JP2001316680A - Method for desulfurization - Google Patents

Method for desulfurization

Info

Publication number
JP2001316680A
JP2001316680A JP2000092142A JP2000092142A JP2001316680A JP 2001316680 A JP2001316680 A JP 2001316680A JP 2000092142 A JP2000092142 A JP 2000092142A JP 2000092142 A JP2000092142 A JP 2000092142A JP 2001316680 A JP2001316680 A JP 2001316680A
Authority
JP
Japan
Prior art keywords
chamber
combustion chamber
gasification
char combustion
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000092142A
Other languages
Japanese (ja)
Inventor
Masahiko Matsukata
正彦 松方
Seiichiro Toyoda
誠一郎 豊田
Fumiaki Morozumi
文明 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000092142A priority Critical patent/JP2001316680A/en
Publication of JP2001316680A publication Critical patent/JP2001316680A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for the dry desulfurization of solids wherein a calcium compound is used as the desulfurizer, the discharge of the unreacted calcium compound is inhibited, and a stable CaSO4 is produced as a product of the desulfurizing reaction. SOLUTION: In this dry method of removing sulfur content out of solids, a calcium compound is used as the desulfurizing agent, which is added to a sulfur mixture and caused to circulate in two of the three different atmospheres which are a high-temperature oxidizing atmosphere (region A), a reducing atmosphere (region C), and an atmosphere which is a mixture of oxidizing and reducing atmospheres (region B).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石炭や都市ゴミ等
の燃焼に際して発生する硫化物を取除く脱硫方法に係
り、特にカルシウム化合物を用いた脱硫方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desulfurization method for removing sulfide generated when burning coal or municipal waste, and more particularly to a desulfurization method using a calcium compound.

【0002】[0002]

【従来の技術】石炭等、硫黄分を含む可燃物から高効率
でエネルギーを回収しようとする場合、高温でガス化し
て、そのガスのもつ顕熱を無駄にしないよう乾式で脱硫
する技術が求められている。乾式での脱硫技術として期
待されているものに酸化鉄や酸化亜鉛を用いる技術が開
発されつつあるが、これらの技術は脱硫反応の結果生じ
た反応生成物、即ち硫化鉄や硫化亜鉛の再生が容易では
ないことや、脱硫率を高めようとするランニングコスト
が跳ね上がるといった問題から商用機に実用化されるレ
ベルにはほど遠い状況である。
2. Description of the Related Art In order to recover energy from combustible materials containing sulfur, such as coal, with high efficiency, there is a need for a technology of gasifying at high temperature and desulfurizing in a dry manner so as not to waste sensible heat of the gas. Have been. Technologies that use iron oxide and zinc oxide are being developed as what is expected as a desulfurization technology in the dry process.However, these technologies require the regeneration of the reaction products resulting from the desulfurization reaction, that is, iron sulfide and zinc sulfide. The situation is far from the level of practical use for commercial machines due to the difficulty of running and the rise in running costs for increasing the desulfurization rate.

【0003】従来、脱硫剤として用いられてきたものに
炭酸カルシウムがある。炭酸カルシウムは安価でランニ
ングコストも低く抑えられるため、現在でも炭酸カルシ
ウムをガス化ガスの乾式脱硫剤として利用する試みはな
されているが、酸化亜鉛や酸化鉄を利用する方式に比べ
てどうしても脱硫効率が劣り、期待する性能が得られな
いのが難点であった。
Conventionally, calcium carbonate has been used as a desulfurizing agent. Since calcium carbonate is inexpensive and its running cost can be kept low, attempts are still being made to use calcium carbonate as a dry desulfurizing agent for gasification gas, but the desulfurization efficiency is inevitably higher than that using zinc oxide or iron oxide. However, it was difficult to obtain the expected performance.

【0004】この炭酸カルシウムを利用した脱硫方式に
おいて十分な性能を発揮できない原因として考えられて
いるのが、炭酸カルシウムの不活性化である。炭酸カル
シウムの還元雰囲気下での脱硫メカニズムとしては下記
の2式が考えられる。 1)CaCO→CaO+CO 脱炭酸反応 CaO+HS→CaS+HO 脱硫反応 2)CaCO+HS→CaS+HO+CO 直接脱硫反応 1),2)とも炭酸カルシウムがCaSとなって炭酸カ
ルシウム(CaCO)の表面を覆い、このCaSの皮
膜が炭酸カルシウムを不活性化し反応を抑制していると
いうことが考えられる。
[0004] It is considered that calcium carbonate is inactivated due to insufficient performance in the desulfurization method using calcium carbonate. The following two formulas can be considered as the desulfurization mechanism of calcium carbonate under a reducing atmosphere. 1) CaCO 3 → CaO + CO 2 decarboxylation reaction CaO + H 2 S → CaS + H 2 O desulfurization reaction 2) CaCO 3 + H 2 S → CaS + H 2 O + CO 2 direct desulfurization reaction 1), 2) Both calcium carbonate becomes CaS and calcium carbonate ( It is conceivable that this CaS film covers the surface of CaCO 3 ) and inactivates calcium carbonate to suppress the reaction.

【0005】炭酸カルシウムを用いた脱硫方式において
は、十分な脱硫性能が得られないというだけでなく、せ
っかく安価な炭酸カルシウムを用いたにも関わらず、未
反応の炭酸カルシウムが大量に廃棄物として発生してし
まい、廃棄物処理のコストが増大するといった問題があ
る。また、炭酸カルシウム表面に形成したCaSは大気
に曝されると大気中の水蒸気と反応して猛毒の硫化水素
ガスを発生させる危険性があり、取り扱いの際に十分な
管理を必要とするといった問題も生じていた。
In the desulfurization method using calcium carbonate, not only is it not possible to obtain sufficient desulfurization performance, but also in spite of using inexpensive calcium carbonate, unreacted calcium carbonate is produced in large quantities as waste. This causes a problem that the cost of waste disposal increases. In addition, CaS formed on the surface of calcium carbonate may react with water vapor in the atmosphere when exposed to the air, generating a highly toxic hydrogen sulfide gas, requiring a sufficient management during handling. Had also occurred.

【0006】従って炭酸カルシウムで脱硫する場合は、
通常数ミリオーダーの径で使用される炭酸カルシウム
を、数十ミクロン程度にまで粒径を小さくして、比表面
積を大きくして反応面積を増やした状態で使用する方法
が有効となるが、炭酸カルシウムを細かく破砕するため
のエネルギーが増大したり、微粉粒子のハンドリングが
困難であることや、特に微粉粒子の場合、反応に必要な
十分な時間、ガス化炉内に留まれず、せっかくの反応面
積を十分に生かせないのが実状である。
Therefore, when desulfurizing with calcium carbonate,
It is effective to use calcium carbonate, which is usually used with a diameter of several millimeters, in a state where the particle size is reduced to about several tens of microns, the specific surface area is increased, and the reaction area is increased. Increased energy for finely crushing calcium, difficulty in handling fine powder particles, and especially in the case of fine powder particles, do not stay in the gasification furnace for a sufficient time necessary for the reaction, precious reaction area The reality is that you cannot take full advantage of.

【0007】そこで、数ミリ程度の比較的大きな粒径の
炭酸カルシウムを用いても十分な脱硫性能を発揮でき、
かつ未反応炭酸カルシウムの発生を極力抑制することが
なく、また脱硫反応生成物として硫化水素発生の危険性
のあるCaSではなく、安定なCaSOであるよう
な脱硫技術が望まれていた。
[0007] Therefore, sufficient desulfurization performance can be exhibited even if calcium carbonate having a relatively large particle size of about several millimeters is used.
In addition, a desulfurization technique that does not suppress generation of unreacted calcium carbonate as much as possible and that is stable CaSO 4 instead of CaS, which is a danger of generating hydrogen sulfide as a desulfurization reaction product, has been desired.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上述した事
情に鑑みて為されたもので、可燃物のガス化システムに
おける乾式脱硫方法として、脱硫剤に炭酸カルシウム粒
子を用い、未反応炭酸カルシウムの排出を抑制し、かつ
脱硫反応生成物として安定なCaSOを生成するこ
とができる脱硫方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and as a dry desulfurization method in a gasification system for combustibles, calcium carbonate particles are used as a desulfurizing agent, and unreacted calcium carbonate is used. It is an object of the present invention to provide a desulfurization method capable of suppressing the emission of sulfur and producing stable CaSO 4 as a desulfurization reaction product.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、固体中の硫黄分を乾式方法で除去する方法であっ
て、脱硫剤としてカルシウム化合物を用い、該カルシウ
ム化合物を硫黄混合物に混合して、高温の酸化雰囲気、
還元雰囲気、及び酸化雰囲気と還元雰囲気の混合した雰
囲気の異なる3つのうち2つ以上の雰囲気を循環させる
ことを特徴とする脱硫方法である。
According to the first aspect of the present invention, there is provided a method for removing a sulfur content in a solid by a dry method, wherein a calcium compound is used as a desulfurizing agent, and the calcium compound is mixed with a sulfur mixture. And a high temperature oxidizing atmosphere,
A desulfurization method characterized by circulating at least two of three different atmospheres of a reducing atmosphere and a mixed atmosphere of an oxidizing atmosphere and a reducing atmosphere.

【0010】これにより、常にカルシウム化合物表面の
反応活性を維持することができ、未反応カルシウム化合
物の排出を抑制し、かつ脱硫反応生成物として安定なC
aSOをカルシウム化合物表面から分離して生成す
ることができる。従って、脱硫剤の有効利用効率を高め
ると共に、多くの活性表面を露出させることで、高い脱
硫効率を達成できる。
[0010] Thus, the reaction activity on the surface of the calcium compound can be always maintained, the discharge of unreacted calcium compound is suppressed, and stable C as a desulfurization reaction product is obtained.
aSO 4 can be generated separately from the calcium compound surface. Therefore, high desulfurization efficiency can be achieved by increasing the effective use efficiency of the desulfurization agent and exposing many active surfaces.

【0011】また、請求項2に記載の発明は、高温雰囲
気下での酸化又は還元といった化学反応を行う雰囲気
を、ガス化室及び/又はチャー燃焼室にもたせ、流動媒
体を該ガス化室とチャー燃焼室を循環させるようにした
統合型流動層ガス化炉であって、前記ガス化室で還元反
応を行い、前記チャー燃焼室で酸化反応を行うことを特
徴とする請求項1記載の脱硫方法である。
Further, the invention according to claim 2 provides an atmosphere in which a chemical reaction such as oxidation or reduction under a high temperature atmosphere is provided in a gasification chamber and / or a char combustion chamber, and a fluid medium is provided between the gasification chamber and the gasification chamber. The desulfurization according to claim 1, wherein the integrated type fluidized bed gasifier is configured to circulate in a char combustion chamber, wherein a reduction reaction is performed in the gasification chamber and an oxidation reaction is performed in the char combustion chamber. Is the way.

【0012】ガス化炉内に滞留している未反応炭酸カル
シウムCaCO、及び反応の中間段階であるCaO、
及び還元脱硫反応生成物であるCaSは、ガス化炉から
移動し、チャー燃焼室に供給される。チャー燃焼室で
は、CaSの一部はCaSOにまで酸化されると共
に、未反応のCaCOの脱炭酸反応によってCaO
を生成する。酸化炉においてCaOは、チャー燃焼室に
供給される固定炭素(いわゆるチャー)に含まれる硫黄
分から発生する硫黄酸化物と反応し、やはりCaSO
を生成する。チャー燃焼室内に滞留する脱硫剤には、C
aSO、CaSO 、CaO、CaCO、場合によ
ってはCaSの各々が表面に現れており、これら各々は
互いに不均一に脱硫剤の表面に積層し、いわば外観はあ
ばた状になっていると考えられる。そのような脱硫剤表
面の最外層がCaSOである部分は、その層が薄くす
ぐ下の層にCaCOが存在していれば、脱炭酸反応に
よってCaCOからCOが抜ける際、CaSO
層を壊して新たな活性反応面を露出させることができ
る。
Unreacted carbon dioxide staying in the gasification furnace
Cium CaCO3And CaO, an intermediate stage of the reaction,
And CaS, which is a product of the reductive desulfurization reaction, is supplied from the gasification furnace.
It moves and is supplied to the char combustion chamber. In the char combustion chamber
Means that some of CaS is CaSO4When oxidized to
In addition, unreacted CaCO3CaO by decarboxylation of
Generate CaO is transferred to the char combustion chamber in the oxidation furnace.
Sulfur contained in supplied fixed carbon (so-called char)
Reacts with sulfur oxides generated from the4
Generate The desulfurizing agent staying in the char combustion chamber contains C
aSO4, CaSO 3, CaO, CaCO3Depending on the case
Therefore, each of the CaS appears on the surface, and each of these
Laminated unevenly on the surface of the desulfurizing agent, so to speak
It is considered to be in a flutter. Such desulfurizer table
The outermost layer of the surface is CaSO4Area where the layer is thin
CaCO in the layer below3Is present in the decarboxylation reaction
Therefore CaCO3To CO2Comes out, CaSO4of
Can break the layer to expose a new active reaction surface
You.

【0013】また、請求項3に記載の発明は、前記還元
反応を行う部分と前記酸化反応を行う部分と共に、CO
とOの混合領域を配置し、該混合領域にて還元反応と
酸化反応とを同時に行うことを特徴とする請求項1記載
の脱硫方法である。
Further, the invention according to claim 3 is characterized in that, together with the part performing the reduction reaction and the part performing the oxidation reaction, CO 2
2. The desulfurization method according to claim 1, wherein a mixed region of O 2 and O 2 is arranged, and a reduction reaction and an oxidation reaction are simultaneously performed in the mixed region.

【0014】脱硫剤表面にはCaSO、CaSO
CaO、CaCO、場合によってはCaSの層があば
た状に不均一に積層して形成されていると考えられる。
COとOの混合領域からなる弱酸化部を配置し、還元
反応と酸化反応とを同時に行う領域においては、その表
面で新たにCaSOが触媒として働き、CaCO
形成される。これにより、ガス化炉において炭酸ガスを
放出すると、CaSO とCaCOとの混在した層は
脆くなり、容易に剥がれ落ちると考えられ、即ち被膜の
強度を弱めておくことができる。
The surface of the desulfurizing agent is CaSO4, CaSO3,
CaO, CaCO3In some cases, if the CaS layer is
It is considered that they are formed by unevenly laminating them in the shape of a circle.
CO and O2A weakly oxidized part consisting of a mixed region of
In the area where the reaction and the oxidation reaction are performed simultaneously,
New in terms of CaSO4Acts as a catalyst and CaCO3But
It is formed. As a result, carbon dioxide gas is
Upon release, CaSO 4And CaCO3Layer mixed with
It is considered to be brittle and easily peel off,
The strength can be reduced.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態につい
て、添付図面を参照しながら説明する。図1は、本発明
の実施形態である高温酸化領域、高温還元領域、及び弱
酸化領域における脱硫剤の反応と循環経路を示す。本発
明は、脱硫剤粒子としてカルシウム化合物粒子を用い、
酸化、還元、及びこれらの混合した雰囲気について、異
なる3つ以上の領域(雰囲気)を循環させることを特徴
としたものである。これによって、常にカルシウム化合
物表面の反応活性を維持することができる。カルシウム
化合物を循環させる領域とは、表1に示す、高温酸化領
域(A領域)、弱酸化領域(酸化と還元の混合した領
域:B領域)、及び高温還元領域(C領域)である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a reaction and a circulation route of a desulfurizing agent in a high-temperature oxidation zone, a high-temperature reduction zone, and a weak oxidation zone according to an embodiment of the present invention. The present invention uses calcium compound particles as desulfurizing agent particles,
It is characterized in that three or more different regions (atmospheres) are circulated for oxidation, reduction, and a mixed atmosphere thereof. Thereby, the reaction activity on the calcium compound surface can be always maintained. The regions in which the calcium compound is circulated are a high-temperature oxidation region (A region), a weak oxidation region (a region in which oxidation and reduction are mixed: B region), and a high-temperature reduction region (C region) shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】各領域での脱硫剤としての炭酸カルシウム
の反応について説明するに先立ち、炭酸カルシウムを脱
硫剤とした場合の反応について整理するとともに、各領
域で生じる主な反応について説明する。 <熱分解・逆反応> CaCO→CaO+CO 脱炭酸反応 CaO+CO→CaCO 再炭酸化反応(1) <酸化反応> CaCO+SO+0.5O→CaSO+CO 直接 脱硫反応 CaO+SO+0.5O→CaSO 酸化脱硫 反応 CaO+CO+0.5O→CaCO 再炭酸化反応 (2) CaS+2O→CaSO 脱硫生成物酸化反応 <還元反応> CaO+HS→CaS+HO 還元脱硫反応
Before describing the reaction of calcium carbonate as a desulfurizing agent in each region, the reaction in the case where calcium carbonate is used as a desulfurizing agent will be summarized, and the main reaction occurring in each region will be described. <Thermal decomposition / reverse reaction> CaCO 3 → CaO + CO 2 decarboxylation reaction CaO + CO 2 → CaCO 3 recarboxylation reaction (1) <Oxidation reaction> CaCO 3 + SO 2 + 0.5O 2 → CaSO 4 + CO 2 Direct desulfurization reaction CaO + SO 2 +0 0.5O 2 → CaSO 4 oxidation desulfurization reaction CaO + CO + 0.5O 2 → CaCO 3 recarboxylation reaction (2) CaS + 2O 2 → CaSO 4 desulfurization product oxidation reaction <Reduction reaction> CaO + H 2 S → CaS + H 2 O reduction desulfurization reaction

【0018】上記A領域では850℃以上の高温が維持
されており、かつ酸素濃度が高い。これはガス化燃焼シ
ステムにおいてはチャー燃焼室等、いわゆる酸化炉の炉
内条件にほぼ等しく、熱分解反応、及び酸
化反応が生じる。酸化雰囲気であるので、可燃物が燃焼
し、系の圧力が高い場合は炭酸ガス分圧が高まるので、
熱分解反応の逆反応である再炭酸化反応(1)が生じ
る場合があり、その場合は直接脱硫反応が優勢にな
る。
In the region A, a high temperature of 850 ° C. or more is maintained and the oxygen concentration is high. In a gasification combustion system, this is almost equal to the conditions in a so-called oxidation furnace such as a char combustion chamber, and a thermal decomposition reaction and an oxidation reaction occur. Since it is an oxidizing atmosphere, combustibles burn and if the system pressure is high, the carbon dioxide partial pressure increases,
In some cases, the recarboxylation reaction (1), which is the reverse reaction of the thermal decomposition reaction, occurs, in which case the direct desulfurization reaction prevails.

【0019】また、B領域では酸素が存在し、かつCO
濃度が高い。このような状態は、例えば燃焼速度の遅い
固定炭素いわゆるチャーが高濃度で存在し、燃焼中の該
チャーが急激に酸素不足の領域を通過したような場合に
生じうる状態である。大量のCOを発生させながらも部
分的には酸素が存在するといったごく限られた領域に生
じる条件である。このような条件下では左辺にCOのあ
る再炭酸化反応(2)が生じ易い。もちろん温度も高
く、酸素も存在するので熱分解反応や、酸化
反応も生じるが、このB領域ではの再炭酸化反応
(2)も生じる。またこの領域ではCO濃度が高いが一
方、CO濃度は低い。
In the region B, oxygen is present and CO
High concentration. Such a state is a state that can occur when, for example, fixed carbon having a low burning rate, that is, char is present at a high concentration, and the char during burning suddenly passes through an oxygen-deficient region. This is a condition that occurs in a very limited region, such as a large amount of CO being generated but oxygen being partially present. Under such conditions, the recarbonation reaction (2) with CO on the left side is likely to occur. Of course, since the temperature is high and oxygen is present, a thermal decomposition reaction and an oxidation reaction also occur, but a recarbonation reaction (2) also occurs in the B region. In this region, the CO concentration is high, while the CO 2 concentration is low.

【0020】C領域はガス化システムにおけるカーボナ
イザー、いわゆるガス化炉である。C領域においては酸
素濃度が低く、炭酸ガス濃度が低いので、温度が800
℃以上で熱分解反応である脱炭酸反応が生じる。また
脱硫反応は還元脱硫反応が生じる。C領域であっても
局部的に酸素吹き込みが行われる場合には酸素吹き込み
口の近傍ではB領域に近い条件を形成することができ
る。
Region C is a carbonizer in the gasification system, a so-called gasification furnace. In the C region, the oxygen concentration is low and the carbon dioxide gas concentration is low, so that the temperature is 800
Above ℃, a decarboxylation reaction which is a thermal decomposition reaction occurs. The desulfurization reaction is a reductive desulfurization reaction. In the case where oxygen is locally blown even in the region C, conditions close to the region B can be formed in the vicinity of the oxygen blowing port.

【0021】以上のA,B,Cの領域での化学的反応の
特徴を生かし、脱硫剤CaCOの効果的な使用方法に
ついて示したのが図1である。尚、以下に示す反応は、
常圧から10MPa迄の圧力範囲で使用できる。
FIG. 1 shows an effective method of using the desulfurizing agent CaCO 3 taking advantage of the characteristics of the chemical reactions in the regions A, B, and C described above. In addition, the reaction shown below is
It can be used in a pressure range from normal pressure to 10 MPa.

【0022】図1に、本発明における上記3領域の脱硫
剤の循環経路を示す。この循環経路において、どのよう
にして炭酸カルシウムが脱硫機能を維持できるかについ
て以下に説明する。ガス化原料としてガス化炉1に供給
された可燃物中の硫黄分はガス化炉1で硫化水素を発生
する。ガス化炉1は、先の説明におけるC領域にあた
り、条件は先の説明と同等である。一方、脱硫剤として
同じくガス化炉1に供給された炭酸カルシウムの一部は
炉内で脱炭酸反応によりCaOとなり(反応)、炉内
で硫化水素HSと反応し、CaSを形成する(反応
)。
FIG. 1 shows a circulation route of the desulfurizing agent in the above three regions in the present invention. The following describes how calcium carbonate can maintain the desulfurization function in this circulation path. The sulfur content in the combustibles supplied to the gasification furnace 1 as a gasification raw material generates hydrogen sulfide in the gasification furnace 1. The gasification furnace 1 corresponds to the region C in the above description, and the conditions are the same as those in the above description. On the other hand, part of the calcium carbonate also supplied to the gasification furnace 1 as a desulfurizing agent becomes CaO by a decarboxylation reaction in the furnace (reaction), and reacts with hydrogen sulfide H 2 S in the furnace to form CaS ( reaction).

【0023】ガス化炉1内に滞留している未反応炭酸カ
ルシウムCaCO、及び反応の中間段階であるCa
O、及び還元脱硫反応生成物であるCaSは、ガス化炉
からの連絡路21を経るなどして移動し、酸化炉2に供
給される。酸化炉2は、先の説明におけるA領域にあた
り、条件は先の説明と同等である。酸化炉2の内部では
CaSの一部はCaSOにまで酸化される(反応)
と共に、未反応のCaCOの脱炭酸反応によってC
aOを生成する(反応)。酸化炉2においてCaO
は、酸化炉2に供給される固定炭素(いわゆるチャー)
に含まれる硫黄分から発生する硫黄酸化物と反応し、や
はりCaSOを生成する(反応)。また運転圧力が
低い場合、酸化炉2の内部では未反応のCaCOの脱
炭酸反応をも生じる(反応)。
Unreacted calcium carbonate CaCO 3 staying in the gasification furnace 1 and Ca which is an intermediate stage of the reaction
O and CaS, which is a product of the reductive desulfurization reaction, move, for example, via a communication path 21 from the gasification furnace, and are supplied to the oxidation furnace 2. The oxidation furnace 2 corresponds to the region A in the above description, and the conditions are the same as those in the above description. Part of CaS is oxidized to CaSO 4 inside the oxidation furnace 2 (reaction)
At the same time, decarbonation of unreacted CaCO 3 causes C
Produces aO (reaction). CaO in oxidation furnace 2
Is the fixed carbon (so-called char) supplied to the oxidation furnace 2
Reacts with the sulfur oxides generated from the sulfur content contained in the sulfuric acid to produce CaSO 4 (reaction). When the operating pressure is low, unreacted CaCO 3 is also decarbonated inside the oxidation furnace 2 (reaction).

【0024】酸化炉2内に滞留する脱硫剤には、CaS
、CaSO、CaO、CaCO、場合によって
はCaSの各々が表面に現れており、これら各々は互い
に不均一に脱硫剤の表面に積層し、いわば外観はあばた
状になっていると考えられる。そのような脱硫剤表面の
最外層がCaSOである部分は、酸化炉内でそれ以上
反応が進むことはほとんどないが、CaSOの層が薄
く、且つその層のすぐ下の層にCaCOが存在してい
れば、脱炭酸反応によってCaCOからCO が抜け
る際、CaSOの層を壊して新たな活性反応面を露出
させることができる。
The desulfurizing agent retained in the oxidation furnace 2 includes CaS
O4, CaSO3, CaO, CaCO3, In some cases
Indicates that each of the CaS appears on the surface, and each of these
Layered on the surface of the desulfurizing agent unevenly, so to speak
It is considered to be in a state. Of such desulfurizing agent surface
The outermost layer is CaSO4Part is no more in the oxidation furnace
The reaction hardly proceeds, but CaSO4Layer is thin
And the layer immediately below it is CaCO 23Exists
If this is the case, CaCO3To CO 2Missing
When CaSO4Breaks the layer to expose a new active reaction surface
Can be done.

【0025】しかしながら、本発明とは異なり、一般的
な可燃物をガス化してエネルギーを回収しようとするシ
ステムでは、大気圧以上、具体的にはガスタービンを駆
動できる1MPa程度以上の圧力でガス化炉が運転され
る場合が多く、この場合、酸化炉のCO分圧が0.1
5MPa程度以上になることから、CaCOの脱炭酸
反応が抑制され、CaSOの層はそのまま不活性面
として脱硫剤の表面に存在し続け、その下層のCa成分
は脱硫剤として機能しないまま取り残されてしまうので
ある。
However, unlike the present invention, in a general system for recovering energy by gasifying combustibles, gasification is performed at a pressure higher than the atmospheric pressure, specifically, a pressure higher than about 1 MPa at which the gas turbine can be driven. In many cases, the furnace is operated. In this case, the CO 2 partial pressure of the oxidation furnace is 0.1.
Since the pressure becomes about 5 MPa or more, the decarboxylation reaction of CaCO 3 is suppressed, the CaSO 4 layer continues to exist on the surface of the desulfurizing agent as it is as an inactive surface, and the Ca component in the lower layer remains without functioning as a desulfurizing agent. It will be lost.

【0026】本発明では、図1に示すように酸化炉2に
はガス化炉1への連絡路22が設けられており、酸化炉
2内の脱硫剤(炭酸カルシウム及びその派生物)をガス
化炉1に再度戻すことができる。一般的にガス化炉内で
は燃焼はほとんど起こさせないので、CO分圧が低
く、CaCOの脱炭酸反応は抑制されない。従って脱
硫剤の表面にCaSO、CaSO、CaO、CaC
、場合によってはCaSの層があばた状に不均一に
積層して形成されても、脱硫剤中のCaCOは CaCO→CaO+CO 脱炭酸反応 なる反応によってCOを放出し、その際、前記各成
分の層、とりわけCaSOの層を剥がして新たな反
応面を露出させることが可能になるのである。
In the present invention, as shown in FIG. 1, the oxidation furnace 2 is provided with a communication path 22 to the gasification furnace 1, and the desulfurizing agent (calcium carbonate and its derivatives) in the oxidation furnace 2 is gaseous. It can be returned to the furnace 1 again. In general, since almost no combustion occurs in the gasification furnace, the partial pressure of CO 2 is low, and the decarboxylation of CaCO 3 is not suppressed. Therefore, CaSO 4 , CaSO 3 , CaO, CaC
Even if a layer of O 3 , and in some cases, a layer of CaS is unevenly laminated in a pock-like manner, CaCO 3 in the desulfurizing agent releases CO 2 by a reaction of CaCO 3 → CaO + CO 2 decarboxylation reaction. Thus, it is possible to expose a new reaction surface by peeling off the layer of each component, especially the layer of CaSO 4 .

【0027】表面がCaSによって被われた部分はCa
SOによって被われた部分と比べて生成物の密度が小
さいので、気孔の開口率も大きく、その気孔を通じて内
部からCOを放出することができるので、その被膜が
破壊されることはほとんどないが、この脱硫剤粒子が再
びガス化炉1から酸化炉2へ循環して戻った際、酸化炉
2内でその気孔部が生成したCaSOによって塞がれ
るので、ガス化炉と酸化炉を何度も循環しているうち
に、必ずCaSOの被膜をCOの放出によって破壊
し、新たな反応面を露出させることができるのである。
The part whose surface is covered by CaS is Ca
Since the density of the product is lower than that of the portion covered by SO 4 , the opening ratio of the pores is large and CO 2 can be released from the inside through the pores, so that the coating is hardly destroyed. However, when the desulfurizing agent particles circulate again from the gasification furnace 1 to the oxidation furnace 2 and return, the pores in the oxidation furnace 2 are closed by the generated CaSO 4 , so that the gasification furnace and the oxidation furnace are connected. While circulating many times, the CaSO 4 coating can always be destroyed by the release of CO 2 , exposing a new reactive surface.

【0028】CaSはCaSOに比べてモルあたりの
容積が小さいので、CaSによって被われた部分はCa
SOによって被われた部分と比べて空隙率が大きく、
気孔の開口率も大きい。従って、その気孔を通じて内部
からCOを放出することができるので、CaSの被膜
が破壊されることはほとんどないが、この脱硫剤粒子が
再びガス化炉1から酸化炉2へ循環して戻った際、酸化
炉2内でその気孔部が生成したCaSOによって塞が
れるので、ガス化炉と酸化炉を何度も循環しているうち
に、必ずCaSOの被膜が脱硫剤表面に形成され、そ
の被膜が内部のCaCOの熱分解によるCOの放出
によって破壊されれば、新たな反応面を露出させること
ができるのである。
Since CaS has a smaller volume per mole than CaSO 4 , the portion covered by CaS is Ca
The porosity is higher than the part covered by SO 4 ,
The pore opening ratio is also large. Therefore, since the CO 2 can be released from the inside through the pores, the CaS coating is hardly destroyed, but the desulfurizing agent particles circulate again from the gasification furnace 1 to the oxidation furnace 2 and return. At this time, since the pores are closed by the generated CaSO 4 in the oxidation furnace 2, the CaSO 4 film is always formed on the surface of the desulfurizing agent while circulating the gasification furnace and the oxidation furnace many times. , the coating if it is destroyed by the release of CO 2 by thermal decomposition of the interior of CaCO 3, it is possible to expose a new reaction surface.

【0029】ところで、脱硫剤のほぼ全面に強固なCa
SOの被膜が形成されてしまうと、これまで説明した
ような現象は起きにくくなる。即ちCOの分圧差によ
るCaCOの脱炭酸反応だけでは破壊されないような
CaSOの被膜が形成されてしまうと、その脱硫剤粒
子は再び活性を取り戻すことはないからである。
By the way, strong Ca is almost completely covered with the desulfurizing agent.
When the SO 4 film is formed, the phenomenon described above is unlikely to occur. That is, if a CaSO 4 film is formed that cannot be destroyed only by the decarboxylation reaction of CaCO 3 due to the partial pressure difference of CO 2 , the desulfurizing agent particles will not regain their activity.

【0030】そこで、表面に形成するCaSOの層、
即ち被膜の強度を弱めておくことが重要になる。図1に
示すように酸化炉2には弱酸化部3との連絡路23,2
4も接続されており、酸化炉2内の脱硫剤はガス炉1だ
けでなく弱酸化部3の両方へ導入することができる。こ
こで、弱酸化部3は、先の説明におけるB領域にあた
り、条件は先の説明と同等である酸化炉2から弱酸化部
3へ供給された脱硫剤も、前述の酸化炉からガス化炉1
へ供給される脱硫剤同様、表面にはCaSO、Ca
O、CaCO、場合によってはCaSの層があばた状
に不均一に積層して形成されていると考えられるが、弱
酸化部3においてはその表面で新たにCaSOが触媒
として働き、CaCOが形成される。
Therefore, a layer of CaSO 4 formed on the surface,
That is, it is important to reduce the strength of the coating. As shown in FIG. 1, the oxidation furnace 2 has communication paths 23 and 2 with the weak oxidation part 3.
4 is also connected so that the desulfurizing agent in the oxidizing furnace 2 can be introduced not only into the gas furnace 1 but also into both the weak oxidizing section 3. Here, the weak oxidizing unit 3 corresponds to the region B in the above description, and the desulfurizing agent supplied from the oxidizing furnace 2 to the weak oxidizing unit 3 under the same conditions as in the above description is also used. 1
Like the desulfurizing agent supplied to the surface, CaSO 4 , Ca
It is considered that the layers of O, CaCO 3 , and in some cases, CaS are formed in a non-uniform manner in a pock-like manner, but in the weakly oxidized portion 3, CaSO 4 newly acts as a catalyst on its surface, and CaCO 3 Is formed.

【0031】弱酸化部3には酸素も存在するので、 CaO+SO+0.5O→CaSO 酸化脱硫反応 なる脱硫反応も生じているが、CO濃度も高いのでCa
SOを触媒として CaO+CO+0.5O→CaCO 再炭酸化反応(2) なる反応からCaCOも形成されるのである。即ち、
脱硫剤表面に存在するCaSOを触媒としてその近傍
に新たなCaSOとCaCOとが混在した層を形成
する。このCaSOとCaCOとの混在した層はC
aSO単独の被膜と比較して、その粒子が再び脱炭酸
反応を生じせしめるガス化室に導入された際、容易に破
壊される。なぜならガス化室において、 CaCO→CaO+CO 脱炭酸反応 なる反応で炭酸ガスを放出すると、CaSOとCaC
との混在した層は脆くなり、容易に剥がれ落ちると
考えられるからである。
Since oxygen is also present in the weakly oxidized part 3, a desulfurization reaction of CaO + SO 2 + 0.5O 2 → CaSO 4 oxidative desulfurization reaction has occurred.
CaCO 3 is also formed from the reaction of CaO + CO + 0.5O 2 → CaCO 3 recarbonation reaction (2) using SO 4 as a catalyst. That is,
Using CaSO 4 present on the surface of the desulfurizing agent as a catalyst, a new layer in which CaSO 4 and CaCO 3 are mixed is formed in the vicinity thereof. The layer in which CaSO 4 and CaCO 3 are mixed is C
As compared to the aSO 4 alone coating, the particles are more easily destroyed when introduced into the gasification chamber where the decarboxylation reaction takes place again. Because, in the gasification chamber, when carbon dioxide gas is released by the reaction of CaCO 3 → CaO + CO 2 decarboxylation reaction, CaSO 4 and CaC
This is because a layer mixed with O 3 is considered to be brittle and easily peel off.

【0032】従って、このように脆いCaSOとCa
COとの混在した層を成長させるには、酸化炉2と弱
酸化部3との循環量を多くして、酸化炉2において強固
なCaSO単独の被膜を成長させないようにするの
が望ましい。また、このようにして表面にCaSO
CaCOとの混在層が成長した脱硫剤をガス化室1に
導入すると、その混在層中のCaCOから熱分解で炭
酸ガスが放出されることによってその混在層が脆くな
り、破壊されて、新たな反応面が露出されることになる
のである。
Therefore, the fragile CaSO 4 and Ca
In order to grow a layer mixed with CO 3, it is desirable to increase the amount of circulation between the oxidizing furnace 2 and the weak oxidizing part 3 so that a strong CaSO 4 single film is not grown in the oxidizing furnace 2. . When the desulfurizing agent having a mixed layer of CaSO 4 and CaCO 3 grown on the surface in this way is introduced into the gasification chamber 1, carbon dioxide gas is released by thermal decomposition from CaCO 3 in the mixed layer. The mixed layer becomes brittle and breaks, exposing a new reaction surface.

【0033】図2は、脱硫剤粒子の履歴を模式的断面で
表したものである。はガス化炉に投入された直後のC
aCO粒子である。はガス化炉に投入され、脱炭酸
反応により表面からCOを放出しCaOの層を作り、
更にそのCaO層の表面がH Sと反応しCaSを形成
している状態である。この状態から酸化炉へ戻して長時
間経つと※印で示すように表面に強固なCaSO膜を
形成し不活性化してしまう。はの状態の脱硫剤粒子
を酸化炉と弱酸化部が共存する部分へ戻し、しばらく経
った状態である。表面にはCaSOとCaCOとの
混在した層が形成され、更にその下層にはCaOの層が
見られる。はの脱硫剤粒子が再びガス化炉に戻され
てしばらく経った状態である。表面のCaSOとCa
COとの混在層は脱炭酸反応により剥がれ落ち、又新
たに母材の脱炭酸反応も進み、表面にはCaSの層が形
成されている。そして以下同様に酸化炉と弱酸化部→
ガス化炉→酸化炉と弱酸化部と繰り返しにより、脱
硫剤粒子が表面からどんどん反応していく。
FIG. 2 is a schematic cross section showing the history of desulfurizing agent particles.
It is a representation. Is C immediately after being put into the gasifier
aCO3Particles. Is put into the gasifier and decarbonated
CO from the surface by the reaction2To form a layer of CaO,
Further, the surface of the CaO layer is H 2Reacts with S to form CaS
It is in the state of doing. Return to the oxidation furnace from this state for a long time
After a while, the solid CaSO4Membrane
Form and inactivate. In the state of desulfurizer particles
To the part where the oxidation furnace and the weakly oxidized part coexist, and after a while
Is in a state where CaSO on the surface4And CaCO3With
A mixed layer is formed, and a CaO layer is further underneath.
Can be seen. The desulfurizer particles are returned to the gasifier
It has been a while. CaSO on the surface4And Ca
CO3Layer is peeled off by the decarboxylation reaction and
In addition, the decarboxylation reaction of the base material also progressed, and a CaS layer
Has been established. Then, similarly, the oxidation furnace and the weak oxidation part
Gasification furnace → Deoxidization by repeating oxidation furnace and weak oxidation part
The sulfuric acid particles react more and more from the surface.

【0034】ガス化室1内でCaSOとCaCO
の混在層が剥離した脱硫剤は、さらに熱分解で母材であ
るCaCOが分解され表面にCaOが形成される。こ
のCaOが新たな活性反応面として機能し、ガス化炉内
の硫化水素と反応しCaSを形成して再び酸化炉2に戻
されるのである。このようにして脱硫剤は表面から徐々
に消費されて、有効に利用されるのである。ガス化炉に
て脱硫剤表面から剥離したCaSOは非常に安定なの
で、ガス化炉内で再分解することはほとんどなく、他の
脱硫剤と共に再び酸化炉2に導入されて、脱硫反応生成
物として排出、回収される。
The desulfurizing agent from which the mixed layer of CaSO 4 and CaCO 3 has been peeled off in the gasification chamber 1 is further decomposed by thermal decomposition to form CaO 3 as a base material to form CaO on the surface. This CaO functions as a new active reaction surface, reacts with hydrogen sulfide in the gasification furnace to form CaS, and is returned to the oxidation furnace 2 again. In this way, the desulfurizing agent is gradually consumed from the surface and is effectively used. Since CaSO 4 separated from the surface of the desulfurizing agent in the gasification furnace is very stable, it hardly re-decomposes in the gasification furnace, and is again introduced into the oxidation furnace 2 together with other desulfurization agents, and the desulfurization reaction product Discharged and collected.

【0035】このようにCaCO、CaO、CaS、
CaSOと硫黄分を含む物質(硫化物)の一部または
全部を、還元雰囲気Cから酸化雰囲気Aに通したのち、
再び、還元雰囲気C,Dは酸化程度が低く酸素とCOが
混在する領域Bを通すことにより炭酸カルシウムを有効
に脱硫剤として利用することができるのである。上記説
明は炭酸カルシウムを脱硫剤とした場合について説明し
たが、当然ながら炭酸カルシウムを主成分とするもの、
例えば石灰石やドロマイトといった鉱物も炭酸カルシウ
ム粒子と同様に脱硫剤として用いることができることは
言うまでもない。
As described above, CaCO 3 , CaO, CaS,
After passing some or all of the substance (sulfide) containing CaSO 4 and sulfur from the reducing atmosphere C to the oxidizing atmosphere A,
Again, the reducing atmospheres C and D have a low degree of oxidation and pass through the region B where oxygen and CO are mixed, so that calcium carbonate can be effectively used as a desulfurizing agent. Although the above description has been given of the case where calcium carbonate is used as the desulfurizing agent, it is natural that calcium carbonate is the main component,
Needless to say, minerals such as limestone and dolomite can also be used as desulfurizing agents, like calcium carbonate particles.

【0036】本発明の脱硫方法の有効性を示す実施例と
して、温度850℃、圧力1.11MPaの状態におい
てSO濃度1000ppm、CO濃度6%、Nバラ
ンスのガスで、酸素濃度を0%、0.5%、1%、2
%、3%、4%、5%、6%と変化させた(表1のB領
域の弱酸化領域の雰囲気を模擬した)時の、CaOの重
量変化を測定する試験を行った。その結果、酸素濃度が
2%以上の場合には酸化脱硫反応により生じたCaS
が触媒として寄与するために再炭酸化反応のCa
COの生成による著しい重量増加が起こり、重量増加
は酸素濃度が6%の時が最も大きかった。酸素濃度が1
%以下の場合は再炭酸化反応の反応による重量増加は
ほとんど起こらなかった。この試験結果から、本発明の
脱硫方法を実施する場合には、弱酸化領域の条件として
は、温度850℃、圧力1.11MPa、CO濃度6%
である場合には、酸素濃度を1%より多くすることが好
ましく、更に好ましくは酸素濃度を2〜6%とすること
で脱硫剤である炭酸カルシウムの利用率を高めることが
できることになる。
As an example showing the effectiveness of the desulfurization method of the present invention, a gas having an SO 2 concentration of 1000 ppm, a CO concentration of 6%, and a N 2 balance gas at a temperature of 850 ° C. and a pressure of 1.11 MPa, with an oxygen concentration of 0% , 0.5%, 1%, 2
%, 3%, 4%, 5%, and 6% (simulating the atmosphere of the weakly oxidized region in the region B in Table 1), a test was performed to measure the change in weight of CaO. As a result, when the oxygen concentration is 2% or more, CaS generated by the oxidative desulfurization reaction
Since O 4 serves as a catalyst, Ca in the recarbonation reaction
A significant weight increase due to the production of CO 3 occurred, with the weight increase being greatest at an oxygen concentration of 6%. Oxygen concentration is 1
% Or less, there was almost no increase in weight due to the recarbonation reaction. From the test results, when the desulfurization method of the present invention is performed, the conditions of the weak oxidation region are a temperature of 850 ° C., a pressure of 1.11 MPa, and a CO concentration of 6%.
In this case, it is preferable to increase the oxygen concentration to more than 1%, and more preferably to make the oxygen concentration 2 to 6%, whereby the utilization of calcium carbonate as a desulfurizing agent can be increased.

【0037】次に、本発明の具体的な実施例を説明す
る。図3は本発明者らが発明した前記のガス化炉と前記
の酸化炉(チャー燃焼室)の機能を統合して、一つにま
とめた統合型流動床ガス化炉の概念図である。
Next, a specific embodiment of the present invention will be described. FIG. 3 is a conceptual diagram of an integrated fluidized bed gasification furnace in which the functions of the gasification furnace and the oxidation furnace (char combustion chamber) invented by the present inventors have been integrated into one.

【0038】図3は、該統合型ガス化炉の基本的な構成
を模式的に表現したものであり、熱分解即ちガス化、チ
ャー燃焼、熱回収の3つの機能をそれぞれ担当するガス
化室31、チャー燃焼室32、熱回収室33を備え、例
えば全体が円筒形又は矩形を成した炉体内に収納されて
いる。ガス化室31、チャー燃焼室32、熱回収室33
は仕切壁41、42、43、44、45で分割されてお
り、それぞれの底部に流動媒体を含む濃厚層である流動
床が形成される。各室の流動床、即ちガス化室流動床、
チャー燃焼室流動床、熱回収室流動床の流動媒体を流動
させるために、各室31、32、33の底である炉底に
は、流動媒体中に流動化ガスを吹き込む散気装置が設け
られている。散気装置は炉底部に敷かれた例えば多孔板
を含んで構成され、該多孔板を広さ方向に分割して複数
の部屋に分割されており、各室内の各部の空塔速度を変
えるために、散気装置の各部屋から多孔板を通して吹き
出す流動化ガスの流速を変化させるように構成してい
る。空塔速度が室の各部で相対的に異なるので各室内の
流動媒体も室の各部で流動状態が異なり、そのため内部
旋回流が形成される。図中、散気装置に示す白抜き矢印
の大きさは、吹き出される流動化ガスの流速を示してい
る。例えば32bで示す箇所の太い矢印は、32aで示
す箇所の細い矢印よりも流速が大きい。
FIG. 3 is a schematic representation of the basic structure of the integrated gasification furnace. The gasification chamber has three functions of pyrolysis, that is, gasification, char combustion, and heat recovery. 1, a char combustion chamber 32, and a heat recovery chamber 33 are housed in, for example, a cylindrical or rectangular furnace. Gasification chamber 31, char combustion chamber 32, heat recovery chamber 33
Is divided by partition walls 41, 42, 43, 44, 45, and a fluidized bed, which is a dense layer containing a fluidized medium, is formed at the bottom of each. Fluidized bed of each chamber, i.e. gasification chamber fluidized bed,
In order to make the fluidized medium in the fluidized bed of the char combustion chamber and the fluidized bed of the heat recovery chamber flow, a diffuser for blowing fluidized gas into the fluidized medium is provided at the bottom of the furnace, which is the bottom of each of the chambers 31, 32, and 33. Have been. The air diffuser is configured to include, for example, a perforated plate laid on the bottom of the furnace, the perforated plate is divided into a plurality of rooms by dividing the perforated plate in the width direction, and to change the superficial velocity of each part in each room. In addition, the flow rate of the fluidizing gas blown out from each room of the air diffuser through the perforated plate is changed. Since the superficial velocity is relatively different in each part of the chamber, the flowing state of the fluid medium in each chamber is also different in each part of the chamber, so that an internal swirling flow is formed. In the drawing, the size of the white arrow shown in the air diffuser indicates the flow velocity of the fluidized gas to be blown out. For example, a thick arrow at a portion indicated by 32b has a larger flow velocity than a thin arrow at a portion indicated by 32a.

【0039】ガス化室31とチャー燃焼室32の間は仕
切壁41で仕切られ、チャー燃焼室32と熱回収室33
の間は仕切壁42で仕切られ、ガス化室と熱回収室の間
は仕切壁43で仕切られている。即ち、別々の炉として
構成されておらず、一つの炉として一体に構成されてい
る。このガス化炉では、仕切壁41が本発明の第2の仕
切壁を構成する。更に、チャー燃焼室32のガス化室3
1と接する面の近傍には、流動媒体が下降するべく沈降
チャー燃焼室34を設ける。即ち、チャー燃焼室32は
沈降チャー燃焼室34と沈降チャー燃焼室34以外のチ
ャー燃焼室本体部とに分かれる。このため、沈降チャー
燃焼室34をチャー燃焼室の他の部分(チャー燃焼室本
体部)と仕切るための仕切壁44が設けられている。ま
た沈降チャー燃焼室34とガス化室31は、本発明の第
1の仕切壁としての仕切壁45で仕切られている。
The gasification chamber 31 and the char combustion chamber 32 are partitioned by a partition wall 41, and the char combustion chamber 32 and the heat recovery chamber 33 are separated.
Is partitioned by a partition wall 42, and the gasification chamber and the heat recovery chamber are partitioned by a partition wall 43. That is, they are not configured as separate furnaces, but are integrally configured as one furnace. In this gasification furnace, the partition wall 41 constitutes the second partition wall of the present invention. Furthermore, the gasification chamber 3 of the char combustion chamber 32
A settling char combustion chamber 34 is provided near the surface in contact with 1 so that the flowing medium descends. That is, the char combustion chamber 32 is divided into a settled char combustion chamber 34 and a main body of the char combustion chamber other than the settled char combustion chamber 34. For this reason, a partition wall 44 is provided for partitioning the settling char combustion chamber 34 from other parts of the char combustion chamber (char combustion chamber main body). Further, the settling char combustion chamber 34 and the gasification chamber 31 are separated by a partition wall 45 as a first partition wall of the present invention.

【0040】ここで、流動床と界面について説明する。
流動床は、その鉛直方向下方部にある、流動化ガスによ
り流動状態に置かれている流動媒体(例えば珪砂)を濃
厚に含む濃厚層と、その濃厚層の鉛直方向上方部にある
流動媒体と多量のガスが共存し、流動媒体が勢いよくは
ねあがっているスプラッシュゾーンとからなる。流動床
の上方即ちスプラッシュゾーンの上方には流動媒体をほ
とんど含まずガスを主体とするフリーボード部がある。
本発明でいう界面は、ある厚さをもった前記スプラッシ
ュゾーンをいうが、またスプラッシュゾーンの上面と下
面(濃厚層の上面)との中間にある仮想的な面ととらえ
てもよい。また「流動床の界面より鉛直方向上方におい
てはガスの流通がないように仕切壁により仕切られ」と
いうとき、さらに界面より下方の濃厚層の上面より上方
においてガスの流通がないようにするのが好ましい。
Here, the fluidized bed and the interface will be described.
The fluidized bed comprises a thick bed containing a fluid medium (e.g., silica sand) which is placed in a fluidized state by the fluidizing gas in a vertically lower part thereof, and a fluid bed which is located vertically above the rich bed. It consists of a splash zone in which a large amount of gas coexists and the flowing medium is vigorously splashing. Above the fluidized bed, that is, above the splash zone, there is a gas-free freeboard section containing almost no fluidized medium.
The interface in the present invention refers to the splash zone having a certain thickness, but may be regarded as a virtual surface intermediate between the upper surface and the lower surface (the upper surface of the dense layer) of the splash zone. Also, when "the partition is separated by a partition wall so that there is no gas flow above the interface of the fluidized bed in the vertical direction", it is preferable that there be no gas flow above the upper surface of the dense layer below the interface. preferable.

【0041】ガス化室31とチャー燃焼室32の間の仕
切壁41は、炉の天井49から炉底(散気装置の多孔
板)に向かってほぼ全面的に仕切っているが、下端は炉
底に接することはなく、炉底近傍に第2の流通部51が
ある。但しこの流通部51の上端が、ガス化室流動床界
面、チャー燃焼室流動床界面のいずれの界面よりも上部
にまで達することはない。さらに好ましくは、流通部5
1の上端が、ガス化室流動床の濃厚層の上面、チャー燃
焼室流動床の濃厚層の上面のいずれよりも上部にまで達
することはないようにする。言い換えれば、流通部51
は、常に濃厚層に潜っているように構成するのが好まし
い。即ち、ガス化室31とチャー燃焼室32とは、少な
くともフリーボード部においては、さらに言えば界面よ
り上方においては、さらに好ましくは濃厚層の上面より
上方ではガスの流通がないように仕切壁により仕切られ
ていることになる。
The partition wall 41 between the gasification chamber 31 and the char combustion chamber 32 is almost completely partitioned from the furnace ceiling 49 to the furnace bottom (perforated plate of the air diffuser). There is no second bottom 51 near the furnace bottom. However, the upper end of the flow part 51 does not reach the upper part of any of the interface of the fluidized bed of the gasification chamber and the interface of the fluidized bed of the char combustion chamber. More preferably, the distribution unit 5
The upper end of 1 does not reach above the top of the rich bed of the gasification chamber fluidized bed or the top of the rich bed of the char combustion chamber fluidized bed. In other words, the distribution unit 51
Is preferably configured to always dive into the dense layer. That is, the gasification chamber 31 and the char combustion chamber 32 are separated from each other by a partition wall at least in the freeboard section, more specifically, above the interface, and more preferably, above the upper surface of the dense layer. You will be partitioned.

【0042】またチャー燃焼室32と熱回収室33の間
の仕切壁42はその上端が界面近傍、即ち濃厚層の上面
よりは上方であるが、スプラッシュゾーンの上面よりは
下方に位置しており、仕切壁42の下端は炉底近傍まで
であり、仕切壁41と同様に下端が炉底に接することは
なく、炉底近傍に濃厚層の上面より上方に達することの
ない開口52がある。ガス化室31と熱回収室33の間
の仕切壁43は炉底から炉の天井にわたって完全に仕切
っている。沈降チャー燃焼室34を設けるべくチャー燃
焼室32内を仕切る仕切壁44の上端は流動床の界面近
傍で、下端は炉底に接している。仕切壁44の上端と流
動床との関係は、仕切壁42と流動床との関係と同様で
ある。沈降チャー燃焼室34とガス化室31を仕切る仕
切壁45は、仕切壁41と同様であり、炉の天井から炉
底に向かってほぼ全面的に仕切っており、下端は炉底に
接することはなく、炉底近傍に第1の流通部55があ
り、この開口の上端が濃厚層の上面より下にある。即
ち、第1の流通部55と流動床の関係は、第2の流通部
51と流動床の関係と同様である。
The upper end of the partition wall 42 between the char combustion chamber 32 and the heat recovery chamber 33 is located near the interface, that is, above the upper surface of the dense layer, but below the upper surface of the splash zone. The lower end of the partition wall 42 extends to the vicinity of the furnace bottom. Like the partition wall 41, the lower end does not contact the furnace bottom, and there is an opening 52 near the furnace bottom that does not reach above the upper surface of the dense layer. A partition wall 43 between the gasification chamber 31 and the heat recovery chamber 33 is completely partitioned from the furnace bottom to the furnace ceiling. The upper end of a partition wall 44 that partitions the inside of the char combustion chamber 32 to provide the settling char combustion chamber 34 is near the interface of the fluidized bed, and the lower end is in contact with the furnace bottom. The relationship between the upper end of the partition wall 44 and the fluidized bed is the same as the relationship between the partition wall 42 and the fluidized bed. The partition wall 45 that separates the settling char combustion chamber 34 from the gasification chamber 31 is similar to the partition wall 41, and almost entirely partitions from the furnace ceiling to the furnace bottom, and the lower end is not in contact with the furnace bottom. Instead, there is a first circulation part 55 near the furnace bottom, and the upper end of this opening is below the upper surface of the dense layer. That is, the relationship between the first circulation unit 55 and the fluidized bed is the same as the relationship between the second circulation unit 51 and the fluidized bed.

【0043】ガス化室に投入された石炭等・硫黄分を含
む可燃物は流動媒体から熱を受け、熱分解、ガス化され
る。典型的には、燃料はガス化室では燃焼せず、いわゆ
る乾留される。残った乾溜チャーは流動媒体と共に仕切
壁41の下部にある流通部51からチャー燃焼室32に
流入する。このようにしてガス化室31から導入された
チャーはチャー燃焼室32で燃焼して流動媒体を加熱す
る。チャー燃焼室32でチャーの燃焼熱によって加熱さ
れた流動媒体は仕切壁42の上端を越えて熱回収室33
に流入し、熱回収室内で界面よりも下方にあるように配
設された層内伝熱管71で収熱され、冷却された後、再
び第2仕切壁42の下部開口52を通ってチャー燃焼室
32に流入する。ガス化室31に投入された可燃物の揮
発分は瞬時にガス化し、続いて固形炭素分(チャー)の
ガス化が比較的緩慢に起こる。したがって、ガス化室3
1内におけるチャーの滞留時間(ガス化室31に投入さ
れたチャーがチャー燃焼室32に抜けるまでの時間)は
燃料のガス化割合(炭素転換率)等を決める重要なファ
クターとなり得る。
The combustibles containing sulfur and the like, which have been introduced into the gasification chamber, receive heat from the fluid medium and are thermally decomposed and gasified. Typically, the fuel does not burn in the gasification chamber, but is so-called carbonized. The remaining dry distillation char flows into the char combustion chamber 32 together with the fluid medium from the flow portion 51 below the partition wall 41. The char thus introduced from the gasification chamber 31 is burned in the char combustion chamber 32 to heat the fluid medium. The fluid medium heated by the combustion heat of the char in the char combustion chamber 32 crosses over the upper end of the partition wall 42 and the heat recovery chamber 33.
After being cooled by the in-layer heat transfer tube 71 disposed below the interface in the heat recovery chamber, and then cooled again through the lower opening 52 of the second partition wall 42. It flows into the chamber 32. The volatile matter of the combustibles charged into the gasification chamber 31 is instantaneously gasified, and subsequently, the gasification of solid carbon (char) occurs relatively slowly. Therefore, gasification chamber 3
The residence time of the char in 1 (time until the char charged into the gasification chamber 31 passes through the char combustion chamber 32) can be an important factor that determines the gasification ratio (carbon conversion rate) of the fuel.

【0044】硅砂等を流動媒体として用いた場合、チャ
ーの比重が流動媒体の比重と比較して小さいため、主に
層の上部に集中してチャーが蓄積される。前記のように
ガス化室への流動媒体の流入及びガス化室からチャー燃
焼室への流動媒体の流出が仕切り壁下流通部より生じる
炉構造とした場合、主に層上部に存在するチャーより
も、主に層下部に存在する流動媒体の方が、ガス化室か
らチャー燃焼室へと流出し易く、逆にチャーはガス化室
からチャー燃焼室へと流出しにくい。したがって、その
分だけ、ガス化室が完全混合層となっている場合よりも
チャーのガス化室での平均滞留時間を長く維持すること
が可能になる。その場合、沈降チャー燃焼室34よりガ
ス化室へと流入した流動媒体は、ガス化室内で層内に広
く混合されることなく、主にガス化室下部のみを通過し
てチャー燃焼室へと流出することになるが、その場合に
おいても、ガス化室炉床より供給される流動化ガスと流
動媒体とが熱交換を行ない、流動化ガスからチャーへと
熱を伝えることによって、間接的にチャーのガス化に用
いられる熱を流動媒体の顕熱から供給することは可能で
ある。また、ガス化室内流動化ガス速度を制御し、前記
ガス化室内旋回流の様相を制御することにより、ガス化
室内での流動媒体とチャーの混合状態を変化させること
が可能であり、それにより、チャーのガス化室内平均滞
留時間の制御が可能となる。
When silica sand or the like is used as the fluid medium, the char is concentrated mainly on the upper part of the layer because the specific gravity of the char is smaller than the specific gravity of the fluid medium. When the inflow of the fluid medium into the gasification chamber and the outflow of the fluid medium from the gasification chamber to the char combustion chamber occur from the flow section below the partition wall as described above, mainly the char existing at the upper part of the bed However, the fluid medium mainly present in the lower part of the bed is more likely to flow out of the gasification chamber into the char combustion chamber, and conversely, the char is less likely to flow out of the gasification chamber into the char combustion chamber. Accordingly, the average residence time of the char in the gasification chamber can be maintained longer than that in the case where the gasification chamber is a completely mixed layer. In that case, the fluidized medium flowing into the gasification chamber from the settling char combustion chamber 34 passes mainly through only the lower part of the gasification chamber to the char combustion chamber without being widely mixed in the bed in the gasification chamber. However, even in this case, the fluidizing gas supplied from the gasification chamber hearth exchanges heat with the fluidizing medium and transfers heat from the fluidizing gas to the char, thereby indirectly causing the fluid to flow. It is possible to supply the heat used for gasification of the char from the sensible heat of the flowing medium. Also, by controlling the fluidized gas velocity in the gasification chamber and controlling the aspect of the swirling flow of the gasification chamber, it is possible to change the mixing state of the flowing medium and the char in the gasification chamber, thereby Thus, the average residence time of the gasification chamber of the char can be controlled.

【0045】一方、本炉構造においては、ガス化室とチ
ャー燃焼室との圧力差を制御することにより、ガス化室
内流動層高を自由に変化させることが可能であるため、
その手法を用いてもガス化室内チャー滞留時間を制御す
ることが可能である。ここで、熱回収室33は本発明の
燃料のガス化システムに必須ではない。即ち、ガス化室
31で主として揮発成分がガス化した後に残る主として
カーボンからなるチャーの量と、チャー燃焼室32で流
動媒体を加熱するのに必要とされるチャーの量がほぼ等
しければ、流動媒体から熱を奪うことになる熱回収室3
3は不要である。また前記チャーの量の差が小さけれ
ば、例えば、ガス化室31でのガス化温度が高目にな
り、ガス化室31で発生するCOガスの量が増えるとい
う形で、バランス状態が保たれる。
On the other hand, in the present furnace structure, the height of the fluidized bed in the gasification chamber can be freely changed by controlling the pressure difference between the gasification chamber and the char combustion chamber.
Even with this method, it is possible to control the char residence time in the gasification chamber. Here, the heat recovery chamber 33 is not essential for the fuel gasification system of the present invention. That is, if the amount of char mainly composed of carbon remaining after gasification of the volatile components in the gasification chamber 31 is substantially equal to the amount of char required for heating the fluidized medium in the char combustion chamber 32, the flow Heat recovery chamber 3 that takes away heat from the medium
3 is unnecessary. If the difference in the amount of the char is small, for example, the gasification temperature in the gasification chamber 31 becomes higher, and the amount of CO gas generated in the gasification chamber 31 increases, so that the balance state is maintained. It is.

【0046】しかしながら図3に示すように熱回収室3
3を備える場合は、チャーの発生量の大きい石炭から、
ほとんどチャーを発生させない都市ゴミまで、幅広く多
種類の燃料に対応することができる。即ち、どのような
燃料であっても、熱回収室33における熱回収量を加減
することにより、チャー燃焼室32の燃焼温度を適切に
調節し、流動媒体の温度を適切に保つことができる。一
方、チャー燃焼室32で加熱された流動媒体は第4仕切
壁44の上端を越えて沈降チャー燃焼室34に流入し、
次いで仕切壁45の下部にある流通部55からガス化室
31に流入する。
However, as shown in FIG.
In the case of equipping 3, coal with a large amount of generated char
It can handle a wide variety of fuels, even urban garbage that generates almost no char. That is, for any fuel, by adjusting the amount of heat recovery in the heat recovery chamber 33, the combustion temperature of the char combustion chamber 32 can be appropriately adjusted, and the temperature of the fluidized medium can be appropriately maintained. On the other hand, the fluid medium heated in the char combustion chamber 32 flows into the settling char combustion chamber 34 over the upper end of the fourth partition wall 44,
Next, the gas flows into the gasification chamber 31 from the circulation part 55 below the partition wall 45.

【0047】ここで、各室間の流動媒体の流動状態及び
移動について説明する。ガス化室31の内部で沈降チャ
ー燃焼室34との間の仕切壁45に接する面の近傍は、
沈降チャー燃焼室34の流動化と比べて強い流動化状態
が維持される強流動化域31bになっている。全体とし
ては投入された燃料と流動媒体の混合拡散が促進される
様に、場所によって流動化ガスの空塔速度を変化させる
のが良く、一例として図2に示したように強流動化域3
1bの他に弱流動化域31aを設けて流動媒体の旋回流
を形成させるようにする。
Here, the flow state and movement of the flowing medium between the respective chambers will be described. The vicinity of a surface in contact with the partition wall 45 between the settling char combustion chamber 34 inside the gasification chamber 31 is as follows:
The strong fluidization region 31b maintains a strong fluidization state as compared with the fluidization of the settling char combustion chamber 34. As a whole, it is preferable to change the superficial velocity of the fluidizing gas depending on the location so that the mixed diffusion of the injected fuel and the fluidized medium is promoted. For example, as shown in FIG.
In addition to 1b, a weak fluidization zone 31a is provided to form a swirling flow of the fluid medium.

【0048】チャー燃焼室32は中央部に弱流動化域3
2a、周辺部に強流動化域32bを有し、流動媒体およ
びチャーが内部旋回流を形成している。ガス化室31、
チャー燃焼室32内の強流動化域の流動化速度は5Umf
以上、弱流動化域の流動化速度は5Umf以下とするのが
好適であるが、弱流動化域と強流動化域に相対的な明確
な差を設ければ、この範囲を超えても特に差し支えはな
い。チャー燃焼室32内の熱回収室33、および沈降チ
ャー燃焼室34に接する部分には強流動化域32bを配
するようにするのがよい。また必要に応じて炉底には弱
流動化域32a側から強流動化域32b側に下るような
勾配を設けるのが良い。ここで、Umfとは最低流動化速
度(流動化が開始される速度)を1Umfとした単位であ
る。即ち、5Umfは最低流動化速度の5倍の速度であ
る。
The char combustion chamber 32 has a weak fluidized zone 3 in the center.
2a, having a strong fluidization region 32b in the peripheral portion, and the fluid medium and the char form an internal swirling flow. Gasification chamber 31,
The fluidization speed in the strong fluidization zone in the char combustion chamber 32 is 5 Umf
As described above, it is preferable that the fluidization speed of the weak fluidization zone is 5 Umf or less, but if a relatively clear difference is provided between the weak fluidization zone and the strong fluidization zone, the fluidization speed is particularly large even when exceeding this range. No problem. It is preferable to arrange a strong fluidization zone 32b in a portion in contact with the heat recovery chamber 33 and the settling char combustion chamber 34 in the char combustion chamber 32. If necessary, the furnace bottom may be provided with a gradient such that it falls from the weak fluidized region 32a to the strong fluidized region 32b. Here, Umf is a unit in which the minimum fluidization speed (the speed at which fluidization starts) is 1 Umf. That is, 5 Umf is five times the minimum fluidization rate.

【0049】このように、チャー燃焼室32と熱回収室
33との仕切壁42近傍のチャー燃焼室側の流動化状態
を熱回収室33側の流動化状態よりも相対的に強い流動
化状態に保つことによって、流動媒体は仕切壁42の流
動床の界面近傍にある上端を越えてチャー燃焼室32側
から熱回収室33の側に流入し、流入した流動媒体は熱
回収室33内の相対的に弱い流動化状態即ち高密度状態
のために下方(炉底方向)に移動し、仕切壁42の炉底
近傍にある下端(の流通部52)をくぐって熱回収室3
3側からチャー燃焼室32の側に移動する。
As described above, the fluidized state on the char combustion chamber side near the partition wall 42 between the char combustion chamber 32 and the heat recovery chamber 33 is relatively stronger than the fluidized state on the heat recovery chamber 33 side. , The flowing medium flows from the char combustion chamber 32 side to the heat recovery chamber 33 side over the upper end of the partition wall 42 near the interface of the fluidized bed, and the flowing medium flows into the heat recovery chamber 33. The heat recovery chamber 3 moves downward (toward the bottom of the furnace) due to the relatively weak fluidized state, that is, the high-density state, and passes through the lower end (the flow portion 52) of the partition wall 42 near the furnace bottom.
It moves from the third side to the side of the char combustion chamber 32.

【0050】同様に、チャー燃焼室32の本体部と沈降
チャー燃焼室34との仕切壁44近傍のチャー燃焼室本
体部側の流動化状態を沈降チャー燃焼室34側の流動化
状態よりも相対的に強い流動化状態に保つことによっ
て、流動媒体は仕切壁44の流動床の界面近傍にある上
端を越えてチャー燃焼室32本体部の側から沈降チャー
燃焼室34の側に移動流入する。沈降チャー燃焼室34
の側に流入した流動媒体は、沈降チャー燃焼室34内の
相対的に弱い流動化状態即ち高密度状態のために下方
(炉底方向)に移動し、仕切壁45の炉底近傍にある下
端(の開口55)をくぐって沈降チャー燃焼室34側か
らガス化室31側に移動する。なおここで、ガス化室3
1と沈降チャー燃焼室34との仕切壁45近傍のガス化
室31側の流動化状態は沈降チャー燃焼室34側の流動
化状態よりも相対的に強い流動化状態に保たれている。
このことは流動媒体の沈降チャー燃焼室34からガス化
室31への移動を誘引作用により助ける。同様に、ガス
化室31とチャー燃焼室32との間の仕切壁41近傍の
チャー燃焼室32側の流動化状態はガス化室31側の流
動化状態よりも相対的に強い流動化状態に保たれてい
る。したがって、流動媒体は仕切壁41の流動床の界面
より下方、好ましくは濃厚層の上面よりも下方にある
(濃厚層に潜った)流通部51を通してチャー燃焼室3
2の側に流入する。
Similarly, the fluidized state of the main body portion of the char combustion chamber near the partition wall 44 between the main body portion of the char combustion chamber 32 and the settled char combustion chamber 34 is relatively smaller than the fluidized state of the settled char combustion chamber 34 side. By maintaining the fluidized state as strong as possible, the fluid medium moves and flows from the main body of the char combustion chamber 32 to the settled char combustion chamber 34 over the upper end of the partition wall 44 near the interface of the fluidized bed. Settling char combustion chamber 34
Flow medium moves downward (furnace bottom direction) due to the relatively weak fluidized state, that is, the high-density state in the settling char combustion chamber 34, and the lower end of the partition wall 45 near the furnace bottom. Through the (opening 55), the sedimentary char moves from the combustion chamber 34 side to the gasification chamber 31 side. Here, the gasification chamber 3
The fluidization state on the gasification chamber 31 side near the partition wall 45 between 1 and the settling char combustion chamber 34 is maintained in a relatively stronger fluidization state than the fluidization state on the settling char combustion chamber 34 side.
This assists in the movement of the flowing medium from the settling char combustion chamber 34 to the gasification chamber 31 by the attraction effect. Similarly, the fluidized state on the side of the char combustion chamber 32 near the partition wall 41 between the gasification chamber 31 and the char combustion chamber 32 is a relatively stronger fluidized state than the fluidized state on the gasification chamber 31 side. Is kept. Accordingly, the fluid medium flows through the flow section 51 below the interface of the fluidized bed of the partition wall 41, preferably below the upper surface of the dense layer (submerged in the dense layer).
2 side.

【0051】一般的には、イ、ロの2つの室間の流動媒
体の移動は、イ、ロ室が、上端が界面の高さ近傍にある
仕切壁ハによって仕切られているときは、その仕切壁ハ
近傍のイ室とロ室の流動化状態を比較して、例えばイ室
側の流動化状態がロ室側の流動化状態よりも強く保たれ
ていれば、流動媒体は仕切壁ハの上端を越えてイ室側か
らロ室側に流入移動する。また、イ、ロ室が、下端が界
面より下方、好ましくは濃厚層の上面より下方にある
(濃厚層に潜った)仕切壁ニによって仕切られていると
き、言い換えれば界面よりも下方に開口を、あるいは濃
厚層に潜った開口を有する仕切壁ニによって仕切られて
いるときは、その仕切壁ニ近傍のイ室とロ室の流動化状
態を比較して、例えばイ室側の流動化状態がロ室側の流
動化状態よりも強く保たれていれば、流動媒体は仕切壁
ニの下端の開口をくぐってロ室側からイ室側に流入移動
する。これは、イ室側の流動媒体の相対的に強い流動状
態の誘引作用によるとも言えるし、ロ室側の相対的に弱
い流動状態によるロ室内の流動媒体の密度がイ室側より
も高いことによるとも言える。また以上のような各室間
の流動媒体の移動がある一つの箇所で生じたために崩れ
ようとする各室間のマスバランスの平衡状態を保つよう
に、他の箇所で各室間の流動媒体の移動が生じる場合も
ある。
In general, the movement of the fluid medium between the two chambers (a) and (b) is performed when the chambers (a) and (b) are separated by a partition wall c whose upper end is near the height of the interface. Comparing the fluidized state of the chamber A and the chamber B near the partition C, for example, if the fluidized state of the chamber A is maintained stronger than the fluidized state of the chamber B, the fluid medium Flows from the room a to the room b over the upper end of the chamber. In addition, when the lower chamber is partitioned by a partition wall d whose lower end is below the interface, preferably below the upper surface of the dense layer (in other words, dips into the dense layer), in other words, the opening is formed below the interface. Or, when partitioned by a partition wall d having an opening sunk in the dense layer, comparing the fluidized state of the chamber A and the chamber B near the partition wall d, for example, the fluidized state of the chamber A side If the fluidized state is kept stronger than the fluidized state on the chamber side, the fluid medium flows through the opening at the lower end of the partition wall d and moves from the chamber side to the chamber side. It can be said that this is due to the attraction effect of the relatively strong flow state of the fluid medium in the chamber A, and that the density of the fluid medium in the chamber B due to the relatively weak flow state in the chamber B is higher than that of the chamber A. It can also be said that. In order to maintain the equilibrium state of the mass balance between the chambers that are about to collapse due to the movement of the fluid medium between the chambers at one place as described above, the fluid medium between the chambers at other places is maintained. May occur.

【0052】また、1つの室を画成する仕切壁として
の、または1つの室内の仕切壁としての仕切壁ハの上端
と、同じく仕切壁ニの下端との相対的関係について言え
ば、上端を越えて流動媒体を移動させようとする仕切壁
ハのその上端は、下端を流動媒体を潜らせて移動させよ
うとする仕切壁のその下端よりも、鉛直方向上方に位置
する。このように構成することによって、その室に流動
媒体を充填して流動化させたとき、流動媒体の充填量を
適切に決めれば、前記上端を流動床の界面近傍に位置さ
せ、かつ前記下端を濃厚層に潜らせるように設定するこ
とができ、仕切壁近傍の流動化の強さを前述のように適
切に設定することにより、流動媒体を仕切壁ハあるいは
仕切壁ニに関して所定の方向に移動させることができ
る。また、仕切壁ニによって仕切られる2つの室間のガ
スの流通をなくすことができる。
Further, regarding the relative relationship between the upper end of the partition wall c as a partition wall that defines one room or as a partition wall in one room and the lower end of the partition wall d, the upper end is similarly defined. The upper end of the partition wall C for moving the fluid medium over the partition wall is located vertically above the lower end of the partition wall for moving the fluid medium under the lower end. With this configuration, when the chamber is filled with the fluid medium and fluidized, if the amount of the fluid medium to be filled is appropriately determined, the upper end is located near the interface of the fluidized bed, and the lower end is The fluid medium can be moved in a predetermined direction with respect to the partition C or the partition D by setting the fluidization strength near the partition appropriately as described above. Can be done. In addition, it is possible to eliminate gas flow between the two chambers partitioned by the partition wall d.

【0053】以上のことを図1の場合に当てはめて説明
すれば、チャー燃焼室32と熱回収室33とは、上端が
界面の高さ近傍にあり下端が濃厚層に潜った仕切壁42
で仕切られており、仕切壁42近傍のチャー燃焼室32
側の流動化状態が、仕切壁42近傍の熱回収室33側の
流動化状態よりも強く保たれている。したがって、流動
媒体は仕切壁42の上端を越えてチャー燃焼室32側か
ら熱回収室33側に流入移動し、また仕切壁42の下端
をくぐって熱回収室33側からチャー燃焼室32側に移
動する。
The above is applied to the case of FIG. 1. Explaining that, the char combustion chamber 32 and the heat recovery chamber 33 have a partition wall 42 whose upper end is near the height of the interface and whose lower end is buried in the dense layer.
The char combustion chamber 32 near the partition wall 42
The fluidized state on the side is kept stronger than the fluidized state on the heat recovery chamber 33 side near the partition wall 42. Therefore, the flowing medium flows from the char combustion chamber 32 side to the heat recovery chamber 33 side over the upper end of the partition wall 42, and passes through the lower end of the partition wall 42 from the heat recovery chamber 33 side to the char combustion chamber 32 side. Moving.

【0054】また、チャー燃焼室32とガス化室31と
は、下端が濃厚層に潜った第1の仕切壁45により仕切
られており、仕切壁45のチャー燃焼室側には、上端が
界面の高さ近傍にある仕切壁44と仕切壁45を含む仕
切壁で画成された沈降チャー燃焼室34が設けられ、仕
切壁44近傍のチャー燃焼室32本体部側の流動化状態
が、仕切壁44近傍の沈降チャー燃焼室34側の流動化
状態よりも強く保たれている。したがって、流動媒体は
仕切壁44の上端を越えてチャー燃焼室32の本体部側
から沈降チャー燃焼室34側に流入移動する。このよう
に構成することにより沈降チャー燃焼室34に流入した
流動媒体は少なくともマスバランスを保つように、仕切
壁45の下端をくぐって沈降チャー燃焼室34からガス
化室31に移動する。このとき、仕切壁45近傍のガス
化室31側の流動化状態が、仕切壁45近傍の沈降チャ
ー燃焼室34側の流動化状態よりも強く保たれていれ
ば、誘引作用により流動媒体の移動が促進される。
Further, the lower end of the char combustion chamber 32 and the gasification chamber 31 is partitioned by a first partition wall 45 immersed in the dense layer. Is provided with a settling char combustion chamber 34 defined by a partition wall including a partition wall 44 and a partition wall 45 near the height of the partition wall 44. The fluidized state of the main body of the char combustion chamber 32 near the partition wall 44 is determined by a partition. It is kept stronger than the fluidized state on the settling char combustion chamber 34 side near the wall 44. Therefore, the fluid medium flows from the main body side of the char combustion chamber 32 to the settling char combustion chamber 34 side over the upper end of the partition wall 44. With this configuration, the fluid medium flowing into the settling char combustion chamber 34 moves from the settling char combustion chamber 34 to the gasification chamber 31 through the lower end of the partition wall 45 so as to maintain at least mass balance. At this time, if the fluidized state on the side of the gasification chamber 31 near the partition wall 45 is more strongly maintained than the fluidized state on the side of the settling char combustion chamber 34 near the partition wall 45, the movement of the fluid medium by the attracting action is performed. Is promoted.

【0055】さらにガス化室31とチャー燃焼室32本
体部とは、下端が濃厚層に潜った第2の仕切壁41で仕
切られている。沈降チャー燃焼室34からガス化室31
に移動してきた流動媒体は、さきのマスバランスを保つ
ように仕切壁41の下端をくぐってチャー燃焼室32に
移動するが、このとき、仕切壁41近傍のチャー燃焼室
32側の流動化状態が、仕切壁41近傍のガス化室31
側の流動化状態よりも強く保たれていれば、さきのマス
バランスを保つようにだけではなく、強い流動化状態に
より流動媒体はチャー燃焼室32側に誘引され移動す
る。
Further, the gasification chamber 31 and the main body of the char combustion chamber 32 are partitioned by a second partition wall 41 whose lower end is buried in a dense layer. From the settling char combustion chamber 34 to the gasification chamber 31
Is moved to the char combustion chamber 32 through the lower end of the partition wall 41 so as to maintain the mass balance, but at this time, the fluidized state on the side of the char combustion chamber 32 near the partition wall 41 Is the gasification chamber 31 near the partition wall 41
If the fluidized state is maintained stronger than the fluidized state on the side, not only the mass balance is maintained, but also the fluidized medium is attracted and moved toward the char combustion chamber 32 by the strong fluidized state.

【0056】図3の実施例では、流動媒体の沈降をチャ
ー燃焼室32の一部である沈降チャー燃焼室34で行わ
せているが、同様な構成をガス化室31の一部に、具体
的には流通部51の部分に、不図示のいわば沈降ガス化
室ともいうべき形で設けてもよい。即ち、沈降ガス化室
の流動化状態を隣接のガス化室本体部のそれよりも相対
的に弱くして、ガス化室本体部の流動媒体が沈降ガス化
室に仕切壁の上端を越えて流入し、沈降した流動媒体が
流通部51を通してチャー燃焼室に移動する。このとき
沈降チャー燃焼室34は、沈降ガス化室と併設してもよ
いし、設けなくてもよい。沈降ガス化室を設ければ、図
2の場合と同様に、流動媒体はチャー燃焼室32から流
通部55を通してガス化室31へ、またガス化室31か
ら流通部51を通してチャー燃焼室32へと移動する。
In the embodiment shown in FIG. 3, the sedimentation of the fluid medium is performed in the settling char combustion chamber 34, which is a part of the char combustion chamber 32. Specifically, it may be provided in a part of the circulation part 51 in a form which may be called a settling gasification chamber (not shown). That is, the fluidized state of the settling gasification chamber is made relatively weaker than that of the adjacent gasification chamber main body, and the fluidized medium of the gasification chamber main body passes over the upper end of the partition wall to the settling gasification chamber. The flowing and settled fluid medium moves to the char combustion chamber through the flow section 51. At this time, the settling char combustion chamber 34 may or may not be provided with the settling gasification chamber. If a settling gasification chamber is provided, as in the case of FIG. 2, the fluidized medium flows from the char combustion chamber 32 to the gasification chamber 31 through the circulation section 55 and from the gasification chamber 31 to the char combustion chamber 32 through the circulation section 51. And move.

【0057】熱回収室33は全体が均等に流動化され、
通常は最大でも熱回収室に接したチャー燃焼室32の流
動化状態より弱い流動化状態となるように維持される。
従って、熱回収室33の流動化ガスの空塔速度は0〜3
Umfの間で制御され、流動媒体は緩やかに流動しながら
沈降流動層を形成する。なおここで0Umfとは、流動化
ガスが止まった状態である。このような状態にすれば、
熱回収室33での熱回収を最小にすることができる。す
なわち、熱回収室33は流動媒体の流動化状態を変化さ
せることによって回収熱量を最大から最小の範囲で任意
に調節することができる。また、熱回収室33では、流
動化を室全体で一様に発停あるいは強弱を調節してもよ
いが、その一部の領域の流動化を停止し他を流動化状態
に置くこともできるし、その一部の領域の流動化状態の
強弱を調節してもよい。
The entire heat recovery chamber 33 is evenly fluidized,
Normally, it is maintained so as to be in a fluidized state weaker than the fluidized state of the char combustion chamber 32 in contact with the heat recovery chamber at the maximum.
Therefore, the superficial velocity of the fluidizing gas in the heat recovery chamber 33 is 0 to 3
Controlled between Umf, the fluidized medium forms a settling fluidized bed while flowing slowly. Here, 0 Umf is a state in which the fluidizing gas has stopped. In this state,
Heat recovery in the heat recovery chamber 33 can be minimized. That is, the heat recovery chamber 33 can arbitrarily adjust the amount of recovered heat within a range from the maximum to the minimum by changing the fluidized state of the fluid medium. Further, in the heat recovery chamber 33, the fluidization may be uniformly started and stopped or the strength of the fluidization may be adjusted throughout the chamber, but the fluidization of a part of the area may be stopped and the other fluidized state may be set. Then, the strength of the fluidized state of a part of the region may be adjusted.

【0058】また、燃料中に含まれる比較的大きな不燃
物はガス化室31の炉底に設けた不燃物排出口63から
排出する。また、各室の炉底面は水平でも良いが、流動
媒体の流れの滞留部を作らないようにするために、炉底
近傍の流動媒体の流れに従って、炉底を傾斜させても良
い。なお、不燃物排出口は、ガス化室31の炉底だけで
なく、チャー燃焼室32あるいは熱回収室33の炉底に
設けてもよい。
Further, relatively large non-combustible substances contained in the fuel are discharged from a non-combustible substance discharge port 63 provided at the furnace bottom of the gasification chamber 31. Further, the furnace bottom of each chamber may be horizontal, but the furnace bottom may be inclined in accordance with the flow of the fluid medium near the furnace bottom in order to prevent a stagnant portion of the flow of the fluid medium. The incombustible discharge port may be provided not only at the bottom of the gasification chamber 31 but also at the bottom of the char combustion chamber 32 or the heat recovery chamber 33.

【0059】ガス化室31の流動化ガスとして最も好ま
しいのは生成ガスを昇圧してリサイクル使用することで
ある。このようにすればガス化室から出るガスは純粋に
燃料から発生したガスのみとなり、非常に高品質のガス
を得ることができる。それが不可能な場合は水蒸気等、
できるだけ酸素を含まないガス(無酸素ガス)を用いる
のが良い。ガス化の際の吸熱反応によって流動媒体の層
温が低下する場合は、必要に応じて無酸素ガスに加え
て、酸素もしくは酸素を含むガス、例えば空気を供給し
て生成ガスの一部を燃焼させるようにしても良い。チャ
ー燃焼室32に供給する流動化ガスは、チャー燃焼に必
要な酸素を含むガス、例えば空気、酸素と蒸気の混合ガ
スを供給する。また熱回収室33に供給する流動化ガス
は、空気、水蒸気、燃焼排ガス等を用いる。
The most preferable fluidizing gas for the gasification chamber 31 is to recycle and use the generated gas at a high pressure. In this way, the gas leaving the gasification chamber is purely gas generated from the fuel, and very high quality gas can be obtained. If that is not possible,
It is preferable to use a gas containing as little oxygen as possible (oxygen-free gas). If the bed temperature of the fluidized medium decreases due to the endothermic reaction during gasification, oxygen or a gas containing oxygen, such as air, is supplied as necessary to burn a part of the product gas in addition to the oxygen-free gas. You may make it do. The fluidizing gas supplied to the char combustion chamber 32 supplies a gas containing oxygen necessary for char combustion, for example, air, a mixed gas of oxygen and steam. As the fluidizing gas supplied to the heat recovery chamber 33, air, steam, combustion exhaust gas or the like is used.

【0060】ガス化室31とチャー燃焼室32の流動床
の上面(スプラッシュゾーンの上面)より上方の部分す
なわちフリーボード部は完全に仕切壁で仕切られてい
る。さらに言えば、流動床の濃厚層の上面より上方の部
分すなわちスプラッシュゾーン及びフリーボード部は完
全に仕切壁で仕切られているので、チャー燃焼室32と
ガス化室31のそれぞれの圧力P1,P2のバランスが多少
乱れても、双方の流動層の界面の位置の差、あるいは濃
厚層の上面の位置の差、即ち層高差が多少変化するだけ
で乱れを吸収することができる。即ち、ガス化室31と
チャー燃焼室32とは、仕切壁45で仕切られているの
で、それぞれの室の圧力P1,P2が変動しても、この圧力
差は層高差で吸収でき、どちらかの層が流通部55の上
端に下降するまで吸収可能である。従って、層高差で吸
収できるチャー燃焼室32とガス化室31のフリーボー
ドの圧力差(P1-P2又はP2-P1)の上限値は、互いを仕切
る仕切壁45の下部の流通部55の上端からの、ガス化
室流動床のヘッドと、チャー燃焼室流動床のヘッドとの
ヘッド差にほぼ等しい。
The portion above the upper surface of the fluidized bed (the upper surface of the splash zone) of the gasification chamber 31 and the char combustion chamber 32, that is, the freeboard portion, is completely partitioned by a partition wall. Furthermore, since the portion above the upper surface of the dense bed of the fluidized bed, that is, the splash zone and the free board portion are completely partitioned by the partition wall, the pressures P1, P2 of the char combustion chamber 32 and the gasification chamber 31, respectively. Is slightly disturbed, the disturbance can be absorbed only by a slight change in the difference in the position of the interface between the two fluidized beds or the difference in the position of the upper surface of the dense bed, that is, the difference in the bed height. That is, since the gasification chamber 31 and the char combustion chamber 32 are partitioned by the partition wall 45, even if the pressures P1 and P2 of the respective chambers fluctuate, this pressure difference can be absorbed by the layer height difference. The absorption can be performed until such a layer descends to the upper end of the flow section 55. Accordingly, the upper limit of the pressure difference (P1-P2 or P2-P1) between the free space of the char combustion chamber 32 and the freeboard of the gasification chamber 31 that can be absorbed by the difference in bed height is determined by the flow rate of the lower part of the partition wall 45 that separates each other. From the top, it is approximately equal to the head difference between the head of the gasification chamber fluidized bed and the head of the char combustion chamber fluidized bed.

【0061】以上説明した統合型ガス化炉では、一つの
流動床炉の内部に、ガス化室、チャー燃焼室、熱回収室
の3つを、それぞれ隔壁を介して設け、更にチャー燃焼
室とガス化室、チャー燃焼室と熱回収室はそれぞれ隣接
して設けられている。この統合型ガス化炉は、チャー燃
焼室とガス化室間に大量の流動媒体循環を可能にしてい
るので、流動媒体の顕熱だけでガス化のための熱量を充
分に供給でき、できるだけ少量の、且つ発熱量の高い生
成ガスを得ることが最も容易に実現できる。さらに、チ
ャー燃焼ガスと生成ガスの間のシールが完全にされるの
で、ガス化室とチャー燃焼室の圧力バランス制御がうま
くなされ、燃焼ガスと生成ガスが混ざることがなく、生
成ガスの性状を低下させることもない。また、熱媒体と
しての流動媒体とチャーはガス化室31側からチャー燃
焼室32側に流入するようになっており、さらに同量の
流動媒体がチャー燃焼室32側からガス化室31側に戻
るように構成されているので、自然にマスバランスがと
れ、流動媒体をチャー燃焼室32側からガス化室31側
に戻すために、コンベヤ等を用いて機械的に搬送する必
要もなく、高温粒子のハンドリングの困難さ、顕熱ロス
が多いといった問題もない。
In the integrated gasification furnace described above, a gasification chamber, a char combustion chamber, and a heat recovery chamber are provided inside a single fluidized bed furnace through partition walls, respectively. The gasification chamber, the char combustion chamber, and the heat recovery chamber are provided adjacent to each other. This integrated gasifier enables a large amount of fluidized medium to circulate between the char combustion chamber and the gasification chamber, so that the sensible heat of the fluidized medium alone can supply a sufficient amount of heat for gasification, It is most easily possible to obtain a product gas having a high calorific value. Further, since the seal between the char combustion gas and the product gas is completely completed, the pressure balance between the gasification chamber and the char combustion chamber is well controlled, and the combustion gas and the product gas are not mixed, and the properties of the product gas are reduced. There is no lowering. The fluid medium and the char as the heat medium flow from the gasification chamber 31 into the char combustion chamber 32, and the same amount of the fluid medium flows from the char combustion chamber 32 into the gasification chamber 31. Since it is configured to return, the mass is naturally balanced, and there is no need to mechanically convey the fluid medium from the char combustion chamber 32 side to the gasification chamber 31 side using a conveyor or the like. There are no problems such as difficulty in handling particles and large sensible heat loss.

【0062】以上説明したように、図3に示すように、
1つの流動床炉内に、燃料の熱分解・ガス化、チャー燃
焼、及び層内熱回収の3つの機能を共存させ、チャー燃
焼室内の高温流動媒体を熱分解・ガス化の熱源供給の熱
媒体としてガス化室に供給する統合型ガス化炉は、前記
ガス化室と熱回収室は仕切壁によって炉底から天井にわ
たって完全に仕切るか、もしくは互いに接しないように
配置し、且つガス化室とチャー燃焼室は流動床の界面よ
り上部においては完全に仕切壁で仕切り、該仕切壁近傍
のガス化室側の流動化状態の強さとチャー燃焼室側の流
動化状態の強さとの相対的な関係を所定の関係に保つこ
とによって、当該仕切壁の炉底近傍に設けた流通部を通
じて、チャー燃焼室側からガス化室側へ流動媒体を移動
させるように構成されている。また、ガス化室側からチ
ャー燃焼室側へチャーを含んだ流動媒体を移動させるよ
うに構成されている。
As described above, as shown in FIG.
In one fluidized bed furnace, the three functions of pyrolysis and gasification of fuel, char combustion, and in-bed heat recovery are made to coexist, and the high-temperature fluidized medium in the char combustion chamber is supplied with heat from a heat source for pyrolysis and gasification. An integrated gasification furnace for supplying a gasification medium as a medium, wherein the gasification chamber and the heat recovery chamber are completely separated from the furnace bottom to the ceiling by a partition wall, or are arranged so as not to be in contact with each other; And the char combustion chamber are completely partitioned by a partition wall above the interface of the fluidized bed, and the relative strength between the fluidized state on the gasification chamber side near the partition wall and the fluidized state on the char combustion chamber side is determined. By maintaining such a relationship as a predetermined relationship, the flow medium is moved from the char combustion chamber side to the gasification chamber side through the flow portion provided near the furnace bottom of the partition wall. Further, the fluid medium including the char is moved from the gasification chamber to the char combustion chamber.

【0063】このため、ガス化室とチャー燃焼室は流動
床の界面より上部においては完全に仕切壁で仕切られて
いるので、それぞれの室のガス圧力が変動しても圧力バ
ランスが崩れて燃焼ガスと生成ガスが混ざるという問題
を生じない。このため、ガス化室とチャー燃焼室の間に
特別な圧力バランス制御を必要としない。そして、該仕
切壁近傍のガス化室側の流動化状態とチャー燃焼室側の
流動化状態の強弱を所定の状態に保つことによって、当
該仕切壁の炉底近傍に設けた流通部を通じて、チャー燃
焼室側からガス化室側へ安定に流動媒体を大量に移動さ
せることが出来る。このため、チャー燃焼室側からガス
化室側への流動媒体の移動に機械的な高温粒子のハンド
リング手段を必要としない。
For this reason, since the gasification chamber and the char combustion chamber are completely separated from each other by the partition wall above the interface of the fluidized bed, even if the gas pressure in each chamber fluctuates, the pressure balance is lost and combustion takes place. There is no problem that the gas and the product gas are mixed. Therefore, no special pressure balance control is required between the gasification chamber and the char combustion chamber. By maintaining the fluidized state on the gasification chamber side near the partition wall and the fluidized state on the char combustion chamber side in a predetermined state, the flow through the flow portion provided near the furnace bottom of the partition wall allows A large amount of the fluid medium can be stably moved from the combustion chamber side to the gasification chamber side. For this reason, no mechanical high-temperature particle handling means is required for moving the flowing medium from the char combustion chamber side to the gasification chamber side.

【0064】上記統合型ガス化炉は、前記チャー燃焼室
内のガス化室に接した箇所に設けた弱流動化域を沈降チ
ャー燃焼室とし、炉底から流動床界面近傍まで達する仕
切壁によって、他のチャー燃焼室と区分けして構成して
もよく、また、前記チャー燃焼室、沈降チャー燃焼室、
ガス化室内にそれぞれ強流動化域と弱流動化域を設け、
各室内に流動媒体の内部旋回流を生じさせるように構成
してもよい。さらに以上の統合型ガス化炉では、前記熱
回収室をチャー燃焼室の強流動化域に接するように配置
し、該熱回収室とチャー燃焼室は炉底近傍に流通部を備
え、且つその上端が流動床界面近傍まで達する仕切壁で
仕切り、且つ仕切壁近傍のチャー燃焼室側の流動化状態
を熱回収室側の流動化状態よりも相対的に強くして流動
媒体の循環力を生じさせるようにしてもよく、また、前
記熱回収室を沈降チャー燃焼室の強流動化域に接するよ
うに配置し、該熱回収室と沈降チャー燃焼室は炉底近傍
に流通部を備え、且つその上端が流動床界面近傍まで達
する仕切壁で仕切り、且つ仕切壁近傍の沈降チャー燃焼
室側の流動化状態を熱回収室側の流動化状態よりも相対
的に強くして流動媒体の循環力を生じさせるようにして
もよい。また、前記ガス化室の流動化ガスとしては無酸
素ガスを用いるが、このいわゆる無酸素ガスとしては水
蒸気等の全く酸素を含まないガスを用いるようにしても
よい。また、前記ガス化室、チャー燃焼室、熱回収室の
各室の炉底面を、炉底近傍の流動媒体の流線に沿って傾
斜させてもよく、前記チャー燃焼室内のガス化炉に接し
た弱流動化域の流動化状態を制御することによって、該
ガス化室の温度を調節するように構成してもよい。
In the integrated gasification furnace, the weakly fluidized region provided at a location in contact with the gasification chamber in the char combustion chamber is a settling char combustion chamber, and a partition wall extending from the furnace bottom to the vicinity of the fluidized bed interface is used. It may be configured separately from other char combustion chambers, and the char combustion chamber, the settling char combustion chamber,
A strong fluidization zone and a weak fluidization zone are provided in the gasification chamber, respectively.
It may be configured to generate an internal swirling flow of the flowing medium in each chamber. Further, in the above integrated gasifier, the heat recovery chamber is disposed so as to be in contact with the strong fluidization region of the char combustion chamber, and the heat recovery chamber and the char combustion chamber have a flow portion near the furnace bottom, and The upper end is partitioned by a partition wall that reaches the vicinity of the fluidized bed interface, and the fluidization state of the char combustion chamber near the partition wall is made relatively stronger than the fluidization state of the heat recovery chamber side to generate the circulating force of the fluid medium. The heat recovery chamber may be disposed so as to be in contact with the strong fluidization region of the settling char combustion chamber, and the heat recovery chamber and the settling char combustion chamber include a flow portion near the furnace bottom, and The upper end thereof is partitioned by a partition wall which reaches the vicinity of the fluidized bed interface, and the fluidized state of the settling char combustion chamber side near the partition wall is made relatively stronger than the fluidized state of the heat recovery chamber side to circulate the fluid medium. May be caused. Although an oxygen-free gas is used as the fluidizing gas in the gasification chamber, a gas containing no oxygen such as water vapor may be used as the so-called oxygen-free gas. Further, the furnace bottom of each of the gasification chamber, the char combustion chamber, and the heat recovery chamber may be inclined along the streamline of the fluidized medium near the furnace bottom to make contact with the gasification furnace in the char combustion chamber. The temperature of the gasification chamber may be adjusted by controlling the fluidized state of the weak fluidized region.

【0065】ここで図3に示す統合型ガス化炉におい
て、前述のA,B,Cの3領域を考察すると、正にチャ
ー燃焼室の流動媒体の流動層部A′が先の説明で示した
A領域、同じくチャー燃焼室の流動媒体の移動層部B′
が同じくB領域、また、ガス化室31の流動媒体部分
C′が同じくC領域にあてはまる。ここで各部A′,
B′,C′の条件は、先の説明でA領域、B領域、C領
域に示したものと同等である。A′,C′については説
明するまでもないので省略するが、B′について説明を
加える。
Here, considering the three regions A, B and C in the integrated gasifier shown in FIG. 3, the fluidized bed portion A 'of the fluidized medium in the char combustion chamber is exactly the same as that described above. Region A, also the moving bed portion B 'of the fluid medium in the char combustion chamber.
Applies to the B region, and the fluidized medium portion C 'of the gasification chamber 31 also applies to the C region. Here, each part A ',
The conditions of B 'and C' are the same as those shown in the A region, B region, and C region in the above description. A 'and C' are omitted because they need not be explained, but B 'will be explained.

【0066】チャー燃焼室内の可燃物のほとんどはガス
化室で揮発分を放出した後の固定炭素なので、チャー燃
焼室内の酸素と可燃物表面で反応して燃焼している。従
って、可燃物表面に酸素が供給され続ければ燃焼を継続
することができるが、酸素が供給されなくなったとたん
に燃焼反応は停止し、残熱によるガス化反応に移行す
る。このガス化反応としては下記の反応が一般的であ
る。 C+CO→2CO ブドワール反応 C+HO→H+CO 水性ガス化反応 ,を見て分かるように、燃焼していた固定炭素が酸
素遮断によって燃焼を停止すると、COを発生させるの
である。
Most of the combustibles in the char combustion chamber are fixed carbon after releasing volatiles in the gasification chamber, and thus react with oxygen in the char combustion chamber on the surface of the combustibles and burn. Therefore, if oxygen is continuously supplied to the surface of the combustible material, combustion can be continued. However, as soon as oxygen is no longer supplied, the combustion reaction stops, and the process shifts to gasification reaction by residual heat. As this gasification reaction, the following reaction is common. As can be seen from the C + CO 2 → 2CO Boudouard reaction C + H 2 O → H 2 + CO water gasification reaction, when the burning of the fixed carbon stopped by the oxygen cutoff, CO is generated.

【0067】従って、A′部で酸素と反応して燃焼して
いた固定炭素がB′部に流入した時、B′に供給する酸
素の量を酸素不足になるようにして供給すると、大量の
COを発生させることができる。ところで、一般に流動
層内のガス流れの主流は上方に向かうが、一部は拡散に
よって横方向へも流れることが知られており、流動層
A′部に供給された酸素の一部は移動層B′部へ拡散し
ていく。このためチャー燃焼室移動層B′部には大量の
COが存在し、かつ酸素も存在するという微妙な状態が
作り出されているのである。つまり、流動層部A′を移
動層部B′に隣接して設けることにより、移動層部B′
にCOと酸素を共存させることができる。ここで、B′
部又はA′部とB′部の間に低濃度酸素を導入する管や
ヘッダ等によって供給することで、COとOの共存領
域を得ることができる。
Therefore, when the fixed carbon that has reacted with oxygen in the part A ′ and burned into the part B ′ flows into the part B ′, if the amount of oxygen supplied to B ′ is supplied in such a way that the amount of oxygen becomes insufficient, a large amount of oxygen is supplied. CO can be generated. In general, it is known that the main flow of the gas flow in the fluidized bed goes upward, but a part of the gas flows also in the lateral direction due to diffusion. It diffuses to the part B '. For this reason, a delicate state is created in which a large amount of CO exists and oxygen also exists in the portion B 'of the char combustion chamber. That is, by providing the fluidized bed portion A 'adjacent to the moving bed portion B', the moving bed portion B '
Can be made to coexist with CO and oxygen. Where B '
By supplying a low-concentration oxygen between the part or the part A ′ and the part B ′ through a pipe or a header, a coexistence region of CO and O 2 can be obtained.

【0068】脱硫剤として流動媒体に同伴する大きさの
炭酸カルシウム粒子、石灰石粒子もしくはドロマイト粒
子を炉内に供給することによって、本発明の機能が発揮
される。図3の統合型ガス化炉は流動媒体に摩耗による
損耗の少ない硅砂を用いることができるのが特徴である
が、当然のことながら炭酸カルシウム粒子、石灰石粒子
もしくはドロマイト粒子そのものを流動媒体として用い
ても何ら差し支えない。また、脱硫剤粒子の供給場所は
特に限定されるものではないが、まず脱炭酸反応を起こ
させるという意味ではガス化室に供給するのが好ましい
といえる。ガス化室には原料供給口が設けられるので、
原料と一緒に供給してもよい。特に高温で運転される場
合には、供給口はできるだけ少ない方が好ましいので、
原料と一緒に供給するのがよい。
The function of the present invention is exhibited by supplying calcium carbonate particles, limestone particles or dolomite particles having a size accompanying the fluid medium as a desulfurizing agent into the furnace. The integrated gasifier of FIG. 3 is characterized in that it can use silica sand with little wear due to abrasion as a fluid medium. Naturally, calcium carbonate particles, limestone particles or dolomite particles are used as the fluid medium. No problem. Further, the supply location of the desulfurizing agent particles is not particularly limited, but it is preferable to supply the desulfurizing agent particles to the gasification chamber in the sense that a decarboxylation reaction occurs first. Since the gas supply chamber is provided with a raw material supply port,
It may be supplied together with the raw materials. Particularly when operating at a high temperature, it is preferable that the number of supply ports is as small as possible.
It is good to supply with raw materials.

【0069】統合型ガス化炉のチャー燃焼室内では内部
旋回流により大量の流動媒体が循環しており、A領域
(A′)とB領域(B′)間の脱硫剤の大量循環が容易
に実現されている。またチャー燃焼室からガス化室への
流動媒体循環もあり、図3に示す統合型ガス化炉は本発
明の理想的な実施例の一つである。
In the char combustion chamber of the integrated gasifier, a large amount of fluid medium is circulated by the internal swirling flow, so that a large amount of desulfurizing agent can be easily circulated between the A region (A ′) and the B region (B ′). Has been realized. There is also a fluid medium circulation from the char combustion chamber to the gasification chamber, and the integrated gasifier shown in FIG. 3 is one of the ideal embodiments of the present invention.

【0070】ここで注意すべきは、統合型ガス化炉にお
けるガス化室の流動化ガス成分についてである。統合型
ガス化炉はガス化室の流動化合ガスとして、自らの生成
ガスを循環させることによって高カロリーガスを得るこ
ともできる。COガスをガス化室の流動化ガスとして用
いると、生成ガスの発熱量を高めることができるので好
ましい。また、COガスが利用できるのであれば、チャ
ー燃焼室の流動化ガスとして利用することも効果的であ
る。また、ガス化室の一部から酸素を供給し、ガス化炉
の温度維持を図ると共に、その酸素吹き込み口の周辺に
B領域を形成することもできる。但し、運転圧力が高い
場合にはより注意が必要となる。
Here, attention should be paid to the fluidized gas component in the gasification chamber in the integrated gasification furnace. The integrated gasifier can also obtain high calorie gas by circulating its own generated gas as a fluidized gas in the gasification chamber. It is preferable to use CO gas as the fluidizing gas in the gasification chamber because the calorific value of the generated gas can be increased. If CO gas can be used, it is also effective to use it as a fluidizing gas for the char combustion chamber. In addition, oxygen is supplied from a part of the gasification chamber to maintain the temperature of the gasification furnace, and the B region can be formed around the oxygen blowing port. However, more care is required when the operating pressure is high.

【0071】[0071]

【発明の効果】硫黄混合物の炭酸カルシウム化合物を利
用した脱硫方法において、カルシウム化合物を硫黄混合
物に混合して、酸化(工程)・還元(工程)を2つ以上
の組合せで行い、脱硫剤の有効利用効率を高めると共
に、多くの活性表面露出させることで、高い脱硫効率を
達成できた。
According to the desulfurization method using a calcium carbonate compound of a sulfur mixture, a calcium compound is mixed with a sulfur mixture, and oxidation (step) and reduction (step) are performed in combination of two or more, and the desulfurizing agent is effectively used. High desulfurization efficiency was achieved by increasing the utilization efficiency and exposing many active surfaces.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の脱硫剤の循環経路及び主要
な反応を示す図である。
FIG. 1 is a diagram showing a circulation route and main reactions of a desulfurizing agent according to an embodiment of the present invention.

【図2】図1における脱硫剤粒子の履歴を模式的断面で
表した図である。
FIG. 2 is a diagram showing a history of desulfurizing agent particles in FIG. 1 in a schematic cross section.

【図3】本発明の実施例の統合型流動床ガス化炉の概念
図である。
FIG. 3 is a conceptual diagram of an integrated fluidized-bed gasifier according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 低CO還元雰囲気(C領域:ガス化炉) 2 高温酸化雰囲気(A領域:酸化炉) 3 高CO弱酸化雰囲気(B領域:弱酸化部) 21,22 連絡通路1 Low CO 2 reducing atmosphere (C region: gasifier) 2 High temperature oxidizing atmosphere (A region: oxidizing furnace) 3 High CO weak oxidizing atmosphere (B region: weak oxidizing part) 21, 22 Communication passage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10J 3/46 C10J 3/46 J 4H060 C10K 1/20 C10K 1/20 1/32 1/32 F23B 7/00 302 F23B 7/00 302 305 305 F23G 5/00 ZAB F23G 5/00 ZABD 5/02 ZAB 5/02 ZABD 5/027 ZAB 5/027 ZABB 5/14 ZAB 5/14 ZABD Fターム(参考) 3K046 AA01 AA20 AC01 BA01 CA02 CA08 3K061 AA11 AB02 AC01 BA05 EB18 3K065 AB02 AC01 BA05 4D004 AA46 AB05 AC04 BA03 CA27 CB44 CC11 4D020 AA04 AA06 BA02 BA09 BB01 BC06 CA07 CC01 CC21 4H060 AA01 BB03 BB04 BB06 BB22 CC18 DD12 FF03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10J 3/46 C10J 3/46 J 4H060 C10K 1/20 C10K 1/20 1/32 1/32 F23B 7 / 00 302 F23B 7/00 302 305 305 F23G 5/00 ZAB F23G 5/00 ZABD 5/02 ZAB 5/02 ZABD 5/027 ZAB 5/027 ZABB 5/14 ZAB 5/14 ZABD F term (reference) 3K046 AA01 AA20 AC01 BA01 CA02 CA08 3K061 AA11 AB02 AC01 BA05 EB18 3K065 AB02 AC01 BA05 4D004 AA46 AB05 AC04 BA03 CA27 CB44 CC11 4D020 AA04 AA06 BA02 BA09 BB01 BC06 CA07 CC01 CC21 4H060 AA01 BB03 BB04 BB06 BB06 BB04 BB04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体中の硫黄分を乾式方法で除去する方
法であって、脱硫剤としてカルシウム化合物を用い、該
カルシウム化合物を硫黄混合物に混合して、高温の酸化
雰囲気、還元雰囲気、及び酸化雰囲気と還元雰囲気の混
合した雰囲気の異なる3つのうち2つ以上の雰囲気を循
環させることを特徴とする脱硫方法。
1. A method for removing a sulfur content in a solid by a dry method, comprising using a calcium compound as a desulfurizing agent, mixing the calcium compound with a sulfur mixture, and heating a high-temperature oxidizing atmosphere, a reducing atmosphere, and an oxidizing atmosphere. A desulfurization method characterized by circulating at least two of three different atmospheres in which an atmosphere and a reducing atmosphere are mixed.
【請求項2】 高温雰囲気下での酸化又は還元といった
化学反応を行う雰囲気を、ガス化室及び/又はチャー燃
焼室にもたせ、流動媒体を該ガス化室とチャー燃焼室を
循環させるようにした統合型流動層ガス化炉であって、
前記ガス化室で還元反応を行い、前記チャー燃焼室で酸
化反応を行うことを特徴とする請求項1記載の脱硫方
法。
2. An atmosphere for performing a chemical reaction such as oxidation or reduction under a high temperature atmosphere is provided in a gasification chamber and / or a char combustion chamber, and a fluid medium is circulated between the gasification chamber and the char combustion chamber. An integrated fluidized bed gasifier,
The desulfurization method according to claim 1, wherein a reduction reaction is performed in the gasification chamber and an oxidation reaction is performed in the char combustion chamber.
【請求項3】 前記還元反応を行う部分と前記酸化反応
を行う部分と共に、COとOの混合領域を配置し、該
混合領域にて還元反応と酸化反応とを同時に行うことを
特徴とする請求項1記載の脱硫方法。
With 3. portions for performing the oxidation reaction part for the reduction reaction, to a mixed region of CO and O 2, and performs a reduction reaction and the oxidation reaction at the mixing region simultaneously The desulfurization method according to claim 1.
JP2000092142A 2000-02-28 2000-03-29 Method for desulfurization Pending JP2001316680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000092142A JP2001316680A (en) 2000-02-28 2000-03-29 Method for desulfurization

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-52399 2000-02-28
JP2000052399 2000-02-28
JP2000092142A JP2001316680A (en) 2000-02-28 2000-03-29 Method for desulfurization

Publications (1)

Publication Number Publication Date
JP2001316680A true JP2001316680A (en) 2001-11-16

Family

ID=26586294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000092142A Pending JP2001316680A (en) 2000-02-28 2000-03-29 Method for desulfurization

Country Status (1)

Country Link
JP (1) JP2001316680A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004342A1 (en) * 2005-07-05 2007-01-11 Ihi Corporation Method of solid fuel gasification including gas purification and gasifier employing the method
US7798269B2 (en) 2005-04-04 2010-09-21 Honda Motor Co., Ltd. Motor cycle with fuel cell and stack structure of fuel cell
CN109751603A (en) * 2019-01-09 2019-05-14 杨柱 A kind of garbage burning processing method
CN114981392A (en) * 2020-05-12 2022-08-30 株式会社Ihi Gasified gas production apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7798269B2 (en) 2005-04-04 2010-09-21 Honda Motor Co., Ltd. Motor cycle with fuel cell and stack structure of fuel cell
WO2007004342A1 (en) * 2005-07-05 2007-01-11 Ihi Corporation Method of solid fuel gasification including gas purification and gasifier employing the method
AU2006264241B2 (en) * 2005-07-05 2010-01-21 Ihi Corporation Method for gasifying solid fuel with unified gas purification and gasifier using said method
CN109751603A (en) * 2019-01-09 2019-05-14 杨柱 A kind of garbage burning processing method
CN109751603B (en) * 2019-01-09 2020-06-19 陈利忠 Waste incineration treatment method
CN114981392A (en) * 2020-05-12 2022-08-30 株式会社Ihi Gasified gas production apparatus
CN114981392B (en) * 2020-05-12 2024-05-17 株式会社Ihi Gasification gas manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP4479906B2 (en) Fluidized bed gasification gas purification method and purification apparatus
US20040045272A1 (en) Fluidized-bed gasification method and apparatus
JP4314488B2 (en) Gasification method for solid fuel and gasification apparatus using the method
WO1999031202A1 (en) Fuel gasifying system
JP5483058B2 (en) Circulating fluidized bed gasifier structure
WO2007023590A1 (en) Syphon with reactor
JP2003238973A (en) Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification
JP4589311B2 (en) Gasification method and apparatus
JP2007112873A (en) Method and system for gasification of gasification fuel
WO1997048950A1 (en) Method and apparatus for gasifying fluidized bed
JP2001240879A (en) Method for desulfurization
JPH11181450A (en) Integrated gasification furnace
JP2001316680A (en) Method for desulfurization
JP2008163257A (en) Fluidized-bed gasifier, method for operating the same, and coal gasification hybrid power generating system
JP2003171675A (en) Liquid fuel synthesis system
KR101559837B1 (en) Fixed bed gasifier
JP3770653B2 (en) Gasification combustion method using fluidized bed furnace
JP3954816B2 (en) Gas supply apparatus and gas supply method
JP5898217B2 (en) Fluidized bed furnace and waste treatment method using fluidized bed furnace
JP2004256657A (en) Produced gas cooling unit for high-temperature gasification furnace
JP5383960B2 (en) Desulfurization method and apparatus
JP2003190763A (en) Treatment system for matter to be treated and treatment method using the same
JP2007163132A (en) Method and apparatus for gasifying fluidized bed
JP3990897B2 (en) Gas supply apparatus and gas supply method
JP2003171673A (en) Gas generator