JP5528305B2 - Flat non-aqueous secondary battery - Google Patents

Flat non-aqueous secondary battery Download PDF

Info

Publication number
JP5528305B2
JP5528305B2 JP2010250768A JP2010250768A JP5528305B2 JP 5528305 B2 JP5528305 B2 JP 5528305B2 JP 2010250768 A JP2010250768 A JP 2010250768A JP 2010250768 A JP2010250768 A JP 2010250768A JP 5528305 B2 JP5528305 B2 JP 5528305B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
current collecting
collecting tab
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010250768A
Other languages
Japanese (ja)
Other versions
JP2012104319A (en
Inventor
徳 高井
末次 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2010250768A priority Critical patent/JP5528305B2/en
Publication of JP2012104319A publication Critical patent/JP2012104319A/en
Application granted granted Critical
Publication of JP5528305B2 publication Critical patent/JP5528305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、信頼性に優れた扁平形非水二次電池に関するものである。   The present invention relates to a flat non-aqueous secondary battery having excellent reliability.

一般にコイン形電池やボタン形電池と称される扁平形の非水二次電池では、正極と負極とがセパレータを介して対向して構成された電極群と、非水電解液とを、外装ケースと封口ケースと絶縁ガスケットとで形成された空間内に収容した構造を有している。   In a flat non-aqueous secondary battery generally referred to as a coin-type battery or a button-type battery, an electrode group in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween, and a non-aqueous electrolyte solution are provided in an outer case. And a structure accommodated in a space formed by a sealing case and an insulating gasket.

前記のような扁平形非水二次電池では、正極および負極に、集電体の片面または両面に正極合剤層や負極剤層を形成し、かつ集電体の一部を、正極合剤層や負極剤層を形成せずに露出させ、これを集電タブとして利用し、各正極および各負極の集電タブを、それぞれ纏めて溶接などし、これらの纏めた集電タブを、端子を兼ねる外装ケースや封口ケースの内面と溶接などして電気的に接続しているものがある(例えば、特許文献1)。   In the flat non-aqueous secondary battery as described above, a positive electrode mixture layer or a negative electrode agent layer is formed on one or both surfaces of the current collector on the positive electrode and the negative electrode, and a part of the current collector is mixed with the positive electrode mixture. It is exposed without forming a layer or a negative electrode agent layer, and this is used as a current collecting tab. The current collecting tabs of each positive electrode and each negative electrode are welded together, and these collected current collecting tabs are connected to terminals. There are some which are electrically connected by welding or the like to the inner surface of the outer case or the sealing case that also serves as a material (for example, Patent Document 1).

特開2003−142161号公報JP 2003-142161 A

ところで、前記のような構成の扁平形非水二次電池では、例えば、落下などによって、電極に係る集電タブの、外装ケースや封口ケースの内面と溶接した近傍において、端部に亀裂が入るなどの傷つきが生じやすい。このような集電タブにおける傷つきは、直ぐに電池を使用不可能とするものではない場合が多いが、電池の信頼性を損なう要因ともなり得るものであることから、こうした傷つきの発生を抑制することが好ましい。   By the way, in the flat type non-aqueous secondary battery having the above-described configuration, for example, due to dropping, a crack is formed at the end portion of the current collecting tab related to the electrode in the vicinity of welding with the inner surface of the outer case or the sealing case. It is easy to be damaged. Such scratches on the current collecting tabs often do not immediately make the battery unusable, but they can be a factor that impairs the reliability of the battery. Is preferred.

特に最近では、扁平形非水二次電池の用途拡大に伴って、例えば、人が手にとって使用する程度の高さからの落下のみならず、非常に高い位置からの落下の可能性も増していることから、こうした場合に備えて、電極に係る集電タブにおける傷つきを高度に抑制して、電池の信頼性を高める技術の開発が求められる。   Recently, with the expansion of applications of flat non-aqueous secondary batteries, for example, the possibility of falling from a very high position as well as falling from a height that humans use for hands has increased. Therefore, in preparation for such a case, development of a technique for improving the reliability of the battery by highly suppressing damage on the current collecting tab of the electrode is required.

本発明は、前記事情に鑑みてなされたものであり、その目的は、信頼性に優れた扁平形非水二次電池を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the flat non-aqueous secondary battery excellent in reliability.

前記目的を達成し得た本発明の扁平形非水二次電池は、外装ケースと封口ケースとが、絶縁ガスケットを介してカシメ封口されて形成された空間内に、正極と負極とがセパレータを介して交互に、かつ前記外装ケースおよび前記封口ケースの扁平面に略平行に積層されており、正極および負極の合計枚数が3枚以上である電極群、および非水電解液を有する扁平形非水二次電池であって、前記外装ケースおよび前記封口ケースのいずれか一方が正極端子を兼ね、他方が負極端子を兼ねており、下記(1)または(2)の態様を有することを特徴とするものである。   The flat type non-aqueous secondary battery of the present invention that has achieved the above object has a positive electrode and a negative electrode with a separator in a space formed by caulking and sealing the outer case and the sealing case via an insulating gasket. And an electrode group in which the total number of positive and negative electrodes is three or more, and a flat non-aqueous electrolyte solution. A water secondary battery, wherein either one of the outer case and the sealing case serves as a positive electrode terminal and the other serves as a negative electrode terminal, and has the following aspect (1) or (2): To do.

(1)前記正極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記正極の本体部には、集電体の片面または両面に正極活物質を含む正極合剤層が形成されており、前記正極の集電タブ部では、集電体に正極合剤層が形成されておらず、前記電極群は、前記正極を少なくとも2枚有しており、前記各正極の集電タブ部が纏められ、互いに溶接されて一体化しており、前記一体化した各正極の集電タブ部が、正極端子を兼ねる外装ケースまたは封口ケースの内面に溶接されており、前記一体化した各正極の集電タブ部における各正極の集電タブ部が互いに溶接されている箇所のうち、正極の本体部に最も近い部分が、前記一体化した各正極の集電タブ部における幅方向の端部以外の箇所に存在している。 (1) The positive electrode has a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. A positive electrode mixture layer containing a positive electrode active material is formed on one side or both sides of the current collector, and in the current collector tab portion of the positive electrode, a positive electrode mixture layer is not formed on the current collector, and the electrode group is , Having at least two positive electrodes, collecting current tab portions of each positive electrode, being welded together and integrated, and the integrated current collecting tab portions of each positive electrode also serve as a positive electrode terminal The portion that is welded to the inner surface of the exterior case or the sealing case, and the portion of the integrated current collecting tab portion of each positive electrode that is closest to the main body portion of the positive electrode among the portions where the current collecting tab portions of each positive electrode are welded to each other Is a portion other than the end portion in the width direction of the current collecting tab portion of each integrated positive electrode. It is present in.

(2)前記負極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記負極の本体部には、集電体の片面または両面に負極活物質を含む負極剤層が形成されており、前記負極の集電タブ部では、集電体に負極剤層が形成されておらず、前記電極群は、前記負極を少なくとも2枚有しており、前記各負極の集電タブ部が纏められ、互いに溶接されて一体化しており、前記一体化した各負極の集電タブ部が、負極端子を兼ねる外装ケースまたは封口ケースの内面に溶接されており、 前記一体化した各負極の集電タブ部における各負極の集電タブ部が互いに溶接されている箇所のうち、負極の本体部に最も近い部分が、前記一体化した各負極の集電タブ部における幅方向の端部以外の箇所に存在している。 (2) The negative electrode includes a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. A negative electrode layer containing a negative electrode active material is formed on one side or both sides of a current collector. In the current collector tab portion of the negative electrode, a negative electrode layer is not formed on the current collector. An outer case having at least two negative electrodes, in which the current collecting tab portions of the respective negative electrodes are integrated and welded together, and the integrated current collecting tab portions of the respective negative electrodes also serve as negative electrode terminals Or it is welded to the inner surface of the sealing case, and the portion closest to the main body portion of the negative electrode among the portions where the negative electrode current collecting tab portions of the integrated negative electrode current collecting tab portions are welded to each other, Locations other than the end in the width direction in the current collecting tab portion of each integrated negative electrode It is present.

なお、電池業界においては、高さより径の方が大きい扁平形電池をコイン形電池と呼んだり、ボタン形電池と呼んだりしているが、そのコイン形電池とボタン形電池との間に明確な差はなく、本発明の扁平形非水二次電池には、コイン形電池、ボタン形電池のいずれもが含まれる。   In the battery industry, a flat battery with a diameter larger than the height is called a coin-type battery or a button-type battery, but there is a clear gap between the coin-type battery and the button-type battery. There is no difference, and the flat non-aqueous secondary battery of the present invention includes both coin-type batteries and button-type batteries.

本発明によれば、信頼性に優れた扁平形非水二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the flat nonaqueous secondary battery excellent in reliability can be provided.

本発明の扁平形非水二次電池の一例を模式的に表す縦断面図である。It is a longitudinal cross-sectional view which represents typically an example of the flat non-aqueous secondary battery of this invention. 本発明の扁平形非水二次電池に係る正極の一例を模式的に表す平面図である。It is a top view which represents typically an example of the positive electrode which concerns on the flat nonaqueous secondary battery of this invention. 本発明の扁平形非水二次電池に係る負極の一例を模式的に表す平面図である。It is a top view which represents typically an example of the negative electrode which concerns on the flat nonaqueous secondary battery of this invention. 図1の扁平形非水二次電池における外装ケースの内面と、互いに溶接して一体化した各正極の集電タブ部との溶接箇所およびその近傍の一例を表す平面図である。FIG. 2 is a plan view illustrating an example of a welded location between an inner surface of an exterior case in the flat nonaqueous secondary battery of FIG. 1 and a current collecting tab portion of each positive electrode integrated by welding and the vicinity thereof. 図1の扁平形非水二次電池における外装ケースの内面と、互いに溶接して一体化した各正極の集電タブ部との溶接箇所およびその近傍の他の例を表す平面図である。It is a top view showing the welding location of the inner surface of the exterior case in the flat type non-aqueous secondary battery of FIG. 1, and the current collection tab part of each positive electrode integrated with each other, and other examples of the vicinity. 本発明の扁平形非水二次電池の他の例を模式的に表す縦断面図である。It is a longitudinal cross-sectional view which represents typically the other example of the flat nonaqueous secondary battery of this invention. 図6の扁平形非水二次電池の要部断面拡大図である。FIG. 7 is an enlarged cross-sectional view of a main part of the flat nonaqueous secondary battery in FIG. 6. 本発明の扁平形非水二次電池に係るセパレータの一例を模式的に表す平面図である。It is a top view which represents typically an example of the separator which concerns on the flat nonaqueous secondary battery of this invention.

図1に、本発明の扁平形非水二次電池の一例を模式的に示す。図1は、扁平形非水二次電池の縦断面図であり、図1に示すように、扁平形非水二次電池1は、複数の正極5および複数の負極6を、セパレータ7を介して、それらの平面が電池の扁平面に略平行(平行を含む)となるように積層した積層型の電極群と、非水電解液(図示しない)とが、外装ケース2、封口ケース3および絶縁ガスケット4により形成される空間(密閉空間)内に収容されている。封口ケース3は、外装ケース2の開口部に絶縁ガスケット4を介して嵌合しており、外装ケース2の開口端部が内方に締め付けられ、これにより絶縁ガスケット4が封口ケース3に当接することで、外装ケース2の開口部が封口されて電池内部が密閉構造となっている。外装ケース2および封口ケース3は、ステンレス鋼などの金属製であり、絶縁ガスケット4は、ポリプロピレンなどの絶縁性を有する樹脂製である。   FIG. 1 schematically shows an example of a flat non-aqueous secondary battery of the present invention. FIG. 1 is a longitudinal sectional view of a flat non-aqueous secondary battery. As shown in FIG. 1, the flat non-aqueous secondary battery 1 includes a plurality of positive electrodes 5 and a plurality of negative electrodes 6 with separators 7 interposed therebetween. The laminated electrode group laminated so that the planes are substantially parallel (including parallel) to the flat surface of the battery, and the non-aqueous electrolyte (not shown) are the outer case 2, the sealing case 3, and It is accommodated in a space (sealed space) formed by the insulating gasket 4. The sealing case 3 is fitted to the opening of the outer case 2 via an insulating gasket 4, and the opening end of the outer case 2 is tightened inward, whereby the insulating gasket 4 contacts the sealing case 3. Thereby, the opening part of the exterior case 2 is sealed, and the inside of the battery has a sealed structure. The outer case 2 and the sealing case 3 are made of a metal such as stainless steel, and the insulating gasket 4 is made of an insulating resin such as polypropylene.

なお、図1の電池では、外装ケース2が正極端子を兼ね、封口ケース3が負極端子を兼ねているが、本発明の電池においては、例えば電極群の構成に応じて、外装ケースが負極端子を兼ね、封口ケースが正極端子を兼ねていてもよい。   In the battery of FIG. 1, the outer case 2 also serves as the positive electrode terminal, and the sealing case 3 also serves as the negative electrode terminal. However, in the battery of the present invention, for example, the outer case has the negative electrode terminal depending on the configuration of the electrode group. The sealing case may also serve as the positive electrode terminal.

図2に正極5の平面図を模式的に示しているが、正極5は、本体部5aと、平面視で、本体部5aから突出した、本体部5aよりも幅(図2中上下方向の長さ)の狭い集電タブ部5bとを有している。   FIG. 2 schematically shows a plan view of the positive electrode 5. The positive electrode 5 has a main body 5a and a width larger than that of the main body 5a projecting from the main body 5a in plan view (in the vertical direction in FIG. 2). And a current collecting tab portion 5b having a narrow length.

正極5の本体部5aは、集電体(図1中52)の両面に、正極活物質などを含有する正極合剤層51が形成されている。そして、正極5の集電タブ部5bは、集電体52表面に正極合剤層が形成されておらず、集電体52が露出している。なお、図1に示す電池では、電極群における最外部側の電極がいずれも負極であるために、全ての正極5の本体部5aにおいては、集電体52の両面に正極合剤層51が形成されているが、例えば、電極群における最外部側の電極のうちの一方(より具体的には、正極端子を兼ねる外装ケース側または封口ケース側の電極)または両方を正極とすることもでき、その場合、電極群における最外部側の正極は、その本体部における集電体の片面(電池内側の面)にのみ正極合剤層を有していてもよい。   In the main body 5a of the positive electrode 5, a positive electrode mixture layer 51 containing a positive electrode active material or the like is formed on both surfaces of a current collector (52 in FIG. 1). In the current collecting tab portion 5b of the positive electrode 5, the positive electrode mixture layer is not formed on the surface of the current collector 52, and the current collector 52 is exposed. In the battery shown in FIG. 1, since the outermost electrodes in the electrode group are all negative electrodes, the positive electrode mixture layers 51 are formed on both surfaces of the current collector 52 in the main body 5a of all the positive electrodes 5. For example, one of the outermost electrodes in the electrode group (more specifically, the electrode on the exterior case side or the sealing case side that also serves as the positive electrode terminal) or both can be used as the positive electrode. In this case, the positive electrode on the outermost side in the electrode group may have a positive electrode mixture layer only on one surface (surface inside the battery) of the current collector in the main body.

また、図3に負極6の平面図を模式的に示しているが、負極6は、本体部6aと、平面視で、本体部6aから突出した、本体部6aよりも幅(図3中上下方向の長さ)の狭い集電タブ部6bとを有している。   3 schematically shows a plan view of the negative electrode 6. The negative electrode 6 has a width that is larger than the main body 6a and the main body 6a protruding from the main body 6a in plan view (upper and lower in FIG. 3). Current collecting tab portion 6b having a narrow direction length).

負極6の本体部6aは、集電体(図1中62)の片面または両面に、負極活物質などを含有する負極剤層61が形成されている。そして、負極6の集電タブ部6bは、集電体62表面に負極剤層が形成されておらず、集電体62が露出している。   As for the main-body part 6a of the negative electrode 6, the negative electrode agent layer 61 containing a negative electrode active material etc. is formed in the single side | surface or both surfaces of a collector (62 in FIG. 1). And the current collection tab part 6b of the negative electrode 6 does not have the negative electrode agent layer formed in the surface of the electrical power collector 62, and the electrical power collector 62 is exposed.

図1に示す電池では、電極群の上下両端が負極6B、6Bとなっており、これらの負極6B、6Bは、集電体62の片面(電池内側の面)にのみ、負極剤層61を有している。一方、電極群の上下両端以外に配置されている負極6Aは、集電体62の両面に負極剤層61、61を有している。   In the battery shown in FIG. 1, the upper and lower ends of the electrode group are negative electrodes 6B and 6B. The negative electrodes 6B and 6B are provided with a negative electrode agent layer 61 only on one side (the inner surface of the battery) of the current collector 62. Have. On the other hand, the negative electrode 6 </ b> A arranged on the electrode group other than the upper and lower ends has negative electrode agent layers 61 and 61 on both surfaces of the current collector 62.

また、図1に示す電池では、電極群を構成する全ての正極5の集電タブ部5bが纏められており、これらは互いに溶接されて一体化され、その端部が平面視で電極群の外側(図中左側)へ向くように折り曲げられている。そして、前記纏められ溶接されて一体化した各正極5の集電タブ部5bが、外装ケース2の内面に溶接されている。   Further, in the battery shown in FIG. 1, the current collecting tab portions 5b of all the positive electrodes 5 constituting the electrode group are collected, and these are welded and integrated, and the end portions of the electrode group are viewed in plan view. It is bent to face outward (left side in the figure). And the current collection tab part 5b of each positive electrode 5 integrated by welding and integrated is welded to the inner surface of the outer case 2.

図4に、図1の電池における外装ケース2の内面と、一体化した各正極5の集電タブ部との溶接箇所およびその近傍の一例を表す平面図を示している。図4では、一体化した各正極の集電タブ部500において、各集電タブ部を互いに溶接した箇所500aにドットを付して示している。すなわち、前記一体化した各正極の集電タブ部500において、ドットを付していない箇所(図中、500b)は、各集電タブ部が互いに溶接されていない箇所である。また、図4中、501は、前記一体化した各正極の集電タブ部500における外装ケース2の内面との溶接痕である。更に、図4中、100は電極群であり、図では、その上面(封口ケース3側の面)を表している。   FIG. 4 is a plan view showing an example of a welded portion between the inner surface of the outer case 2 and the current collecting tab portion of each integrated positive electrode 5 in the battery of FIG. 1 and the vicinity thereof. In FIG. 4, in the integrated current collecting tab portion 500 of each positive electrode, a dot is added to a location 500 a where the current collecting tab portions are welded to each other. That is, in the integrated current collecting tab portion 500 of each positive electrode, a portion (in the figure, 500b) where dots are not attached is a portion where the current collecting tab portions are not welded to each other. In FIG. 4, reference numeral 501 denotes a welding mark with the inner surface of the outer case 2 in the integrated current collecting tab portion 500 of each positive electrode. Furthermore, in FIG. 4, 100 is an electrode group, In the figure, the upper surface (surface by the side of the sealing case 3) is represented.

そして、図4に示す電池では、一体化した各正極の集電タブ部500における各正極の集電タブ部が互いに溶接された箇所500aのうち、正極の本体部(図4中下側)に最も近い部分が、一体化した各正極の集電タブ部500の幅方向の端部よりも内側に存在している。   In the battery shown in FIG. 4, the positive electrode body portion (lower side in FIG. 4) of the portions 500 a where the positive electrode current collector tab portions of the integrated positive electrode current collector tab portions 500 are welded to each other. The nearest part exists inside the end part of the width direction of the current collection tab part 500 of each integrated positive electrode.

また、図5には、図1の電池における外装ケース2の内面と、一体化した各正極5の集電タブ部との溶接箇所およびその近傍の他の例を表す平面図を示している。図5に示す電池では、一体化した各正極の集電タブ部500の幅方向の端部において、各正極の集電タブ部が互いに溶接されていない(すなわち、各正極の集電タブ部が互いに溶接された箇所500aが形成されていない)。   FIG. 5 is a plan view showing another example of a welding location between the inner surface of the outer case 2 and the integrated current collecting tab portion of each positive electrode 5 in the battery of FIG. 1 and the vicinity thereof. In the battery shown in FIG. 5, the current collecting tab portions of the respective positive electrodes are not welded to each other at the end portions in the width direction of the current collecting tab portions 500 of the respective positive electrodes (that is, the current collecting tab portions of the respective positive electrodes are not welded). The place 500a welded to each other is not formed).

このように、本発明の電池では、一体化した各正極の集電タブ部における各正極の集電タブ部が互いに溶接されている箇所のうち、正極の本体部に最も近い部分が、一体化した各正極の集電タブ部における幅方向の端部以外の箇所となるようにする。または、本発明の電池では、一体化した各負極の集電タブ部における各負極の集電タブ部が互いに溶接されている箇所のうち、負極の本体部に最も近い部分が、一体化した各負極の集電タブ部における幅方向の端部以外の箇所となるようにする。   Thus, in the battery of the present invention, the portion closest to the main body portion of the positive electrode among the portions where the current collecting tab portions of the respective positive electrode current collecting tab portions are welded to each other is integrated. It is made to become places other than the edge part of the width direction in the current collection tab part of each positive electrode. Or, in the battery of the present invention, the portions closest to the main body of the negative electrode among the portions where the current collecting tab portions of the negative electrodes in the integrated current collecting tab portions of the negative electrodes are welded to each other are integrated. It is made to become places other than the edge part of the width direction in the current collection tab part of a negative electrode.

前記の通り、扁平形非水二次電池に落下などの衝撃が加わった場合、外装ケースまたは封口ケースの内面と溶接している一体化した各電極(各正極または各負極)の集電タブ部の端部に亀裂が入りやすく、これにより電池の信頼性が損なわれる虞がある。   As described above, when an impact such as dropping is applied to the flat non-aqueous secondary battery, the current collecting tab portion of each integrated electrode (each positive electrode or each negative electrode) welded to the inner surface of the outer case or the sealing case The end of the battery is likely to crack, which may impair the reliability of the battery.

ところが、一体化した各電極(各正極または各負極)の集電タブ部における各電極の集電タブ部が互いに溶接されている箇所のうち、電極の本体部に最も近い部分が、一体化した各電極の集電タブ部における幅方向の端部以外の箇所となるようにした場合には、電池に落下などの衝撃が加わった際の前記一体化した各電極の集電タブ部の端部における亀裂の発生を良好に抑制し、電池の信頼性を高めることができる。   However, of the portions where the current collecting tab portions of each electrode (each positive electrode or each negative electrode) in the integrated current collecting tab portion are welded together, the portion closest to the main body portion of the electrode is integrated. If the current collecting tab portion of each electrode is other than the end portion in the width direction, the end portion of the current collecting tab portion of each integrated electrode when an impact such as dropping is applied to the battery Generation of cracks can be satisfactorily suppressed, and the reliability of the battery can be improved.

なお、図4に示すように、一体化した各電極(各正極または各負極)の集電タブ部における各電極の集電タブ部が互いに溶接された箇所を、一体化した各電極の集電タブ部の幅方向の端部にまで設ける場合、少なくとも幅方向の端部における溶接箇所が、電極の本体部に最も近い溶接箇所とならないようにする。この場合、一体化した各電極の集電タブ部の幅方向の端部の溶接箇所における電極の本体部側の端部と、一体化した各電極の集電タブ部の幅方向の端部における、電極の本体部に最も近い溶接箇所の存在部に相当する位置との間の距離(図4中xの長さ)が、0.1mm以上であることが好ましく、0.5mm以上であることがより好ましい。   In addition, as shown in FIG. 4, the location where the current collection tab parts of each electrode in the current collection tab part of each integrated electrode (each positive electrode or each negative electrode) are welded together is the current collection of each integrated electrode. When it is provided up to the end in the width direction of the tab portion, at least the welded portion at the end in the width direction is prevented from being the closest to the main body portion of the electrode. In this case, at the end of the electrode main body portion side at the welding location of the end portion in the width direction of the current collecting tab portion of each integrated electrode and at the end portion in the width direction of the current collecting tab portion of each integrated electrode The distance (the length of x in FIG. 4) between the position corresponding to the welded portion closest to the main body of the electrode is preferably 0.1 mm or more, and 0.5 mm or more. Is more preferable.

また、図4では、一体化した各電極の集電タブ部における各電極の集電タブ部が互いに溶接されている箇所のうち、電極の本体部に最も近い部分の形状を、一体化した各電極の集電タブ部の幅方向の中央位置に頂点を有する形状としているが、本発明の電池では、各電極の集電タブ部が互いに溶接されている箇所の形状は、このような形状に限定されない。例えば、各電極の集電タブ部が互いに溶接されている箇所における電極の本体部に最も近い部分の、集電タブ部の幅方向の端部からの最短距離(図4中yの長さ)は、0.4mm以上とすることが好ましく、0.6mm以上とすることがより好ましい。また、各電極の集電タブ部が互いに溶接されている箇所のうち、電極の本体部に最も近い部分の形状を、例えば、直線状や、コの字状などのように複数の頂点を有する形状、曲線を有する形状(例えば半円状)などとしてもよく、このような形状の場合でも、図4に示す形状の場合と同様の効果を確保することができる。   Moreover, in FIG. 4, the shape of the part nearest to the main-body part of an electrode among the places where the current collection tab part of each electrode in the current collection tab part of each electrode integrated is mutually integrated. In the battery of the present invention, the shape of the location where the current collecting tab portions of each electrode are welded to each other is such a shape. It is not limited. For example, the shortest distance from the end in the width direction of the current collecting tab portion at the portion where the current collecting tab portions of each electrode are welded to each other (the length y in FIG. 4) Is preferably 0.4 mm or more, and more preferably 0.6 mm or more. In addition, among the locations where the current collecting tabs of each electrode are welded to each other, the shape of the portion closest to the main body of the electrode has a plurality of vertices such as, for example, a linear shape or a U-shape. The shape may be a shape having a curve (for example, a semicircular shape), and even in such a shape, the same effect as that in the shape shown in FIG. 4 can be ensured.

更に、一体化した各電極(各正極または各負極)の集電タブ部における幅方向の端部において、各電極の集電タブ部を互いに溶接しない場合、各電極の集電タブ部が互いに溶接されている箇所における電極の本体部に最も近い部分の、集電タブ部の幅方向の端部からの最短距離(図5中yの長さ)は、0.4mm以上とすることが好ましく、0.6mm以上とすることがより好ましい。また、各電極の集電タブ部が互いに溶接されている箇所における電極の本体部に最も近い部分の形状は特に限定されず、図5に示すようなコの字状などのように頂点を複数有する形状以外にも、例えば、頂点を一つ有する形状や、曲線を有する形状(例えば半円状)などとすることもでき、このような形状の場合でも、図5に示す形状の場合と同様の効果を確保することができる。また、各電極の集電タブ部が互いに溶接されている箇所のうち、電極の本体部に最も近い部分以外の部分の形状も特に制限はなく、図5に示す長方形状の他に、曲線を有する形状や台形状、三角形状、ひょうたん型形状などとしてもよい。   Furthermore, when the current collecting tab portions of the respective electrodes (each positive electrode or each negative electrode) in the width direction of the current collecting tab portions are not welded to each other, the current collecting tab portions of the respective electrodes are welded to each other. The shortest distance from the end in the width direction of the current collecting tab portion (the length of y in FIG. 5) of the portion closest to the main body portion of the electrode in the place where it is made is preferably 0.4 mm or more, More preferably, it is 0.6 mm or more. Further, the shape of the portion closest to the main body of the electrode where the current collecting tabs of each electrode are welded to each other is not particularly limited, and there are a plurality of vertices such as a U-shape as shown in FIG. In addition to the shape, for example, a shape having one vertex or a shape having a curve (for example, a semicircular shape) can be used. Even in such a shape, the shape shown in FIG. The effect of can be ensured. Further, the shape of the portion other than the portion closest to the main body portion of the electrode among the portions where the current collecting tab portions of the electrodes are welded to each other is not particularly limited, and in addition to the rectangular shape shown in FIG. It may be a shape having a trapezoidal shape, a triangular shape, a gourd shape, or the like.

なお、一体化した各電極(各正極または各負極)の集電タブ部の幅(すなわち、正極または負極の集電タブ部の幅)は、例えば、1.2〜6.0mmであることが好ましい。   In addition, the width | variety (namely, width | variety of the current collection tab part of a positive electrode or a negative electrode) of the current collection tab part of each electrode (each positive electrode or each negative electrode) is 1.2-6.0 mm, for example. preferable.

図1では、前記の通り、一体化した各正極5の集電タブ部5bが、外装ケース2の内面に溶接されている態様を示しているが、本発明の電池は、一体化した各正極の集電タブ部が、封口ケース(正極端子を兼ねる封口ケース)の内面に溶接されている態様であってもよい。この場合にも、一体化した各正極の集電タブ部における各正極の集電タブ部が互いに溶接されている箇所のうち、正極の本体部に最も近い部分が、一体化した各正極の集電タブ部における幅方向の端部以外の箇所となるようにすればよい。   FIG. 1 shows a mode in which the current collecting tab portion 5b of each integrated positive electrode 5 is welded to the inner surface of the outer case 2, as described above. The current collecting tab portion may be welded to the inner surface of the sealing case (sealing case that also serves as the positive electrode terminal). Also in this case, of the locations where the current collecting tab portions of the positive electrode current collecting tab portions are welded to each other, the portion closest to the main body portion of the positive electrode is the current collecting portion of the integrated positive electrodes. What is necessary is just to make it become places other than the edge part of the width direction in an electric tab part.

なお、一体化した各正極の集電タブ部が、外装ケースまたは封口ケースの内面に溶接された態様の電池では、図1に示すように、電極群の最外部側の2枚の電極(上下両端の電極)がいずれも負極となることが通常である。その場合、電極群に係る負極と、負極端子を兼ねる外装ケースまたは封口ケースとの電気的接続については、例えば、図1に示すように、電極群に係る各負極の集電タブ部を纏めて溶接などして一体化すると共に、電極群の最外部側の負極のうち、負極端子を兼ねる外装ケースまたは封口ケースに近い方の負極について、集電体の片面(電極群の最外部側の面)に負極剤層を形成せずに集電体を露出させ、この集電体の露出面と負極端子を兼ねる外装ケースまたは封口ケースの内面とを接触させたり溶接したりすればよい。   In addition, in the battery in a mode in which the integrated current collecting tab portion of each positive electrode is welded to the inner surface of the outer case or the sealing case, as shown in FIG. In general, both electrodes are negative electrodes. In that case, for the electrical connection between the negative electrode related to the electrode group and the outer case or sealing case that also serves as the negative electrode terminal, for example, as shown in FIG. The negative electrode on the outermost side of the electrode group, which is integrated by welding or the like, and the negative electrode closer to the outer case or sealing case that also serves as the negative electrode terminal, has one surface of the current collector (the outermost surface of the electrode group). The current collector may be exposed without forming a negative electrode agent layer, and the exposed surface of the current collector may be brought into contact with or welded to the inner surface of the outer case or sealing case that also serves as the negative electrode terminal.

図1に示すように、電極群の最外部側の2枚の電極がいずれも負極の場合、正極端子を兼ねる外装ケースまたは封口ケース(図1では外装ケース2)と、電極群(その最外部側の負極)との間には、例えば、ポリエチレンテレフタレート(PET)やポリイミドなどで形成されたテープなどからなる絶縁シール(図1中、8)を配置すればよい。   As shown in FIG. 1, when the two electrodes on the outermost side of the electrode group are both negative electrodes, an outer case or a sealing case (external case 2 in FIG. 1) that also serves as a positive electrode terminal, and an electrode group (the outermost part thereof) An insulating seal (8 in FIG. 1) made of, for example, a tape formed of polyethylene terephthalate (PET), polyimide, or the like may be disposed between it and the negative electrode on the side.

また、本発明の電池では、例えば電極群の最外部側の2枚の電極を、いずれも正極としてもよく、その場合、電極群に係る負極と負極端子を兼ねる外装ケースまたは封口ケースとの電気的接続を、各負極の集電タブ部を纏めて互いに溶接して一体化とし、この一体化した各負極の集電タブ部と負極端子を兼ねる外装ケースまたは封口ケースの内面とを溶接することで行う。そして、この態様の場合、一体化した各負極の集電タブ部における各負極の集電タブ部が互いに溶接されている箇所のうち、負極の本体部に最も近い部分が、一体化した各負極の集電タブ部における幅方向の端部以外の箇所となるようにすればよい。   In the battery of the present invention, for example, the two electrodes on the outermost side of the electrode group may both be positive electrodes. In that case, the electrical connection between the negative electrode and the outer case or the sealing case serving as the negative electrode terminal of the electrode group may be used. The current collecting tabs of the negative electrodes are integrated together by welding together, and the integrated current collecting tabs of the negative electrodes and the inner surface of the outer case or sealing case that also serves as the negative electrode terminal are welded. To do. And in the case of this aspect, among the places where the current collecting tab portions of the negative electrodes in the integrated negative current collecting tab portions are welded together, the portion closest to the main body portion of the negative electrode is the integrated negative electrode What is necessary is just to make it become places other than the edge part of the width direction in the current collection tab part.

更に、例えば、電極群の最外部側の2枚の電極がいずれも正極の場合、電極群に係る正極と、正極端子を兼ねる外装ケースまたは封口ケースとの電気的接続は、例えば、電極群に係る各正極の集電タブ部を纏めて溶接などして一体化すると共に、電極群の最外部側の正極のうち、正極端子を兼ねる外装ケースまたは封口ケースに近い方の正極について、集電体の片面(電極群の最外部側の面)に正極合剤層を形成せずに集電体を露出させ、この集電体の露出面と正極端子を兼ねる外装ケースまたは封口ケースの内面とを接触させたり溶接したりすることができる。   Further, for example, when the two electrodes on the outermost side of the electrode group are both positive electrodes, the electrical connection between the positive electrode related to the electrode group and the outer case or the sealing case that also serves as the positive electrode terminal is, for example, to the electrode group. The current collecting tabs of the respective positive electrodes are integrated by welding or the like, and among the positive electrodes on the outermost side of the electrode group, the current collector is used for the positive electrode closer to the outer case or the sealing case that also serves as the positive electrode terminal. The current collector is exposed without forming a positive electrode mixture layer on one side (the outermost surface of the electrode group), and the exposed surface of the current collector and the inner surface of the outer case or sealing case that also serves as the positive electrode terminal Can be contacted or welded.

電極群の最外部側の2枚の電極がいずれも正極の場合、負極端子を兼ねる外装ケースまたは封口ケースと、電極群(その最外部側の正極)との間には、例えば、PETやポリイミドなどで形成されたテープなどからなる絶縁シールを配置すればよい。   When the two outermost electrodes in the electrode group are both positive electrodes, for example, PET or polyimide is used between the outer case or sealing case that also serves as the negative electrode terminal and the electrode group (the outermost positive electrode). What is necessary is just to arrange | position the insulation seal | sticker which consists of tapes etc. which were formed by.

また、本発明の電池では、電極群の積層構成によっては、正極の各集電タブ部を纏めて互いに溶接した一体化し、これを正極端子を兼ねる外装ケースまたは封口ケースに溶接し、かつ各負極の集電タブ部を纏めて互いに溶接して一体化し、これを負極端子を兼ねる外装ケースまたは封口ケースに溶接する態様とすることもできる。この態様の場合には、一体化した各正極の集電タブ部における各正極の集電タブ部が互いに溶接されている箇所のうち、正極の本体部に最も近い部分が、一体化した各正極の集電タブ部における幅方向の端部以外の箇所となるようにし、かつ一体化した各負極の集電タブ部における各負極の集電タブ部が互いに溶接されている箇所のうち、負極の本体部に最も近い部分が、一体化した各負極の集電タブ部における幅方向の端部以外の箇所となるようにすればよい。   Further, in the battery of the present invention, depending on the laminated configuration of the electrode group, the current collecting tab portions of the positive electrode are integrated and welded together, and this is welded to an outer case or a sealing case that also serves as a positive electrode terminal, and each negative electrode The current collecting tab portions can be collectively welded and integrated, and this can be welded to an outer case or a sealing case that also serves as a negative electrode terminal. In the case of this aspect, among the portions where the current collecting tab portions of each positive electrode in the integrated current collecting tab portion are welded to each other, the portion closest to the main body portion of the positive electrode is the integrated positive electrode. Among the locations where the current collecting tabs of the negative electrodes in the current collecting tab portions of the current collecting tab portions are welded to each other. What is necessary is just to make it the part nearest to a main-body part become places other than the edge part of the width direction in the current collection tab part of each integrated negative electrode.

一体化した各電極(各正極または各負極)の集電タブ部における外装ケースまたは封口ケースの内面との溶接は、例えば、超音波溶接により実施することが好ましい。また、前記の超音波溶接では、一辺が0.1〜0.6mmの正方形状の溶接痕が形成されることが好ましいが、溶接痕の形状に制限はなく、0.1〜0.6mmの直径を有する円相当の面積の溶接痕であってもよい。そして、このようなサイズの溶接痕が、2〜10個程度形成されるように超音波溶接を行うことが好ましい。   The welding of the integrated electrode (each positive electrode or each negative electrode) to the inner surface of the outer case or the sealing case in the current collecting tab portion is preferably performed by, for example, ultrasonic welding. Further, in the ultrasonic welding, it is preferable that a square-shaped welding trace having a side of 0.1 to 0.6 mm is formed, but the shape of the welding trace is not limited, and is 0.1 to 0.6 mm. It may be a welding mark having an area corresponding to a circle having a diameter. And it is preferable to perform ultrasonic welding so that about 2 to 10 welding marks of such a size are formed.

また、図4および図5に示す電池では、一体化した各正極の集電タブ部500における外装ケースまたは封口ケースの内面との溶接痕501が、各正極の集電タブ部が互いに溶接された箇所500aと、各正極の集電タブ部が互いに溶接されていない箇所500bとに存在している。このように、本発明の電池では、一体化した各電極(各正極または各負極)の集電タブ部における外装ケースまたは封口ケースの内面との溶接痕が、各電極の集電タブ部が互いに溶接された箇所と、各電極の集電タブ部が互いに溶接されていない箇所とに存在していることが好ましい。この場合には、一体化した各電極の集電タブ部と外装ケースまたは封口ケースの内面との溶接による接合がより良好となる。   Further, in the battery shown in FIG. 4 and FIG. 5, the welding trace 501 with the inner surface of the outer case or the sealing case in the current collecting tab portion 500 of each positive electrode is welded to the current collecting tab portion of each positive electrode. It exists in the location 500a and the location 500b where the current collection tab part of each positive electrode is not welded mutually. As described above, in the battery of the present invention, the welding traces with the inner surface of the outer case or the sealing case in the current collecting tab portion of each integrated electrode (each positive electrode or each negative electrode) are in contact with each other. It is preferable that the welding tabs and the current collecting tab portions of the respective electrodes exist at locations where they are not welded to each other. In this case, the joining by the welding of the current collection tab part of each integrated electrode and the inner surface of an exterior case or a sealing case becomes better.

なお、一体化した各電極の集電タブ部における外装ケースまたは封口ケースの内面との溶接痕は、各電極の集電タブ部が互いに溶接されていない箇所に存在することによって、互いに溶接された箇所に比べて集電タブ部表面の平滑性が高いことから、安定した溶接を行うことが容易となる。   In addition, the welding trace with the inner surface of the exterior case or the sealing case in the current collecting tab portion of each integrated electrode is welded to each other because the current collecting tab portion of each electrode is present at a location where they are not welded to each other. Since the smoothness of the surface of the current collecting tab portion is higher than that of the location, it is easy to perform stable welding.

本発明の電池では、正極の両面に配置された2枚のセパレータについて、それらの周縁部の少なくとも一部において、互いに溶着して接合部を形成することができる。   In the battery of the present invention, the two separators arranged on both surfaces of the positive electrode can be welded to each other at at least a part of their peripheral portions to form a joint portion.

図6および図7に、本発明の扁平形非水二次電池の他の例を模式的に示す。図6および図7に示す電池は、正極5の両面に配置された2枚のセパレータ7、7の周縁部に接合部を形成して構成した電極群を有するものであり、図6は、電池の外装ケース2、封口ケース3および絶縁ガスケット4部分の断面を表す縦断面図であり、図7は図6の要部を拡大し、更に電極群の部分を断面にしたものである。   6 and 7 schematically show another example of the flat non-aqueous secondary battery of the present invention. The battery shown in FIGS. 6 and 7 has a group of electrodes formed by forming joints at the peripheral edges of the two separators 7 and 7 arranged on both surfaces of the positive electrode 5, and FIG. FIG. 7 is a longitudinal sectional view showing a cross section of the outer case 2, the sealing case 3, and the insulating gasket 4 of FIG. 7. FIG. 7 is an enlarged view of the main part of FIG.

また、図8に、周縁部の一部に接合部を形成したセパレータの平面図を模式的に示す。なお、図8では、セパレータ7とともに、正極、負極およびセパレータが積層された積層型の電極群とした場合を想定して、セパレータ7の下に配置される正極5を点線で示し、それらの更に下側に配置される負極に係る集電タブ部6bを一点鎖線で示し、電極群に係る各構成要素の位置ずれを抑えるための結束テープ9を二点鎖線で示している。また、図8に示す正極5は、電極群において、その両側(両面)が負極と対向するものであり、図8では図示していないが、電極群とした場合、セパレータ7の上側(図中手前方向)には、少なくとも負極が配置される。   FIG. 8 schematically shows a plan view of a separator in which a joining portion is formed on a part of the peripheral edge. In FIG. 8, assuming the case of a stacked electrode group in which the positive electrode, the negative electrode, and the separator are stacked together with the separator 7, the positive electrode 5 disposed under the separator 7 is indicated by a dotted line, A current collecting tab portion 6b related to the negative electrode disposed on the lower side is indicated by a one-dot chain line, and a binding tape 9 for suppressing positional deviation of each component related to the electrode group is indicated by a two-dot chain line. Further, the positive electrode 5 shown in FIG. 8 is one in which both sides (both sides) of the electrode group are opposed to the negative electrode. Although not shown in FIG. In the forward direction), at least a negative electrode is arranged.

図8に示すセパレータ7は、正極5(図中点線で表示)を介してその下側(図中奥行き方向)に配置される他のセパレータと、その周縁部において互いに溶着した接合部7c(図中、格子模様で表示)を有している。すなわち、セパレータ7と、その下側に配置されたセパレータとは、周縁部で互いに溶着されて袋状となっており、その内部に正極5を収容している。   The separator 7 shown in FIG. 8 is joined to another separator disposed on the lower side (in the depth direction in the drawing) via the positive electrode 5 (indicated by a dotted line in the drawing), and a joint 7c (FIG. Middle). That is, the separator 7 and the separator disposed below the separator 7 are welded to each other at the peripheral edge to form a bag shape, and the positive electrode 5 is accommodated therein.

なお、図8に示すセパレータ7は、正極5の本体部5a全面を覆う主体部7a(すなわち、正極5の本体部5aよりも平面視での面積が大きな主体部7a)と、主体部7aから突出し、正極5の集電タブ部5bの、本体部5aとの境界部を少なくとも含む部分を覆う張り出し部7bとを有している。そして、セパレータ7の主体部7aの周縁部の少なくとも一部に、正極5の両面に配置された2枚のセパレータ(セパレータ7と、正極5の下側に配置されたセパレータ)同士を互いに溶着した接合部7cを設けている。   The separator 7 shown in FIG. 8 includes a main body part 7a (that is, a main body part 7a having a larger area in plan view than the main body part 5a of the positive electrode 5) and the main body part 7a. It has a protruding portion 7b that protrudes and covers at least a portion of the current collecting tab portion 5b of the positive electrode 5 that includes a boundary portion with the main body portion 5a. Then, two separators (the separator 7 and the separator disposed below the positive electrode 5) disposed on both surfaces of the positive electrode 5 were welded to at least a part of the peripheral portion of the main body portion 7 a of the separator 7. A joint 7c is provided.

非水二次電池のセパレータには、高温下で熱収縮しやすい熱可塑性樹脂製の微多孔膜が使用されることが一般的であるが、このように、正極の両面に配置された2枚のセパレータにおいて、その周縁部を互いに溶着して接合部を形成することで、例えば、電池内が高温となっても、セパレータの熱収縮が抑制されるため、より安全性の高い電池を構成することができる。   As separators for non-aqueous secondary batteries, a microporous film made of a thermoplastic resin that is easily heat-shrinkable at high temperatures is generally used. In this way, two sheets arranged on both sides of the positive electrode are used. In this separator, the peripheral portions are welded to each other to form a joint portion, so that, for example, even if the inside of the battery becomes high temperature, the thermal contraction of the separator is suppressed, so that a safer battery is configured. be able to.

なお、図8に示すように、主体部と張り出し部とを有するセパレータを使用する場合、正極の両面に配置された2枚のセパレータを接合するための接合部は、セパレータの主体部の周縁部に設ければよいが、セパレータの張り出し部の周縁部(セパレータの張り出し部の周縁部のうち、主体部からの突出方向に沿う部分)にも接合部を設けてもよい。   In addition, as shown in FIG. 8, when using the separator which has a main-body part and an overhang | projection part, the junction part for joining two separators arrange | positioned on both surfaces of a positive electrode is a peripheral part of the main-body part of a separator However, a joining portion may also be provided at the peripheral portion of the separator overhanging portion (the portion of the peripheral edge portion of the separator overhanging portion along the protruding direction from the main body portion).

接合部は、2枚のセパレータの周縁部同士を直接溶着して形成してもよいが、2枚のセパレータの間に熱可塑性樹脂で構成される層を介在させ、この層を介して2枚のセパレータを溶着することにより形成してもよい。ただし、後者の場合、セパレータ間に介在させる層を構成する熱可塑性樹脂の種類と、セパレータを構成する熱可塑性樹脂の種類によっては、接合部の強度が小さくなる場合があるため、セパレータ間に介在させる層は、セパレータを構成する熱可塑性樹脂と同種の樹脂で構成されたものを使用することが好ましい。すなわち、セパレータ同士を直接溶着したり、セパレータを構成する熱可塑性樹脂と同種の樹脂で構成される層を介してセパレータ同士を溶着したりした場合には、接合部の強度がセパレータ自身の強度とほぼ同等となるため、例えば、電池の使用時に振動などによって生じる虞のある接合部での剥離が良好に抑制でき、更に信頼性の高い電池とすることができる。   The joining portion may be formed by directly welding the peripheral portions of the two separators, but a layer made of a thermoplastic resin is interposed between the two separators, and two sheets are interposed via this layer. The separator may be formed by welding. However, in the latter case, depending on the type of thermoplastic resin that constitutes the layer interposed between the separators and the type of thermoplastic resin that constitutes the separator, the strength of the joint may be reduced. It is preferable to use the layer made of the same kind of resin as the thermoplastic resin constituting the separator. That is, when the separators are welded directly, or when the separators are welded via a layer composed of the same type of resin as the thermoplastic resin that constitutes the separator, the strength of the joint is determined by the strength of the separator itself. Since they are almost the same, for example, separation at a joint portion that may occur due to vibration or the like when the battery is used can be satisfactorily suppressed, and a battery with higher reliability can be obtained.

なお、図8に示すように主体部と張り出し部とを有するセパレータを使用する場合、セパレータの主体部に係る周縁部は、全てが接合部となっていてもよいが、例えば、図8に示すように、周縁部の一部を、セパレータ同士を溶着せずに非溶着部7d、7dとして残してもよい。2枚のセパレータを溶着して袋状とした後に、その中に正極を収容したり、1枚のセパレータの上に正極を配置し、その正極の上に更にセパレータを配置して、セパレータの周縁部を溶着して袋状としたセパレータの中に正極を収容したりした場合、セパレータ内に空気が残留することがある。しかし、このような正極を用いて電池を製造する場合、外装ケースと封口ケースとをかしめる際に、前記の残留空気が、非溶着部7d、7dを通じてセパレータ外へ良好に排出されるため、セパレータ内の残留空気による問題(発電時の反応が不均一になって容量が低下するなどの問題)の発生を防止できる。   In addition, when using the separator which has a main-body part and an overhang | projection part as shown in FIG. 8, all the peripheral parts which concern on the main-body part of a separator may be a junction part, For example, it shows in FIG. Thus, you may leave a part of peripheral part as the non-welding parts 7d and 7d, without welding separators. After the two separators are welded to form a bag, the positive electrode is accommodated therein, the positive electrode is disposed on one separator, and the separator is further disposed on the positive electrode. When the positive electrode is housed in a separator that is welded to form a bag, air may remain in the separator. However, when manufacturing a battery using such a positive electrode, when the outer case and the sealing case are caulked, the residual air is well discharged outside the separator through the non-welded portions 7d and 7d. Occurrence of problems due to residual air in the separator (problems such as non-uniform reaction during power generation and reduced capacity) can be prevented.

セパレータの周縁部に非溶着部を設ける場合、電池の生産性の低下を抑える観点から、その個数は1〜5個程度とすることが好ましい。また、セパレータの周縁部に非溶着部を設ける場合、セパレータの主体部に係る非溶着部の外縁の長さが、セパレータの主体部に係る外縁の全長さ(張り出し部を除く外縁の全長さ)の15〜60%程度することが好ましい。すなわち、セパレータの主体部においては、その外縁の全長さのうちの40%以上(好ましくは70%以上)が接合部であることが好ましく、これにより、セパレータ同士の接合強度を良好に確保することができる。   When providing a non-welding part in the peripheral part of a separator, it is preferable that the number shall be about 1-5 from a viewpoint of suppressing the productivity fall of a battery. Moreover, when providing a non-welding part in the peripheral part of a separator, the length of the outer edge of the non-welding part related to the main part of the separator is the total length of the outer edge related to the main part of the separator (the total length of the outer edge excluding the overhanging part) Is preferably about 15 to 60%. That is, in the main part of the separator, it is preferable that 40% or more (preferably 70% or more) of the entire length of the outer edge is a joined part, thereby ensuring good joining strength between the separators. Can do.

2枚のセパレータの周縁部に接合部を形成するとともに、これらのセパレータの間に正極を収容するには、2枚のセパレータ同士を直接溶着して接合部を形成する場合では、例えば、1枚のセパレータ上に正極を重ね、更にその上にセパレータを重ねた後、これらのセパレータの周縁部を溶着する方法が採用できる。また、2枚のセパレータを重ね、これらの周縁部を溶着してセパレータ同士を接合し、その後、これらのセパレータ間に正極を挿入する方法を採用することもできる。   In order to form a joint part at the peripheral part of two separators and to accommodate a positive electrode between these separators, when two separators are directly welded together to form a joint part, for example, one sheet It is possible to employ a method in which the positive electrode is overlaid on the separator, the separator is further overlaid thereon, and then the peripheral portions of these separators are welded. It is also possible to adopt a method in which two separators are stacked, the peripheral portions thereof are welded to join the separators, and then the positive electrode is inserted between these separators.

一方、2枚のセパレータ同士の間にセパレータの構成樹脂と同種の樹脂で構成された層を介在させ、これらを溶着して接合部を形成する場合では、例えば、1枚のセパレータ上の接合部となることが予定される箇所に前記層となるフィルムを置き、かつこのセパレータ上に正極を配置し、更にその上にセパレータを重ねた後、これらのセパレータの周縁部を溶着する方法が採用できる。また、1枚のセパレータ上の接合部となることが予定されている箇所に前記層となるフィルムを置き、このセパレータとフィルムとを予め溶着しておき、その後、このセパレータに正極、セパレータの順に重ねて周縁部を溶着する方法や、2枚のセパレータの間に前記層となるフィルムを介在させて溶着して接合部を形成した後に、これらのセパレータ間に正極を挿入する方法を採用することもできる。   On the other hand, when a layer composed of the same kind of resin as the constituent resin of the separator is interposed between the two separators and these are welded to form a joint, for example, the joint on one separator It is possible to adopt a method in which a film to be the layer is placed at a place where the layer is expected to be placed, a positive electrode is disposed on the separator, and a separator is further stacked thereon, and then the peripheral portions of these separators are welded. . In addition, a film to be the layer is placed in a place where it is planned to become a joint portion on one separator, and the separator and the film are previously welded. Adopting a method of laminating the peripheral portion by overlapping, or a method of inserting a positive electrode between these separators after forming a joined portion by interposing a film serving as the layer between two separators. You can also.

セパレータの周縁部の溶着は、例えば、加熱プレスにより行うことができる。この場合、加熱温度は、セパレータを構成する熱可塑性樹脂の融点よりも高い温度であればよいが、例えば、融点より10〜50℃高い温度で行うことが好ましい。また、加熱プレスの時間については、良好に接合部が形成できれば特に制限はないが、通常は、1〜10秒程度とする。   For example, the peripheral edge of the separator can be welded by a hot press. In this case, the heating temperature may be a temperature higher than the melting point of the thermoplastic resin constituting the separator, but for example, the heating temperature is preferably 10 to 50 ° C. higher than the melting point. Moreover, about the time of a hot press, if a junction part can be formed satisfactorily, there will be no restriction | limiting, However, Usually, it shall be about 1 to 10 second.

なお、本発明の電池に使用するセパレータの平面形状は、例えば、前記のようにセパレータの周縁部の少なくとも一部に接合部(正極の両面に配置された2枚のセパレータに係る周縁部の少なくとも一部を、互いに溶着することにより形成する接合部)を形成する場合には、図7に示す形状であることが好ましいが、前記接合部を形成しない場合でも、図8に示す形状とすることが好ましい。   In addition, the planar shape of the separator used for the battery of the present invention is, for example, at least a part of the peripheral part of the separator as described above at least at the joint part (at least the peripheral part of the two separators arranged on both surfaces of the positive electrode). In the case of forming a joint part formed by welding a part of each other, the shape shown in FIG. 7 is preferable. However, even when the joint part is not formed, the shape shown in FIG. Is preferred.

本発明の電池では、電極群の形成にあたり、少なくとも両側が負極と対向している正極の両面にはセパレータを配置するが、電極群の最外部側に配置される正極、すなわち片側(片面)のみが負極と対向している正極については、その両面にセパレータを配置してもよく(更に、これらの2枚のセパレータに接合部を形成してもよい)、負極と対向する面にのみセパレータを配置しても構わない。更に、電極群に係る最外部側の電極をいずれも正極とし、これらの正極の両面にセパレータを配置しない場合には、負極端子を兼ねる電池ケースと電極群の最外部の正極との間には、前記の通り、PETやポリイミドなどで形成されたテープなどからなる絶縁シールなどの絶縁体を配置する。   In the battery of the present invention, when forming the electrode group, separators are disposed on both sides of the positive electrode at least on both sides facing the negative electrode. As for the positive electrode facing the negative electrode, separators may be disposed on both sides thereof (joint portions may be formed on these two separators), or only on the surface facing the negative electrode. You may arrange. Furthermore, when all the outermost electrodes in the electrode group are positive electrodes, and no separator is disposed on both surfaces of these positive electrodes, the battery case that also serves as the negative electrode terminal and the outermost positive electrode of the electrode group are between As described above, an insulator such as an insulating seal made of tape or the like made of PET or polyimide is disposed.

本発明の電池に係る正極の正極合剤層は、正極活物質、導電助剤、バインダなどを含有する層である。   The positive electrode mixture layer of the positive electrode according to the battery of the present invention is a layer containing a positive electrode active material, a conductive additive, a binder and the like.

本発明の電池に係る正極活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMnNiCo1−y−z、LiMn、LiMn2−yなどのリチウム遷移金属複合酸化物などが挙げられる(ただし、前記の各リチウム遷移金属複合酸化物において、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、AlおよびCrからなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0≦z≦2.2である。)。これらの正極活物質は1種単独で使用してもよく、2種以上を併用しても構わない。 Examples of the positive electrode active material according to the battery of the present invention include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-y O 2. lithium transition metal composite such as Li x Ni 1-y M y O 2, Li x Mn y Ni z Co 1-y-z O 2, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 (However, in each of the above lithium transition metal composite oxides, M is at least one selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al, and Cr.) It is a metal element, and 0 ≦ x ≦ 1.1, 0 <y <1.0, and 2.0 ≦ z ≦ 2.2.) These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

また、正極の導電助剤としては、例えば、カーボンブラック、鱗片状黒鉛、ケッチェンブラック、アセチレンブラック、繊維状炭素などが挙げられる。更に、正極のバインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース、スチレンブタジエンラバーなどが挙げられる。   Moreover, as a conductive support agent of a positive electrode, carbon black, scale-like graphite, ketjen black, acetylene black, fibrous carbon etc. are mentioned, for example. Furthermore, examples of the binder for the positive electrode include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), carboxymethyl cellulose, and styrene butadiene rubber.

正極は、例えば、正極活物質と導電助剤とバインダとを混合して得られる正極合剤を水または有機溶剤に分散させて正極合剤含有ペーストを調製し(この場合、バインダは予め水または溶剤に溶解または分散させておき、それを正極活物質などと混合して正極合剤含有ペーストを調製してもよい)、その正極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体の片面または両面に塗布し、乾燥した後、加圧成形することによって正極合剤層を形成して作製される。ただし、正極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。   For the positive electrode, for example, a positive electrode mixture obtained by mixing a positive electrode active material, a conductive additive, and a binder is dispersed in water or an organic solvent to prepare a positive electrode mixture-containing paste (in this case, the binder is preliminarily mixed with water or It may be dissolved or dispersed in a solvent and mixed with a positive electrode active material or the like to prepare a positive electrode mixture-containing paste), and the positive electrode mixture-containing paste is made of metal foil, expanded metal, plain weave metal mesh, etc. It is manufactured by forming a positive electrode mixture layer by applying it to one or both sides of a current collector, drying it, and then press-molding it. However, the method for manufacturing the positive electrode is not limited to the above-described method, and other methods may be used.

正極の組成としては、例えば、正極を構成する正極合剤100質量%中、正極活物質を75〜90質量%、導電助剤を5〜20質量%、バインダを3〜15質量%とすることが好ましい。また、正極合剤層の厚みは、例えば、30〜200μmであることが好ましい。   As a composition of the positive electrode, for example, in 100% by mass of the positive electrode mixture constituting the positive electrode, the positive electrode active material is 75 to 90% by mass, the conductive additive is 5 to 20% by mass, and the binder is 3 to 15% by mass. Is preferred. Moreover, it is preferable that the thickness of a positive mix layer is 30-200 micrometers, for example.

正極の集電体の素材としては、アルミニウムやアルミニウム合金が好ましい。なお、正極の総厚みを小さくし、電池内における正極および負極の積層数を増やすことで正極合剤層と負極剤層との対向面積を大きくして、電池の負荷特性を高める観点からは、集電体には金属箔を使用することが好ましい。また、集電体の厚みは、例えば、8〜20μmであることが好ましい。   The material for the current collector of the positive electrode is preferably aluminum or an aluminum alloy. From the viewpoint of reducing the total thickness of the positive electrode and increasing the number of layers of the positive electrode and the negative electrode in the battery to increase the facing area between the positive electrode mixture layer and the negative electrode agent layer and improving the load characteristics of the battery, It is preferable to use a metal foil for the current collector. Moreover, it is preferable that the thickness of a collector is 8-20 micrometers, for example.

本発明の電池に係る負極としては、活物質に、リチウム、リチウム合金、リチウムイオンを吸蔵放出可能な炭素材料、チタン酸リチウムなどを有する負極が挙げられる。   Examples of the negative electrode according to the battery of the present invention include a negative electrode having lithium, a lithium alloy, a carbon material capable of occluding and releasing lithium ions, lithium titanate, and the like as an active material.

負極活物質に用い得るリチウム合金としては、例えば、リチウム−アルミニウム、リチウム−ガリウムなどのリチウムと可逆的に合金化するリチウム合金が挙げられ、リチウム含有量が、例えば1〜15原子%であることが好ましい。また、負極活物質に用い得る炭素材料としては、例えば、人造黒鉛、天然黒鉛、低結晶性カーボン、コークス、無煙炭などが挙げられる。   Examples of the lithium alloy that can be used for the negative electrode active material include lithium alloys that reversibly alloy with lithium, such as lithium-aluminum and lithium-gallium, and the lithium content is, for example, 1 to 15 atomic%. Is preferred. Examples of the carbon material that can be used for the negative electrode active material include artificial graphite, natural graphite, low crystalline carbon, coke, and anthracite.

負極活物質に用い得るチタン酸リチウムとしては、一般式LiTiで表され、xとyがそれぞれ、0.8≦x≦1.4、1.6≦y≦2.2の化学量論数を持つチタン酸リチウムが好ましく、特にx=1.33、y=1.67の化学量論数を持つチタン酸リチウムが好ましい。前記一般式LiTiで表されるチタン酸リチウムは、例えば、酸化チタンとリチウム化合物とを760〜1100℃で熱処理することによって得ることができる。前記酸化チタンとしては、アナターゼ型、ルチル型のいずれも使用可能であり、リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、酸化リチウムなどが用いられる。 The lithium titanate that can be used for the negative electrode active material is represented by the general formula Li x Ti y O 4 , and x and y are 0.8 ≦ x ≦ 1.4 and 1.6 ≦ y ≦ 2.2, respectively. Lithium titanate having a stoichiometric number is preferable, and lithium titanate having a stoichiometric number of x = 1.33 and y = 1.67 is particularly preferable. The lithium titanate represented by the general formula Li x Ti y O 4 can be obtained, for example, by heat-treating titanium oxide and a lithium compound at 760 to 1100 ° C. As the titanium oxide, either anatase type or rutile type can be used, and examples of the lithium compound include lithium hydroxide, lithium carbonate, and lithium oxide.

負極は、負極活物質がリチウムやリチウム合金の場合は、リチウムやリチウム合金を金属網などの集電体に圧着することで、集電体の表面にリチウムやリチウム合金などからなる負極剤層を形成して得ることができる。他方、負極活物質として炭素材料やチタン酸リチウムを用いる場合は、例えば、負極活物質としての炭素材料やチタン酸リチウムとバインダ、更には必要に応じて導電助剤を混合して得られる負極合剤を水または有機溶剤に分散させて負極合剤含有ペーストを調製し(この場合、バインダは予め水または溶剤に溶解または分散させておき、それを負極活物質などと混合して負極合剤含有ペーストを調製してもよい)、その負極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体に塗布し、乾燥した後、加圧成形することによって負極剤層(負極合剤層)を形成して負極を作製することができる。ただし、負極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。   When the negative electrode active material is lithium or a lithium alloy, the negative electrode is formed by bonding the lithium or lithium alloy to a current collector such as a metal network to form a negative electrode layer made of lithium or lithium alloy on the surface of the current collector. Can be obtained. On the other hand, when a carbon material or lithium titanate is used as the negative electrode active material, for example, a negative electrode composite obtained by mixing a carbon material or lithium titanate with a binder as the negative electrode active material and, if necessary, a conductive additive. The negative electrode mixture-containing paste is prepared by dispersing the agent in water or an organic solvent (in this case, the binder is previously dissolved or dispersed in water or solvent, and mixed with the negative electrode active material or the like to contain the negative electrode mixture) The paste containing the negative electrode mixture may be applied to a current collector made of metal foil, expanded metal, plain weave metal mesh, etc., dried, and then pressed to form a negative electrode layer (negative electrode composite). The negative electrode can be produced by forming an agent layer. However, the manufacturing method of the negative electrode is not limited to the above-described method, and other methods may be used.

なお、負極に係るバインダおよび導電助剤としては、正極に用い得るものとして先に例示した各種バインダおよび導電助剤を用いることができる。   In addition, as a binder and conductive support agent which concern on a negative electrode, the various binders and conductive support agent which were illustrated previously as what can be used for a positive electrode can be used.

負極活物質に炭素材料を用いる場合の負極の組成としては、例えば、負極を構成する負極合剤100質量%中、炭素材料を80〜95質量%、バインダを3〜15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5〜20質量%とすることが好ましい。他方、負極活物質にチタン酸リチウムを用いる場合の負極の組成としては、例えば、負極を構成する負極合剤100質量%中、チタン酸リチウムを75〜90質量%、バインダを3〜15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5〜20質量%とすることが好ましい。   The composition of the negative electrode when a carbon material is used as the negative electrode active material is, for example, that the carbon material is 80 to 95% by mass and the binder is 3 to 15% by mass in 100% by mass of the negative electrode mixture constituting the negative electrode. Moreover, when using together a conductive support agent, it is preferable that a conductive support agent shall be 5-20 mass%. On the other hand, the composition of the negative electrode when lithium titanate is used as the negative electrode active material is, for example, 75 to 90% by mass of lithium titanate and 3 to 15% by mass of the binder in 100% by mass of the negative electrode mixture constituting the negative electrode. In addition, when a conductive auxiliary is used in combination, the conductive auxiliary is preferably 5 to 20% by mass.

負極における負極剤層(負極合剤層を含む)の厚みは、例えば、40〜200μmであることが好ましい。   The thickness of the negative electrode layer (including the negative electrode mixture layer) in the negative electrode is preferably 40 to 200 μm, for example.

負極の集電体の素材としては、銅や銅合金が好ましい。なお、負極の総厚みを小さくし、電池内における正極および負極の積層数を増やすことで正極合剤層と負極剤層との対向面積を大きくして、電池の負荷特性を高める観点からは、集電体には金属箔を使用することが好ましい。また、集電体の厚みは、例えば、5〜30μmであることが好ましい。   The material for the current collector of the negative electrode is preferably copper or a copper alloy. From the viewpoint of reducing the total thickness of the negative electrode and increasing the number of layers of the positive electrode and negative electrode in the battery to increase the facing area between the positive electrode mixture layer and the negative electrode agent layer, and improving the load characteristics of the battery, It is preferable to use a metal foil for the current collector. Moreover, it is preferable that the thickness of a collector is 5-30 micrometers, for example.

セパレータには、熱可塑性樹脂製の微多孔膜で構成されたものを使用する。セパレータを構成する熱可塑性樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、ポリメチルペンテンなどのポリオレフィンが好ましく、セパレータ同士を溶着したり、セパレータ間にセパレータの構成樹脂と同種の樹脂を配置して溶着したりする観点からは、その融点、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、100〜180℃のポリオレフィンがより好ましい。   A separator made of a microporous film made of a thermoplastic resin is used. As the thermoplastic resin constituting the separator, for example, polyolefins such as polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, polymethylpentene, and the like are preferable. From the viewpoint of arranging and welding the same type of resin as the constituent resin, the melting point, that is, the melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121 is 100. A polyolefin of ˜180 ° C. is more preferable.

セパレータを構成する熱可塑性樹脂製の微多孔膜の形態としては、必要な電池特性が得られるだけのイオン伝導度を有していればどのような形態でもよいが、従来から知られている乾式または湿式延伸法などにより形成された孔を多数有するイオン透過性の微多孔膜(電池のセパレータとして汎用されている微多孔フィルム)が好ましい。   As the form of the microporous film made of the thermoplastic resin constituting the separator, any form may be used as long as it has an ionic conductivity sufficient to obtain the required battery characteristics. Or the ion-permeable microporous film (microporous film currently used widely as a battery separator) which has many holes formed by the wet extending | stretching method etc. is preferable.

セパレータの厚みは、例えば、5〜25μmであることが好ましく、また、空孔率は、例えば、30〜70%であることが好ましい。   The thickness of the separator is preferably, for example, 5 to 25 μm, and the porosity is preferably, for example, 30 to 70%.

前記の正極、負極およびセパレータは、図1や図6、図7に示すように積層して積層型の電極群として使用するが、その際、各正極の集電タブ部が、電極群の平面視で同一方向を向くように配置され、かつ各負極の集電タブ部が、電極群の平面視で同一方向を向くように配置されていることが好ましい。これにより、正極および負極の集電がより容易となる。   The positive electrode, the negative electrode, and the separator are stacked and used as a stacked electrode group as shown in FIGS. 1, 6, and 7. At this time, the current collecting tab portion of each positive electrode is a plane of the electrode group. It is preferable that they are arranged so as to face the same direction as viewed, and the current collecting tab portions of the respective negative electrodes are arranged so as to face the same direction when seen in a plan view of the electrode group. Thereby, current collection of the positive electrode and the negative electrode becomes easier.

更に、各正極の集電タブ部と、各負極の集電タブ部とは、電極群の平面視で互いに接触しないように配置されていればよいが、これらの接触をより良好に抑制し、かつ電池の生産をより良好にする観点からは、図8に示しているように、各正極の集電タブ部5bと各負極の集電タブ部6bとは、電極群の平面視で互いに対向する位置に配されていることがより好ましい。   Furthermore, the current collecting tab portion of each positive electrode and the current collecting tab portion of each negative electrode only need to be arranged so as not to contact each other in a plan view of the electrode group, but these contacts are better suppressed, And from the viewpoint of making the production of the battery better, as shown in FIG. 8, the current collecting tab portion 5b of each positive electrode and the current collecting tab portion 6b of each negative electrode face each other in a plan view of the electrode group. More preferably, it is arranged at a position where

また、正極、負極およびセパレータを積層して構成した電極群は、図8に示すように、その外周を、耐薬品性を有するポリプロピレンなどで構成された結束テープ9で結束して、各構成要素(セパレータに包まれた正極、および負極)の位置ずれを抑制することが好ましい。   Further, as shown in FIG. 8, the electrode group formed by laminating the positive electrode, the negative electrode, and the separator is bound to the outer periphery with a binding tape 9 made of polypropylene having chemical resistance, etc. It is preferable to suppress misalignment of the positive electrode and the negative electrode wrapped in the separator.

電極群に係る正極および負極は、少なくとも合計枚数が3枚であるが、それ以上(4枚、5枚、6枚、7枚、8枚など)とすることも可能である。ただし、正極および負極の積層数をあまり多くすると、扁平状電池としてのメリットが小さくなる虞があることから、通常は、40枚以下とすることが好ましい。   The total number of positive electrodes and negative electrodes in the electrode group is at least 3, but it is also possible to increase the number (4, 5, 6, 7, 8, etc.). However, if the number of stacked positive and negative electrodes is increased too much, the merit as a flat battery may be reduced. Therefore, it is usually preferable that the number is 40 or less.

電池に係る非水電解液としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル;ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルエチルカーボネートなどの鎖状炭酸エステル;1,2−ジメトキシエタン、ジグライム(ジエチレングリコールメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、テトラヒドロフランなどのエーテル;などの有機溶媒に、電解質(リチウム塩)を0.3〜2.0mol/L程度の濃度に溶解させることによって調製した電解液を用いることができる。前記の有機溶媒は、それぞれ1種単独で用いてもよく、2種以上を併用しても構わない。   Examples of non-aqueous electrolytes for batteries include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonate esters such as dimethyl carbonate, diethyl carbonate (DEC), and methyl ethyl carbonate. 1,2-dimethoxyethane, diglyme (diethylene glycol methyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether), 1,2-dimethoxyethane, 1,2-diethoxymethane, tetrahydrofuran, etc. It is possible to use an electrolytic solution prepared by dissolving an electrolyte (lithium salt) in a concentration of about 0.3 to 2.0 mol / L in an organic solvent such as ether; That. The above organic solvents may be used alone or in combination of two or more.

前記電解質としては、例えば、LiBF、LiPF、LiAsF、LiSbF、LiClO、LiCFSO、LiCSO、LiN(CFSO、LiN(CSOなどのリチウム塩が挙げられる。 Examples of the electrolyte include LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) Lithium salts such as 2 are mentioned.

本発明の扁平形非水二次電池の平面形状には特に制限は無く、従来から知られている扁平形電池の主流である円形の他、角形(四角形)などの多角形状でもよい。なお、本明細書でいう電池の平面形状としての角形などの多角形には、その角が切り落とされた形状や、角を曲線にした形状も包含される。また、正極および負極の本体部の平面形状は、電池の平面形状に応じた形状とすればよく、略円形としたり、長方形や正方形などの四角形などの多角形とすることもできるが、例えば、略円形とする場合には、対極の集電タブ部が配置される箇所に相当する部分は、対極の集電タブ部との接触を防止するために、図2および図3に示すように切り落とした形状としておくことが好ましい。   The planar shape of the flat non-aqueous secondary battery of the present invention is not particularly limited, and may be a polygonal shape such as a square (quadrangle) in addition to the circular shape that is the mainstream of conventionally known flat batteries. In addition, the polygon such as a square as the planar shape of the battery in this specification includes a shape in which the corner is cut off and a shape in which the corner is curved. Moreover, the planar shape of the main body part of the positive electrode and the negative electrode may be a shape corresponding to the planar shape of the battery, and may be a substantially circular shape or a polygon such as a rectangle such as a rectangle or a square. In the case of a substantially circular shape, the portion corresponding to the location where the current collecting tab portion of the counter electrode is disposed is cut off as shown in FIGS. 2 and 3 in order to prevent contact with the current collecting tab portion of the counter electrode. It is preferable to use a different shape.

本発明の扁平形非水二次電池は、従来から知られている扁平形非水二次電池と同様の用途に適用することができる。   The flat non-aqueous secondary battery of the present invention can be applied to the same use as a conventionally known flat non-aqueous secondary battery.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

実施例1
<正極の作製>
正極活物質としてLiCoOを、導電助剤としてカーボンブラックを、バインダとしてPVDFを、それぞれ用いて正極を作製した。まず、LiCoO:93質量部とカーボンブラック:3質量部とを混合し、得られた混合物とPVDF:4質量部を予めN−メチル−2−ピロリドン(NMP)に溶解させておいたバインダ溶液とを混合して正極合剤含有ペーストを調製した。得られた正極合剤含有ペーストを厚さ15μmのアルミニウム箔からなる正極集電体の両面にアプリケータにより塗布した。なお、正極合剤含有ペーストの塗布に際しては、塗布部と未塗布部とが5cmおきに連続するように、かつ表面で塗布部とした箇所は、裏面でも塗布部となるようにした。続いて、塗布した正極合剤含有ペーストを乾燥して正極合剤層を形成し、その後、ロールプレスし、所定の大きさに切断して、帯状の正極を得た。なお、この正極は、幅を40mmとし、正極合剤層形成部の厚みを140μmとなるようにした。
Example 1
<Preparation of positive electrode>
A positive electrode was prepared using LiCoO 2 as a positive electrode active material, carbon black as a conductive additive, and PVDF as a binder. First, LiCoO 2 : 93 parts by mass and carbon black: 3 parts by mass were mixed, and the resulting mixture and PVDF: 4 parts by mass were previously dissolved in N-methyl-2-pyrrolidone (NMP). Were mixed to prepare a positive electrode mixture-containing paste. The obtained positive electrode mixture-containing paste was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm by an applicator. When applying the positive electrode mixture-containing paste, the application part and the non-application part were continuously arranged every 5 cm, and the part that was the application part on the front surface was also the application part on the back surface. Subsequently, the applied positive electrode mixture-containing paste was dried to form a positive electrode mixture layer, and then roll-pressed and cut into a predetermined size to obtain a belt-like positive electrode. The positive electrode had a width of 40 mm, and the positive electrode mixture layer forming portion had a thickness of 140 μm.

前記の帯状の正極を、正極合剤層形成部が本体部(円弧の部分の直径15.1mm)とし、正極合剤層未形成部が集電タブ部(幅3.5mm)となるように、図2に示す形状に打ち抜いて、電池用正極を得た。   The belt-like positive electrode is such that the positive electrode mixture layer forming portion is the main body portion (arc portion diameter 15.1 mm), and the positive electrode mixture layer non-forming portion is the current collecting tab portion (width 3.5 mm). 2 was punched into the shape shown in FIG. 2 to obtain a positive electrode for a battery.

<電池用正極とセパレータとの一体化>
前記の電池用正極の両面に、図7に示す形状のPE製微多孔膜セパレータ(厚み16μm)を配置し、図7に示す箇所を加熱プレス(温度170℃、プレス時間2秒)により溶着し、2枚のセパレータに係る主体部の周縁部の一部および張り出し部の周縁部の一部に接合部を形成して、電池用正極とセパレータとを一体化した。なお、2枚のセパレータに係る接合部の幅は、主体部、張り出し部とも0.3mmとし、張り出し部の周縁部における主体部からの突出方向の長さは0.5mmとした。また、2枚のセパレータの主体部の外縁のうち、90%の長さ部分を接合部とした。
<Integration of battery positive electrode and separator>
A PE microporous membrane separator (thickness 16 μm) having the shape shown in FIG. 7 is arranged on both surfaces of the battery positive electrode, and the portion shown in FIG. 7 is welded by a hot press (temperature 170 ° C., press time 2 seconds). A joining part was formed in a part of the peripheral part of the main part and a part of the peripheral part of the overhanging part related to the two separators, and the battery positive electrode and the separator were integrated. Note that the width of the joint portion relating to the two separators was 0.3 mm for both the main portion and the overhang portion, and the length in the protruding direction from the main portion at the peripheral portion of the overhang portion was 0.5 mm. Of the outer edges of the main parts of the two separators, 90% of the length was used as the joint.

<負極の作製>
負極活物質として黒鉛を、バインダとしてPVDFを、それぞれ用いて負極を作製した。前記黒鉛:94質量部とPVDF:6質量部と予めNMPに溶解させておいたバインダ溶液とを混合して、負極合剤含有ペーストを調製した。得られた負極合剤含有ペーストを厚さ10μmの銅箔からなる負極集電体の片面または両面にアプリケータにより塗布した。なお、負極合剤含有ペーストの塗布に際しては、塗布部と未塗布部とが5cmおきに連続するように、かつ集電体の両面に塗布したものでは、表面で塗布部とした箇所は、裏面でも塗布部となるようにした。続いて、塗布した負極合剤含有ペーストを乾燥して負極合剤層を形成し、その後、ロールプレスし、所定の大きさに切断して、帯状の負極を得た。なお、この負極は、幅を40mmとし、負極合剤層形成部の厚みを、集電体の両面に形成したものでは190μm、集電体の片面に形成したものでは100μmとなるようにした。
<Production of negative electrode>
A negative electrode was prepared using graphite as the negative electrode active material and PVDF as the binder. The graphite: 94 parts by mass, PVDF: 6 parts by mass, and a binder solution previously dissolved in NMP were mixed to prepare a negative electrode mixture-containing paste. The obtained negative electrode mixture-containing paste was applied to one or both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm by an applicator. In addition, when applying the negative electrode mixture-containing paste, when the coated part and the non-coated part are continuously applied every 5 cm and are applied to both sides of the current collector, the place where the coated part is the surface is the back side However, it was made to become an application part. Subsequently, the applied negative electrode mixture-containing paste was dried to form a negative electrode mixture layer, and then roll-pressed and cut into a predetermined size to obtain a strip-shaped negative electrode. The negative electrode had a width of 40 mm, and the negative electrode mixture layer forming portion had a thickness of 190 μm when formed on both sides of the current collector and 100 μm when formed on one side of the current collector.

前記の帯状の負極を、負極合剤層形成部が本体部(円弧の部分の直径16.3mm)とし、負極合剤層未形成部が集電タブ部となるように、図3に示す形状に打ち抜いて、集電体の片面に負極合剤層を有する電池用負極と、集電体の両面に負極合剤層を有する電池用負極とを得た。なお、集電体の片面の負極合剤層を有する電池用負極の一部については、前記の帯状の負極の集電体の露出面に、厚みが100μmのPETフィルムを貼り付けた後に打ち抜いた。   The strip-shaped negative electrode has the shape shown in FIG. 3 such that the negative electrode mixture layer forming portion is a main body portion (arc portion diameter 16.3 mm) and the negative electrode mixture layer non-forming portion is a current collecting tab portion. The negative electrode for a battery having a negative electrode mixture layer on one side of the current collector and the negative electrode for a battery having a negative electrode mixture layer on both sides of the current collector were obtained. A part of the negative electrode for a battery having the negative electrode mixture layer on one side of the current collector was punched after a PET film having a thickness of 100 μm was attached to the exposed surface of the current collector of the strip-shaped negative electrode. .

<電池の組み立て>
前記のセパレータと一体化した電池用正極7枚と、集電体の両面に負極合剤層を形成した電池用負極6枚と、集電体の片面に負極合剤層を形成した電池用負極2枚(このうち1枚は、集電体の露出面にPETフィルムを貼り付けたもの)とを用い、集電体の片面に負極合剤層を形成した電池用負極が最外部の電極になるように、電池用正極と電池用負極とを交互に重ねた。そして、各電池用正極の集電タブ部を纏めて溶接して一体化し、また、各電池用負極の集電タブ部を纏めて溶接して一体化して、電極群を形成した。なお、各電池用正極の集電タブ部を互いに溶接する際には、集電タブ部が互いに溶接された箇所の平面形状が、図4に示す形状(本体部に最も近い部分である頂点が、集電タブ部の幅方向の中央位置で、この頂点に接続する2辺の内角が120°)となるようにした。
<Battery assembly>
7 positive electrodes for a battery integrated with the separator, 6 negative electrodes for a battery in which a negative electrode mixture layer is formed on both sides of the current collector, and a negative electrode for a battery in which a negative electrode mixture layer is formed on one side of the current collector The battery negative electrode with a negative electrode mixture layer formed on one side of the current collector was used as the outermost electrode using two sheets (one of which was a PET film affixed to the exposed surface of the current collector) The battery positive electrode and the battery negative electrode were alternately stacked. And the current collection tab part of each battery positive electrode was integrated and welded together, and the current collection tab part of each battery negative electrode was welded together and integrated, and the electrode group was formed. When welding the current collecting tab portions of the positive electrodes for each battery, the planar shape of the location where the current collecting tab portions are welded to each other is the shape shown in FIG. 4 (the apex that is the portion closest to the main body portion). The inner angle of the two sides connected to this apex is 120 ° at the center position in the width direction of the current collecting tab portion.

外装ケース内に前記の電極群を、PETフィルムが外装ケース内面と対向するように入れ、一体化した各電池用正極の集電タブ部を外装ケース内面に溶接した。なお、一体化した各電池用正極の集電タブ部の外装ケース内面への溶接は超音波溶接により行い、図4に示すように、一辺が0.4mmの正方形の溶接痕が4つ形成されるようにした。そして、4つの溶接痕のうち、2つは各電池用正極の集電タブ部を互いに溶接した箇所(図4中500aの箇所)に、残りの2つは各電池用正極の集電タブ部を互いに溶接していない箇所(図4中500bの箇所)に形成し、これらの溶接痕と一体化した各電池用正極の集電タブ部の幅方向の端部との最短距離(図4中zの長さ)が、1.0mmとなるようにした。   The electrode group was placed in the outer case so that the PET film faced the inner surface of the outer case, and the integrated current collecting tab portion of each battery positive electrode was welded to the inner surface of the outer case. In addition, welding to the outer case inner surface of the current collecting tab portion of each integrated battery positive electrode is performed by ultrasonic welding, and as shown in FIG. 4, four square welding marks each having a side of 0.4 mm are formed. It was to so. Of the four welding marks, two are at the locations where the current collector tab portions of the battery positive electrodes are welded together (location 500a in FIG. 4), and the remaining two are the current collector tab portions of the battery positive electrodes. Is formed at a location where the two are not welded to each other (location 500b in FIG. 4), and the shortest distance (in FIG. 4) from the end in the width direction of the current collecting tab portion of each battery positive electrode integrated with these welding marks. The length of z) was set to 1.0 mm.

また、封口ケースに絶縁ガスケットを装着し、非水電解液(LiPFをエチレンカーボネートとメチルエチルカーボネートとの体積比1:2の混合溶媒に、1.2mol/lの濃度で溶解した溶液)200mgを入れた後、電極群を収容した外装ケースを被せ、周囲をかしめて、直径20mm、厚み3.2mmで、電極群に係る電池用正極および電池用負極の枚数が異なる以外は、図5および図6に示すものと同様の構造の扁平形非水二次電池を得た。なお、前記の扁平形非水二次電池は、電流値14mAでの放電で、放電容量が70mAhとなるように設計したものである。 In addition, an insulating gasket was attached to the sealing case, and a non-aqueous electrolyte (LiPF 6 dissolved in a mixed solvent of ethylene carbonate and methyl ethyl carbonate in a volume ratio of 1: 2 at a concentration of 1.2 mol / l) 200 mg 5A and 5B except that the outer case containing the electrode group is covered and the periphery is caulked, the diameter is 20 mm, the thickness is 3.2 mm, and the number of battery positive electrodes and battery negative electrodes according to the electrode group is different. A flat non-aqueous secondary battery having the same structure as that shown in FIG. 6 was obtained. The flat non-aqueous secondary battery is designed to discharge at a current value of 14 mA and a discharge capacity of 70 mAh.

実施例2
各電池用正極の集電タブ部を互いに溶接する際に、集電タブ部が互いに溶接された箇所の平面形状が、図5に示す形状(図5中横方向の溶接幅が1.2mmで、図5中yの長さが1.15mm)となるようにした以外は、実施例1と同様にして扁平形非水二次電池を作製した。
Example 2
When welding the current collecting tab portions of the positive electrodes for each battery, the planar shape of the location where the current collecting tab portions are welded to each other is the shape shown in FIG. 5 (the welding width in the horizontal direction in FIG. A flat nonaqueous secondary battery was produced in the same manner as in Example 1 except that the length y in FIG. 5 was 1.15 mm.

比較例1
各電池用正極の集電タブ部を互いに溶接する際に、集電タブ部の幅方向に平行に溶接し、一体化した各電池用正極の集電タブ部における幅方向の端部とそれ以外の部分の、電池用正極の本体部からの最短距離を同じにした以外は、実施例1と同様にして扁平形非水二次電池を作製した。
Comparative Example 1
When welding the current collecting tabs of each battery positive electrode to each other, the end portions in the width direction of the current collecting tab portions of the respective battery positive electrodes, which are welded in parallel to the width direction of the current collecting tab portions, and the others A flat non-aqueous secondary battery was produced in the same manner as in Example 1 except that the shortest distance from the main part of the positive electrode for the battery was the same.

実施例および比較例の電池(充電を行っていないもの)を各30個用意し、以下の1.5m落下試験および1.9m落下試験を実施した。   Thirty batteries (not charged) of Examples and Comparative Examples were prepared, and the following 1.5 m drop test and 1.9 m drop test were performed.

<1.5m落下試験>
実施例および比較例の電池各15個を、それらの側面を下に向けて1.5mの高さからコンクリートの床に落下させる試験を5回繰り返した。
<1.5m drop test>
The test of dropping 15 batteries of each of the example and the comparative example from a height of 1.5 m onto a concrete floor with their side faces down was repeated 5 times.

<1.9m落下試験>
実施例および比較例の電池各15個(1.5m落下試験を実施したものとは別の電池)について、落下させる高さを1.9mに変更した以外は、前記の1.5m落下試験と同じ方法で試験を行った。
<1.9m drop test>
For each of the 15 batteries of the examples and comparative examples (batteries different from those for which the 1.5 m drop test was performed), the above 1.5 m drop test was performed except that the dropped height was changed to 1.9 m. The test was conducted in the same way.

前記の各落下試験を行った直後の各電池を分解して、正極の集電タブ部の幅方向の端部における亀裂の有無を調べた。その結果を表1に示す。   Each battery immediately after performing each drop test was disassembled, and the presence or absence of cracks in the widthwise end of the current collecting tab portion of the positive electrode was examined. The results are shown in Table 1.

表1に示す通り、実施例1および実施例2の電池では、1.5m落下試験、1.9m落下試験のいずれにおいても、正極の集電タブ部の端部に亀裂が発生していない。これに対し、比較例1の電池では、1.5m落下試験においては、正極の集電タブ部の端部に亀裂が生じていないが、1.9m落下試験では、正極の集電タブ部の端部に亀裂の生じたものが存在している。   As shown in Table 1, in the batteries of Example 1 and Example 2, no crack occurred at the end of the current collecting tab portion of the positive electrode in any of the 1.5 m drop test and the 1.9 m drop test. On the other hand, in the battery of Comparative Example 1, in the 1.5 m drop test, the end of the current collector tab portion of the positive electrode is not cracked, but in the 1.9 m drop test, the current collector tab portion of the positive electrode is not cracked. There are cracks at the edges.

1 扁平形非水二次電池
2 外装ケース
3 封口ケース
4 絶縁ガスケット
5 正極
5a 正極の本体部
5b 正極の集電タブ部
6、6A、6B 負極
6a 負極の本体部
6b 負極の集電タブ部
7 セパレータ
7c 接合部
8 絶縁材
500 一体化した各正極の集電タブ部
501 溶接痕
DESCRIPTION OF SYMBOLS 1 Flat type non-aqueous secondary battery 2 Exterior case 3 Sealing case 4 Insulating gasket 5 Positive electrode 5a Positive electrode main body 5b Positive electrode current collecting tab portion 6, 6A, 6B Negative electrode 6a Negative electrode main body portion 6b Negative electrode current collecting tab portion 7 Separator 7c Joint 8 Insulating material 500 Current collecting tab 501 of each integrated positive electrode Welding trace

Claims (8)

外装ケースと封口ケースとが、絶縁ガスケットを介してカシメ封口されて形成された空間内に、正極と負極とがセパレータを介して交互に、かつ前記外装ケースおよび前記封口ケースの扁平面に略平行に積層されており、正極および負極の合計枚数が3枚以上である電極群、および非水電解液を有する扁平形非水二次電池であって、
前記外装ケースおよび前記封口ケースのいずれか一方が正極端子を兼ね、他方が負極端子を兼ねており、
前記正極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記正極の本体部には、集電体の片面または両面に正極活物質を含む正極合剤層が形成されており、前記正極の集電タブ部では、集電体に正極合剤層が形成されておらず、
前記電極群は、前記正極を少なくとも2枚有しており、前記各正極の集電タブ部が纏められ、互いに溶接されて一体化しており、
前記一体化した各正極の集電タブ部が、正極端子を兼ねる外装ケースまたは封口ケースの内面に溶接されており、
前記一体化した各正極の集電タブ部における各正極の集電タブ部が互いに溶接されている箇所が、前記一体化した各正極の集電タブ部における幅方向の端部にまで設けられており、かつ前記一体化した各正極の集電タブ部における各正極の集電タブ部が互いに溶接されている箇所のうち、正極の本体部に最も近い部分が、前記一体化した各正極の集電タブ部における幅方向の端部以外の箇所に存在していることを特徴とする扁平形非水二次電池。
In the space formed by crimping the outer case and the sealing case via an insulating gasket, the positive electrode and the negative electrode are alternately interposed via a separator, and substantially parallel to the flat surface of the outer case and the sealing case. A flat non-aqueous secondary battery having a non-aqueous electrolyte and an electrode group in which the total number of positive and negative electrodes is 3 or more,
Either one of the outer case and the sealing case serves as a positive electrode terminal, and the other serves as a negative electrode terminal,
The positive electrode has a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. The main body portion of the positive electrode includes a current collector. A positive electrode mixture layer containing a positive electrode active material is formed on one side or both sides, and in the current collector tab portion of the positive electrode, a positive electrode mixture layer is not formed on the current collector,
The electrode group has at least two positive electrodes, the current collecting tabs of the positive electrodes are gathered together, and are welded and integrated with each other.
The integrated current collecting tab portion of each positive electrode is welded to the inner surface of an outer case or a sealing case that also serves as a positive electrode terminal,
The location where the current collecting tab portions of each positive electrode in the integrated current collecting tab portion are welded to each other is provided up to the end in the width direction of the current collecting tab portion of each integrated positive electrode. And the portion of the integrated current collecting tab portion of each positive electrode, where the current collecting tab portions of each positive electrode are welded to each other, is the portion closest to the main body portion of the positive electrode. A flat non-aqueous secondary battery, which is present in a portion other than the end portion in the width direction of the electric tab portion.
一体化した各正極の集電タブ部における正極端子を兼ねる外装ケースまたは封口ケースの内面との溶接痕が、各正極の集電タブ部が互いに溶接されている箇所と、各正極の集電タブ部が互いに溶接されていない箇所とに存在する請求項1に記載の扁平形非水二次電池。   In the integrated current collecting tab portion of each positive electrode, the welding mark with the inner surface of the exterior case or sealing case that also serves as the positive electrode terminal, the location where the current collecting tab portions of each positive electrode are welded to each other, and the current collecting tab of each positive electrode The flat nonaqueous secondary battery according to claim 1, wherein the portions are present at locations where the portions are not welded to each other. 外装ケースと封口ケースとが、絶縁ガスケットを介してカシメ封口されて形成された空間内に、正極と負極とがセパレータを介して交互に、かつ前記外装ケースおよび前記封口ケースの扁平面に略平行に積層されており、正極および負極の合計枚数が3枚以上である電極群、および非水電解液を有する扁平形非水二次電池であって、
前記外装ケースおよび前記封口ケースのいずれか一方が正極端子を兼ね、他方が負極端子を兼ねており、
前記負極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記負極の本体部には、集電体の片面または両面に負極活物質を含む負極剤層が形成されており、前記負極の集電タブ部では、集電体に負極剤層が形成されておらず、
前記電極群は、前記負極を少なくとも2枚有しており、前記各負極の集電タブ部が纏められ、互いに溶接されて一体化しており、
前記一体化した各負極の集電タブ部が、負極端子を兼ねる外装ケースまたは封口ケースの内面に溶接されており、
前記一体化した各負極の集電タブ部における各負極の集電タブ部が互いに溶接されている箇所が、前記一体化した各負極の集電タブ部における幅方向の端部にまで設けられており、かつ前記一体化した各負極の集電タブ部における各負極の集電タブ部が互いに溶接されている箇所のうち、負極の本体部に最も近い部分が、前記一体化した各負極の集電タブ部における幅方向の端部以外の箇所に存在していることを特徴とする扁平形非水二次電池。
In the space formed by crimping the outer case and the sealing case via an insulating gasket, the positive electrode and the negative electrode are alternately interposed via a separator, and substantially parallel to the flat surface of the outer case and the sealing case. A flat non-aqueous secondary battery having a non-aqueous electrolyte and an electrode group in which the total number of positive and negative electrodes is 3 or more,
Either one of the outer case and the sealing case serves as a positive electrode terminal, and the other serves as a negative electrode terminal,
The negative electrode has a main body portion and a current collecting tab portion that protrudes from the main body portion in a plan view and is narrower than the main body portion. The main body portion of the negative electrode includes a current collector. A negative electrode layer containing a negative electrode active material is formed on one side or both sides, and in the current collector tab portion of the negative electrode, the negative electrode layer is not formed on the current collector,
The electrode group has at least two negative electrodes, the current collecting tabs of the negative electrodes are gathered together, and are welded together to be integrated,
The integrated current collecting tab portion of each negative electrode is welded to the inner surface of the outer case or sealing case that also serves as the negative electrode terminal,
The locations where the negative electrode current collecting tab portions of the integrated negative electrode current collecting tab portions are welded to each other are provided up to the end in the width direction of the integrated negative electrode current collecting tab portions. And the portion of the negative electrode current collecting tab portion of the negative electrode current collecting tab portion welded to each other is the portion closest to the negative electrode main body portion is the current collector of the integrated negative electrode. A flat non-aqueous secondary battery, which is present in a portion other than the end portion in the width direction of the electric tab portion.
一体化した各負極の集電タブ部における負極端子を兼ねる外装ケースまたは封口ケースの内面との溶接痕が、各負極の集電タブ部が互いに溶接されている箇所と、各負極の集電タブ部が互いに溶接されていない箇所とに存在する請求項3に記載の扁平形非水二次電池。   In the integrated current collecting tab portion of each negative electrode, the welding trace with the inner surface of the outer case or sealing case that also serves as the negative electrode terminal, the location where the current collecting tab portions of each negative electrode are welded to each other, and the current collecting tab of each negative electrode The flat nonaqueous secondary battery according to claim 3, wherein the portions are present at locations where the portions are not welded to each other. 少なくとも両側が負極と対向している正極の両面には、熱可塑性樹脂製の微多孔膜からなるセパレータが配置されており、
前記2枚のセパレータは、前記正極の本体部全面を覆う主体部と、前記主体部から突出し、前記正極の集電タブ部の、少なくとも本体部との境界部を含む部分を覆う張り出し部とを有しており、かつ前記2枚のセパレータは、その主体部の周縁部の少なくとも一部において、互いに溶着された接合部を有している請求項1〜4のいずれかに記載の扁平形非水二次電池。
At least on both sides of the positive electrode facing the negative electrode, separators made of a microporous film made of thermoplastic resin are arranged,
The two separators include a main body that covers the entire surface of the main body of the positive electrode, and an overhang that protrudes from the main body and covers at least a portion of the current collecting tab of the positive electrode that includes a boundary with the main body. The flat separator according to any one of claims 1 to 4, wherein the two separators have joint portions welded to each other at least at a part of a peripheral edge portion of the main body portion. Water secondary battery.
正極の両面に配置された2枚のセパレータにおける接合部が、前記2枚のセパレータ同士が直接溶着されて形成されている請求項5に記載の扁平形非水二次電池。   The flat non-aqueous secondary battery according to claim 5, wherein a joint portion between two separators disposed on both surfaces of the positive electrode is formed by directly welding the two separators. 正極の両面に配置された2枚のセパレータにおける接合部が、前記2枚のセパレータを構成する熱可塑性樹脂と同種の樹脂で構成された層を介して溶着されて形成されている請求項5に記載の扁平形非水二次電池。   The joining portion of the two separators arranged on both surfaces of the positive electrode is formed by welding through a layer made of the same kind of resin as the thermoplastic resin constituting the two separators. The flat non-aqueous secondary battery described. セパレータを構成する熱可塑性樹脂が、ポリオレフィンである請求項5〜7のいずれかに記載の扁平形非水二次電池。   The flat non-aqueous secondary battery according to any one of claims 5 to 7, wherein the thermoplastic resin constituting the separator is a polyolefin.
JP2010250768A 2010-11-09 2010-11-09 Flat non-aqueous secondary battery Active JP5528305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010250768A JP5528305B2 (en) 2010-11-09 2010-11-09 Flat non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010250768A JP5528305B2 (en) 2010-11-09 2010-11-09 Flat non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2012104319A JP2012104319A (en) 2012-05-31
JP5528305B2 true JP5528305B2 (en) 2014-06-25

Family

ID=46394487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250768A Active JP5528305B2 (en) 2010-11-09 2010-11-09 Flat non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5528305B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160310748A1 (en) * 2015-04-22 2016-10-27 Medtronic, Inc. Sealed separator and tab insulator for use in an electrochemical cell
CN111463371B (en) * 2020-04-24 2020-12-08 福建南平延平区南孚新能源科技有限公司 Anti-seepage welding method and welding structure of button battery and application of anti-seepage welding method and welding structure
CN114300816B (en) * 2021-12-23 2023-10-20 三一技术装备有限公司 Battery pole core and battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791351B2 (en) * 2001-05-30 2006-06-28 三菱化学株式会社 Battery pack
JP2003017031A (en) * 2001-06-28 2003-01-17 Furukawa Battery Co Ltd:The Plate covered with separator for storage battery
JP4019722B2 (en) * 2002-01-29 2007-12-12 松下電器産業株式会社 Coin-cell battery
JP3767531B2 (en) * 2002-08-01 2006-04-19 日産自動車株式会社 Battery assembly
JP2005093261A (en) * 2003-09-18 2005-04-07 Nec Lamilion Energy Ltd Method for manufacturing battery wrapped with laminated film
JP2005310577A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
JP5082264B2 (en) * 2006-03-15 2012-11-28 日本電気株式会社 Film-clad electrical device and method for manufacturing the same
JP2009224276A (en) * 2008-03-18 2009-10-01 Hitachi Maxell Ltd Flat rectangular battery

Also Published As

Publication number Publication date
JP2012104319A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5735096B2 (en) Non-aqueous secondary battery manufacturing method and non-aqueous secondary battery manufacturing method
KR101363438B1 (en) Flat nonaqueous secondary battery
JP6032628B2 (en) Thin battery
JP6081745B2 (en) Flat non-aqueous secondary battery
JP5483587B2 (en) Battery and manufacturing method thereof
JP2011159491A (en) Flat nonaqueous secondary battery
JP5348720B2 (en) Flat non-aqueous secondary battery
JP2014049371A (en) Flat type nonaqueous secondary battery and manufacturing method thereof
JP5495270B2 (en) battery
JP2012064366A (en) Flat-shaped nonaqueous secondary battery and manufacturing method thereof
JP5562655B2 (en) Flat non-aqueous secondary battery
JP6283288B2 (en) Flat non-aqueous secondary battery
JP5377249B2 (en) Flat non-aqueous secondary battery
JP5528305B2 (en) Flat non-aqueous secondary battery
JP5528304B2 (en) Flat non-aqueous secondary battery
JP2011129330A (en) Flat type nonaqueous secondary battery
JP6240265B2 (en) Method for manufacturing flat non-aqueous secondary battery
JP5681358B2 (en) Flat non-aqueous secondary battery
JP5562654B2 (en) Flat non-aqueous secondary battery
JP2011154784A (en) Flat nonaqueous secondary battery
JP5566671B2 (en) Flat non-aqueous secondary battery
JP5473063B2 (en) Flat non-aqueous secondary battery and manufacturing method thereof
JP2011187266A (en) Flat nonaqueous secondary battery
JP5377250B2 (en) Flat non-aqueous secondary battery
JP2011187392A (en) Flat nonaqueous secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R150 Certificate of patent or registration of utility model

Ref document number: 5528305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250