.SOLUTION: The flat-shaped nonaqueous secondary battery has an electrode group comprising a plurality of positive electrodes and a plurality of negative electrodes laminated alternately with separators interposed and a nonaqueous electrolyte solution, all in a space formed of an outer case and a sealing case both are in a circular shape in a plan view, and of an insulation gasket. The positive electrode and the negative electrode have a respective body part and a current collector tab part protruding from the body part in a plain view and narrower in width than the body part. The electrode group is not provided with a binding tape to bind the whole, with a 0.01-0.2 mm difference between the inner diameter of the insulation gasket and the maximum diameter of the body part of the negative electrode in the electrode group. The flat-shaped nonaqueous secondary battery can be manufactured by a method of the present invention having a process of forming an electrode group in a sealing case with an insulation gasket mounted.

Description

本発明は、高容量の扁平形非水二次電池と、その製造方法に関するものである。   The present invention relates to a high capacity flat non-aqueous secondary battery and a method for manufacturing the same.

一般にコイン形電池やボタン形電池と称される扁平形の非水二次電池では、正極と負極とがセパレータを介して対向して構成された電極群と、非水電解液とを、外装ケースと封口ケースと絶縁ガスケットとで形成された空間内に収容した構造を有している(特許文献1など)。   In a flat non-aqueous secondary battery generally referred to as a coin-type battery or a button-type battery, an electrode group in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and a non-aqueous electrolyte solution are provided in an outer case. And a structure accommodated in a space formed by a sealing case and an insulating gasket (Patent Document 1, etc.).

前記のような扁平形非水二次電池では、正極および負極に、集電体の片面または両面に正極合剤層や負極剤層を形成し、かつ集電体の一部を、正極合剤層や負極剤層を形成せずに露出させ、これを集電タブとして利用し、各正極および各負極の集電タブを、それぞれ纏めて溶接などし、これらの纏めた集電タブを、端子を兼ねる外装ケースや封口ケースの内面と溶接などして電気的に接続しているものがある(例えば、特許文献1)。   In the flat non-aqueous secondary battery as described above, a positive electrode mixture layer or a negative electrode agent layer is formed on one or both surfaces of the current collector on the positive electrode and the negative electrode, and a part of the current collector is mixed with the positive electrode mixture. It is exposed without forming a layer or a negative electrode agent layer, and this is used as a current collecting tab. The current collecting tabs of each positive electrode and each negative electrode are welded together, and these collected current collecting tabs are connected to terminals. There are some which are electrically connected by welding or the like to the inner surface of the outer case or the sealing case that also serves as a material (for example, Patent Document 1).

特開2003−142161号公報JP 2003-142161 A

積層型の電極群を有する扁平形非水二次電池は、例えば、正極、負極およびセパレータを順次積層して一旦電極群を作製し、これを電池ケース内に収容する工程を経て製造されることが通常であり、電池ケース内への電極群の挿入の容易さを考慮して、電池ケースの内径(絶縁ガスケットの内径)と、電極群の外径(特に、電極群を構成する負極の外径)とに、ある程度の差が設けられている。   A flat non-aqueous secondary battery having a stacked electrode group is manufactured through a process in which, for example, a positive electrode, a negative electrode, and a separator are sequentially stacked to form an electrode group once and accommodated in a battery case. In consideration of the ease of insertion of the electrode group into the battery case, the inner diameter of the battery case (inner diameter of the insulating gasket) and the outer diameter of the electrode group (especially the outside of the negative electrode constituting the electrode group) There is a certain degree of difference in diameter).

ところで、近年では、扁平形非水二次電池の適用範囲が広がるにつれて、例えば小型化などの要請があるが、こうした小型の扁平形非水二次電池では、電極群の外径、すなわち電極の外径を小さくすると、それによる容量低下への影響が大きく、高容量の電池を構成することが困難である。   By the way, in recent years, as the application range of flat non-aqueous secondary batteries has expanded, there has been a demand for, for example, downsizing. However, in such a small flat non-aqueous secondary battery, the outer diameter of the electrode group, that is, the electrode When the outer diameter is reduced, the influence on the capacity reduction due to this is large, and it is difficult to construct a high capacity battery.

このようなことから、喩え小型の扁平形非水二次電池であっても、容量を高め得る技術の開発が求められる。   For this reason, there is a need for the development of technology that can increase the capacity even for small flat non-aqueous secondary batteries.

本発明は、前記事情に鑑みてなされたものであり、その目的は、高容量の扁平形非水二次電池と、その製造方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide a high capacity flat nonaqueous secondary battery, and its manufacturing method.

前記目的を達成し得た本発明の扁平形非水二次電池は、平面視で円形の外装ケースと、平面視で円形の封口ケースとが、絶縁ガスケットを介してカシメ封口されて形成された空間内に、複数の正極と複数の負極とがセパレータを介して交互に、かつ前記外装ケースおよび前記封口ケースの扁平面に略平行に積層されている電極群、および非水電解液を有する扁平形非水二次電池であって、前記正極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記正極の本体部には、集電体の片面または両面に正極活物質を含む正極合剤層が形成されており、前記正極の集電タブ部では、集電体に正極合剤層が形成されておらず、前記負極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記負極の本体部には、集電体の片面または両面に負極活物質を含む負極剤層が形成されており、前記負極の集電タブ部では、集電体に負極剤層が形成されておらず、前記電極群は、その全体をとめる結束テープを有しておらず、前記絶縁ガスケットの内径と、前記電極群の有する負極の本体部における最大径との差が、0.01〜0.2mmであることを特徴とするものである。   The flat non-aqueous secondary battery of the present invention that has achieved the above object is formed by caulking and sealing a circular outer case in plan view and a circular sealing case in plan view through an insulating gasket. In the space, a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked via separators, and an electrode group in which the outer case and the sealing case are substantially parallel to each other and a flat surface having a non-aqueous electrolyte The positive electrode has a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. A positive electrode mixture layer containing a positive electrode active material is formed on one or both surfaces of the current collector, and the positive electrode current collector tab portion has a positive electrode mixture layer formed on the current collector. The negative electrode protrudes from the main body portion in a plan view. A negative electrode agent layer containing a negative electrode active material on one side or both sides of the current collector, and the negative electrode body layer has a current collecting tab portion that is narrower than the main body portion. In the current collecting tab portion, a negative electrode layer is not formed on the current collector, and the electrode group does not have a binding tape that stops the whole, the inner diameter of the insulating gasket, and the electrode group The difference with the largest diameter in the main-body part of the negative electrode to have is 0.01-0.2 mm.

また、本発明の製造方法は、本発明の扁平形非水二次電池を製造する方法であって、絶縁ガスケットを装着した封口ケース内に、負極および正極を、負極と正極との間にセパレータが介在するようにしつつ順次挿入して積層し、電極群を形成する工程を有することを特徴とする。   The manufacturing method of the present invention is a method of manufacturing the flat non-aqueous secondary battery of the present invention, in which a negative electrode and a positive electrode are placed in a sealing case equipped with an insulating gasket, and a separator is provided between the negative electrode and the positive electrode. In this case, the electrode assembly is formed by sequentially inserting and laminating the electrode group.

なお、電池業界においては、高さより径の方が大きい扁平形電池をコイン形電池と呼んだり、ボタン形電池と呼んだりしているが、そのコイン形電池とボタン形電池との間に明確な差はなく、本発明の扁平形非水二次電池には、コイン形電池、ボタン形電池のいずれもが含まれる。   In the battery industry, a flat battery with a diameter larger than the height is called a coin-type battery or a button-type battery, but there is a clear gap between the coin-type battery and the button-type battery. There is no difference, and the flat non-aqueous secondary battery of the present invention includes both coin-type batteries and button-type batteries.

本発明によれば、高容量の扁平形非水二次電池と、その製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, a high capacity | capacitance flat type non-aqueous secondary battery and its manufacturing method can be provided.

本発明の扁平形非水二次電池の一例を模式的に表す縦断面図である。It is a longitudinal cross-sectional view which represents typically an example of the flat non-aqueous secondary battery of this invention. 図1の要部断面拡大図である。It is a principal part cross-sectional enlarged view of FIG. 本発明の扁平形非水二次電池に係る正極の一例を模式的に表す平面図である。It is a top view which represents typically an example of the positive electrode which concerns on the flat nonaqueous secondary battery of this invention. 本発明の扁平形非水二次電池に係る負極の一例を模式的に表す平面図である。It is a top view which represents typically an example of the negative electrode which concerns on the flat nonaqueous secondary battery of this invention. 本発明の扁平形非水二次電池に係るセパレータの一例を模式的に表す平面図である。It is a top view which represents typically an example of the separator which concerns on the flat nonaqueous secondary battery of this invention. 本発明の扁平形非水二次電池の他の例を模式的に表す縦断面図である。It is a longitudinal cross-sectional view which represents typically the other example of the flat nonaqueous secondary battery of this invention.

図1および図2に、本発明の扁平形非水二次電池の一例を模式的に示す。図1は、扁平形非水二次電池の電池ケース(外装ケース2および封口ケース3)および絶縁ガスケット4部分の断面を表す縦断面図であり、図2は図1の要部を拡大し、更に電極群の部分を断面にしたものである。図1および図2に示すように、扁平形非水二次電池1は、正極5および負極6を、それらの平面が電池の扁平面に略平行(平行を含む)となるように積層し、最外部の2つの電極を負極6(負極6B)とした積層型の電極群と、非水電解液(図示しない)とが、正極端子を兼ねる外装ケース2、負極端子を兼ねる封口ケース3および絶縁ガスケット4により形成される空間(密閉空間)内に収容されている。封口ケース3は、外装ケース2の開口部に絶縁ガスケット4を介して嵌合しており、外装ケース2の開口端部が内方に締め付けられ、これにより絶縁ガスケット4が封口ケース3に当接することで、外装ケース2の開口部が封口されて電池内部が密閉構造となっている。外装ケース2および封口ケース3は、ステンレス鋼などの金属製であり、絶縁ガスケット4は、ポリプロピレンなどの絶縁性を有する樹脂製である。   1 and 2 schematically show an example of the flat non-aqueous secondary battery of the present invention. FIG. 1 is a longitudinal sectional view showing a cross section of a battery case (outer case 2 and sealing case 3) and an insulating gasket 4 part of a flat non-aqueous secondary battery. FIG. 2 is an enlarged view of the main part of FIG. Furthermore, the electrode group is shown in cross section. As shown in FIGS. 1 and 2, the flat non-aqueous secondary battery 1 is formed by laminating the positive electrode 5 and the negative electrode 6 so that their planes are substantially parallel (including parallel) to the flat plane of the battery, A laminated electrode group in which the outermost two electrodes are negative electrodes 6 (negative electrode 6B) and a nonaqueous electrolyte (not shown) are an outer case 2 that also serves as a positive electrode terminal, a sealing case 3 that also serves as a negative electrode terminal, and insulation. It is accommodated in a space (sealed space) formed by the gasket 4. The sealing case 3 is fitted to the opening of the outer case 2 via an insulating gasket 4, and the opening end of the outer case 2 is tightened inward, whereby the insulating gasket 4 contacts the sealing case 3. Thereby, the opening part of the exterior case 2 is sealed, and the inside of the battery has a sealed structure. The outer case 2 and the sealing case 3 are made of a metal such as stainless steel, and the insulating gasket 4 is made of an insulating resin such as polypropylene.

なお、図1および図2の電池では、外装ケース2が正極端子を兼ね、封口ケース3が負極端子を兼ねているが、本発明の電池においては、例えば電極群の構成に応じて、外装ケースが負極端子を兼ね、封口ケースが正極端子を兼ねていてもよい。   1 and 2, the outer case 2 also serves as a positive electrode terminal, and the sealing case 3 also serves as a negative electrode terminal. However, in the battery of the present invention, for example, depending on the configuration of the electrode group, the outer case 2 May also serve as the negative electrode terminal, and the sealing case may also serve as the positive electrode terminal.

図3に正極5の平面図を模式的に示しているが、正極5は、本体部5aと、平面視で、本体部5aから突出した、本体部5aよりも幅(図3中上下方向の長さ)の狭い集電タブ部5bとを有している。   FIG. 3 schematically shows a plan view of the positive electrode 5. The positive electrode 5 has a main body 5a and a width larger than that of the main body 5a projecting from the main body 5a in plan view (in the vertical direction in FIG. 3). And a current collecting tab portion 5b having a narrow length.

正極5の本体部5aは、集電体(図2中52)の両面に、正極活物質などを含有する正極合剤層51が形成されている。そして、正極5の集電タブ部5bは、集電体52表面に正極合剤層が形成されておらず、集電体52が露出している。なお、図1および図2に示す電池では、電極群における最外部側の電極がいずれも負極であるために、全ての正極5の本体部5aにおいては、集電体52の両面に正極合剤層51が形成されているが、例えば、電極群における最外部側の電極のうちの片方(より具体的には、正極端子を兼ねる外装ケース側または封口ケース側の電極)を正極とすることもでき、その場合、電極群における最外部側の正極は、その本体部における集電体の片面(電池内側の面)にのみ正極合剤層を有していてもよい。この場合、電極群の最外部側の正極の集電体の露出と正極端子を兼ねる外装ケースまたは封口ケースの内面とを、直接接触させたり溶接したりして電気的に接続することができる。   In the main body 5a of the positive electrode 5, a positive electrode mixture layer 51 containing a positive electrode active material or the like is formed on both surfaces of a current collector (52 in FIG. 2). In the current collecting tab portion 5b of the positive electrode 5, the positive electrode mixture layer is not formed on the surface of the current collector 52, and the current collector 52 is exposed. In the batteries shown in FIGS. 1 and 2, since the outermost electrode in the electrode group is a negative electrode, the positive electrode mixture is formed on both surfaces of the current collector 52 in the main body 5a of all the positive electrodes 5. Although the layer 51 is formed, for example, one of the outermost electrodes in the electrode group (more specifically, the electrode on the exterior case side or the sealing case side that also serves as the positive electrode terminal) may be used as the positive electrode. In this case, the outermost positive electrode in the electrode group may have a positive electrode mixture layer only on one surface (surface inside the battery) of the current collector in the main body. In this case, the exposure of the positive electrode current collector on the outermost side of the electrode group and the inner surface of the outer case or sealing case that also serves as the positive electrode terminal can be directly connected or welded to each other.

なお、少なくとも両側が負極6と対向している正極5の両面にはセパレータ7を配置するが、電極群の最外部側に配置される正極、すなわち片側(片面)のみが負極と対向している正極については、その両面にセパレータを配置してもよく(更に、これらの2枚のセパレータに後述する接合部を形成してもよい)、負極と対向する面にのみセパレータを配置しても構わない。   In addition, although the separator 7 is arrange | positioned on both surfaces of the positive electrode 5 which the both sides are facing the negative electrode 6, only the positive electrode arrange | positioned in the outermost side of an electrode group, ie, one side (one side), has opposed the negative electrode. With respect to the positive electrode, separators may be disposed on both surfaces thereof (further, a joint portion described later may be formed on these two separators), or the separator may be disposed only on the surface facing the negative electrode. Absent.

また、図4に負極6の平面図を模式的に示しているが、負極6は、本体部6aと、平面視で、本体部6aから突出した、本体部6aよりも幅(図4中上下方向の長さ)の狭い集電タブ部6bとを有している。   4 schematically shows a plan view of the negative electrode 6. The negative electrode 6 has a width that is larger than the main body 6a and the main body 6a protruding from the main body 6a in plan view (upper and lower in FIG. 4). Current collecting tab portion 6b having a narrow direction length).

負極6の本体部6aは、集電体(図2中62)の片面または両面に、負極活物質などを含有する負極剤層61が形成されている。そして、負極6の集電タブ部6bは、集電体62表面に負極剤層が形成されておらず、集電体62が露出している。   As for the main-body part 6a of the negative electrode 6, the negative electrode agent layer 61 containing a negative electrode active material etc. is formed in the single side | surface or both surfaces of a collector (62 in FIG. 2). And the current collection tab part 6b of the negative electrode 6 does not have the negative electrode agent layer formed in the surface of the electrical power collector 62, and the electrical power collector 62 is exposed.

図1および図2に示す電池では、電極群の上下両端が負極6B、6Bとなっており、これらの負極6B、6Bは、集電体62の片面(電池内側の面)にのみ、負極剤層61を有している。一方、電極群の上下両端以外に配置されている負極6Aは、集電体62の両面に負極剤層61、61を有している。   In the battery shown in FIG. 1 and FIG. 2, the upper and lower ends of the electrode group are negative electrodes 6B and 6B, and these negative electrodes 6B and 6B are provided on only one side of the current collector 62 (the inner surface of the battery). A layer 61 is provided. On the other hand, the negative electrode 6 </ b> A arranged on the electrode group other than the upper and lower ends has negative electrode agent layers 61 and 61 on both surfaces of the current collector 62.

また、図1および図2に示す電池では、全ての負極6の各集電タブ部6bが纏められ、電極群における外装ケース2側の最外部側に位置する負極6B上(図1および図2中、下側の負極6Bの外装ケース2側)に折り返されている。そして、折り返された各負極6の集電タブ部6bの外装ケース2側には、ポリエチレンテレフタレート(PET)やポリイミドなどで形成されたテープなどからなる絶縁材(絶縁シール)8が配置されている。また、電極群における封口ケース3側の最外部側に位置する負極6B(図1および図2中、上側の負極6B)における集電体62の封口ケース側の露出面(図1および図2中、上側の面)と、封口ケース3内面とが、直接接するなどにより電気的に接続している。   Further, in the battery shown in FIG. 1 and FIG. 2, the current collecting tab portions 6b of all the negative electrodes 6 are collected and on the negative electrode 6B located on the outermost side on the exterior case 2 side in the electrode group (FIGS. 1 and 2). The outer negative electrode 6B is folded back to the outer case 2 side. An insulating material (insulating seal) 8 made of a tape formed of polyethylene terephthalate (PET), polyimide, or the like is disposed on the outer case 2 side of the current collecting tab portion 6b of each negative electrode 6 that is folded back. . Further, the exposed surface of the current collector 62 on the sealing case side (in FIGS. 1 and 2) of the negative electrode 6 </ b> B (the upper negative electrode 6 </ b> B in FIGS. 1 and 2) located on the outermost side on the sealing case 3 side in the electrode group. , The upper surface) and the inner surface of the sealing case 3 are electrically connected by direct contact or the like.

更に、図1および図2に示す電池では、全ての正極5の各集電タブ部5bが纏められ、電極群における外装ケース2側に配置された絶縁材8上(図1および図2中、下側の負極6Bの下側に配置された絶縁材8の下側)に折り返されている。そして、折り返された各正極5の集電タブ部5bと、外装ケース2内面とが、直接接するなどにより電気的に接続している。   Further, in the battery shown in FIGS. 1 and 2, the current collecting tab portions 5b of all the positive electrodes 5 are collected and on the insulating material 8 arranged on the exterior case 2 side in the electrode group (in FIGS. 1 and 2, It is folded back to the lower side of the insulating material 8 arranged below the lower negative electrode 6B. The folded current collecting tab portion 5b of each positive electrode 5 and the inner surface of the outer case 2 are electrically connected, for example, by direct contact.

前記の通り、特に小型の扁平形非水二次電池では、高容量化の観点から、例えば、絶縁ガスケットと電極群との隙間をできるだけ小さくして、正負極の占有体積を高めることが望まれる。しかしながら、絶縁ガスケットと電極群との隙間を小さくすると、電極群を形成してから電池ケース内に収容する際に、絶縁ガスケットを装着した封口ケース内に電極群を良好に挿入したり、電極群を収容した外装ケースに、絶縁ガスケットを装着した封口ケースを良好に被せたりすることができなくなる。また、扁平形非水二次電池の積層型の電極群においては、電池ケース内に収容する際に各電極の位置がずれないようにするなどの目的で、少なくとも電極群の上下面を含むように結束テープを貼り付けて全体をとめることが通常行われているが、絶縁ガスケットと電極群との隙間を小さくすると、結束テープの端が、外装ケースと絶縁ガスケットを被せた封口ケースとを合わせる際にかみ込んで、良好にかしめることができなくなる虞がある。   As described above, particularly in a small flat non-aqueous secondary battery, from the viewpoint of increasing capacity, for example, it is desired to increase the occupied volume of the positive and negative electrodes by reducing the gap between the insulating gasket and the electrode group as much as possible. . However, if the gap between the insulating gasket and the electrode group is reduced, when the electrode group is formed and then housed in the battery case, the electrode group can be satisfactorily inserted into the sealing case fitted with the insulating gasket, or the electrode group It becomes impossible to satisfactorily cover the sealing case fitted with the insulating gasket on the outer case that accommodates. In addition, the stacked electrode group of the flat non-aqueous secondary battery includes at least the upper and lower surfaces of the electrode group for the purpose of preventing the position of each electrode from shifting when accommodated in the battery case. It is common practice to attach a binding tape to the top and stop the whole. However, if the gap between the insulating gasket and the electrode group is reduced, the end of the binding tape aligns the outer case with the sealing case covered with the insulating gasket. There is a possibility that it will not be able to be caulked well.

これに対し、本発明の扁平形非水二次電池は、例えば、絶縁ガスケットを装着した封口ケース内で電極群を形成する工程を有する本発明法(詳しくは後述する)により製造することができ、別途形成した電極群を電池ケースに収容する工程を経ずに製造し得る。そのため、電極群において、全体をとめる結束テープの使用を回避でき、これにより、絶縁ガスケットの内径と、電極群の有する電極のうち、よりサイズを大きくすることが通常である負極における本体部の最大径との差を、0.2mm以下とすることが可能であり、絶縁ガスケットと電極群との隙間を小さくして、小型のものを始めとして、各種のサイズの扁平形非水二次電池の高容量化を図りつつ、その生産性を高めることができる。   On the other hand, the flat non-aqueous secondary battery of the present invention can be manufactured, for example, by the method of the present invention (detailed later) having a step of forming an electrode group in a sealing case equipped with an insulating gasket. In addition, the electrode group formed separately can be manufactured without the process of housing in the battery case. Therefore, in the electrode group, it is possible to avoid the use of a binding tape that is used as a whole. The difference from the diameter can be 0.2 mm or less, and the gap between the insulating gasket and the electrode group can be reduced to reduce the size of the flat non-aqueous secondary battery of various sizes including a small one. The productivity can be increased while increasing the capacity.

ただし、絶縁ガスケットと電極群との隙間を小さくしすぎると、却って電池の生産性が損なわれることから、本発明の扁平形非水二次電池では、絶縁ガスケットの内径と負極における本体部の最大径との差を、0.01mm以上とする。   However, if the gap between the insulating gasket and the electrode group is too small, the productivity of the battery is adversely affected. Therefore, in the flat non-aqueous secondary battery of the present invention, the inner diameter of the insulating gasket and the maximum of the main body in the negative electrode The difference from the diameter is set to 0.01 mm or more.

本明細書でいう「負極における本体部の最大径」とは、略円形である本体部の、中心を挟んで対向する外周縁のいずれもが円弧部分である箇所の直径を意味している。   The “maximum diameter of the main body portion in the negative electrode” in the present specification means the diameter of a portion of the substantially circular main body portion where the outer peripheral edges facing each other across the center are arc portions.

すなわち、本発明の電池において、負極の本体部の平面形状は略円形とし、また、正極の本体部の平面形状も略円形とすることが好ましい。なお、負極および正極の本体部においては、対極の集電タブ部が配置される箇所に相当する部分は、対極の集電タブ部との接触を防止するために、図3および図4に示すように切り落とした形状としておくことが好ましい。   That is, in the battery of the present invention, the planar shape of the negative electrode main body is preferably substantially circular, and the planar shape of the positive electrode main body is preferably substantially circular. In addition, in the main body part of the negative electrode and the positive electrode, the part corresponding to the place where the current collecting tab part of the counter electrode is arranged is shown in FIGS. 3 and 4 in order to prevent contact with the current collecting tab part of the counter electrode. It is preferable that the shape is cut off.

本発明の扁平形非水二次電池においては、外装ケースおよび封口ケースのいずれもが平面視で円形である。本発明の扁平形非水二次電池は、前記の通り、絶縁ガスケットを装着した封口ケース内で電極群を形成する本発明法により製造することが好ましく、電極群の全体をとめるための結束テープを使用しない。そこで、本発明の電池では、絶縁ガスケットと負極における本体部の最大径との差を前記のように小さくしていることに加えて、外装ケースおよび封口ケースを円形として、正負極の集電タブ部の存在箇所に空間が生じても、電極群を構成する正負極の位置ずれを抑制できるようにしている。   In the flat nonaqueous secondary battery of the present invention, both the outer case and the sealing case are circular in plan view. As described above, the flat non-aqueous secondary battery of the present invention is preferably manufactured by the method of the present invention in which the electrode group is formed in the sealing case equipped with the insulating gasket, and the binding tape for stopping the entire electrode group Do not use. Therefore, in the battery of the present invention, in addition to reducing the difference between the maximum diameter of the main body portion of the insulating gasket and the negative electrode as described above, the outer case and the sealing case are circular, and the positive and negative current collecting tabs Even if a space is generated at the location where the part is present, it is possible to suppress the displacement of the positive and negative electrodes constituting the electrode group.

なお、本発明の扁平形非水二次電池においては、図1や図2に示すように、外装ケースが正極端子を兼ね、かつ封口ケースが負極端子を兼ねており、電極群の最外部側に位置する電極がいずれも負極で、前記電極群の最外部側に位置する2枚の負極には、その本体部における電極群の最外部側とは反対側の面にのみ負極剤層が形成されており、その本体部における電極群の最外部側の面および集電タブ部には、集電体に負極剤層が形成されておらず、電極群の最外部側の負極以外の負極には、その本体部の両面に負極剤層が形成されており、その集電タブ部には、集電体に負極剤層が形成されておらず、前記電極群は、前記負極の各集電タブ部が纏められ、電極群における外装ケース側の最外部側に位置する負極上に折り返され、折り返された前記負極の各集電タブ部の外装ケース側には絶縁材が配置されており、かつ電極群における封口ケース側の最外部側に位置する負極における集電体の封口ケース側の露出面と、封口ケース内面とが電気的に接続しており、 前記正極の各集電タブ部が纏められ、電極群における外装ケース側に配置された前記絶縁材上に折り返されて外装ケースと電気的に接続していることが好ましい。このような態様の場合には、後述する本発明法による製造が容易となる。   In the flat non-aqueous secondary battery of the present invention, as shown in FIGS. 1 and 2, the outer case serves also as the positive electrode terminal, and the sealing case serves also as the negative electrode terminal, and the outermost side of the electrode group. The two electrodes located on the outermost side of the electrode group are formed with the negative electrode agent layer only on the surface opposite to the outermost side of the electrode group in the main body portion. The negative electrode layer is not formed on the current collector on the outermost surface of the electrode group and the current collecting tab in the main body, and the negative electrode other than the negative electrode on the outermost side of the electrode group Has a negative electrode agent layer formed on both surfaces of the main body, and the current collector tab portion has no negative electrode agent layer formed on the current collector. The tab part is gathered and folded back on the negative electrode located on the outermost side of the outer case side of the electrode group. An insulating material is disposed on the exterior case side of each current collecting tab portion of the negative electrode, and the exposed surface of the current collector in the sealing case side of the negative electrode located on the outermost side of the sealing case side of the electrode group, The inner surface of the sealing case is electrically connected, and the current collecting tab portions of the positive electrode are collected and folded on the insulating material disposed on the outer case side of the electrode group to be electrically connected to the outer case. It is preferable. In the case of such an embodiment, the production by the method of the present invention described later becomes easy.

本発明の電池に係る電極群において、纏めた正極の各集電タブ同士や、纏めた負極の各集電タブ部は、溶接などにより互いに接合してもよい。   In the electrode group according to the battery of the present invention, the collected current collecting tabs of the positive electrodes or the collected current tab portions of the collected negative electrodes may be joined to each other by welding or the like.

また、本発明の電池に係る電極群において、最外部側の2枚の電極をいずれも負極とする前記の態様の場合(図1や図2に示す態様の場合)、纏めた正極の各集電タブ部は、折り返した部分より先(端部側)で、溶接などにより互いに接合してもよく、更に、接合した集電タブ部を、絶縁材と接着剤により接着してもよい。   Further, in the electrode group according to the battery of the present invention, in the case of the above aspect in which both of the two outermost electrodes are negative electrodes (in the case of the aspect shown in FIGS. 1 and 2), each of the collected positive electrodes The electric tab portion may be joined to each other by welding or the like before the folded portion (end side), and the joined current collecting tab portion may be bonded with an insulating material and an adhesive.

本発明の電池において、セパレータは、通常の電池と同様に、単層または多層の多孔質膜が、例えば単独で正極と負極との間に介在していてもよいが、図1や図2に示すように、正極5(両側が負極6と対向している正極5)の両面に配置された2枚のセパレータ7、7が、それらの周縁部において接合部を有していることが好ましい。すなわち、両側が負極と対向する正極は、袋状のセパレータ内に収容されていることが好ましい。この場合、電極群の形成のための正極、負極およびセパレータの積層工程を減らすことができるため、特に後述する本発明法により本発明の電池を製造する場合に、より製造が容易となる。   In the battery of the present invention, as in the case of a normal battery, the separator may have a single-layer or multilayer porous film interposed between the positive electrode and the negative electrode, for example. As shown, it is preferable that the two separators 7 and 7 arranged on both surfaces of the positive electrode 5 (the positive electrode 5 opposite to the negative electrode 6 on both sides) have a joint at their peripheral portions. That is, it is preferable that the positive electrode whose both sides are opposed to the negative electrode is accommodated in a bag-shaped separator. In this case, since the lamination process of the positive electrode, the negative electrode, and the separator for forming the electrode group can be reduced, the production of the battery of the present invention is facilitated particularly by the method of the present invention described later.

図5に、周縁部の一部に接合部を形成したセパレータの平面図を模式的に示す。なお、図5では、セパレータ7とともに、正極、負極およびセパレータが積層された積層型の電極群とした場合を想定して、セパレータ7の下に配置される正極5を点線で示し、それらの更に下側に配置される負極に係る集電タブ部6bを一点鎖線で示している。また、図5に示す正極5は、電極群において、その両側(両面)が負極と対向するものであり、図5では図示していないが、電極群とした場合、セパレータ7の上側(図中手前方向)には、少なくとも負極が配置される。   In FIG. 5, the top view of the separator which formed the junction part in a part of peripheral part is shown typically. In FIG. 5, assuming the case of a stacked electrode group in which the positive electrode, the negative electrode, and the separator are stacked together with the separator 7, the positive electrode 5 disposed under the separator 7 is indicated by a dotted line, The current collection tab part 6b which concerns on the negative electrode arrange | positioned below is shown with the dashed-dotted line. Further, the positive electrode 5 shown in FIG. 5 has both sides (both sides) opposed to the negative electrode in the electrode group. Although not shown in FIG. 5, when the electrode group is used, the upper side of the separator 7 (in the drawing) In the forward direction), at least a negative electrode is arranged.

図5に示すように、セパレータ7と、正極5(図中点線で表示)を介してその下側(図中奥行き方向)に配置される他のセパレータとは、その周縁部において互いに溶着された接合部7c(図中、格子模様で表示)を有している。すなわち、セパレータ7と、その下側に配置されたセパレータとは、周縁部で互いに溶着されて袋状となっており、その内部に正極5を収容している。   As shown in FIG. 5, the separator 7 and other separators disposed on the lower side (in the depth direction in the figure) via the positive electrode 5 (indicated by a dotted line in the figure) were welded to each other at the peripheral edge thereof. It has a joint 7c (indicated by a lattice pattern in the figure). That is, the separator 7 and the separator disposed below the separator 7 are welded to each other at the peripheral edge to form a bag shape, and the positive electrode 5 is accommodated therein.

セパレータ7は、正極5の本体部5a全面を覆う主体部7a(すなわち、正極5の本体部5aよりも平面視での面積が大きな主体部7a)と、主体部7aから突出し、正極5の集電タブ部5bの、本体部5aとの境界部を少なくとも含む部分を覆う張り出し部7bとを有している。そして、セパレータ7の主体部7aの周縁部の少なくとも一部に、正極5の両面に配置された2枚のセパレータ(セパレータ7と、正極5の下側に配置されたセパレータ)同士を互いに溶着した接合部7cを設けている。   The separator 7 protrudes from the main body part 7a (that is, the main body part 7a having a larger area in plan view than the main body part 5a of the positive electrode 5) covering the entire surface of the main body part 5a of the positive electrode 5 and the main body part 7a. The electric tab portion 5b has an overhang portion 7b that covers at least a portion including a boundary portion with the main body portion 5a. Then, two separators (the separator 7 and the separator disposed below the positive electrode 5) disposed on both surfaces of the positive electrode 5 were welded to at least a part of the peripheral portion of the main body portion 7 a of the separator 7. A joint 7c is provided.

正極の両面に配置された2枚のセパレータを接合するための接合部は、セパレータの主体部の周縁部に設ければよいが、セパレータの張り出し部の周縁部(セパレータの張り出し部の周縁部のうち、主体部からの突出方向に沿う部分)にも接合部を設けてもよい。   The joining part for joining the two separators arranged on both sides of the positive electrode may be provided at the peripheral part of the separator main part, but the peripheral part of the separator overhanging part (the peripheral part of the separator overhanging part). Of these, a joint portion may also be provided on a portion along the protruding direction from the main body portion.

接合部7cは、2枚のセパレータの周縁部同士を直接溶着して形成してもよいが、2枚のセパレータの間に熱可塑性樹脂で構成される層を介在させ、この層を介して2枚のセパレータを溶着することにより形成してもよい。ただし、後者の場合、セパレータ間に介在させる層を構成する熱可塑性樹脂の種類と、セパレータを構成する熱可塑性樹脂の種類によっては、接合部の強度が小さくなる場合があるため、セパレータ間に介在させる層は、セパレータを構成する熱可塑性樹脂と同種の樹脂で構成されたものを使用することが好ましい。すなわち、セパレータ同士を直接溶着したり、セパレータを構成する熱可塑性樹脂と同種の樹脂で構成される層を介してセパレータ同士を溶着したりした場合には、接合部の強度がセパレータ自身の強度とほぼ同等となるため、例えば、電池の使用時に振動などによって生じる虞のある接合部での剥離が良好に抑制でき、より信頼性の高い電池とすることができる。   The joining portion 7c may be formed by directly welding the peripheral portions of the two separators, but a layer made of a thermoplastic resin is interposed between the two separators, and 2 You may form by welding the separator of a sheet. However, in the latter case, depending on the type of thermoplastic resin that constitutes the layer interposed between the separators and the type of thermoplastic resin that constitutes the separator, the strength of the joint may be reduced. It is preferable to use the layer made of the same kind of resin as the thermoplastic resin constituting the separator. That is, when the separators are welded directly, or when the separators are welded via a layer composed of the same type of resin as the thermoplastic resin that constitutes the separator, the strength of the joint is determined by the strength of the separator itself. Since they are almost the same, for example, peeling at the joint that may occur due to vibration or the like when the battery is used can be satisfactorily suppressed, and a battery with higher reliability can be obtained.

なお、セパレータの主体部に係る周縁部は、全てが接合部となっていてもよいが、例えば、図5に示すように、周縁部の一部を、セパレータ同士を溶着せずに非溶着部7d、7dとして残してもよい。2枚のセパレータを溶着して袋状とした後に、その中に正極を収容したり、1枚のセパレータの上に正極を配置し、その正極の上に更にセパレータを配置して、セパレータの周縁部を溶着して袋状としたセパレータの中に正極を収容したりした場合、セパレータ内に空気が残留することがある。しかし、このような正極を用いて電池を製造する場合、正極ケースと負極ケースとをかしめる際に、前記の残留空気が、非溶着部7d、7dを通じてセパレータ外へ良好に排出されるため、セパレータ内の残留空気による問題(発電時の反応が不均一になって容量が低下するなどの問題)の発生を防止できる。   In addition, although all the peripheral parts which concern on the main part of a separator may be a junction part, as shown in FIG. 5, for example, as shown in FIG. You may leave as 7d and 7d. After the two separators are welded to form a bag, the positive electrode is accommodated therein, the positive electrode is disposed on one separator, and the separator is further disposed on the positive electrode. When the positive electrode is housed in a separator that is welded to form a bag, air may remain in the separator. However, when manufacturing a battery using such a positive electrode, when the positive electrode case and the negative electrode case are caulked, the residual air is well discharged out of the separator through the non-welded portions 7d and 7d. Occurrence of problems due to residual air in the separator (problems such as non-uniform reaction during power generation and reduced capacity) can be prevented.

セパレータの周縁部に非溶着部を設ける場合、電池の生産性の低下を抑える観点から、その個数は1〜5個程度とすることが好ましい。また、セパレータの周縁部に非溶着部を設ける場合、セパレータの主体部に係る非溶着部の外縁の長さが、セパレータの主体部に係る外縁の全長さ(張り出し部を除く外縁の全長さ)の15〜60%程度することが好ましい。すなわち、セパレータの主体部においては、その外縁の全長さのうちの40%以上(好ましくは70%以上)が接合部であることが好ましく、これにより、セパレータ同士の接合強度を良好に確保することができる。   When providing a non-welding part in the peripheral part of a separator, it is preferable that the number shall be about 1-5 from a viewpoint of suppressing the productivity fall of a battery. Moreover, when providing a non-welding part in the peripheral part of a separator, the length of the outer edge of the non-welding part related to the main part of the separator is the total length of the outer edge related to the main part of the separator (the total length of the outer edge excluding the overhanging part). Is preferably about 15 to 60%. That is, in the main part of the separator, it is preferable that 40% or more (preferably 70% or more) of the entire length of the outer edge is a joined part, thereby ensuring good joining strength between the separators. Can do.

2枚のセパレータの周縁部に接合部を形成するとともに、これらのセパレータの間に正極を収容するには、2枚のセパレータ同士を直接溶着して接合部を形成する場合では、例えば、1枚のセパレータ上に正極を重ね、更にその上にセパレータを重ねた後、これらのセパレータの周縁部を溶着する方法が採用できる。また、2枚のセパレータを重ね、これらの周縁部を溶着してセパレータ同士を接合し、その後、これらのセパレータ間に正極を挿入する方法を採用することもできる。   In order to form a joint part at the peripheral part of two separators and to accommodate a positive electrode between these separators, when two separators are directly welded together to form a joint part, for example, one sheet It is possible to employ a method in which the positive electrode is overlaid on the separator, the separator is further overlaid thereon, and then the peripheral portions of these separators are welded. It is also possible to adopt a method in which two separators are stacked, the peripheral portions thereof are welded to join the separators, and then the positive electrode is inserted between these separators.

一方、2枚のセパレータ同士の間にセパレータの構成樹脂と同種の樹脂で構成された層を介在させ、これらを溶着して接合部を形成する場合では、例えば、1枚のセパレータ上の接合部となることが予定される箇所に前記層となるフィルムを置き、かつこのセパレータ上に正極を配置し、更にその上にセパレータを重ねた後、これらのセパレータの周縁部を溶着する方法が採用できる。また、1枚のセパレータ上の接合部となることが予定されている箇所に前記層となるフィルムを置き、このセパレータとフィルムとを予め溶着しておき、その後、このセパレータに正極、セパレータの順に重ねて周縁部を溶着する方法や、2枚のセパレータの間に前記層となるフィルムを介在させて溶着して接合部を形成した後に、これらのセパレータ間に正極を挿入する方法を採用することもできる。   On the other hand, when a layer composed of the same kind of resin as the constituent resin of the separator is interposed between the two separators and these are welded to form a joint, for example, the joint on one separator It is possible to adopt a method in which a film to be the layer is placed at a place where the layer is expected to be placed, a positive electrode is disposed on the separator, and a separator is further stacked thereon, and then the peripheral portions of these separators are welded. . In addition, a film to be the layer is placed in a place where it is planned to become a joint portion on one separator, and the separator and the film are previously welded. Adopting a method of laminating the peripheral portion by overlapping, or a method of inserting a positive electrode between these separators after forming a joined portion by interposing a film serving as the layer between two separators. You can also.

セパレータの周縁部の溶着は、例えば、加熱プレスにより行うことができる。この場合、加熱温度は、セパレータを構成する熱可塑性樹脂の融点よりも高い温度であればよいが、例えば、融点より10〜50℃高い温度で行うことが好ましい。また、加熱プレスの時間については、良好に接合部が形成できれば特に制限はないが、通常は、1〜10秒程度とする。   For example, the peripheral edge of the separator can be welded by a hot press. In this case, the heating temperature may be a temperature higher than the melting point of the thermoplastic resin constituting the separator, but for example, the heating temperature is preferably 10 to 50 ° C. higher than the melting point. Moreover, about the time of a hot press, if a junction part can be formed satisfactorily, there will be no restriction | limiting, However, Usually, it shall be about 1 to 10 second.

正極の両面に配置された2枚のセパレータの周縁部に接合部が形成されている場合(袋状のセパレータの場合)、負極の本体部と、正極の両側に配置されるセパレータの主体部とが、平面視で略同一形状(同一形状を含む)であることが好ましい。これにより、絶縁ガスケットの内径と正極を収容した袋状のセパレータの主体部の最大径との差が、絶縁ガスケットの内径と負極における本体部の最大径との差と同等になるため、電極群における正極を収容した袋状のセパレータの位置ずれも生じ難くなり、電池の信頼性が更に向上する。ここで略同一形状とは「負極の本体部」の形状と「セパレータの主体部」の形状とに多少の違いがあることを許容する趣旨であり、具体的には、張り出し部を除いた正極を包むセパレータの端部と集電タブ部を除いた負極の端部における幅方向の寸法との差が5%未満であるものをいう。   When a joint is formed at the peripheral edge of two separators disposed on both sides of the positive electrode (in the case of a bag-shaped separator), a main body of the negative electrode, and a main body of the separator disposed on both sides of the positive electrode However, it is preferable that they have substantially the same shape (including the same shape) in plan view. As a result, the difference between the inner diameter of the insulating gasket and the maximum diameter of the main portion of the bag-shaped separator containing the positive electrode is equivalent to the difference between the inner diameter of the insulating gasket and the maximum diameter of the main body portion of the negative electrode. The position of the bag-shaped separator containing the positive electrode is hardly displaced, and the reliability of the battery is further improved. Here, “substantially the same shape” means that there is a slight difference between the shape of the “negative electrode body” and the “main part of the separator”. Specifically, the positive electrode excluding the overhanging portion. The difference between the end of the separator that wraps the electrode and the dimension in the width direction at the end of the negative electrode excluding the current collecting tab is less than 5%.

本発明の電池は、そのサイズについては特に制限はないが、例えば、絶縁ガスケットの開口面積が100mm以下といった非常に小さなサイズの場合に、本発明の効果が特に顕著となる。ただし、絶縁ガスケットの開口面積があまり小さな電池は、それ自体生産が困難となる傾向にあるため、本発明の電池に係る絶縁ガスケットの開口面積は、例えば、20mm以上であることが好ましい。 The size of the battery of the present invention is not particularly limited, but the effect of the present invention is particularly remarkable when the opening area of the insulating gasket is very small, for example, 100 mm 2 or less. However, since the battery having a very small opening area of the insulating gasket itself tends to be difficult to produce, the opening area of the insulating gasket according to the battery of the present invention is preferably 20 mm 2 or more, for example.

本発明の電池に係る正極の正極合剤層は、正極活物質、導電助剤、バインダなどを含有する層である。   The positive electrode mixture layer of the positive electrode according to the battery of the present invention is a layer containing a positive electrode active material, a conductive additive, a binder and the like.

本発明の電池に係る正極活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMnNiCo1−y−z、LiMn、LiMn2−yなどのリチウム遷移金属複合酸化物などが挙げられる(ただし、前記の各リチウム遷移金属複合酸化物において、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、AlおよびCrからなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0≦z≦2.2である。)。これらの正極活物質は1種単独で使用してもよく、2種以上を併用しても構わない。 Examples of the positive electrode active material according to the battery of the present invention include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-y O 2. lithium transition metal composite such as Li x Ni 1-y M y O 2, Li x Mn y Ni z Co 1-y-z O 2, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 (However, in each of the above lithium transition metal composite oxides, M is at least one selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al, and Cr.) It is a metal element, and 0 ≦ x ≦ 1.1, 0 <y <1.0, and 2.0 ≦ z ≦ 2.2.) These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

また、正極の導電助剤としては、例えば、カーボンブラック、鱗片状黒鉛、ケッチェンブラック、アセチレンブラック、繊維状炭素などが挙げられる。更に、正極のバインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース、スチレンブタジエンラバーなどが挙げられる。   Moreover, as a conductive support agent of a positive electrode, carbon black, scale-like graphite, ketjen black, acetylene black, fibrous carbon etc. are mentioned, for example. Furthermore, examples of the binder for the positive electrode include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), carboxymethyl cellulose, and styrene butadiene rubber.

正極は、例えば、正極活物質と導電助剤とバインダとを混合して得られる正極合剤を水または有機溶剤に分散させて正極合剤含有ペーストを調製し(この場合、バインダは予め水または溶剤に溶解または分散させておき、それを正極活物質などと混合して正極合剤含有ペーストを調製してもよい)、その正極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体の片面または両面に塗布し、乾燥した後、加圧成形することによって正極合剤層を形成して作製される。ただし、正極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。   For the positive electrode, for example, a positive electrode mixture obtained by mixing a positive electrode active material, a conductive additive, and a binder is dispersed in water or an organic solvent to prepare a positive electrode mixture-containing paste (in this case, the binder is preliminarily mixed with water or It may be dissolved or dispersed in a solvent and mixed with a positive electrode active material or the like to prepare a positive electrode mixture-containing paste), and the positive electrode mixture-containing paste is made of metal foil, expanded metal, plain weave metal mesh, etc. It is manufactured by forming a positive electrode mixture layer by applying it to one or both sides of a current collector, drying it, and then press-molding it. However, the method for manufacturing the positive electrode is not limited to the above-described method, and other methods may be used.

正極の組成としては、例えば、正極を構成する正極合剤100質量%中、正極活物質を75〜90質量%、導電助剤を5〜20質量%、バインダを3〜15質量%とすることが好ましい。また、正極合剤層の厚みは、例えば、30〜200μmであることが好ましい。   As a composition of the positive electrode, for example, in 100% by mass of the positive electrode mixture constituting the positive electrode, the positive electrode active material is 75 to 90% by mass, the conductive additive is 5 to 20% by mass, and the binder is 3 to 15% by mass. Is preferred. Moreover, it is preferable that the thickness of a positive mix layer is 30-200 micrometers, for example.

正極の集電体の素材としては、アルミニウムやアルミニウム合金が好ましい。なお、正極の総厚みを小さくし、電池内における正極および負極の積層数を増やすことで正極合剤層と負極剤層との対向面積を大きくして、電池の負荷特性を高める観点からは、集電体には金属箔を使用することが好ましい。また、集電体の厚みは、例えば、8〜20μmであることが好ましい。   The material for the current collector of the positive electrode is preferably aluminum or an aluminum alloy. From the viewpoint of reducing the total thickness of the positive electrode and increasing the number of layers of the positive electrode and the negative electrode in the battery to increase the facing area between the positive electrode mixture layer and the negative electrode agent layer and improving the load characteristics of the battery, It is preferable to use a metal foil for the current collector. Moreover, it is preferable that the thickness of a collector is 8-20 micrometers, for example.

本発明の電池に係る負極としては、活物質に、リチウム、リチウム合金、リチウムイオンを吸蔵放出可能な炭素材料、チタン酸リチウムなどを有する負極が挙げられる。   Examples of the negative electrode according to the battery of the present invention include a negative electrode having lithium, a lithium alloy, a carbon material capable of occluding and releasing lithium ions, lithium titanate, and the like as an active material.

負極活物質に用い得るリチウム合金としては、例えば、リチウム−アルミニウム、リチウム−ガリウムなどのリチウムと可逆的に合金化するリチウム合金が挙げられ、リチウム含有量が、例えば1〜15原子%であることが好ましい。また、負極活物質に用い得る炭素材料としては、例えば、人造黒鉛、天然黒鉛、低結晶性カーボン、コークス、無煙炭などが挙げられる。   Examples of the lithium alloy that can be used for the negative electrode active material include lithium alloys that reversibly alloy with lithium, such as lithium-aluminum and lithium-gallium, and the lithium content is, for example, 1 to 15 atomic%. Is preferred. Examples of the carbon material that can be used for the negative electrode active material include artificial graphite, natural graphite, low crystalline carbon, coke, and anthracite.

負極活物質に用い得るチタン酸リチウムとしては、一般式LiTiで表され、xとyがそれぞれ、0.8≦x≦1.4、1.6≦y≦2.2の化学量論数を持つチタン酸リチウムが好ましく、特にx=1.33、y=1.67の化学量論数を持つチタン酸リチウムが好ましい。前記一般式LiTiで表されるチタン酸リチウムは、例えば、酸化チタンとリチウム化合物とを760〜1100℃で熱処理することによって得ることができる。前記酸化チタンとしては、アナターゼ型、ルチル型のいずれも使用可能であり、リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、酸化リチウムなどが用いられる。 The lithium titanate that can be used for the negative electrode active material is represented by the general formula Li x Ti y O 4 , and x and y are 0.8 ≦ x ≦ 1.4 and 1.6 ≦ y ≦ 2.2, respectively. Lithium titanate having a stoichiometric number is preferable, and lithium titanate having a stoichiometric number of x = 1.33 and y = 1.67 is particularly preferable. The lithium titanate represented by the general formula Li x Ti y O 4 can be obtained, for example, by heat-treating titanium oxide and a lithium compound at 760 to 1100 ° C. As the titanium oxide, either anatase type or rutile type can be used, and examples of the lithium compound include lithium hydroxide, lithium carbonate, and lithium oxide.

負極は、負極活物質がリチウムやリチウム合金の場合は、リチウムやリチウム合金を金属網などの集電体に圧着することで、集電体の表面にリチウムやリチウム合金などからなる負極剤層を形成して得ることができる。他方、負極活物質として炭素材料やチタン酸リチウムを用いる場合は、例えば、負極活物質としての炭素材料やチタン酸リチウムとバインダ、更には必要に応じて導電助剤を混合して得られる負極合剤を水または有機溶剤に分散させて負極合剤含有ペーストを調製し(この場合、バインダは予め水または溶剤に溶解または分散させておき、それを負極活物質などと混合して負極合剤含有ペーストを調製してもよい)、その負極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体に塗布し、乾燥した後、加圧成形することによって負極剤層(負極合剤層)を形成して負極を作製することができる。ただし、負極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。   When the negative electrode active material is lithium or a lithium alloy, the negative electrode is formed by bonding the lithium or lithium alloy to a current collector such as a metal network to form a negative electrode layer made of lithium or lithium alloy on the surface of the current collector. Can be obtained. On the other hand, when a carbon material or lithium titanate is used as the negative electrode active material, for example, a negative electrode composite obtained by mixing a carbon material or lithium titanate with a binder as the negative electrode active material and, if necessary, a conductive additive. The negative electrode mixture-containing paste is prepared by dispersing the agent in water or an organic solvent (in this case, the binder is previously dissolved or dispersed in water or solvent, and mixed with the negative electrode active material or the like to contain the negative electrode mixture) The paste containing the negative electrode mixture may be applied to a current collector made of metal foil, expanded metal, plain weave metal mesh, etc., dried, and then pressed to form a negative electrode layer (negative electrode composite). The negative electrode can be produced by forming an agent layer. However, the manufacturing method of the negative electrode is not limited to the above-described method, and other methods may be used.

なお、負極に係るバインダおよび導電助剤としては、正極に用い得るものとして先に例示した各種バインダおよび導電助剤を用いることができる。   In addition, as a binder and conductive support agent which concern on a negative electrode, the various binders and conductive support agent which were illustrated previously as what can be used for a positive electrode can be used.

負極活物質に炭素材料を用いる場合の負極の組成としては、例えば、負極を構成する負極合剤100質量%中、炭素材料を80〜95質量%、バインダを3〜15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5〜20質量%とすることが好ましい。他方、負極活物質にチタン酸リチウムを用いる場合の負極の組成としては、例えば、負極を構成する負極合剤100質量%中、チタン酸リチウムを75〜90質量%、バインダを3〜15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5〜20質量%とすることが好ましい。   The composition of the negative electrode when a carbon material is used as the negative electrode active material is, for example, that the carbon material is 80 to 95% by mass and the binder is 3 to 15% by mass in 100% by mass of the negative electrode mixture constituting the negative electrode. Moreover, when using together a conductive support agent, it is preferable that a conductive support agent shall be 5-20 mass%. On the other hand, the composition of the negative electrode when lithium titanate is used as the negative electrode active material is, for example, 75 to 90% by mass of lithium titanate and 3 to 15% by mass of the binder in 100% by mass of the negative electrode mixture constituting the negative electrode. In addition, when a conductive auxiliary is used in combination, the conductive auxiliary is preferably 5 to 20% by mass.

負極における負極剤層(負極合剤層を含む)の厚みは、例えば、40〜200μmであることが好ましい。   The thickness of the negative electrode layer (including the negative electrode mixture layer) in the negative electrode is preferably 40 to 200 μm, for example.

負極の集電体の素材としては、銅や銅合金が好ましい。なお、負極の総厚みを小さくし、電池内における正極および負極の積層数を増やすことで正極合剤層と負極剤層との対向面積を大きくして、電池の負荷特性を高める観点からは、集電体には金属箔を使用することが好ましい。また、集電体の厚みは、例えば、5〜30μmであることが好ましい。   The material for the current collector of the negative electrode is preferably copper or a copper alloy. From the viewpoint of reducing the total thickness of the negative electrode and increasing the number of layers of the positive electrode and negative electrode in the battery to increase the facing area between the positive electrode mixture layer and the negative electrode agent layer, and improving the load characteristics of the battery, It is preferable to use a metal foil for the current collector. Moreover, it is preferable that the thickness of a collector is 5-30 micrometers, for example.

セパレータには、熱可塑性樹脂製の微多孔膜で構成されたものを使用する。セパレータを構成する熱可塑性樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、ポリメチルペンテンなどのポリオレフィンが好ましく、セパレータ同士を溶着したり、セパレータ間にセパレータの構成樹脂と同種の樹脂を配置して溶着したりする観点からは、その融点、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、100〜180℃のポリオレフィンがより好ましい。   A separator made of a microporous film made of a thermoplastic resin is used. As the thermoplastic resin constituting the separator, for example, polyolefins such as polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, polymethylpentene, and the like are preferable. From the viewpoint of arranging and welding the same type of resin as the constituent resin, the melting point, that is, the melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121 is 100. A polyolefin of ˜180 ° C. is more preferable.

セパレータを構成する熱可塑性樹脂製の微多孔膜の形態としては、必要な電池特性が得られるだけのイオン伝導度を有していればどのような形態でもよいが、従来から知られている溶剤抽出法、乾式または湿式延伸法などにより形成された孔を多数有するイオン透過性の微多孔膜(電池のセパレータとして汎用されている微多孔フィルム)が好ましい。   The form of the microporous film made of the thermoplastic resin constituting the separator may be any form as long as it has an ionic conductivity sufficient to obtain the required battery characteristics, but is a conventionally known solvent. An ion-permeable microporous film (a microporous film that is widely used as a battery separator) having a large number of pores formed by an extraction method, a dry method or a wet stretching method is preferable.

セパレータの厚みは、例えば、5〜25μmであることが好ましく、また、空孔率は、例えば、30〜70%であることが好ましい。   The thickness of the separator is preferably, for example, 5 to 25 μm, and the porosity is preferably, for example, 30 to 70%.

電池に係る非水電解液としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル;ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルエチルカーボネートなどの鎖状炭酸エステル;1,2−ジメトキシエタン、ジグライム(ジエチレングリコールメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、テトラヒドロフランなどのエーテル;などの有機溶媒に、電解質(リチウム塩)を0.3〜2.0mol/L程度の濃度に溶解させることによって調製した電解液を用いることができる。前記の有機溶媒は、それぞれ1種単独で用いてもよく、2種以上を併用しても構わない。   Examples of non-aqueous electrolytes for batteries include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonate esters such as dimethyl carbonate, diethyl carbonate (DEC), and methyl ethyl carbonate. 1,2-dimethoxyethane, diglyme (diethylene glycol methyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether), 1,2-dimethoxyethane, 1,2-diethoxymethane, tetrahydrofuran, etc. It is possible to use an electrolytic solution prepared by dissolving an electrolyte (lithium salt) in a concentration of about 0.3 to 2.0 mol / L in an organic solvent such as ether; That. The above organic solvents may be used alone or in combination of two or more.

前記電解質としては、例えば、LiBF、LiPF、LiAsF、LiSbF、LiClO、LiCFSO、LiCSO、LiN(CFSO、LiN(CSOなどのリチウム塩が挙げられる。 Examples of the electrolyte include LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) Lithium salts such as 2 are mentioned.

前記の正極、負極およびセパレータは、図1や図2に示すように積層して積層型の電極群として使用するが、その際、各正極の集電タブ部が、電極群の平面視で同一方向を向くように配置され、かつ各負極の集電タブ部が、電極群の平面視で同一方向を向くように配置されていることが好ましい。これにより、正極および負極の集電がより容易となる。   The positive electrode, the negative electrode, and the separator are stacked and used as a stacked electrode group as shown in FIG. 1 and FIG. 2, and the current collecting tab portion of each positive electrode is the same in a plan view of the electrode group. It is preferable that the current collecting tabs of the negative electrodes are arranged so as to face in the same direction in the plan view of the electrode group. Thereby, current collection of the positive electrode and the negative electrode becomes easier.

更に、各正極の集電タブ部と、各負極の集電タブ部とは、電極群の平面視で互いに接触しないように配置されていればよいが、これらの接触をより良好に抑制し、かつ電池の生産をより良好にする観点からは、図5に示しているように、各正極の集電タブ部5bと各負極の集電タブ部6bとは、電極群の平面視で互いに対向する位置に配されていることがより好ましい。   Furthermore, the current collecting tab portion of each positive electrode and the current collecting tab portion of each negative electrode only need to be arranged so as not to contact each other in a plan view of the electrode group, but these contacts are better suppressed, And from the viewpoint of making the production of the battery better, as shown in FIG. 5, the current collecting tab portion 5b of each positive electrode and the current collecting tab portion 6b of each negative electrode face each other in a plan view of the electrode group. More preferably, it is arranged at a position where

電極群に係る正極および負極は、いずれも複数であり、電極の合計層数は、少なくとも4層であるが、それ以上(5層、6層、7層、8層など)とすることも可能である。ただし、正極および負極の積層数をあまり多くすると、扁平状電池としてのメリットが小さくなる虞があることから、通常は、40層以下とすることが好ましい。   There are a plurality of positive electrodes and negative electrodes in the electrode group, and the total number of layers of the electrode is at least 4, but it is also possible to make it more (5 layers, 6 layers, 7 layers, 8 layers, etc.) It is. However, if the number of stacked positive and negative electrodes is increased too much, the merit as a flat battery may be reduced. Therefore, it is usually preferable to have 40 layers or less.

また、本発明の扁平形非水二次電池においては、図1および図2に示すように、絶縁ガスケットの電池内側の面と、封口ケースのうち、電池の厚み方向を向かう部分(図中上下方向を向いている部分)の電池内側の面とが、同一面上にあることが好ましい。絶縁ガスケットの電池内側の面と、封口ケースのうち、電池の厚み方向を向かう部分の電池内側の面とは、電極群形成の際のガイドの役割を果たすため、これらの面が揃っており同一面上にある場合には、電極群形成時に負極と、袋状セパレータに収容された正極との位置ずれが生じ難くなり、電池の生産性が向上する。   Further, in the flat non-aqueous secondary battery of the present invention, as shown in FIGS. 1 and 2, a portion of the insulating gasket facing the battery in the thickness direction of the battery inner surface and the sealing case (upper and lower in the figure). It is preferable that the battery inner surface of the portion facing the direction is on the same surface. The inner surface of the insulating gasket and the inner surface of the sealing case that faces the thickness direction of the battery serve as a guide when forming the electrode group. When it is on the surface, it is difficult for the negative electrode and the positive electrode accommodated in the bag-shaped separator to be displaced during the formation of the electrode group, and the productivity of the battery is improved.

また、図6には、本発明の扁平形非水二次電池の他の例を模式的に示す縦断面図を示しているが、この図6に示すように、絶縁ガスケット4の電池内側の面の図6中上端が、封口ケース3の内面近傍にまで達していることも好ましく、具体的には、絶縁ガスケット4の電池内側の面の高さ(図6中上下方向の長さ)が、外装ケース2内面から封口ケース3内面までの最短距離(すなわち、電池ケース内側の空間部分の高さ)の90%以上(100%以下)であることが好ましい。このような場合には、絶縁ガスケット4の電池内側の面が、電極群形成の際に、負極と、正極を収容した袋状とのセパレータとの位置ずれを抑制するガイドとして機能するため、電池の生産性が向上する。   FIG. 6 is a longitudinal sectional view schematically showing another example of the flat non-aqueous secondary battery of the present invention. As shown in FIG. It is also preferable that the upper end of the surface in FIG. 6 reaches the vicinity of the inner surface of the sealing case 3. Specifically, the height of the inner surface of the insulating gasket 4 (the length in the vertical direction in FIG. 6). The shortest distance from the inner surface of the outer case 2 to the inner surface of the sealing case 3 (that is, the height of the space portion inside the battery case) is preferably 90% or more (100% or less). In such a case, since the inner surface of the battery of the insulating gasket 4 functions as a guide for suppressing displacement between the negative electrode and the bag-shaped separator containing the positive electrode when the electrode group is formed. Productivity is improved.

本発明の扁平形非水二次電池は、以下の本発明の製造方法により製造することができる。   The flat non-aqueous secondary battery of the present invention can be manufactured by the following manufacturing method of the present invention.

本発明の製造方法は、絶縁ガスケットを装着した封口ケース内に、負極および正極を、負極と正極との間にセパレータが介在するようにしつつ順次挿入して積層し、電極群を形成する工程を有している。なお、正極の両面に配置された2枚のセパレータの周縁部に接合部が形成されている場合、すなわち、袋状のセパレータに正極が収容されている場合には、負極と、袋状のセパレータに収容された正極とを、絶縁ガスケットを装着した封口ケース内に順次挿入して積層することで、電極群を形成すればよい。   The manufacturing method of the present invention includes a step of forming a group of electrodes by sequentially inserting and laminating a negative electrode and a positive electrode in a sealing case equipped with an insulating gasket, with a separator interposed between the negative electrode and the positive electrode. Have. In addition, when the junction part is formed in the peripheral part of two separators arrange | positioned on both surfaces of a positive electrode, ie, when a positive electrode is accommodated in a bag-shaped separator, a negative electrode and a bag-shaped separator The electrode group may be formed by sequentially inserting and laminating the positive electrode housed in the container into a sealing case fitted with an insulating gasket.

前記の工程によって、絶縁ガスケットを装着した封口ケース内で電極群を形成した後は、例えば、その封口ケース内に非水電解液を入れ、封口ケースの開口部(絶縁ガスケットの開口部)に外装ケースを被せ、かしめて扁平形非水二次電池を得ることができる。   After the electrode group is formed in the sealing case fitted with the insulating gasket by the above-mentioned process, for example, a nonaqueous electrolyte is put into the sealing case and the exterior of the opening of the sealing case (the opening of the insulating gasket) A flat non-aqueous secondary battery can be obtained by covering the case.

本発明の扁平形非水二次電池は、従来から知られている扁平形非水二次電池と同様の用途に適用することができる。   The flat non-aqueous secondary battery of the present invention can be applied to the same use as a conventionally known flat non-aqueous secondary battery.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

実施例1
<正極の作製>
正極活物質としてLiCoOを、導電助剤としてカーボンブラックを、バインダとしてPVDFを、それぞれ用いて正極を作製した。まず、LiCoO:93質量部とカーボンブラック:3質量部とを混合し、得られた混合物とPVDF:4部を予めN−メチル−2−ピロリドン(NMP)に溶解させておいたバインダ溶液とを混合して正極合剤含有ペーストを調製した。得られた正極合剤含有ペーストを厚さ15μmのアルミニウム箔からなる正極集電体の両面にアプリケータにより塗布した。なお、正極合剤含有ペーストの塗布に際しては、塗布部と未塗布部とが5cmおきに連続するように、かつ表面で塗布部とした箇所は、裏面でも塗布部となるようにした。続いて、塗布した正極合剤含有ペーストを乾燥して正極合剤層を形成し、その後、ロールプレスし、所定の大きさに切断して、帯状の正極を得た。なお、この正極は、幅を40mmとし、正極合剤層形成部の厚みを140μmとなるようにした。
Example 1
<Preparation of positive electrode>
A positive electrode was prepared using LiCoO 2 as a positive electrode active material, carbon black as a conductive additive, and PVDF as a binder. First, LiCoO 2 : 93 parts by mass and carbon black: 3 parts by mass were mixed, and the resulting mixture and PVDF: 4 parts were previously dissolved in N-methyl-2-pyrrolidone (NMP) and a binder solution Were mixed to prepare a positive electrode mixture-containing paste. The obtained positive electrode mixture-containing paste was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm by an applicator. When applying the positive electrode mixture-containing paste, the application part and the non-application part were continuously arranged every 5 cm, and the part that was the application part on the front surface was also the application part on the back surface. Subsequently, the applied positive electrode mixture-containing paste was dried to form a positive electrode mixture layer, and then roll-pressed and cut into a predetermined size to obtain a belt-like positive electrode. The positive electrode had a width of 40 mm, and the positive electrode mixture layer forming portion had a thickness of 140 μm.

前記の帯状の正極を、正極合剤層形成部が本体部(円弧の部分の直径6.2mm)とし、正極合剤層未形成部が集電タブ部となるように、図3に示す形状に打ち抜いて、電池用正極を得た。   The shape of the belt-like positive electrode shown in FIG. 3 is such that the positive electrode mixture layer forming portion is a main body portion (arc portion diameter 6.2 mm) and the positive electrode mixture layer non-forming portion is a current collecting tab portion. The battery positive electrode was obtained.

<袋状のセパレータへの電池用正極の収容>
前記の電池用正極の両面に、図5に示す形状のPE製微多孔膜セパレータ(厚み16μm)を配置し、図5に示す箇所を加熱プレス(温度170℃、プレス時間2秒)により溶着し、2枚のセパレータに係る主体部の周縁部の一部に接合部を形成して、電池用正極を袋状セパレータ内に収容した。なお、2枚のセパレータに係る接合部の幅は0.25mmとした。また、2枚のセパレータの主体部の外縁のうち、80%の長さ部分を接合部とした。なお、電池用正極を収容した袋状セパレータにおける主体部の円弧の部分の直径(最大径)は、7.20mmとした。
<Accommodating battery positive electrode in bag-shaped separator>
A PE microporous membrane separator (thickness 16 μm) having the shape shown in FIG. 5 is arranged on both surfaces of the battery positive electrode, and the portion shown in FIG. 5 is welded by a hot press (temperature 170 ° C., press time 2 seconds). A joining part was formed in a part of the peripheral part of the main part concerning two separators, and the battery positive electrode was accommodated in the bag-like separator. In addition, the width | variety of the junction part which concerns on two separators was 0.25 mm. Further, 80% of the outer edge of the main part of the two separators was used as the joint. The diameter (maximum diameter) of the arc portion of the main portion of the bag-shaped separator containing the battery positive electrode was 7.20 mm.

<負極の作製>
負極活物質として黒鉛を、バインダとしてPVDFを、それぞれ用いて負極を作製した。前記黒鉛:94質量部とPVDF:6質量部を予めNMPに溶解させておいたバインダ溶液とを混合して、負極合剤含有ペーストを調製した。得られた負極合剤含有ペーストを厚さ10μmの銅箔からなる負極集電体の片面または両面にアプリケータにより塗布した。なお、負極合剤含有ペーストの塗布に際しては、塗布部と未塗布部とが5cmおきに連続するように、かつ集電体の両面に塗布したものでは、表面で塗布部とした箇所は、裏面でも塗布部となるようにした。続いて、塗布した負極合剤含有ペーストを乾燥して負極合剤層を形成し、その後、ロールプレスし、所定の大きさに切断して、帯状の負極を得た。なお、この負極は、幅を40mmとし、負極合剤層形成部の厚みを、集電体の両面に形成したものでは190μm、集電体の片面に形成したものでは100μmとなるようにした。
<Production of negative electrode>
A negative electrode was prepared using graphite as the negative electrode active material and PVDF as the binder. A paste containing 94 parts by mass of graphite and a binder solution in which 6 parts by mass of PVDF were previously dissolved in NMP was mixed to prepare a negative electrode mixture-containing paste. The obtained negative electrode mixture-containing paste was applied to one or both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm by an applicator. In addition, when applying the negative electrode mixture-containing paste, when the coated part and the non-coated part are continuously applied every 5 cm and are applied to both sides of the current collector, the place where the coated part is the surface is the back side However, it was made to become an application part. Subsequently, the applied negative electrode mixture-containing paste was dried to form a negative electrode mixture layer, and then roll-pressed and cut into a predetermined size to obtain a strip-shaped negative electrode. The negative electrode had a width of 40 mm, and the negative electrode mixture layer forming portion had a thickness of 190 μm when formed on both sides of the current collector and 100 μm when formed on one side of the current collector.

前記の帯状の負極を、負極合剤層形成部が本体部[円弧の部分の直径(最大径)7.20mm]とし、負極合剤層未形成部が集電タブ部となるように、正極と同様の形状に打ち抜いて、集電体の片面に負極合剤層を有する電池用負極と、集電体の両面に負極合剤層を有する電池用負極とを得た。   The belt-like negative electrode is formed so that the negative electrode mixture layer forming portion is a main body portion [arc portion diameter (maximum diameter) 7.20 mm], and the negative electrode mixture layer non-forming portion is a current collecting tab portion. The negative electrode for a battery having a negative electrode mixture layer on one side of the current collector and the negative electrode for a battery having a negative electrode mixture layer on both sides of the current collector were obtained.

<電池の組み立て>
前記の袋状セパレータに収容した電池用正極13枚と、集電体の両面に負極合剤層を形成した電池用負極12枚と、集電体の片面に負極合剤層を形成した電池用負極2枚(このうち1枚は、集電体の露出面にPETフィルムを貼り付けたもの)とを用意し、集電体の片面に負極合剤層を形成した電池用負極が最外部の電極になるように、これらの電池用正極および電池用負極を、絶縁ガスケットを装着した封口ケース内で交互に重ねた。そして、各電池用負極の集電タブ部を纏めて溶接した後に封口ケースの開口側の負極上に折り返し、その上に絶縁材(厚みが0.1mmのPETフィルム)を載せ、更に、各電池用正極の集電タブ部を纏めて溶接した後に、前記の絶縁材上に折り返した。
<Battery assembly>
13 battery positive electrodes housed in the bag-shaped separator, 12 battery negative electrodes having a negative electrode mixture layer formed on both sides of the current collector, and battery electrode having a negative electrode mixture layer formed on one side of the current collector Prepare two negative electrodes (one of which is a PET film attached to the exposed surface of the current collector), and the negative electrode for the battery with the negative electrode mixture layer formed on one side of the current collector is the outermost The battery positive electrode and the battery negative electrode were alternately stacked in a sealing case equipped with an insulating gasket so as to be an electrode. Then, the current collecting tabs of the negative electrodes for each battery are welded together and then folded on the negative electrode on the opening side of the sealing case, and an insulating material (PET film having a thickness of 0.1 mm) is placed thereon, and each battery After the current collecting tabs of the positive electrode for welding were welded together, they were folded on the insulating material.

次に、封口ケース内に非水電解液(LiPFをエチレンカーボネートとメチルエチルカーボネートとの体積比1:2の混合溶媒に、1.2mol/lの濃度で溶解した溶液)45mgを入れた後、外装ケースを被せ、周囲をかしめて、直径9.0mm、厚み5.4mmで、正極および負極の積層枚数が異なる以外は、図1および図2と同様の構造の扁平形非水二次電池を得た。なお、前記の扁平形非水二次電池は、絶縁ガスケットの内径と負極における本体部の最大径との差が0.1mmである。 Next, after putting 45 mg of nonaqueous electrolyte (LiPF 6 dissolved in a mixed solvent of ethylene carbonate and methyl ethyl carbonate in a volume ratio of 1: 2 at a concentration of 1.2 mol / l) in a sealing case. A flat non-aqueous secondary battery having the same structure as in FIGS. 1 and 2 except that the outer case is covered, the periphery is caulked, the diameter is 9.0 mm, the thickness is 5.4 mm, and the number of stacked positive and negative electrodes is different. Got. In the flat non-aqueous secondary battery, the difference between the inner diameter of the insulating gasket and the maximum diameter of the main body in the negative electrode is 0.1 mm.

比較例1
実施例1で用いたものと同じ袋状セパレータに収容した電池用正極13枚と、実施例1で用いたものと同じ集電体の両面に負極合剤層を形成した電池用負極12枚と、実施例1で用いたものと同じ集電体の片面に負極合剤層を形成した電池用負極2枚とを用意し、集電体の片面に負極合剤層を形成した電池用負極が最外部の電極となるように、これらの電池用正極および電池用負極を交互に重ねた。ただし、集電体の片面に負極合剤層を形成した電池用負極のうちの1枚については、集電体の露出面に絶縁材(厚みが0.1mmのPETフィルム)を貼り付けてから打ち抜いたものを用いた。
Comparative Example 1
13 battery positive electrodes housed in the same bag-shaped separator as used in Example 1, and 12 battery negative electrodes having a negative electrode mixture layer formed on both sides of the same current collector as used in Example 1 And two negative electrodes for a battery having a negative electrode mixture layer formed on one side of the same current collector as used in Example 1, and a negative electrode for a battery having a negative electrode mixture layer formed on one side of the current collector. These positive electrodes for batteries and negative electrodes for batteries were alternately stacked so as to be the outermost electrode. However, for one of the negative electrodes for a battery in which a negative electrode mixture layer is formed on one surface of the current collector, an insulating material (PET film having a thickness of 0.1 mm) is attached to the exposed surface of the current collector. A punched one was used.

その後、積層した全電極が位置ずれしないように本体部の部分をPP製の粘着テープで結束し、続いて各電池用負極の集電タブ部を纏めて溶接して、最外部の電池用負極のうち、集電体の露出面に絶縁材を貼り付けていない方の上(集電体の露出面上)に折り返した。また、各電池用正極の集電タブ部を纏めて溶接し、最外部の電池用負極のうち、集電体の露出面に絶縁材を貼り付けた方の上(絶縁材の上)に折り返して電極群を得た。   Then, the main body part is bound with PP adhesive tape so that all the stacked electrodes are not displaced, and then the current collecting tabs of each battery negative electrode are welded together to form the outermost battery negative electrode. Of these, it was folded back on the side where the insulating material was not attached to the exposed surface of the current collector (on the exposed surface of the current collector). In addition, the current collector tabs of each battery positive electrode are welded together and folded back on the outermost battery negative electrode on which the insulating material is attached to the exposed surface of the current collector (on the insulating material) Thus, an electrode group was obtained.

そして、実施例1で用いたものと同じ外装ケース内に電極群を挿入した。また、実施例1で用いたものと同じ封口ケースおよび絶縁ガスケットを使用し、封口ケースに絶縁ガスケットを装着し、実施例1で用いたものと同じ非水電解液45mgを入れた後に、電極群を挿入した外装ケースを被せ、かしめて、扁平形非水二次電池を作製した。   And the electrode group was inserted in the same exterior case as what was used in Example 1. FIG. In addition, the same sealing case and insulating gasket as those used in Example 1 were used, the insulating gasket was attached to the sealing case, and 45 mg of the same nonaqueous electrolytic solution as that used in Example 1 was added, and then the electrode group A flat non-aqueous secondary battery was produced by covering and caulking with an outer case into which was inserted.

比較例2
円弧の部分の直径(最大径)を5.5mmとした以外は実施例1と同様にして電池用正極を作製し、実施例1と同様にして2枚のセパレータを袋状にして、その中に電池用正極を収容した。ただし、電池用正極を収容した袋状セパレータにおける主体部の円弧の部分の直径(最大径)は、6.5mmとした。また、円弧の部分の直径(最大径)を6.5mmとした以外は実施例1と同様にして電池用負極を作製した。
Comparative Example 2
A positive electrode for a battery was produced in the same manner as in Example 1 except that the diameter (maximum diameter) of the arc portion was 5.5 mm. The battery positive electrode was accommodated. However, the diameter (maximum diameter) of the arc portion of the main portion of the bag-shaped separator containing the battery positive electrode was 6.5 mm. A negative electrode for a battery was produced in the same manner as in Example 1 except that the diameter (maximum diameter) of the arc portion was 6.5 mm.

そして、これらの電池用正極(袋状セパレータに収容した電池用正極)および電池用負極を使用した以外は、比較例1と同様にして扁平形非水二次電池を作製した。なお、前記の扁平形非水二次電池は、絶縁ガスケットの内径と負極における本体部の最大径との差が0.8mmである。   Then, a flat nonaqueous secondary battery was produced in the same manner as in Comparative Example 1 except that these battery positive electrode (battery positive electrode housed in a bag-shaped separator) and battery negative electrode were used. In the flat non-aqueous secondary battery, the difference between the inner diameter of the insulating gasket and the maximum diameter of the main body portion of the negative electrode is 0.8 mm.

実施例および比較例の扁平形非水二次電池について、下記の放電容量測定および耐漏液性試験を行った。これらの結果を表1に示す。   The flat non-aqueous secondary batteries of Examples and Comparative Examples were subjected to the following discharge capacity measurement and leakage resistance test. These results are shown in Table 1.

<放電容量測定>
実施例および比較例の各電池について、2mAの電流値で電圧が4.20Vになるまでの定電流充電と、それに続いて4.20Vの電圧で電流値が0.6mAになるまでの定電圧充電とを行い、その後、2mAの電流値で電圧が3Vになるまで放電をしたときの容量を測定した。なお、放電容量測定は各電池とも10個について行い、これらの平均値を各電池の放電容量とした。
<Discharge capacity measurement>
About each battery of an Example and a comparative example, the constant current charge until a voltage will be 4.20V with a current value of 2 mA, and the constant voltage until a current value will be 0.6 mA with a voltage of 4.20V following that Then, the capacity was measured when the battery was discharged until the voltage reached 3 V at a current value of 2 mA. The discharge capacity was measured for 10 batteries, and the average value was taken as the discharge capacity of each battery.

<耐漏液性試験>
実施例および比較例の各電池(それぞれ10個)について、2mAの電流値で電圧が4.20Vになるまでの定電流充電と、それに続いて4.20Vの電圧で電流値が0.6mAになるまでの定電圧充電とを行い、その後に60℃、相対湿度90%の環境下で貯蔵し、その間の漏液の状況を観察した。
<Leakage resistance test>
For each of the batteries of the example and comparative example (10 each), constant current charging until the voltage reached 4.20 V at a current value of 2 mA, followed by a current value of 0.6 mA at a voltage of 4.20 V Then, the battery was stored in an environment of 60 ° C. and a relative humidity of 90%, and the state of leakage during that time was observed.

表1に示す通り、実施例1の電池は、容量が大きく、また、貯蔵時に漏液が生じるような不良品が得られておらず、生産性が良好である。   As shown in Table 1, the battery of Example 1 has a large capacity, and a defective product that causes leakage during storage has not been obtained, and the productivity is good.

これに対し、比較例1の電池は、実施例と同じサイズの電極を使用しており、容量は大きいが、貯蔵時に漏液が生じており、生産性が劣っている。これらの電池を分解してみると、いずれも外装ケースと絶縁パッキングとの間に、結束テープ、負極の集電タブ部および正極の集電タブ部のいずれかが噛み込んでいた。また、絶縁ガスケットの内径と負極の本体部の最大径との差を大きくした比較例2の電池は、貯蔵時に漏液が生じるような不良品は得られておらず、生産性は良好であるが、容量が小さい。   On the other hand, the battery of Comparative Example 1 uses the same size electrode as the Example and has a large capacity, but leaks during storage, resulting in poor productivity. When these batteries were disassembled, any of the binding tape, the negative current collecting tab portion, and the positive current collecting tab portion was caught between the outer case and the insulating packing. Further, the battery of Comparative Example 2 in which the difference between the inner diameter of the insulating gasket and the maximum diameter of the main body of the negative electrode is large, a defective product that causes leakage during storage has not been obtained, and the productivity is good. However, the capacity is small.

1 扁平形非水二次電池
2 外装ケース
3 封口ケース
4 絶縁ガスケット
5 正極
5a 正極の本体部
5b 正極の集電タブ部
6、6A、6B 負極
6a 負極の本体部
6b 負極の集電タブ部
7 セパレータ
7c 接合部
8 絶縁材
DESCRIPTION OF SYMBOLS 1 Flat type non-aqueous secondary battery 2 Exterior case 3 Sealing case 4 Insulating gasket 5 Positive electrode 5a Positive electrode main body 5b Positive electrode current collecting tab portion 6, 6A, 6B Negative electrode 6a Negative electrode main body portion 6b Negative electrode current collecting tab portion 7 Separator 7c Joint 8 Insulating material

Claims (7)

平面視で円形の外装ケースと、平面視で円形の封口ケースとが、絶縁ガスケットを介してカシメ封口されて形成された空間内に、複数の正極と複数の負極とがセパレータを介して交互に、かつ前記外装ケースおよび前記封口ケースの扁平面に略平行に積層されている電極群、および非水電解液を有する扁平形非水二次電池であって、
前記正極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記正極の本体部には、集電体の片面または両面に正極活物質を含む正極合剤層が形成されており、前記正極の集電タブ部では、集電体に正極合剤層が形成されておらず、
前記負極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記負極の本体部には、集電体の片面または両面に負極活物質を含む負極剤層が形成されており、前記負極の集電タブ部では、集電体に負極剤層が形成されておらず、
前記電極群は、その全体をとめる結束テープを有しておらず、
前記絶縁ガスケットの内径と、前記電極群の有する負極の本体部における最大径との差が、0.01〜0.2mmであることを特徴とする扁平形非水二次電池。
A plurality of positive electrodes and a plurality of negative electrodes are alternately arranged via separators in a space formed by caulking and sealing a circular outer case in plan view and a circular sealing case in plan view through an insulating gasket. And an electrode group laminated substantially parallel to the flat surface of the outer case and the sealing case, and a flat non-aqueous secondary battery having a non-aqueous electrolyte,
The positive electrode has a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. The main body portion of the positive electrode includes a current collector. A positive electrode mixture layer containing a positive electrode active material is formed on one side or both sides, and in the current collector tab portion of the positive electrode, a positive electrode mixture layer is not formed on the current collector,
The negative electrode has a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. The main body portion of the negative electrode includes a current collector. A negative electrode layer containing a negative electrode active material is formed on one side or both sides, and in the current collector tab portion of the negative electrode, the negative electrode layer is not formed on the current collector,
The electrode group does not have a binding tape that stops the whole,
A flat non-aqueous secondary battery, wherein a difference between an inner diameter of the insulating gasket and a maximum diameter of a main body of a negative electrode included in the electrode group is 0.01 to 0.2 mm.
外装ケースが正極端子を兼ね、かつ封口ケースが負極端子を兼ねており、
電極群の最外部側に位置する電極はいずれも負極であり、前記電極群の最外部側に位置する2枚の負極には、その本体部における電極群の最外部側とは反対側の面にのみ負極剤層が形成されており、その本体部における電極群の最外部側の面および集電タブ部には、集電体に負極剤層が形成されておらず、
電極群の最外部側の負極以外の負極には、その本体部の両面に負極剤層が形成されており、その集電タブ部には、集電体に負極剤層が形成されておらず、
前記電極群は、前記負極の各集電タブ部が纏められ、電極群における外装ケース側の最外部側に位置する負極上に折り返され、折り返された前記負極の各集電タブ部の外装ケース側には絶縁材が配置されており、かつ電極群における封口ケース側の最外部側に位置する負極における集電体の封口ケース側の露出面と、封口ケース内面とが電気的に接続しており、
前記正極の各集電タブ部が纏められ、電極群における外装ケース側に配置された前記絶縁材上に折り返されて外装ケースと電気的に接続している請求項1に記載の扁平形非水二次電池。
The outer case also serves as the positive terminal, and the sealing case also serves as the negative terminal.
The electrodes located on the outermost side of the electrode group are both negative electrodes, and the two negative electrodes located on the outermost side of the electrode group have a surface opposite to the outermost side of the electrode group in the main body. The negative electrode layer is formed only on the outermost surface of the electrode group in the main body and the current collecting tab portion, and the negative electrode layer is not formed on the current collector,
A negative electrode layer is formed on both surfaces of the main body of the negative electrode other than the negative electrode on the outermost side of the electrode group, and the negative electrode layer is not formed on the current collector tab portion. ,
In the electrode group, the current collecting tab portions of the negative electrode are gathered and folded on the negative electrode located on the outermost side on the outer case side in the electrode group, and the outer case of each current collecting tab portion of the folded negative electrode An insulating material is arranged on the side, and the exposed surface on the sealing case side of the current collector in the negative electrode located on the outermost side on the sealing case side in the electrode group is electrically connected to the inner surface of the sealing case. And
The flat non-aqueous water according to claim 1, wherein the current collecting tab portions of the positive electrode are gathered and folded on the insulating material disposed on the outer case side in the electrode group to be electrically connected to the outer case. Secondary battery.
少なくとも、両側が負極と対向している正極の両面には、熱可塑性樹脂製の微多孔膜からなるセパレータが配置されており、
前記2枚のセパレータは、前記正極の本体部全面を覆う主体部と、前記主体部から突出し、前記正極の集電タブ部の、少なくとも本体部との境界部を含む部分を覆う張り出し部とを有しており、かつ前記2枚のセパレータは、その主体部の周縁部の少なくとも一部において、互いに溶着された接合部を有している請求項1または2に記載の扁平形非水二次電池。
At least a separator made of a microporous film made of a thermoplastic resin is disposed on both sides of the positive electrode facing both sides of the negative electrode,
The two separators include a main body that covers the entire surface of the main body of the positive electrode, and an overhang that protrudes from the main body and covers at least a portion of the current collecting tab of the positive electrode that includes a boundary with the main body. 3. The flat non-aqueous secondary according to claim 1, wherein the two separators have a joined portion welded to each other at least at a part of a peripheral portion of a main portion thereof. 4. battery.
正極の両面に配置された2枚のセパレータにおける接合部が、前記2枚のセパレータ同士が直接溶着されて形成されている請求項3に記載の扁平形非水二次電池。   The flat non-aqueous secondary battery according to claim 3, wherein a joint portion between two separators disposed on both surfaces of the positive electrode is formed by directly welding the two separators. 正極の両面に配置された2枚のセパレータにおける接合部が、前記2枚のセパレータを構成する熱可塑性樹脂と同種の樹脂で構成された層を介して溶着されて形成されている請求項3に記載の扁平形非水二次電池。   The joining portion in the two separators arranged on both surfaces of the positive electrode is formed by welding through a layer made of the same type of resin as the thermoplastic resin constituting the two separators. The flat non-aqueous secondary battery described. セパレータを構成する熱可塑性樹脂が、ポリオレフィンである請求項3〜5のいずれかに記載の扁平形非水二次電池。   The flat nonaqueous secondary battery according to any one of claims 3 to 5, wherein the thermoplastic resin constituting the separator is polyolefin. 請求項1〜6のいずれかに記載の扁平形非水二次電池を製造する方法であって、
絶縁ガスケットを装着した封口ケース内に、負極および正極を、負極と正極との間にセパレータが介在するようにしつつ順次挿入して積層し、電極群を形成する工程を有することを特徴とする扁平形非水二次電池の製造方法。
A method for producing the flat non-aqueous secondary battery according to claim 1,
A flat structure comprising a step of forming a group of electrodes by sequentially inserting and laminating a negative electrode and a positive electrode in a sealing case fitted with an insulating gasket so that a separator is interposed between the negative electrode and the positive electrode. Of manufacturing a nonaqueous secondary battery.
JP2010206252A 2010-09-15 2010-09-15 Flat-shaped nonaqueous secondary battery and manufacturing method thereof Pending JP2012064366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206252A JP2012064366A (en) 2010-09-15 2010-09-15 Flat-shaped nonaqueous secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206252A JP2012064366A (en) 2010-09-15 2010-09-15 Flat-shaped nonaqueous secondary battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2012064366A true JP2012064366A (en) 2012-03-29

Family

ID=46059890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206252A Pending JP2012064366A (en) 2010-09-15 2010-09-15 Flat-shaped nonaqueous secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2012064366A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017567A1 (en) * 2012-07-24 2014-01-30 株式会社 東芝 Secondary battery
JP2014049371A (en) * 2012-09-03 2014-03-17 Hitachi Maxell Ltd Flat type nonaqueous secondary battery and manufacturing method thereof
JP2018133298A (en) * 2017-02-17 2018-08-23 積水化学工業株式会社 Nonaqueous electrolyte secondary battery
WO2021065337A1 (en) 2019-09-30 2021-04-08 株式会社村田製作所 Flat secondary cell
CN113767496A (en) * 2019-04-25 2021-12-07 株式会社村田制作所 Secondary battery
JP2022145566A (en) * 2021-03-18 2022-10-04 輝能科技股▲分▼有限公司 Battery module with cooling cartridge and battery system thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700327B2 (en) 2012-07-24 2020-06-30 Kabushiki Kaisha Toshiba Secondary battery
JP2014041817A (en) * 2012-07-24 2014-03-06 Toshiba Corp Secondary battery
CN104508860A (en) * 2012-07-24 2015-04-08 株式会社东芝 Secondary battery
KR101585839B1 (en) 2012-07-24 2016-01-14 가부시끼가이샤 도시바 Secondary battery
CN104508860B (en) * 2012-07-24 2016-06-29 株式会社东芝 Secondary cell
WO2014017567A1 (en) * 2012-07-24 2014-01-30 株式会社 東芝 Secondary battery
US10135050B2 (en) 2012-07-24 2018-11-20 Kabushiki Kaisha Toshiba Secondary battery
JP2014049371A (en) * 2012-09-03 2014-03-17 Hitachi Maxell Ltd Flat type nonaqueous secondary battery and manufacturing method thereof
JP2018133298A (en) * 2017-02-17 2018-08-23 積水化学工業株式会社 Nonaqueous electrolyte secondary battery
CN113767496A (en) * 2019-04-25 2021-12-07 株式会社村田制作所 Secondary battery
WO2021065337A1 (en) 2019-09-30 2021-04-08 株式会社村田製作所 Flat secondary cell
JP2022145566A (en) * 2021-03-18 2022-10-04 輝能科技股▲分▼有限公司 Battery module with cooling cartridge and battery system thereof
JP7398489B2 (en) 2021-03-18 2023-12-14 輝能科技股▲分▼有限公司 Battery module with cooling cartridge and its battery system

Similar Documents

Publication Publication Date Title
KR101363438B1 (en) Flat nonaqueous secondary battery
JP5735096B2 (en) Non-aqueous secondary battery manufacturing method and non-aqueous secondary battery manufacturing method
JP2011159491A (en) Flat nonaqueous secondary battery
JP5483587B2 (en) Battery and manufacturing method thereof
JP6081745B2 (en) Flat non-aqueous secondary battery
JP2012064366A (en) Flat-shaped nonaqueous secondary battery and manufacturing method thereof
JP5348720B2 (en) Flat non-aqueous secondary battery
JP7023855B2 (en) Electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP2014049371A (en) Flat type nonaqueous secondary battery and manufacturing method thereof
JP5562655B2 (en) Flat non-aqueous secondary battery
JP5495270B2 (en) battery
JP6283288B2 (en) Flat non-aqueous secondary battery
JP5377249B2 (en) Flat non-aqueous secondary battery
JP5528304B2 (en) Flat non-aqueous secondary battery
JP2011129330A (en) Flat type nonaqueous secondary battery
JP6240265B2 (en) Method for manufacturing flat non-aqueous secondary battery
JP5528305B2 (en) Flat non-aqueous secondary battery
JP2011154784A (en) Flat nonaqueous secondary battery
JP5562654B2 (en) Flat non-aqueous secondary battery
JP5681358B2 (en) Flat non-aqueous secondary battery
JP5473063B2 (en) Flat non-aqueous secondary battery and manufacturing method thereof
JP5566671B2 (en) Flat non-aqueous secondary battery
JP5377250B2 (en) Flat non-aqueous secondary battery
JP2009043423A (en) Flat shape nonaqueous electrolytic liquid secondary battery
JP2011187266A (en) Flat nonaqueous secondary battery