JP2006213817A - Method and apparatus for purifying fluidized bed gasification gas - Google Patents

Method and apparatus for purifying fluidized bed gasification gas Download PDF

Info

Publication number
JP2006213817A
JP2006213817A JP2005027864A JP2005027864A JP2006213817A JP 2006213817 A JP2006213817 A JP 2006213817A JP 2005027864 A JP2005027864 A JP 2005027864A JP 2005027864 A JP2005027864 A JP 2005027864A JP 2006213817 A JP2006213817 A JP 2006213817A
Authority
JP
Japan
Prior art keywords
fluidized bed
gasification
gas
gas purification
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005027864A
Other languages
Japanese (ja)
Other versions
JP4479906B2 (en
Inventor
Mitsufumi Kyo
光文 許
Takahiro Murakami
高広 村上
Toshiyuki Suda
俊之 須田
Shigeru Kusama
滋 草間
Toshiro Fujimori
俊郎 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2005027864A priority Critical patent/JP4479906B2/en
Publication of JP2006213817A publication Critical patent/JP2006213817A/en
Application granted granted Critical
Publication of JP4479906B2 publication Critical patent/JP4479906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for purifying a fluidized bed gasification gas in which a tar and H<SB>2</SB>S contained in a gasification gas of a solid fuel can be easily and inexpensively removed by using a natural mineral containing CaCO<SB>3</SB>, MgCO<SB>3</SB>and the like and thereby the gasification gas can be sufficiently purified. <P>SOLUTION: A natural mineral gas purification agent containing CaCO<SB>3</SB>and MgCO<SB>3</SB>is activated by firing it in a char combustion furnace (20) provided in parallel with a gasification furnace (10). The activated gas purification agent such as CaO and MgO is used in the gasification furnace (10) to purify the fluidized bed gasification gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体燃料ガス化ガスの精製方法及び精製装置に係り、詳しくは外部循環型の流動層を有したシステムにおけるガス化ガスの精製技術に関する。   The present invention relates to a purification method and a purification apparatus for solid fuel gasification gas, and more particularly to purification technology for gasification gas in a system having an external circulation type fluidized bed.

石炭、バイオマス等の固体燃料のガス化においては、化学的な組成及び形成温度に応じ、主として700℃以下の温度で形成される低温タールとそれ以上の温度で形成される高温タールの2種類のタールが生成される。
しかしながら、このように生成されるタールの存在は装置や環境等に種々の悪影響を与え、ガスの利用対象にもよるが、例えばガスタービン等に使用するガスにおいては、最後のガス中に含まれるタールの量を数十(例えば、10〜20)mg/m3程度まで抑えることが要求されている。
In the gasification of solid fuels such as coal and biomass, there are two types of high-temperature tars, mainly low-temperature tars formed at temperatures below 700 ° C and higher temperatures, depending on the chemical composition and formation temperature. Tar is produced.
However, the presence of tar generated in this manner has various adverse effects on the apparatus and the environment, and depends on the target of gas use. For example, in the gas used for a gas turbine, it is included in the last gas. It is required to suppress the amount of tar to several tens (for example, 10 to 20) mg / m 3 .

そこで、固体燃料のガス化ガスを精製してタールを除去する手法が種々開発されている。
大きく分けると、タールの除去方法としては、スクラバを用いた冷浄化法、ガス化後のガスを直接処理するHot-gas浄化法及びIn-bed浄化法の三通りの手法がある。
冷浄化法は、確実にタールを除去できるとともにH2Sをも除去可能である一方、エネルギーの損失と廃水の後処理の欠点を避けられない。
Therefore, various techniques for purifying solid fuel gasification gas to remove tar have been developed.
Broadly speaking, there are three types of tar removal methods: a cold purification method using a scrubber, a hot-gas purification method that directly processes gas after gasification, and an in-bed purification method.
While the cold purification method can reliably remove tar and H 2 S, it cannot avoid the disadvantages of energy loss and post-treatment of waste water.

Hot-gas浄化法は、主として触媒除去と熱分解の二つの手法からなる。
触媒を用いる場合には、タールの熱分解と改質等の反応とが同時に行われる。触媒としては、例えばNi-Base触媒の他、焙焼したドロマイト、マグネサイト、石灰石、ゼオライト、酸化アルミニウム(Al23)、二酸化珪素(SiO2)、酸化鉄(FexOy)があり、一般には低コストのドロマイトや石灰石が使用されている。そして、Hot-gas浄化法の適用例として、単独のガス精製反応器を用いるものの他、ガス化炉の流動層の上部空間に充填剤を有する第二段または多段の反応層を設置するものが知られている(特許文献1)。
The hot-gas purification method mainly consists of two methods: catalyst removal and thermal decomposition.
When using a catalyst, thermal decomposition of tar and reaction such as reforming are performed simultaneously. Examples of the catalyst include Ni-Base catalyst, roasted dolomite, magnesite, limestone, zeolite, aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), and iron oxide (FexOy). Low cost dolomite and limestone are used. And as an application example of the Hot-gas purification method, there are those that use a single gas purification reactor, as well as those in which a second-stage or multi-stage reaction layer having a filler is installed in the upper space of the fluidized bed of the gasifier. Known (Patent Document 1).

熱分解の適用例としては、熱分解のためにガス化の過程を二段階に分け、最初の600〜800℃の第一段階にて燃料をガス化し、このガス化したガス(ガス化ガス)をさらに温度の高い第二段階の空間に通してタールを除去するものが知られている(特許文献2)。また、空気供給により第二段階の空間の温度を800〜1100℃の高温に保持するもの(特許文献3)、単独の高温ガス溶融により溶融炉の温度を1300℃以上とするもの(特許文献4)が知られている。   As an application example of pyrolysis, the gasification process is divided into two stages for pyrolysis, the fuel is gasified in the first stage of 600 to 800 ° C., and this gasified gas (gasification gas) It is known that tar is removed by passing through a second stage space having a higher temperature (Patent Document 2). Further, the temperature of the second stage space is maintained at a high temperature of 800 to 1100 ° C. by supplying air (Patent Document 3), and the temperature of the melting furnace is set to 1300 ° C. or more by independent high temperature gas melting (Patent Document 4). )It has been known.

In-bed浄化法は、ガス化に伴いタールの生成を予め抑える方法であり、この方法として、例えばガス化条件を最適化するとともに金属酸化物をガス化炉の流動化基材として利用し、タール等の異物を当該流動化基材に吸着させる方法が知られている(特許文献5)。なお、通常において基材はタールを改質反応させる触媒機能も有している。
具体的に、当該In-bed浄化法では、ガス中のタール含有量を2g/ m3程度にすることを目的としており、その後、改質触媒層においてさらにタール含有量を20mg/ m3以下にまで低下させる。
The in-bed purification method is a method of previously suppressing the generation of tar with gasification, and as this method, for example, the gasification conditions are optimized and a metal oxide is used as a fluidization substrate of the gasification furnace, A method of adsorbing foreign substances such as tar on the fluidized substrate is known (Patent Document 5). In general, the base material also has a catalytic function for reforming tar.
Specifically, the in-bed purification method aims to reduce the tar content in the gas to about 2 g / m 3 , and then further reduce the tar content to 20 mg / m 3 or less in the reforming catalyst layer. To lower.

しかしながら、このように改質触媒層においてタール含有量を20mg/ m3以下にまで低下させようとすると、高タールの状況下ではタール中のH2Sの影響も相俟って改質触媒の活性が早期に低下してしまうことになる。
そこで、ガス化炉と改質触媒層との間にGuard-bedと呼ばれる固定層反応器を介装し、ガス化炉からのガスを予備処理することが考えられている。このGuard-bedを用いた方法は、プロセスが多少複雑になるものの、ガスの浄化方法としては有効なものである。具体的には、Guard-bedに金属酸化物、例えば焙焼した上記ドロマイト、マグネサイト、石灰石、ゼオライト、酸化アルミニウム(Al23)、二酸化珪素(SiO2)、酸化鉄(FexOy)を充填する。これによりタールの低減も図られる。
However, if the tar content is reduced to 20 mg / m 3 or less in the reforming catalyst layer as described above, the effect of H 2 S in the tar is combined under the high tar condition. Activity will fall early.
Therefore, it is considered that a fixed bed reactor called Guard-bed is interposed between the gasification furnace and the reforming catalyst layer to pretreat the gas from the gasification furnace. This method using Guard-bed is effective as a gas purification method, although the process is somewhat complicated. Specifically, Guard-bed is filled with metal oxides such as roasted dolomite, magnesite, limestone, zeolite, aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), and iron oxide (FexOy). To do. Thereby, reduction of tar is also achieved.

また、CaO、CaO・MgO、MgO等の活性酸化物を充填することでガス中のH2Sを低減する方法が知られている(特許文献6)。
特開平9−53082号公報 特開平6−256775号公報 特開平9−166309号公報 特開平10−236801号公報 特開2004−51855号公報 特開平9−202888号公報
In addition, a method of reducing H 2 S in a gas by filling an active oxide such as CaO, CaO · MgO, or MgO is known (Patent Document 6).
JP-A-9-53082 JP-A-6-256775 JP-A-9-166309 Japanese Patent Laid-Open No. 10-236801 JP 2004-51855 A JP-A-9-202888

ところで、上記特許文献6に示す方法によれば、石炭、バイオマス等の固体燃料のガス化とガス化後残留チャーの燃焼を略同じ反応空間で行い、ガス化ガスの精製には焼成したCaO、MgO等を使用するようにしている。
しかしながら、この場合、焼成後のCaO、MgO等については別工程において準備する必要があり、コスト高となる現実がある。
By the way, according to the method shown in Patent Document 6, gasification of solid fuel such as coal and biomass and combustion of residual char after gasification are performed in substantially the same reaction space. MgO or the like is used.
However, in this case, it is necessary to prepare CaO, MgO, and the like after firing in a separate process, which increases the cost.

そこで、循環流動層において安価なCaCO3、MgCO3等を含む天然鉱物を用いてCaOやMgOを焼成することが考えられる。
ところが、上記特許文献6に開示の装置では、燃焼とガス化が殆ど共存しているため、生成ガス中のCO2濃度が高く、またガス化が吸熱反応であることから、流動層の温度があまり上がらず、故にCaCO3、MgCO3等を含む天然鉱物の熱分解が起こり難く、CaOやMgOが十分に生成されないという問題がある。
Therefore, it is conceivable to calcine CaO or MgO using natural minerals including inexpensive CaCO 3 , MgCO 3, etc. in the circulating fluidized bed.
However, in the apparatus disclosed in Patent Document 6, combustion and gasification almost coexist, so the CO 2 concentration in the product gas is high, and the gasification is an endothermic reaction. Therefore, there is a problem that natural minerals containing CaCO 3 , MgCO 3 and the like are not easily decomposed and CaO and MgO are not sufficiently generated.

また、ここではタールの除去に上記Hot-gas浄化法が適用されることになるが、流動層の温度が十分に上がらないため、ガス化ガス中のタールをも十分に低減することができないという問題もある。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、固体燃料のガス化ガス中に含まれるタールやH2SをCaCO3、MgCO3等を含む天然鉱物を用いて容易且つ安価に除去でき、ガス化ガスを十分に精製可能な流動層ガス化ガス精製方法及び精製装置を提供することにある。
In addition, although the Hot-gas purification method is applied here for the removal of tar, the temperature of the fluidized bed does not rise sufficiently, so that the tar in the gasification gas cannot be sufficiently reduced. There is also a problem.
The present invention has been made to solve such problems. The object of the present invention is to provide tar or H 2 S contained in the gasification gas of the solid fuel containing natural substances such as CaCO 3 and MgCO 3. An object of the present invention is to provide a fluidized bed gasification gas purification method and purification apparatus that can be easily and inexpensively removed using minerals and that can sufficiently purify the gasification gas.

上記した目的を達成するために、請求項1の流動層ガス化ガス精製方法では、ガス化炉内の流動層に供給した固体燃料を前記ガス化炉内に循環される加熱された流動熱媒体の熱と流動層に吹き込むガス化剤によってガス化し、該ガス化により生成したガス化ガスをガス精製剤を用いて精製する流動層ガス化ガス精製方法であって、前記ガス化炉内の流動層に前記加熱された流動熱媒体とともに活性化したガス精製剤を供給し、前記固体燃料から生成したガス化ガスを該活性化したガス精製剤によって精製する第一工程と、前記ガス化炉に並設される燃焼炉内の流動層に前記ガス化炉から前記固体燃料のガス化により生成されたチャー、低温化した前記流動熱媒体、反応したガス精製剤及び新添加の未活性化ガス精製剤を供給し、該燃焼炉内の流動層で酸化剤を供給しながら前記チャーを燃焼させ、該チャーの燃焼熱で前記流動熱媒体を加熱するとともに前記反応したガス精製剤及び前記新添加の未活性化ガス精製剤を焼成により活性化し、該加熱された流動熱媒体及び該活性化したガス精製剤を前記ガス化炉に循環させる第二工程と、前記ガス化炉から前記燃焼炉におけるチャーの燃焼により生成した燃焼灰とともにガス精製に使用されて精製機能の低下した低活性ガス精製剤を排出する第三工程とを備えたことを特徴とする。   In order to achieve the above object, in the fluidized bed gasification gas purification method according to claim 1, a heated fluid heat medium in which the solid fuel supplied to the fluidized bed in the gasification furnace is circulated in the gasification furnace. A fluidized-bed gasification gas refining method, wherein the gasification gas generated by the gasification is purified using a gas purifying agent, wherein the gasification gas is gasified by the heat of the gas and the gasifying agent blown into the fluidized bed. Supplying a gas purification agent activated with the heated fluid heat medium to the bed, and purifying the gasification gas generated from the solid fuel with the activated gas purification agent; and The char generated by gasification of the solid fuel from the gasifier, the fluidized heat medium reduced in temperature, the reacted gas purifier, and the newly added unactivated gas refined in a fluidized bed in a combustion furnace provided side by side Supply the formulation, in the combustion furnace The char is burned while supplying an oxidant in the fluidized bed, the fluid heat medium is heated by the combustion heat of the char, and the reacted gas purification agent and the newly added unactivated gas purification agent are activated by firing. And a second step of circulating the heated fluid heat medium and the activated gas purification agent to the gasification furnace, and gas purification together with combustion ash generated by combustion of char in the combustion furnace from the gasification furnace And a third step of discharging the low-activity gas purification agent having a reduced purification function.

即ち、ガス化炉において固体燃料から生成されるガス化ガス中に活性化したガス精製剤(例えば、CaO、MgO)を供給すると、ガス化ガスに含まれるタールがその活性化したガス精製剤の触媒作用によって改質されるとともに煤塵がガス精製剤に付着し、H2Sが当該活性化したガス精製剤と反応して硫化物を生成してガス化ガスの精製が行われる(第一工程)。 That is, when an activated gas purification agent (for example, CaO, MgO) is supplied into a gasification gas generated from solid fuel in a gasification furnace, tar contained in the gasification gas is converted into the activated gas purification agent. The gasification gas is refined by reforming by the catalytic action and adhering dust to the gas purification agent, and H 2 S reacts with the activated gas purification agent to produce sulfide (first step). ).

また、ガス化は吸熱反応であるために炉内温度が低く、またCO2濃度が高いため、ガス化炉内ではガス精製剤を活性化することができないのであるが、ガス化炉とは別体に併設した流動熱媒体を加熱するための燃焼炉では、ガス化して残ったチャーを燃焼させるだけで炉内雰囲気が高温にして良好に低CO2濃度ともなり、故にガス化炉からの反応したガス精製剤及び新添加の未活性化ガス精製剤を焼成し活性化させることが可能とされ、当該活性化したガス精製剤が燃焼炉からガス化炉に好適に循環される(第二工程)。 In addition, because gasification is an endothermic reaction, the temperature in the furnace is low and the CO 2 concentration is high, so the gas purifier cannot be activated in the gasification furnace. the combustion furnace for heating the fluid heat medium which houses the body, better will be the low CO 2 concentration, thus reaction from the gasifier furnace atmosphere only by burning the remaining char was gasified in the high-temperature The activated gas purifier and the newly added unactivated gas purifier can be fired and activated, and the activated gas purifier is suitably circulated from the combustion furnace to the gasifier (second step). ).

そして、活性化したガス精製剤が精製に使用されると、精製機能が低下することになるが、このように精製機能の低下した低活性ガス精製剤は、燃焼炉におけるチャーの燃焼により生成した燃焼灰とともに排出される(第三工程)。
また、請求項2の流動層ガス化ガス精製方法では、前記第二工程において、前記反応したガス精製剤のうち再生可能な部分を前記ガス化炉から前記燃焼炉内の流動層に供給し、前記チャーの燃焼熱で焼成により活性化して該反応したガス精製剤の精製機能を再生させることを特徴とする。
When the activated gas purification agent is used for purification, the purification function is reduced. The low activity gas purification agent having the reduced purification function is generated by the combustion of char in the combustion furnace. It is discharged together with combustion ash (third process).
Further, in the fluidized bed gasification gas purification method according to claim 2, in the second step, a reproducible portion of the reacted gas purification agent is supplied from the gasification furnace to the fluidized bed in the combustion furnace, The purification function of the reacted gas purifier is regenerated by being activated by firing with the combustion heat of the char.

これにより、ガス化炉で反応したガス精製剤の一部が燃焼炉において焼成し活性化して再生され、ガス化炉に好適に循環される。
また、請求項3の流動層ガス化ガス精製方法では、前記第二工程において、新添加の未活性化ガス精製剤を前記燃焼炉内の流動層に供給し、前記チャーの燃焼熱で焼成により活性化して該新添加の未活性化ガス精製剤に精製機能を生起させることを特徴とする。
Thereby, a part of the gas purification agent reacted in the gasification furnace is baked and activated in the combustion furnace to be regenerated, and is suitably circulated in the gasification furnace.
Further, in the fluidized bed gasification gas purification method according to claim 3, in the second step, the newly added unactivated gas purification agent is supplied to the fluidized bed in the combustion furnace, and is calcined by the combustion heat of the char. It is characterized by being activated to cause a purification function in the newly added non-activated gas purification agent.

これより、精製機能の低下した低活性ガス精製剤が廃棄される一方で燃焼炉に新添加の未活性化ガス精製剤が補充され、当該新添加の未活性化ガス精製剤が焼成し活性化されてガス化炉に好適に循環される。
また、請求項4の流動層ガス化ガス精製方法では、前記新添加の未活性化ガス精製剤はCaCO3やMgCO3等を含む天然鉱物であり、前記第二工程では該天然鉱物を焼成により活性化して該鉱物中に在る金属の酸化物を生成することを特徴とする。
As a result, the low-reactivity gas purification agent with reduced purification function is discarded, while the newly added non-activated gas purification agent is replenished to the combustion furnace, and the newly added non-activated gas purification agent is fired and activated. And is suitably circulated in the gasifier.
In the fluidized bed gasification gas purification method according to claim 4, the newly added unactivated gas purification agent is a natural mineral containing CaCO 3 , MgCO 3, etc., and the natural mineral is calcined in the second step. It is activated to produce an oxide of a metal present in the mineral.

即ち、天然鉱物である石灰石やドロマイト等から活性化したガス精製剤CaO、MgO、CaO・MgO等の金属酸化物が容易に焼成され、当該金属酸化物によって良好にガス化ガスの精製が行われる。
請求項5の流動層ガス化ガス精製装置では、ガス化炉内の流動層に供給した固体燃料を前記ガス化炉内に循環される加熱された流動熱媒体の熱及び流動層に吹き込むガス化剤によってガス化し、該ガス化により生成したガス化ガスをガス精製剤を用いて精製する流動層ガス化ガス精製装置であって、前記ガス化炉に併設され、前記固体燃料のガス化により生成され前記ガス化炉から供給されるチャーを酸化剤を供給しながら流動層で燃焼させ、該チャーの燃焼熱で前記ガス化炉から該チャーとともに供給される低温化した前記流動熱媒体を該流動層で加熱するとともに前記ガス化炉から供給される反応したガス精製剤及び新添加の未活性化ガス精製剤を該流動層で焼成により活性化し、該加熱された流動熱媒体及び該活性化したガス精製剤を前記ガス化炉に循環させる燃焼炉と、前記燃焼炉内の流動層に前記新添加の未活性化ガス精製剤を供給するガス精製剤供給手段と、前記ガス化炉から前記燃焼炉におけるチャーの燃焼により生成した燃焼灰とともにガス精製に使用されて精製機能の低下した低活性ガス精製剤を排出する排出手段とを備えたことを特徴とする。
That is, metal oxides such as gas purification agents CaO, MgO, CaO · MgO activated from natural minerals such as limestone and dolomite are easily calcined, and the gas oxide is well purified by the metal oxides. .
6. The fluidized bed gasification gas purification apparatus according to claim 5, wherein the solid fuel supplied to the fluidized bed in the gasification furnace is heated by the heated fluidized heat medium circulated in the gasification furnace and gasified by blowing into the fluidized bed. A fluidized bed gasification gas refining device that gasifies by a gasifying agent and purifies the gasification gas generated by the gasification using a gas purifying agent, and is provided by the gasification furnace, and is generated by gasification of the solid fuel The char supplied from the gasification furnace is combusted in a fluidized bed while supplying an oxidizer, and the fluidized heat transfer medium supplied with the char from the gasification furnace with the heat of combustion of the char is fluidized in the fluidized bed. The heated and heated heated heat medium and the activated gas purification agent and the newly added unactivated gas purification agent supplied from the gasification furnace are activated by firing in the fluidized bed. Gas purifier A combustion furnace to be circulated in the gasification furnace, a gas purification agent supply means for supplying the newly added unactivated gas purification agent to the fluidized bed in the combustion furnace, and a char in the combustion furnace from the gasification furnace Discharge means for discharging a low activity gas refining agent having a reduced purification function, which is used for gas purification together with combustion ash generated by combustion, is provided.

即ち、ガス化炉において固体燃料から生成されるガス化ガス中に活性化したガス精製剤(例えば、CaO、MgO)を供給すると、ガス化ガスに含まれるタールがその活性化したガス精製剤の触媒作用によって改質されるとともに煤塵がガス精製剤に付着し、H2Sが当該活性化したガス精製剤と反応して硫化物を生成してガス化ガスの精製が行われることになるが、上述したように、ガス化炉とは別体に併設した流動熱媒体を加熱するための燃焼炉では、ガス化炉からのチャーだけの燃焼により炉内雰囲気が高温にして良好に低CO2濃度となり、故にガス化炉から反応したガス精製剤を供給しガス精製剤供給手段により新添加の未活性化ガス精製剤を供給することで当該反応したガス精製剤及び未活性化ガス精製剤を良好に焼成し活性化させることが可能とされ、当該燃焼炉から活性化したガス精製剤がガス化炉に好適に循環される。 That is, when an activated gas purification agent (for example, CaO, MgO) is supplied into a gasification gas generated from solid fuel in a gasification furnace, tar contained in the gasification gas is converted into the activated gas purification agent. While being reformed by the catalytic action, soot and dust adheres to the gas purifying agent, and H 2 S reacts with the activated gas purifying agent to produce sulfide, thereby purifying the gasification gas. as described above, in the combustion furnace for heating the fluid heat medium which features separately from the gasifier, good low CO 2 furnace atmosphere by the combustion of only the char from the gasification furnace is heated to a high temperature Therefore, the reacted gas purification agent and the unactivated gas purification agent are supplied by supplying the gas purification agent reacted from the gasification furnace and supplying the newly added unactivated gas purification agent by the gas purification agent supply means. Good firing and activation The gas purification agent activated from the combustion furnace is suitably circulated to the gasification furnace.

そして、活性化したガス精製剤が精製に使用されると、精製機能が低下することになるが、このように精製機能の低下した低活性ガス精製剤は、排出手段により燃焼炉におけるチャーの燃焼により生成した燃焼灰とともに排出される。
また、請求項6の流動層ガス化ガス精製装置では、前記ガス化炉は多段流動層からなり、前記加熱された流動熱媒体及び前記活性化したガス精製剤を該多段流動層のうちの上段側の流動層から順に通させ、下段側の流動層に前記固体燃料を供給することを特徴とする。
When the activated gas purification agent is used for purification, the purification function is lowered. The low activity gas purification agent having the reduced purification function is burned in the combustion furnace by the discharge means. It is discharged together with the combustion ash produced by
Further, in the fluidized bed gasification gas purification apparatus according to claim 6, the gasification furnace includes a multi-stage fluidized bed, and the heated fluid heat medium and the activated gas purification agent are placed in the upper stage of the multi-stage fluidized bed. The solid fuel is supplied in order from the fluidized bed on the side, and the solid fuel is supplied to the fluidized bed on the lower stage.

即ち、ガス化炉が多段流動層から構成されていると、加熱された流動熱媒体と活性化したガス精製剤とが最初に供給される上段側の流動層では高温雰囲気にして活性化したガス精製剤の活性が十分に発揮され、下段側の流動層において固体燃料から生成され上段側の流動層に移動するガス化ガスが十分に精製される。
また、請求項7の流動層ガス化ガス精製装置では、前記上段側の流動層は前記下段側の流動層よりも水平断面積が大きいことを特徴とする。
That is, when the gasification furnace is composed of a multi-stage fluidized bed, the gas that has been activated in a high-temperature atmosphere in the upper fluidized bed to which the heated fluid heat medium and the activated gas purifier are first supplied. The activity of the purifying agent is sufficiently exhibited, and the gasified gas generated from the solid fuel in the lower fluidized bed and moving to the upper fluidized bed is sufficiently purified.
Further, in the fluidized bed gasification gas purifier according to claim 7, the upper fluidized bed has a larger horizontal cross-sectional area than the lower fluidized bed.

即ち、上段側の流動層の水平断面積が下段側の流動層よりも大きいと、ガス化ガスが上段側の流動層内に滞留する時間が長くなり、ガス化ガスがさらに十分に精製される。
また、請求項8の流動層ガス化ガス精製装置では、前記上段側の流動層から前記下段側の流動層に前記流動熱媒体及び前記活性化したガス精製剤を通すための粒子通路を有し、該粒子通路は前記ガス化炉の内部または外部に配置されていることを特徴とする。
That is, if the horizontal sectional area of the upper fluidized bed is larger than that of the lower fluidized bed, the time during which the gasified gas stays in the upper fluidized bed becomes longer, and the gasified gas is further sufficiently purified. .
The fluidized bed gasification gas purification apparatus according to claim 8 further comprises a particle passage for passing the fluidized heat medium and the activated gas purification agent from the upper fluidized bed to the lower fluidized bed. The particle passage is arranged inside or outside the gasification furnace.

即ち、上段側の流動層から下段側の流動層の粒子通路をガス化炉の内部または外部に配置することにより、流動熱媒体及び活性化したガス精製剤の循環の安定化が図られ、ガス化ガスの精製が十分に維持される。   That is, by arranging the particle passage from the upper fluidized bed to the lower fluidized bed inside or outside the gasification furnace, the circulation of the fluidized heat medium and the activated gas purifier can be stabilized, and the gas passage can be stabilized. The purification of the chemical gas is sufficiently maintained.

請求項1の流動層ガス化ガス精製方法によれば、燃焼炉において、高温且つ低CO2濃度の下、反応したガス精製剤及び未活性化ガス精製剤を焼成し活性化させ、当該活性化したガス精製剤をガス化炉に好適に循環させることができ、ガス化炉において、固体燃料から生成されるガス化ガスを、精製機能を有する物質を別工程で準備することなく当該活性化したガス精製剤を用いて良好に精製することができ、ガス化ガス中のタールやH2Sを安価にして確実に除去することができる。 According to the fluidized-bed gasification gas purification method of claim 1, in the combustion furnace, the reacted gas purification agent and the unactivated gas purification agent are calcined and activated at high temperature and low CO 2 concentration, and the activation is performed. The gas purification agent can be suitably circulated in the gasification furnace, and the gasification gas generated from the solid fuel is activated in the gasification furnace without preparing a substance having a purification function in a separate step. It can be purified well using a gas purifying agent, and tar and H 2 S in the gasification gas can be reliably removed at low cost.

また、請求項2の流動層ガス化ガス精製方法によれば、燃焼炉において、反応したガス精製剤を焼成し活性化させるようにでき、ガス化炉において、ガス化ガスを効率良く精製することができ、ガス化ガス中のタールやH2Sを安価に除去することができる。
また、請求項3の流動層ガス化ガス精製方法によれば、精製機能の低下したガス精製剤が廃棄される一方で燃焼炉に新添加の未活性化ガス精製剤を良好に補充できる。
Further, according to the fluidized bed gasification gas purification method of claim 2, the reacted gas purification agent can be baked and activated in the combustion furnace, and the gasification gas is efficiently purified in the gasification furnace. And tar and H 2 S in the gasification gas can be removed at low cost.
Further, according to the fluidized bed gasification gas purification method of the third aspect, the gas purification agent having a reduced purification function is discarded, and the newly added unactivated gas purification agent can be satisfactorily supplemented to the combustion furnace.

また、請求項4の流動層ガス化ガス精製方法によれば、天然鉱物、例えば石灰石やドロマイト等を用いて活性化したガス精製剤である金属酸化物、例えばCaO、CaO・MgO、MgOを容易にして安価に同一装置で焼成でき、当該金属酸化物によって良好にガス化ガスの精製を行うことができる。
また、請求項5の流動層ガス化ガス精製装置によれば、燃焼炉において、高温且つチャー燃焼だけによる低CO2濃度の下、供給した反応したガス精製剤(ガス化炉から)及び未活性化ガス精製剤(新添加)を焼成し活性化させ、当該活性化したガス精製剤をガス化炉に好適に循環させることができ、ガス化炉において、固体燃料から生成されるガス化ガスを、精製機能を有する物質を別工程で準備することなく当該活性化したガス精製剤を用いて良好に精製することができ、ガス化ガス中のタールやH2Sを安価にして確実に除去することができる。
According to the fluidized bed gasification gas purification method of claim 4, metal oxides such as CaO, CaO · MgO, and MgO, which are gas purification agents activated using natural minerals such as limestone and dolomite, can be easily obtained. Thus, it can be fired with the same apparatus at a low cost, and the gasification gas can be favorably purified by the metal oxide.
Further, according to the fluidized bed gasification gas purification apparatus of claim 5, in the combustion furnace, the reacted gas purification agent (from the gasification furnace) and the inert gas supplied at high temperature and low CO 2 concentration by char combustion alone. The activated gas purification agent (new addition) can be fired and activated, and the activated gas purification agent can be suitably circulated in the gasification furnace. In the gasification furnace, the gasification gas generated from the solid fuel is In addition, a substance having a purification function can be well purified using the activated gas purification agent without preparing it in a separate step, and tar and H 2 S in the gasification gas can be reliably removed at low cost. be able to.

また、請求項6の流動層ガス化ガス精製装置によれば、ガス化炉を多段流動層から構成するので、活性化したガス精製剤の供給される上段側の流動層では高温雰囲気にして活性化したガス精製剤の活性を十分に発揮でき、下段側の流動層において生成され上段側の流動層に移動するガス化ガスを十分に精製でき、ガス化ガスの精製効果を高めることができる。   According to the fluidized bed gasification gas purification apparatus of claim 6, since the gasification furnace is composed of a multistage fluidized bed, the upper fluidized bed supplied with the activated gas purification agent is activated in a high temperature atmosphere. The activated gas purification agent can sufficiently exhibit the activity, the gasified gas generated in the lower fluidized bed and transferred to the upper fluidized bed can be sufficiently purified, and the purification effect of the gasified gas can be enhanced.

また、請求項7の流動層ガス化ガス精製装置によれば、上段側の流動層の水平断面積を下段側の流動層よりも大きくすることにより、ガス化ガスの上段側の流動層内での滞留時間を長くでき、ガス化ガスの精製効果をさらに高めることができる。
また、請求項8の流動層ガス化ガス精製装置によれば、上段側の流動層から下段側の流動層の粒子通路をガス化炉の内部または外部に配置することにより、流動熱媒体及び活性化したガス精製剤の循環の安定化を図り、ガス化ガスの精製効果をさらに高めることができる。
Further, according to the fluidized bed gasification gas purifier of claim 7, the horizontal sectional area of the upper fluidized bed is made larger than that of the lower fluidized bed, so The residence time of the gas can be lengthened, and the purification effect of the gasification gas can be further enhanced.
Further, according to the fluidized bed gasification gas purification apparatus of claim 8, by arranging the particle passages from the upper fluidized bed to the lower fluidized bed inside or outside the gasification furnace, By stabilizing the circulation of the gasified gas purification agent, the purification effect of the gasification gas can be further enhanced.

以下、本発明の実施形態を添付図面に基づいて説明する。
先ず、第1実施例について説明する。
図1を参照すると、本発明の第1実施例に係る流動層ガス化ガス精製装置の概略構成図が示されており、以下図1に基づき説明する。
本発明に係る流動層ガス化ガス精製装置は、外部循環型の流動層を有したシステムとして構成され、図1に示すように、ガス化炉10と燃焼炉20とが別体に併設され、流動熱媒体(砂等のベッド材)とともに固形成分がガス化炉10及び燃焼炉20内を循環するように構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
First, the first embodiment will be described.
Referring to FIG. 1, there is shown a schematic configuration diagram of a fluidized bed gasification gas purifying apparatus according to a first embodiment of the present invention, which will be described below with reference to FIG.
A fluidized bed gasification gas purification apparatus according to the present invention is configured as a system having an external circulation type fluidized bed, and as shown in FIG. 1, a gasification furnace 10 and a combustion furnace 20 are provided separately, A solid component is circulated in the gasification furnace 10 and the combustion furnace 20 together with a fluid heat medium (bed material such as sand).

ガス化炉10は、流動層12に固体燃料(石炭、バイオマス等)を供給するとともにガス化剤(スチーマ、CO2等)を供給して後述の如く加熱され高温化された流動熱媒体の熱により固体燃料のガス化を行う装置であり、当該ガス化炉10の上部はサイクロン30に連通している。サイクロン30は固形成分とガス成分とを分離する遠心分離装置であり、ガス化炉10でガス化された合成ガス(ガス化ガス)を、例えば燃料としてガスタービンへ供給する一方、その合成ガス流中に含まれる固体成分を再びガス化炉10へ戻す機能を有している。 The gasification furnace 10 supplies solid fuel (coal, biomass, etc.) to the fluidized bed 12 and also supplies a gasifying agent (steamer, CO 2, etc.) and is heated as described below to heat the fluidized heat medium heated. Thus, the upper part of the gasification furnace 10 communicates with the cyclone 30. The cyclone 30 is a centrifugal separator that separates a solid component and a gas component, and supplies the synthesis gas (gasification gas) gasified in the gasification furnace 10 to, for example, a gas turbine as a fuel, while the synthesis gas flow It has a function of returning the solid component contained therein to the gasification furnace 10 again.

ガス化炉10の側面中央部分は粒子分級装置(排出手段)40を介して燃焼炉20の下部に連通している。粒子分級装置40は固体燃料の灰とガス化により生成されたチャー及び低温化した流動熱媒体とを分離するものであり、固体燃料の灰、即ち燃焼炉20におけるチャーの燃焼により生成した燃焼灰を排出して廃棄するとともに、チャー及び流動熱媒体を燃焼炉20の下部に供給する機能を有している。   The central portion of the side surface of the gasification furnace 10 communicates with the lower part of the combustion furnace 20 via a particle classifier (discharge means) 40. The particle classifier 40 separates the ash of the solid fuel from the char generated by the gasification and the fluidized heat medium having a low temperature, and the ash of the solid fuel, that is, the combustion ash generated by the combustion of the char in the combustion furnace 20. Is discharged and discarded, and has a function of supplying the char and the fluidized heat medium to the lower part of the combustion furnace 20.

燃焼炉20は、流動層22に下方から酸化剤(空気またはO2)を供給することでガス化炉10から供給されたチャーを燃焼させ且つ流動熱媒体を加熱して高温化する装置であり、当該燃焼炉20の上部はサイクロン50に連通している。サイクロン50は上記サイクロン30と同様に固形成分とガス成分とを分離する装置であり、燃焼炉20で生成された排ガスを大気中に排出する一方、高温化した流動熱媒体や排ガス中の固体成分を再びガス化炉10へ返戻する機能を有している。 The combustion furnace 20 is a device that burns char supplied from the gasification furnace 10 by supplying an oxidant (air or O 2 ) to the fluidized bed 22 from below and heats the fluidized heat medium to increase the temperature. The upper part of the combustion furnace 20 communicates with the cyclone 50. The cyclone 50 is a device that separates a solid component and a gas component in the same manner as the cyclone 30 and exhausts the exhaust gas generated in the combustion furnace 20 into the atmosphere. On the other hand, the cyclone 50 is heated to a fluidized heat medium or a solid component in the exhaust gas. Is returned to the gasification furnace 10 again.

そして、本発明に係る流動層ガス化ガス精製装置では、上記燃焼炉20は、さらに天然鉱物であるドロマイト(CaCO3・MgCO3)、石灰石(CaCO3)等をガス精製剤として流動層22に供給可能に構成されており、燃焼炉20にはこれらドロマイトや石灰石を供給するガス精製剤供給管(ガス精製剤供給手段)20aが設けられている。
以下、このように構成された本発明に係る流動層ガス化ガス精製装置の作用、及び流動層ガス化ガス精製方法について説明する。
In the fluidized bed gasification gas purification apparatus according to the present invention, the combustion furnace 20 further includes the natural minerals such as dolomite (CaCO 3 · MgCO 3 ), limestone (CaCO 3 ), etc., in the fluidized bed 22 as gas purification agents. The combustion furnace 20 is provided with a gas purification agent supply pipe (gas purification agent supply means) 20a for supplying these dolomite and limestone.
Hereinafter, the operation of the fluidized bed gasification gas purifier according to the present invention configured as described above and the fluidized bed gasification gas purification method will be described.

図2を参照すると、本発明に係る流動層ガス化ガス精製装置の作用図が概略的に示されており、以下同図をも参照しながら説明する。
上述したように、燃焼炉20にはガス化炉10から供給されたチャーとともに酸化剤が供給され、チャーの燃焼が行われる。このとき、燃焼炉20内の流動層22にはさらに天然鉱物のドロマイト(CaCO3・MgCO3)や石灰石(CaCO3)等がガス精製剤として供給され、CaCO3・MgCO3やCaCO3等が流動熱媒体とともにチャーの燃焼熱によって加熱される。詳しくは、チャーの燃焼ではガス化炉10での固体燃料のガス化のような吸熱反応がないため、チャーの燃焼により燃焼炉20内の温度は900℃以上にまで良好に加熱される。また、チャーの燃焼は固体燃料のガス化と別にしているため、生成ガス中のCO2含有量が通常の燃焼とガス化共存のガス化炉より低く、故に燃焼炉20内のCO2の濃度は、一般のガス化炉では20mol%以上であるのに対し、例えば10〜15mol%程度の低い値に抑えられる。
Referring to FIG. 2, there is schematically shown an operation diagram of a fluidized bed gasification gas purifying apparatus according to the present invention, which will be described below with reference to FIG.
As described above, the oxidant is supplied to the combustion furnace 20 together with the char supplied from the gasification furnace 10, and the char is burned. At this time, natural mineral dolomite (CaCO 3 · MgCO 3 ), limestone (CaCO 3 ) or the like is further supplied as a gas purification agent to the fluidized bed 22 in the combustion furnace 20, and CaCO 3 · MgCO 3 , CaCO 3, etc. Heated by the heat of combustion of the char along with the fluid heat carrier. Specifically, in the combustion of char, there is no endothermic reaction as in the gasification of solid fuel in the gasification furnace 10, so the temperature in the combustion furnace 20 is well heated to 900 ° C. or more by the combustion of char. Further, since the combustion of char is separate from the gasification of the solid fuel, the content of CO 2 in the produced gas is lower than that of the gasification furnace in which the normal combustion and the gasification coexist, so that the CO 2 in the combustion furnace 20 is reduced. The concentration is suppressed to a low value of about 10 to 15 mol%, for example, while it is 20 mol% or more in a general gasification furnace.

これより、燃焼炉20では、高温且つ低CO2の下、MgCO3やCaCO3等が下記化学反応式のように熱分解され、MgO、CaO、CaO・MgO等の活性精製剤(活性化したガス精製剤)が良好に焼成される(第二工程)。
MgCO3→MgO+CO2 、CaCO3→CaO+CO2
図3、図4を参照すると、CO2濃度と温度とを変えた場合のドロマイト及び石灰石のTG焼成における重量変化(TG重量変化)が図示されており、これらの図より、CO2濃度が低く(例えば、10mol%)、温度が高い(例えば、1151K)ほどドロマイトや石灰石の焼成が起こり易く、上記化学反応式の如くMgOやCaO等の活性精製剤が良好に焼成されることが分かる。ここに、10mol%CO2、1155Kの温度の反応条件は、まさに燃焼炉20中の雰囲気である。一方、これら図3、4からは、通常のガス化炉の22mol%CO2、1043K以下の雰囲気条件においてはドロマイトと石灰石の焼成が起こり難いことも分かる。
As a result, in the combustion furnace 20, MgCO 3 , CaCO 3, etc. are thermally decomposed as shown in the following chemical reaction formula under high temperature and low CO 2 , and activated purifiers such as MgO, CaO, CaO / MgO (activated) The gas purification agent) is fired well (second step).
MgCO 3 → MgO + CO 2 , CaCO 3 → CaO + CO 2
Referring to FIGS. 3 and 4, the weight change (TG weight change) in TG firing of dolomite and limestone when the CO 2 concentration and temperature are changed is shown. From these figures, the CO 2 concentration is lower. It can be seen that dolomite and limestone are more likely to be fired at higher temperatures (for example, 10 mol%) (for example, 1151 K), and active purifiers such as MgO and CaO are better fired as in the above chemical reaction formula. Here, the reaction conditions of the temperature of 10 mol% CO 2 and 1155 K are exactly the atmosphere in the combustion furnace 20. On the other hand, these FIGS. 3 and 4 also show that dolomite and limestone are hardly baked under an atmospheric condition of 22 mol% CO 2 and 1043 K or less in a normal gasifier.

このように焼成されたMgOやCaO等の活性精製剤は高温化した流動熱媒体とともにサイクロン50を経てガス化炉10に循環される。ガス化炉10内の流動層12では、高温化した流動熱媒体の熱によって固体燃料がガス化され、合成ガスの生成が行われるが、当該合成ガスが上記MgOやCaO等の活性精製剤によって精製される。詳しくは、合成ガス中にはタール、煤塵やH2Sが含まれているところ、MgOやCaOは、タールや煤塵に対してはガス化炉10に供給される際には高温であることから触媒機能を発揮し(タールの改質)、或いは付着機能を発揮して(タールと煤塵の付着)これらを浄化可能であり、H2Sに対しては酸化剤として酸化機能を発揮して酸化可能であるため、合成ガス中のタール、煤塵やH2SがこれらMgOやCaOによって十分に除去され、合成ガスが良好に精製される(第一工程)。 The thus activated calcining agent such as MgO or CaO is circulated to the gasification furnace 10 through the cyclone 50 together with the fluidized heat medium having a high temperature. In the fluidized bed 12 in the gasification furnace 10, the solid fuel is gasified by the heat of the fluidized heat medium heated to generate synthesis gas. The synthesis gas is generated by the active purifier such as MgO or CaO. Purified. Specifically, the synthesis gas contains tar, soot and H 2 S, and MgO and CaO are hot when supplied to the gasifier 10 for tar and soot. The catalyst function (tar reforming) or the adhesion function (tar and dust adhesion) can be purified, and for H 2 S, the oxidation function as an oxidant is exhibited and oxidized. Since it is possible, tar, dust, and H 2 S in the synthesis gas are sufficiently removed by these MgO and CaO, and the synthesis gas is purified well (first step).

なお、合成ガスとともにガス化炉10を飛び出したMgOやCaO等のガス精製剤は、サイクロン30によって固気分離されてガス化炉10に戻される。
MgOやCaOが合成ガス中のタールの付着等に使用されると、MgOやCaOは精製機能が落ちると同時に合成ガス中のCO2を吸収することが可能である。これにより、活性精製剤であるMgOやCaOはMgCO3やCaCO3に戻り、精製機能がさらに低下するが、一方で合成ガスのH2、CO濃度を改善し、燃焼カロリーを高めることができる。そして、一部のMgCO3やCaCO3(反応したガス精製剤)は再生可能であるためチャー及び燃料ガス化反応によって低温化した流動熱媒体とともに再び燃焼炉20に送られ、上述のようにして再度活性化されてMgOやCaOに再生される。
The gas purification agent such as MgO and CaO that has jumped out of the gasification furnace 10 together with the synthesis gas is solid-gas separated by the cyclone 30 and returned to the gasification furnace 10.
When MgO or CaO is used for adhesion of tar or the like in the synthesis gas, the MgO or CaO can absorb CO 2 in the synthesis gas at the same time as the purification function is lowered. As a result, MgO and CaO, which are active purifiers, return to MgCO 3 and CaCO 3 , and the purification function is further reduced. On the other hand, the H 2 and CO concentrations of the synthesis gas can be improved, and the combustion calories can be increased. Since some MgCO 3 and CaCO 3 (reacted gas purification agent) can be regenerated, they are sent again to the combustion furnace 20 together with the char and the fluid heat medium cooled by the fuel gasification reaction, as described above. It is activated again and regenerated to MgO or CaO.

一方、MgOやCaOがH2Sの酸化に使用されると、MgSO4やCaSO4が生成されてやはり精製機能が低下し、これらMgSO4やCaSO4、ガス化炉10内で部分反応したような活性低下したガス精製剤(低活性ガス精製剤)、即ち低活性のMgOやCaOの一部は粒子分級装置40において分離され、灰とともに排出されて廃棄される(第三工程)。
そして、このようにMgSO4やCaSO4、部分反応した低活性のMgOやCaOが廃棄されると、MgOやCaOが不足することになるが、当該不足分に相当するMgCO3やCaCO3は石灰石やドロマイトによりガス精製剤供給管20aから燃焼炉20の流動層22に補充され(新添加の未活性化ガス精製剤)、ガス精製に必要なMgOやCaOが継続して良好に生成され続ける。
On the other hand, when MgO or CaO is used for the oxidation of H 2 S, MgSO 4 or CaSO 4 is produced and the purification function is lowered, and these MgSO 4 and CaSO 4 are partially reacted in the gasifier 10. A gas purifier having a reduced activity (low activity gas purifier), that is, a part of low activity MgO or CaO is separated in the particle classifier 40, discharged together with ash and discarded (third step).
And if MgSO 4 and CaSO 4 , partially reacted low activity MgO and CaO are discarded, MgO and CaO will be insufficient, but MgCO 3 and CaCO 3 corresponding to the shortage will be limestone. Or dolomite replenishes the fluidized bed 22 of the combustion furnace 20 from the gas purification agent supply pipe 20a (newly added unactivated gas purification agent), and MgO and CaO necessary for gas purification continue to be generated satisfactorily.

このように、本発明に係る流動層ガス化ガス精製方法及び精製装置では、外部循環型の流動層を有したシステムにおいて燃焼炉20内の温度が高温且つCO2濃度が低くなることに着目し、燃焼炉20内の流動層22に天然鉱物のドロマイト(CaCO3・MgCO3)、石灰石(CaCO3)等をガス精製剤として供給することでMgO、CaO、CaO・MgO等の活性精製剤を生成させ、或いは循環させて再生させ、これらMgOやCaO等を用いてガス化炉10内で生成される合成ガスの精製、即ち合成ガス中のタール、煤塵やH2Sの除去を行うようにしている。 Thus, in the fluidized bed gasification gas purification method and purification apparatus according to the present invention, attention is paid to the fact that the temperature in the combustion furnace 20 is high and the CO 2 concentration is low in a system having an external circulation type fluidized bed. Then, by supplying natural mineral dolomite (CaCO 3 · MgCO 3 ), limestone (CaCO 3 ), etc. as gas purification agents to the fluidized bed 22 in the combustion furnace 20, active purification agents such as MgO, CaO, and CaO · MgO are provided. It is generated or circulated and regenerated, and the MgO, CaO, etc. are used to purify the synthesis gas produced in the gasification furnace 10, that is, to remove tar, dust and H 2 S in the synthesis gas. ing.

従って、MgOやCaO等の活性精製剤を別工程において準備しなくても、外部循環型の流動層を用いた簡単な構成にして、ドロマイト(CaCO3・MgCO3)、石灰石(CaCO3)等の天然鉱物を直接燃焼炉20内の流動層22に供給して容易にMgOやCaO等を生成でき、或いは循環させて再生でき、安価にして確実にタール、煤塵やH2Sを除去して合成ガスの精製を十分に行うことができる。 Therefore, even if an active purifier such as MgO or CaO is not prepared in a separate process, a simple structure using an external circulation type fluidized bed is used, and dolomite (CaCO 3 · MgCO 3 ), limestone (CaCO 3 ), etc. The natural minerals can be directly supplied to the fluidized bed 22 in the combustion furnace 20 to easily produce MgO, CaO, etc., or can be recycled by recirculation to reliably remove tar, dust and H 2 S at low cost. The synthesis gas can be sufficiently purified.

次に、第2実施例について説明する。
図5を参照すると、本発明の第2実施例に係る流動層ガス化ガス精製装置の概略構成図が示されており、以下図5に基づき説明する。なお、ここでは、上記第1実施例との共通部分については説明を省略する。
当該第2実施例では、装置は、ガス化炉10が上段部10aと下段部10bとに分割されて上段流動層14と下段流動層16の二段流動層(多段流動層)からなり、焼成されたMgOやCaO等の活性精製剤と高温化した流動熱媒体とが上段流動層14から順に粒子輸送管(粒子通路)15を通して下段流動層16に通され、下段流動層16に固形燃料が供給されるよう構成されている。なお、この実施例では、粒子輸送管15はガス化炉10の内部に設置されている。
Next, a second embodiment will be described.
Referring to FIG. 5, there is shown a schematic configuration diagram of a fluidized bed gasification gas purifying apparatus according to a second embodiment of the present invention, which will be described below with reference to FIG. In addition, description is abbreviate | omitted here about a common part with the said 1st Example.
In the second embodiment, the apparatus comprises a gasification furnace 10 divided into an upper stage portion 10a and a lower stage portion 10b, comprising a two-stage fluidized bed (multistage fluidized bed) of an upper stage fluidized bed 14 and a lower stage fluidized bed 16, and firing. The activated refining agent such as MgO and CaO and the fluidized heat medium having a high temperature are sequentially passed from the upper fluidized bed 14 to the lower fluidized bed 16 through the particle transport pipe (particle passage) 15, and the solid fuel is transferred to the lower fluidized bed 16. Configured to be supplied. In this embodiment, the particle transport pipe 15 is installed inside the gasification furnace 10.

このようにガス化炉10の流動層を上段流動層14と下段流動層16の二段で構成すると、上段流動層14は十分に高温に維持されるので、そこではMgOやCaOはCO2を吸収し難く、MgOやCaOの触媒精製機能が十分に発揮され(温度が高い程、発揮度は高い)、下段流動層16において生成された合成ガスが上段流動層14を通過する際に十分に精製される。 This configuration of the fluidized bed gasification furnace 10 through a double of the upper fluidized bed 14 and the lower fluidized bed 16, the upper fluidized bed 14 is maintained sufficiently high temperature, the MgO and CaO is CO 2 is there It is difficult to absorb, and the catalyst purification function of MgO or CaO is sufficiently exerted (the higher the temperature, the higher the degree of performance), and it is sufficient when the synthesis gas generated in the lower fluidized bed 16 passes through the upper fluidized bed 14. Purified.

これにより、合成ガス中のタール、煤塵やH2Sをさらに確実に除去することができ、合成ガスの精製効果の向上を図ることができる。
次に、第3実施例について説明する。
図6を参照すると、本発明の第3実施例に係る流動層ガス化ガス精製装置の概略構成図が示されており、以下図6に基づき説明する。なお、ここでは、上記第2実施例と異なる部分についてのみ説明する。
Thereby, tar, dust and H 2 S in the synthesis gas can be more reliably removed, and the purification effect of the synthesis gas can be improved.
Next, a third embodiment will be described.
Referring to FIG. 6, there is shown a schematic configuration diagram of a fluidized bed gasification gas purifying apparatus according to a third embodiment of the present invention, which will be described below with reference to FIG. Here, only the parts different from the second embodiment will be described.

当該第3実施例では、装置は、ガス化炉10の上段部10aの水平断面積が下段部10bよりも大きくなるように構成されている。
このように上段部10aの水平断面積が下段部10bよりも大きくなるように構成すると、下段流動層16で生成された合成ガスが上段流動層14に滞留する時間が長くなり、合成ガスが上段流動層14を通過する際においてより一層十分に精製される。
In the third embodiment, the apparatus is configured such that the horizontal sectional area of the upper stage portion 10a of the gasification furnace 10 is larger than that of the lower stage portion 10b.
When the horizontal cross-sectional area of the upper stage portion 10a is configured to be larger than that of the lower stage portion 10b in this way, the time for the synthesis gas generated in the lower stage fluidized bed 16 to stay in the upper stage fluidized bed 14 becomes longer, and the synthesis gas becomes higher. When passing through the fluidized bed 14, it is more fully purified.

これにより、合成ガス中のタール、煤塵やH2Sを上記第2実施例の場合よりも一層確実に除去することができ、合成ガスの精製効果のさらなる向上を図ることができる。
次に、第4実施例について説明する。
図7を参照すると、本発明の第4実施例に係る流動層ガス化ガス精製装置の概略構成図が示されており、以下図7に基づき説明する。なお、ここでは、やはり上記第2実施例と異なる部分についてのみ説明する。
As a result, tar, dust and H 2 S in the synthesis gas can be more reliably removed than in the case of the second embodiment, and the purification effect of the synthesis gas can be further improved.
Next, a fourth embodiment will be described.
Referring to FIG. 7, there is shown a schematic configuration diagram of a fluidized bed gasification gas purifying apparatus according to a fourth embodiment of the present invention, which will be described below with reference to FIG. Only the parts different from the second embodiment will be described here.

当該第4実施例では、装置は、ガス化炉10の上段部10aと下段部10bとの間に外部通路として粒子輸送管(粒子通路)15’を備えて構成されている。
このように上段部10aと下段部10bとが外部通路である粒子輸送管15’で連通されていると、MgOやCaO等の活性精製剤と流動熱媒体とが上段流動層14から粒子輸送管15’を介して下段流動層16に供給される。このとき、これら活性精製剤や流動熱媒体とともに精製した合成ガスの一部が下段部10bに送られ、精製剤等の粒子の上段から下段への供給が強化される。
In the fourth embodiment, the apparatus includes a particle transport pipe (particle passage) 15 ′ as an external passage between the upper stage portion 10 a and the lower stage portion 10 b of the gasification furnace 10.
In this way, when the upper stage portion 10a and the lower stage portion 10b are communicated with each other by the particle transport pipe 15 ′ that is an external passage, the active purifier such as MgO and CaO and the fluid heat medium are transferred from the upper fluid bed 14 to the particle transport pipe. It is supplied to the lower fluidized bed 16 via 15 '. At this time, a part of the synthesis gas refined together with the active purification agent and the fluidized heat medium is sent to the lower stage portion 10b, and the supply from the upper stage to the lower stage of the particles of the purification agent or the like is strengthened.

これにより、上記第2実施例の場合より多段流動層間の精製剤等の粒子の移動を安定化でき、合成ガスの精製効果のさらなる向上を図ることができる。
次に、第5実施例について説明する。
図8を参照すると、本発明の第5実施例に係る流動層ガス化ガス精製装置の概略構成図が示されており、以下図8に基づき説明する。なお、ここでは、やはり上記第1実施例との共通部分については説明を省略する。
Thereby, the movement of the particles such as the purifying agent between the multistage fluidized layers can be stabilized more than in the case of the second embodiment, and the further improvement of the syngas purification effect can be achieved.
Next, a fifth embodiment will be described.
Referring to FIG. 8, there is shown a schematic configuration diagram of a fluidized bed gasification gas purifying apparatus according to a fifth embodiment of the present invention, which will be described below with reference to FIG. Here, the description of the common parts with the first embodiment is omitted.

図8を見ると、図1に対してガス化炉10と燃焼炉20の位置が入れ替わっており、当該第5実施例では、装置は、チャー、低温化した流動熱媒体及び合成ガスの精製で生成されたCaCO3、MgCO3、MgSO4、CaSO4等が合成ガスとともにガス化炉10からサイクロン30に送られた後に粒子分級装置40を介して燃焼炉20に送られるよう構成されている。 Referring to FIG. 8, the positions of the gasification furnace 10 and the combustion furnace 20 are switched with respect to FIG. 1. In the fifth embodiment, the apparatus is used for purification of char, low-temperature fluidized heat medium and synthesis gas. The produced CaCO 3 , MgCO 3 , MgSO 4 , CaSO 4 and the like are sent together with the synthesis gas from the gasifier 10 to the cyclone 30 and then sent to the combustion furnace 20 via the particle classifier 40.

即ち、当該第5実施例では、ガス化炉10をライザにしたことによって、チャー、低温化した流動熱媒体及びガス精製に作用したガス精製剤を、サイクロン30に流入させた後、粒子分級装置40を通して灰と活性低下したガス精製剤とを排出してから燃焼炉20に送給し、当該燃焼炉20で加熱された流動熱媒体及び活性精製剤をサイクロンを介さず直接ガス化炉10に循環させるようにしている。   That is, in the fifth embodiment, since the gasification furnace 10 is used as a riser, the char, the fluidized heat medium that has been lowered in temperature, and the gas purifying agent that has acted on the gas purification are allowed to flow into the cyclone 30, and then the particle classifier. The ash and the gas purifying agent whose activity has been reduced are discharged through 40 and then fed to the combustion furnace 20, and the fluidized heat medium and the active purifying agent heated in the combustion furnace 20 are directly supplied to the gasification furnace 10 without using a cyclone. It tries to circulate.

これにより、上記第1実施例と同様のガス精製の効果を奏するとともに、多少異なるガス化及びチャー燃焼特性の出現を期待することができる。
以上で本発明に係る実施形態の説明を終えるが、実施形態は上記に限られるものではなく、発明の趣旨を逸脱しない範囲で変形可能である。
例えば、上記実施形態では、第2乃至第4実施例において、ガス化炉10を上段部10aと下段部10bとし、流動層を上段流動層14と下段流動層16の二段で構成したが、これに限られるものではなく、流動層を三段以上の多段流動層で構成するようにしてもよい。
As a result, the same gas purification effect as in the first embodiment can be obtained, and the appearance of slightly different gasification and char combustion characteristics can be expected.
The description of the embodiment according to the present invention is finished as above, but the embodiment is not limited to the above and can be modified without departing from the gist of the invention.
For example, in the above embodiment, in the second to fourth examples, the gasification furnace 10 is composed of the upper stage part 10a and the lower stage part 10b, and the fluidized bed is composed of two stages of the upper stage fluidized bed 14 and the lower stage fluidized bed 16. However, the present invention is not limited to this, and the fluidized bed may be composed of three or more stages of fluidized beds.

本発明の第1実施例に係る流動層ガス化ガス精製装置の概略構成図である。It is a schematic block diagram of the fluidized-bed gasification gas refinement | purification apparatus which concerns on 1st Example of this invention. 本発明に係る流動層ガス化ガス精製装置の作用原理図である。It is an action principle figure of the fluidized bed gasification gas refining device concerning the present invention. CO2濃度と温度とを変えた場合のドロマイトのTG重量変化を示す図である。Shows a TG weight variation of dolomite when changing the CO 2 concentration and temperature. CO2濃度と温度とを変えた場合の石灰石のTG重量変化を示す図である。Shows a TG weight variation of limestone when changing the CO 2 concentration and temperature. 本発明の第2実施例に係る流動層ガス化ガス精製装置の概略構成図である。It is a schematic block diagram of the fluidized-bed gasification gas purification apparatus which concerns on 2nd Example of this invention. 本発明の第3実施例に係る流動層ガス化ガス精製装置の概略構成図である。It is a schematic block diagram of the fluidized-bed gasification gas refinement | purification apparatus which concerns on 3rd Example of this invention. 本発明の第4実施例に係る流動層ガス化ガス精製装置の概略構成図である。It is a schematic block diagram of the fluidized-bed gasification gas purification apparatus which concerns on 4th Example of this invention. 本発明の第5実施例に係る流動層ガス化ガス精製装置の概略構成図である。It is a schematic block diagram of the fluidized-bed gasification gas purification apparatus which concerns on 5th Example of this invention.

符号の説明Explanation of symbols

10 ガス化炉
10a 上段部
10b 下段部
12 流動層
14 上段流動層
15、15’ 粒子輸送管(粒子通路)
16 下段流動層
20 燃焼炉
20a ガス精製剤供給管(ガス精製剤供給手段)
22 流動層
30 サイクロン
40 粒子分級装置(排出手段)
50 サイクロン
DESCRIPTION OF SYMBOLS 10 Gasifier 10a Upper stage part 10b Lower stage part 12 Fluidized bed 14 Upper stage fluidized bed 15, 15 'Particle transport pipe (particle passage)
16 Lower fluidized bed 20 Combustion furnace 20a Gas purification agent supply pipe (gas purification agent supply means)
22 Fluidized bed 30 Cyclone 40 Particle classifier (discharge means)
50 Cyclone

Claims (8)

ガス化炉内の流動層に供給した固体燃料を前記ガス化炉内に循環される加熱された流動熱媒体の熱と流動層に吹き込むガス化剤によってガス化し、該ガス化により生成したガス化ガスをガス精製剤を用いて精製する流動層ガス化ガス精製方法であって、
前記ガス化炉内の流動層に前記加熱された流動熱媒体とともに活性化したガス精製剤を供給し、前記固体燃料から生成したガス化ガスを該活性化したガス精製剤によって精製する第一工程と、
前記ガス化炉に並設される燃焼炉内の流動層に前記ガス化炉から前記固体燃料のガス化により生成されたチャー、低温化した前記流動熱媒体、反応したガス精製剤及び新添加の未活性化ガス精製剤を供給し、該燃焼炉内の流動層で酸化剤を供給しながら前記チャーを燃焼させ、該チャーの燃焼熱で前記流動熱媒体を加熱するとともに前記反応したガス精製剤及び前記新添加の未活性化ガス精製剤を焼成により活性化し、該加熱された流動熱媒体及び該活性化したガス精製剤を前記ガス化炉に循環させる第二工程と、
前記ガス化炉から前記燃焼炉におけるチャーの燃焼により生成した燃焼灰とともにガス精製に使用されて精製機能の低下した低活性ガス精製剤を排出する第三工程と、
を備えたことを特徴とする流動層ガス化ガス精製方法。
Gasification generated by gasification of the solid fuel supplied to the fluidized bed in the gasification furnace by the heat of the heated fluid heat medium circulated in the gasification furnace and the gasifying agent blown into the fluidized bed A fluidized bed gasification gas purification method for purifying gas using a gas purification agent,
A first step of supplying an activated gas purification agent together with the heated fluid heat medium to a fluidized bed in the gasification furnace, and purifying the gasification gas generated from the solid fuel by the activated gas purification agent. When,
The char generated by gasification of the solid fuel from the gasifier, the fluidized heat medium reduced in temperature, the reacted gas purifier, and the newly added fluidized bed in the combustion furnace provided in parallel with the gasifier An unactivated gas purifier is supplied, the char is burned while supplying an oxidant in a fluidized bed in the combustion furnace, the fluid heat medium is heated with the combustion heat of the char and the reacted gas purifier And a second step of activating the newly added unactivated gas purification agent by calcination and circulating the heated fluid heat medium and the activated gas purification agent to the gasification furnace,
A third step of discharging from the gasification furnace a low activity gas refining agent used for gas purification together with combustion ash generated by char combustion in the combustion furnace and having a reduced purification function;
A fluidized bed gasification gas purification method comprising:
前記第二工程では、前記反応したガス精製剤のうち再生可能な部分を前記ガス化炉から前記燃焼炉内の流動層に供給し、前記チャーの燃焼熱で焼成により活性化して該反応したガス精製剤の精製機能を再生させることを特徴とする、請求項1記載の流動層ガス化ガス精製方法。   In the second step, a reproducible portion of the reacted gas purification agent is supplied from the gasification furnace to a fluidized bed in the combustion furnace, and activated by firing with combustion heat of the char to react the gas The fluidized-bed gasification gas purification method according to claim 1, wherein the purification function of the purification agent is regenerated. 前記第二工程では、新添加の未活性化ガス精製剤を前記燃焼炉内の流動層に供給し、前記チャーの燃焼熱で焼成により活性化して該新添加の未活性化ガス精製剤に精製機能を生起させることを特徴とする、請求項1または2記載の流動層ガス化ガス精製方法。   In the second step, the newly added unactivated gas purifier is supplied to the fluidized bed in the combustion furnace and activated by firing with the combustion heat of the char to be purified into the newly added unactivated gas purifier. The fluidized bed gasification gas purification method according to claim 1 or 2, wherein the function is caused. 前記新添加の未活性化ガス精製剤は天然鉱物であり、
前記第二工程では該天然鉱物を焼成により活性化して該鉱物中に在る金属の酸化物を生成することを特徴とする、請求項1乃至3のいずれか記載の流動層ガス化ガス精製方法。
The newly added unactivated gas purification agent is a natural mineral,
The fluidized-bed gasification gas purification method according to any one of claims 1 to 3, wherein in the second step, the natural mineral is activated by firing to generate an oxide of a metal present in the mineral. .
ガス化炉内の流動層に供給した固体燃料を前記ガス化炉内に循環される加熱された流動熱媒体の熱及び流動層に吹き込むガス化剤によってガス化し、該ガス化により生成したガス化ガスをガス精製剤を用いて精製する流動層ガス化ガス精製装置であって、
前記ガス化炉に併設され、前記固体燃料のガス化により生成され前記ガス化炉から供給されるチャーを酸化剤を供給しながら流動層で燃焼させ、該チャーの燃焼熱で前記ガス化炉から該チャーとともに供給される低温化した前記流動熱媒体を該流動層で加熱するとともに前記ガス化炉から供給される反応したガス精製剤及び新添加の未活性化ガス精製剤を該流動層で焼成により活性化し、該加熱された流動熱媒体及び該活性化したガス精製剤を前記ガス化炉に循環させる燃焼炉と、
前記燃焼炉内の流動層に前記新添加の未活性化ガス精製剤を供給するガス精製剤供給手段と、
前記ガス化炉から前記燃焼炉におけるチャーの燃焼により生成した燃焼灰とともにガス精製に使用されて精製機能の低下した低活性ガス精製剤を排出する排出手段と、
を備えたことを特徴とする流動層ガス化ガス精製装置。
Gasification generated by gasification of the solid fuel supplied to the fluidized bed in the gasification furnace by the heat of the heated fluidized heat medium circulated in the gasification furnace and the gasifying agent blown into the fluidized bed A fluidized bed gasification gas purification device for purifying gas using a gas purification agent,
The char generated by gasification of the solid fuel and supplied from the gasification furnace is combusted in a fluidized bed while supplying an oxidant, and is heated from the gasification furnace with the combustion heat of the char. The fluidized heat medium that has been lowered in temperature supplied with the char is heated in the fluidized bed, and the reacted gas purification agent and the newly added unactivated gas purification agent supplied from the gasification furnace are calcined in the fluidized bed. And a combustion furnace for circulating the heated fluid heat medium and the activated gas purification agent to the gasification furnace,
Gas purification agent supply means for supplying the newly added unactivated gas purification agent to the fluidized bed in the combustion furnace;
A discharge means for discharging a low activity gas refining agent used for gas purification together with combustion ash generated by combustion of char in the combustion furnace from the gasification furnace;
A fluidized bed gasification gas purifier characterized by comprising:
前記ガス化炉は多段流動層からなり、
前記加熱された流動熱媒体及び前記活性化したガス精製剤を該多段流動層のうちの上段側の流動層から順に通させ、下段側の流動層に前記固体燃料を供給することを特徴とする、請求項5記載の流動層ガス化ガス精製装置。
The gasifier comprises a multistage fluidized bed,
The heated fluid heat medium and the activated gas purifier are sequentially passed from the upper fluidized bed of the multistage fluidized bed, and the solid fuel is supplied to the lower fluidized bed. The fluidized bed gasification gas purifier according to claim 5.
前記上段側の流動層は前記下段側の流動層よりも水平断面積が大きいことを特徴とする、請求項6記載の流動層ガス化ガス精製装置。   The fluidized bed gasification gas purifier according to claim 6, wherein the upper fluidized bed has a larger horizontal cross-sectional area than the lower fluidized bed. 前記上段側の流動層から前記下段側の流動層に前記流動熱媒体及び前記活性化したガス精製剤を通すための粒子通路を有し、該粒子通路は前記ガス化炉の内部または外部に配置されていることを特徴とする、請求項6または7記載の流動層ガス化ガス精製装置。   A particle passage for passing the fluid heat medium and the activated gas purifier from the upper fluidized bed to the lower fluidized bed, the particle passage disposed inside or outside the gasification furnace; The fluidized-bed gasification gas purifier according to claim 6 or 7, wherein
JP2005027864A 2005-02-03 2005-02-03 Fluidized bed gasification gas purification method and purification apparatus Active JP4479906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027864A JP4479906B2 (en) 2005-02-03 2005-02-03 Fluidized bed gasification gas purification method and purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027864A JP4479906B2 (en) 2005-02-03 2005-02-03 Fluidized bed gasification gas purification method and purification apparatus

Publications (2)

Publication Number Publication Date
JP2006213817A true JP2006213817A (en) 2006-08-17
JP4479906B2 JP4479906B2 (en) 2010-06-09

Family

ID=36977307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027864A Active JP4479906B2 (en) 2005-02-03 2005-02-03 Fluidized bed gasification gas purification method and purification apparatus

Country Status (1)

Country Link
JP (1) JP4479906B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146036A (en) * 2005-11-29 2007-06-14 Ishikawajima Harima Heavy Ind Co Ltd Gasification apparatus
JP2008163257A (en) * 2006-12-28 2008-07-17 Sekitan Energy Center Fluidized-bed gasifier, method for operating the same, and coal gasification hybrid power generating system
JP2008208297A (en) * 2007-02-28 2008-09-11 Ihi Corp Fuel gasification apparatus
JP2008208260A (en) * 2007-02-27 2008-09-11 Ihi Corp Fuel gasification apparatus
JP2009007478A (en) * 2007-06-28 2009-01-15 Ihi Corp Gasification system
JP2009512755A (en) * 2005-10-21 2009-03-26 テイラー・バイオマス・エナジー・エルエルシー Gasification process and system with in-situ tar removal
JP2009292905A (en) * 2008-06-04 2009-12-17 Ihi Corp Tar reforming method and equipment
ITRM20080632A1 (en) * 2008-11-27 2010-05-27 Shap Corp S R L INTEGRATED GASIFICATION / COMBUSTOR PLANT WITH FLUID BED
JP2010525120A (en) * 2007-05-02 2010-07-22 ポール・コーポレーション Gasification apparatus and method for producing synthesis gas from gasifiable raw materials
JP2011026491A (en) * 2009-07-28 2011-02-10 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification furnace structure
JP2011037933A (en) * 2009-08-07 2011-02-24 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification reaction furnace
JP2011042697A (en) * 2009-08-19 2011-03-03 Ihi Corp Circulating fluidized bed type gasification method and apparatus
JP2011084589A (en) * 2009-10-13 2011-04-28 Ihi Corp Circulating fluidized bed type cylinder barrel gasification method and device
KR101069574B1 (en) * 2009-03-31 2011-10-05 서울시립대학교 산학협력단 Dual biomass gasifier with carbonaceous absorbent and apparatus having the dual biomass gasifier
JP2012522119A (en) * 2009-03-31 2012-09-20 アルストム テクノロジー リミテッド A selectively operable high-temperature solid process for combustion and gasification purposes
JP2012255114A (en) * 2011-06-10 2012-12-27 Ihi Corp System and method for producing gasified gas
JP2013136655A (en) * 2011-12-28 2013-07-11 Ihi Corp Circulating fluidized bed gasifier
JP2013538248A (en) * 2010-07-20 2013-10-10 ▲陽▼光▲凱▼迪新能源集▲団▼有限公司 Biomass pyrolysis gasification method and apparatus via two interconnected furnaces
US8685122B2 (en) 2008-08-20 2014-04-01 Ihi Corporation Fuel gasification equipment
JP2014118524A (en) * 2012-12-19 2014-06-30 Ihi Corp Fluidized bed gasifier
JP2014240472A (en) * 2013-06-12 2014-12-25 一般財団法人石炭エネルギーセンター Method and apparatus for coal/biomass co-gasification by improved three-column type circulated fluidized bed
KR101486874B1 (en) 2013-06-14 2015-01-29 고등기술연구원연구조합 Gasification Apparatus For Tar Reduction
JP2015025145A (en) * 2008-07-08 2015-02-05 カール−ハインツ テツラフKarl−Heinz Tetzlaff Method and device for producing low-tar synthesis gas from biomass
JP2015091908A (en) * 2013-11-08 2015-05-14 株式会社Ihi Temperature increasing method and device for gasification gas
JP2015155505A (en) * 2014-02-20 2015-08-27 国立研究開発法人産業技術総合研究所 Tar treatment apparatus
US9150798B2 (en) 2010-12-24 2015-10-06 Ihi Corporation Method and device for reforming produced gas
JP2017088854A (en) * 2015-11-07 2017-05-25 インディアン オイル コーポレーション リミテッド Method for upgrading residual oil feedstock
CN107499944A (en) * 2017-08-21 2017-12-22 新奥科技发展有限公司 A kind of material-transporting system and method
CN114907884A (en) * 2022-06-21 2022-08-16 山东省科学院能源研究所 Multi-layer fluidized bed calcium chemical looping gasification hydrogen production device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930688B2 (en) * 2006-04-12 2012-05-16 株式会社Ihi Freeboard high temperature method and applied equipment for fluidized bed gasifier
CN106221817A (en) * 2016-08-09 2016-12-14 东南大学 The device and method of high heating value gas is prepared based on double-fluidized-bed biomass pyrolytic
CN106544059A (en) * 2017-01-22 2017-03-29 江苏华威机械制造有限公司 A kind of pyrolytic gasification bed for being arranged on cyclone separator bottom

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512755A (en) * 2005-10-21 2009-03-26 テイラー・バイオマス・エナジー・エルエルシー Gasification process and system with in-situ tar removal
JP4622828B2 (en) * 2005-11-29 2011-02-02 株式会社Ihi Gasifier
JP2007146036A (en) * 2005-11-29 2007-06-14 Ishikawajima Harima Heavy Ind Co Ltd Gasification apparatus
JP2008163257A (en) * 2006-12-28 2008-07-17 Sekitan Energy Center Fluidized-bed gasifier, method for operating the same, and coal gasification hybrid power generating system
JP2008208260A (en) * 2007-02-27 2008-09-11 Ihi Corp Fuel gasification apparatus
JP2008208297A (en) * 2007-02-28 2008-09-11 Ihi Corp Fuel gasification apparatus
JP2010525120A (en) * 2007-05-02 2010-07-22 ポール・コーポレーション Gasification apparatus and method for producing synthesis gas from gasifiable raw materials
JP2009007478A (en) * 2007-06-28 2009-01-15 Ihi Corp Gasification system
JP2009292905A (en) * 2008-06-04 2009-12-17 Ihi Corp Tar reforming method and equipment
JP2015025145A (en) * 2008-07-08 2015-02-05 カール−ハインツ テツラフKarl−Heinz Tetzlaff Method and device for producing low-tar synthesis gas from biomass
US8685122B2 (en) 2008-08-20 2014-04-01 Ihi Corporation Fuel gasification equipment
ITRM20080632A1 (en) * 2008-11-27 2010-05-27 Shap Corp S R L INTEGRATED GASIFICATION / COMBUSTOR PLANT WITH FLUID BED
KR101069574B1 (en) * 2009-03-31 2011-10-05 서울시립대학교 산학협력단 Dual biomass gasifier with carbonaceous absorbent and apparatus having the dual biomass gasifier
JP2012522119A (en) * 2009-03-31 2012-09-20 アルストム テクノロジー リミテッド A selectively operable high-temperature solid process for combustion and gasification purposes
JP2011026491A (en) * 2009-07-28 2011-02-10 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification furnace structure
JP2011037933A (en) * 2009-08-07 2011-02-24 National Institute Of Advanced Industrial Science & Technology Circulating fluidized bed gasification reaction furnace
JP2011042697A (en) * 2009-08-19 2011-03-03 Ihi Corp Circulating fluidized bed type gasification method and apparatus
JP2011084589A (en) * 2009-10-13 2011-04-28 Ihi Corp Circulating fluidized bed type cylinder barrel gasification method and device
JP2013538248A (en) * 2010-07-20 2013-10-10 ▲陽▼光▲凱▼迪新能源集▲団▼有限公司 Biomass pyrolysis gasification method and apparatus via two interconnected furnaces
KR101437425B1 (en) 2010-07-20 2014-09-05 선샤인 카이디 뉴 에너지 그룹 컴퍼니 리미티드 Method and apparatus for biomass pyrolysis gasification via two interconnected furnaces
US9150798B2 (en) 2010-12-24 2015-10-06 Ihi Corporation Method and device for reforming produced gas
JP2012255114A (en) * 2011-06-10 2012-12-27 Ihi Corp System and method for producing gasified gas
JP2013136655A (en) * 2011-12-28 2013-07-11 Ihi Corp Circulating fluidized bed gasifier
JP2014118524A (en) * 2012-12-19 2014-06-30 Ihi Corp Fluidized bed gasifier
JP2014240472A (en) * 2013-06-12 2014-12-25 一般財団法人石炭エネルギーセンター Method and apparatus for coal/biomass co-gasification by improved three-column type circulated fluidized bed
KR101486874B1 (en) 2013-06-14 2015-01-29 고등기술연구원연구조합 Gasification Apparatus For Tar Reduction
JP2015091908A (en) * 2013-11-08 2015-05-14 株式会社Ihi Temperature increasing method and device for gasification gas
JP2015155505A (en) * 2014-02-20 2015-08-27 国立研究開発法人産業技術総合研究所 Tar treatment apparatus
JP2017088854A (en) * 2015-11-07 2017-05-25 インディアン オイル コーポレーション リミテッド Method for upgrading residual oil feedstock
CN107499944A (en) * 2017-08-21 2017-12-22 新奥科技发展有限公司 A kind of material-transporting system and method
CN107499944B (en) * 2017-08-21 2019-08-02 新奥科技发展有限公司 A kind of material-transporting system and method
CN114907884A (en) * 2022-06-21 2022-08-16 山东省科学院能源研究所 Multi-layer fluidized bed calcium chemical looping gasification hydrogen production device and method

Also Published As

Publication number Publication date
JP4479906B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4479906B2 (en) Fluidized bed gasification gas purification method and purification apparatus
JP4314488B2 (en) Gasification method for solid fuel and gasification apparatus using the method
US10081772B2 (en) Conversion of carbonaceous fuels into carbon free energy carriers
JP5532207B2 (en) Circulating fluidized bed gasification reactor
ES2656144T3 (en) Production of synthetic fuels and chemical products with CO2 capture in situ
JP5483058B2 (en) Circulating fluidized bed gasifier structure
JP6304856B2 (en) Biomass gasification method using improved three-column circulating fluidized bed
JP2003238973A (en) Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification
JP2003176486A (en) Integrated circulating fluidized bed gasifying furnace
JP2573681B2 (en) Purification of raw material gas
JP2011026489A (en) Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace
JP5483060B2 (en) Circulating fluidized bed gasification reactor
JP2011105890A (en) Circulating fluidized bed gasification reactor
JP3954816B2 (en) Gas supply apparatus and gas supply method
JP2005068297A (en) Apparatus for generating gas and method for generating gas
JP2003171673A (en) Gas generator
JP2011001427A (en) System and method for restraining alkali poisoning of catalyst for reforming tar
JP2003190763A (en) Treatment system for matter to be treated and treatment method using the same
JP2007217696A (en) Material production system and gas-supplying method
JP2001240879A (en) Method for desulfurization
JP2011105892A (en) Circulating fluidized bed gasification reactor enabling to effectively use tar adsorptive substance
JP2003156208A (en) Gas supply device and gas supply method
JP2001316680A (en) Method for desulfurization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4479906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250