JPH11181450A - Integrated gasification furnace - Google Patents
Integrated gasification furnaceInfo
- Publication number
- JPH11181450A JPH11181450A JP36461697A JP36461697A JPH11181450A JP H11181450 A JPH11181450 A JP H11181450A JP 36461697 A JP36461697 A JP 36461697A JP 36461697 A JP36461697 A JP 36461697A JP H11181450 A JPH11181450 A JP H11181450A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- gasification
- char combustion
- combustion chamber
- partition wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
Landscapes
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、石炭・都市ごみ等
の燃料の熱分解・ガス化、チャー燃焼、及び層内熱回収
の3種類の機能を備えた統合型ガス化炉に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated gasifier having three functions of pyrolysis and gasification of fuel such as coal and municipal waste, char combustion, and in-bed heat recovery.
【0002】[0002]
【従来の技術】現在、世界各国で石炭を用いた高効率発
電システムに関してさまざまな試みが為されている。発
電効率の向上を図るには石炭の持つ化学エネルギーをい
かに高効率で電気エネルギーに変換できるかが重要であ
るが、近年その開発の方向性が見直されつつある。ガス
化複合発電(IGCC)は石炭をガス化し、一旦クリーンな化
学エネルギーにして、その後燃料電池で直接電気に変換
したり、高温のガスタービンで高効率発電を行なおうと
する技術である。しかしながら、完全ガス化を指向した
技術であるため、ガス化部分の反応温度を灰が溶融する
温度域にまで高めなければならず、溶融スラグの排出の
問題や耐火材料の耐久性等に多くの課題を抱えている。
しかも熱エネルギーの一部が灰の溶融潜熱に消費された
り、折角高温で排出される生成ガスをガス精製のため
に、例えば450℃程度にまで下げねばならず、その際の
顕熱ロスが非常に大きいこと、また安定して高温を得る
ために酸素または酸素富化した空気を供給する必要があ
る等の問題がある。このため、正味のエネルギー変換効
率が高くならないばかりか、こうしてせっかく得た生成
ガスを利用して、高効率で発電する技術が完成しておら
ず、現時点では正味の発電効率は決して高くないという
ことが判明してきている。2. Description of the Related Art At present, various attempts have been made in various countries around the world for a high-efficiency power generation system using coal. In order to improve the power generation efficiency, it is important to convert the chemical energy of coal into electric energy with high efficiency, but in recent years the direction of its development is being reviewed. Integrated Gasification Combined Cycle (IGCC) is a technology that gasifies coal, turns it into clean chemical energy, and then converts it directly to electricity with a fuel cell or high-efficiency power generation with a high-temperature gas turbine. However, since the technology is directed to complete gasification, the reaction temperature of the gasification section must be raised to a temperature range where ash can be melted, and there are many problems such as the problem of discharge of molten slag and durability of refractory materials. Have issues.
In addition, part of the heat energy is consumed by the latent heat of melting of the ash, and the generated gas discharged at a high temperature must be reduced to, for example, about 450 ° C. for gas purification, resulting in extremely low sensible heat loss. And it is necessary to supply oxygen or oxygen-enriched air in order to stably obtain a high temperature. For this reason, not only does the net energy conversion efficiency not increase, but the technology to generate electricity with high efficiency by using the product gas obtained in this way has not been completed, and at the present time the net power generation efficiency is never high. Has been found.
【0003】即ち、ガス化複合発電(IGCC)においては、
最終的に電気エネルギーに変換する技術の効率に上限が
あることが、全体としての効率向上のネックになってい
る。従って、近年注目を浴びている高効率発電技術は、
単純にガスタービン入り口のガス温度の上限温度のガス
をできるだけ大量に発生させ、ガスタービンからの発電
電力出力比を高めようとするものである。その代表的な
ものがトッピングサイクル発電システムや改良型の加圧
流動床炉による発電システムである。That is, in the integrated gasification combined cycle (IGCC),
The efficiency of the technology that ultimately converts to electrical energy has an upper limit, which is a bottleneck in improving efficiency as a whole. Therefore, the high-efficiency power generation technology that has attracted attention in recent years is
The purpose is to simply generate as much gas as possible at the upper limit of the gas temperature at the inlet of the gas turbine to increase the output ratio of the generated power from the gas turbine. Typical examples are a topping cycle power generation system and a power generation system using an improved pressurized fluidized bed furnace.
【0004】改良型の加圧流動床炉による発電システム
は、まず加圧ガス化炉で石炭をガス化し、発生した未燃
カーボン(いわゆるチャー)を加圧チャー燃焼器で燃焼す
るが、このチャー燃焼器からの燃焼ガスとガス化炉から
の生成ガスをそれぞれクリーニングした後、トッピング
燃焼器で混合燃焼させて高温ガスを得て、ガスタービン
を駆動しようとするものである。この加圧流動床炉によ
る発電システムにおいて重要なことは、如何にガスター
ビンへの流入ガス流量を高められるかであるが、これを
制約する条件として最も大きいものが生成ガスのクリー
ニングである。[0004] In an improved power generation system using a pressurized fluidized bed furnace, coal is first gasified by a pressurized gasifier and unburned carbon (so-called char) is burned by a pressurized char combustor. After cleaning the combustion gas from the combustor and the gas generated from the gasification furnace, respectively, they are mixed and burned in a topping combustor to obtain a high-temperature gas and drive the gas turbine. What is important in the power generation system using the pressurized fluidized-bed furnace is how to increase the flow rate of the gas flowing into the gas turbine. The most restrictive condition is cleaning of the generated gas.
【0005】生成ガスのクリーニングは還元雰囲気での
脱硫反応の最適温度の関係上、通常450℃程度まで冷却
する必要がある。これに対して、ガスタービンの入り口
ガス温度は高いほど効率が高まるので、できるだけ高温
にすべきである。現状ではガスタービン構成材料の耐熱
性、耐食性の制約から、1200℃弱にまで高めるのが一般
的である。即ち、ガスクリーニングの温度450℃からガ
スタービン入り口温度の1200℃まで、ガスの温度を上げ
られるだけの発熱量を有することが生成ガスには要求さ
れる。The cleaning of the produced gas usually requires cooling to about 450 ° C. due to the optimum temperature of the desulfurization reaction in a reducing atmosphere. On the other hand, the higher the gas temperature at the inlet of the gas turbine, the higher the efficiency. Therefore, the temperature should be as high as possible. At present, the temperature is generally increased to less than 1200 ° C due to the heat resistance and corrosion resistance of gas turbine components. That is, the generated gas is required to have a calorific value enough to raise the temperature of the gas from a gas cleaning temperature of 450 ° C. to a gas turbine inlet temperature of 1200 ° C.
【0006】従って、改良型の加圧流動床炉による発電
システムにおいては、できるだけ少量で、且つ単位発熱
量の高い生成ガスを得る方向でシステムの開発が進めら
れるべきである。何故ならば、450℃でクリーニングす
べき生成ガス量が減れば、冷却による顕熱ロスが減り、
且つ生成ガスに求められる最低必要発熱量も低くて済
む。更に生成ガスの発熱量がガスタービン入り口の所要
のガス温度に上昇させるのに必要な発熱量以上であれ
ば、燃焼空気比を上げてガスタービンに流入するガス量
を増加させることができるので、更なる発電効率の向上
を期待できるからである。Therefore, in the power generation system using the improved pressurized fluidized bed furnace, the development of the system should be promoted in the direction of obtaining a product gas having a small amount as much as possible and having a high unit calorific value. Because, if the amount of generated gas to be cleaned at 450 ° C decreases, the sensible heat loss due to cooling decreases,
In addition, the minimum required calorific value required for the generated gas can be reduced. Furthermore, if the calorific value of the generated gas is equal to or greater than the calorific value required to raise the required gas temperature at the gas turbine inlet, the combustion air ratio can be increased to increase the amount of gas flowing into the gas turbine. This is because a further improvement in power generation efficiency can be expected.
【0007】また近年、都市ごみ等を燃料として積極的
に利用すべく、高効率ごみ燃焼発電技術の開発が進んで
いるが、ごみ中には塩素が高濃度で含まれている場合が
あるため、伝熱管の腐食の問題から熱回収の際の蒸気温
度を400℃以上には上げられないという問題がある。こ
のため、この問題を克服できる技術開発が待たれてい
る。In recent years, high-efficiency refuse combustion power generation technology has been developed in order to actively use municipal refuse as fuel. However, refuse sometimes contains a high concentration of chlorine. However, there is a problem that the steam temperature at the time of heat recovery cannot be increased to 400 ° C. or more due to the problem of corrosion of the heat transfer tube. Therefore, development of a technology that can overcome this problem is awaited.
【0008】従来の石炭等を燃料としたガス化炉の代表
的なものとして、図13に示すような2塔循環式ガス化
炉がある。2塔循環式ガス化炉は、ガス化炉とチャー燃
焼炉の2炉(塔)から構成され、ガス化炉とチャー燃焼
炉の間で流動媒体やチャーを循環し、ガス化に必要な熱
量を、チャー燃焼炉でチャーの燃焼熱によって加熱され
た流動媒体の顕熱でガス化炉に供給しようとするもので
ある。ガス化炉で発生した生成ガスを燃焼させる必要が
無いことから、生成ガスの発熱量を高く維持できるとい
う特徴がある。しかしながら、2塔循環方式はガス化
炉、チャー燃焼炉間の充分な粒子循環量の確保、粒子循
環量制御、安定運転といった高温粒子の取扱い面の課題
と、チャー燃焼炉の温度制御が他操作と独立してできな
いという運用面の課題から、大規模な実機建設にまでは
至らなかった。As a typical example of a conventional gasifier using coal or the like as a fuel, there is a two-tower circulation type gasifier as shown in FIG. The two-tower circulation gasifier is composed of two furnaces (towers), a gasifier and a char combustion furnace, and circulates a fluid medium and char between the gasifier and the char combustion furnace to generate heat required for gasification. Is supplied to the gasification furnace with the sensible heat of the fluidized medium heated by the combustion heat of the char in the char combustion furnace. Since there is no need to burn the generated gas generated in the gasification furnace, there is a feature that the calorific value of the generated gas can be maintained high. However, in the two-tower circulation method, there are problems in handling high-temperature particles, such as ensuring a sufficient amount of particles circulated between the gasifier and char combustion furnace, controlling the amount of particles circulated, and stable operation, and controlling the temperature of the char combustion furnace by other operations. Due to operational issues that could not be achieved independently, the construction of large-scale actual equipment did not take place.
【0009】これに対して近年、図14に示すようにチ
ャー燃焼炉の燃焼ガスを全量ガス化炉に導き、粒子の循
環による顕熱供給だけでは不足しがちなガス化用熱量を
補おうとする技術が提案されている。しかしながら、こ
のシステムはチャー燃焼炉から排出される燃焼ガスを全
量ガス化炉に導くために、前述の「できるだけ少量の、
且つ発熱量の高い生成ガスを得るのが良い」という改良
型加圧流動床炉による発電システムの原則に反してい
る。即ち、チャー燃焼ガスの量がガス化炉でのガス化あ
るいは流動化に必要な量以上になると生成ガスが余計な
チャー燃焼ガスによって希釈されるので発熱量が低下す
るだけでなく、混合された余分のチャー燃焼ガスまでも
が還元雰囲気でのガスクリーニングのために450℃まで
冷却されることになり、適正なガスタービン入り口温度
にまでガス温度を上げるのに必要な熱量は増えてしま
う。また逆にチャー燃焼ガス量が不足すると、ガス化炉
の流動化が不十分になったり、ガス化炉の温度が低下し
たりするため、ガス化炉に空気を供給する必要が生じて
くる。従って、このシステムを成り立たせるにはシステ
ムに好適な限られた使用炭種を選定せざるを得ないこと
が予想される。この限られた炭種から少しでもずれる
と、余分のチャー燃焼ガスまでをも450℃まで冷却しな
ければならなかったり、ガス化炉に空気を導入すること
で生成ガスの発熱量が低下したりすることから、システ
ム全体の効率を低下させてしまうことは言うまでもな
い。On the other hand, in recent years, as shown in FIG. 14, the entire amount of combustion gas from a char combustion furnace is led to a gasification furnace to compensate for the amount of heat for gasification, which tends to be insufficient only by sensible heat supply by circulating particles. Technology has been proposed. However, in order to direct the combustion gas discharged from the char combustion furnace to the gasification furnace, the system uses the above-mentioned "as little as possible,
It is also preferable to obtain a product gas having a high calorific value. " That is, when the amount of the char combustion gas exceeds the amount required for gasification or fluidization in the gasification furnace, the generated gas is diluted by unnecessary char combustion gas, so that not only the calorific value is reduced, but also the mixed gas is mixed. Even the excess char combustion gas is cooled to 450 ° C. for gas cleaning in a reducing atmosphere, and the amount of heat required to raise the gas temperature to an appropriate gas turbine inlet temperature increases. Conversely, when the char combustion gas amount is insufficient, fluidization of the gasification furnace becomes insufficient or the temperature of the gasification furnace decreases, so that it becomes necessary to supply air to the gasification furnace. Therefore, it is expected that limited coal types suitable for the system must be selected in order to realize this system. Any deviation from this limited coal type would require cooling even the excess char combustion gas to 450 ° C, or reducing the calorific value of the generated gas by introducing air into the gasifier. Therefore, it goes without saying that the efficiency of the entire system is reduced.
【0010】また、このシステムにおいては、チャー燃
焼炉の温度制御は層高を変化させて、層内の伝熱面積を
変化させる方式であり、低負荷時には層上に露出した伝
熱管によって燃焼ガスが冷却されるため、ガス化炉の温
度や流動化速度等が変わるので、ガス化反応速度にも影
響を与え、システムの安定操業が難しくなると言う問題
がある。In this system, the temperature of the char combustion furnace is controlled by changing the height of the bed to change the heat transfer area in the bed. When the load is low, the combustion gas is exposed by the heat transfer tube exposed above the bed. The temperature of the gasification furnace, the fluidization speed, and the like change because of the cooling of the gas, which affects the gasification reaction speed and makes it difficult to operate the system stably.
【0011】[0011]
【発明が解決しようとする課題】このような状況に鑑
み、本発明者らは一つの流動床炉の内部に、ガス化室、
チャー燃焼室、低温燃焼室の3つを、それぞれ隔壁を介
して設けた統合型ガス化炉を考案している。これは、更
にチャー燃焼室とガス化室、チャー燃焼室と低温燃焼室
はそれぞれ隣接して設けている。この統合型ガス化炉は
前述の2塔循環方式の課題を克服すべく考案したもので
あり、チャー燃焼室とガス化室間に大量の流動媒体循環
を可能にしているので、流動媒体の顕熱だけでガス化の
ための熱量を充分に供給でき、改良型流動床炉を用いた
発電システムの原則である「できるだけ少量の、且つ発
熱量の高い生成ガスを得る」ことが最も容易に実現でき
る可能性のある技術である。In view of such a situation, the present inventors have provided a gasification chamber,
We have devised an integrated gasification furnace in which three chambers, a char combustion chamber and a low-temperature combustion chamber, are provided via partition walls, respectively. In this, the char combustion chamber and the gasification chamber, and the char combustion chamber and the low temperature combustion chamber are provided adjacent to each other. This integrated gasifier is designed to overcome the problems of the two-column circulation system described above, and enables a large amount of fluid medium to circulate between the char combustion chamber and the gasification chamber. The heat of gasification can be sufficiently supplied only with heat, and the principle of a power generation system using an improved fluidized-bed furnace, which is the most easily realized, is to "obtain as little generated gas with high calorific value as possible". This is a potential technology.
【0012】しかしながら、この技術はチャー燃焼ガス
と生成ガスの間のシールが完全ではないため、ガス化室
とチャー燃焼室の圧力バランス制御がうまく行かない
と、燃焼ガスと生成ガスが混ざり、生成ガスの性状を低
下させてしまうという問題がある。However, in this technique, since the seal between the char combustion gas and the generated gas is not perfect, if the pressure balance between the gasification chamber and the char combustion chamber is not properly controlled, the combustion gas and the generated gas are mixed and the generated gas is mixed. There is a problem that the properties of the gas are reduced.
【0013】また、ごみ燃焼発電システムの分野では、
ごみを熱分解して、塩素成分を揮発分と共に揮散させ、
塩素含有量が大幅に減少した残りのチャーの燃焼熱で蒸
気過熱を行なって、高効率発電を行なおうという提案が
なされている。しかしながら、通常、一般ごみの熱分解
では殆どチャーは発生しないので、蒸気過熱に必要なチ
ャー燃焼熱が得られない可能性が高い。また、熱媒体と
しての流動媒体とチャーはガス化室側からチャー燃焼室
側に流入するようになっているが、マスバランスの点か
ら同量の流動媒体をチャー燃焼室側からガス化室側に戻
す必要があるが、上述の配置ではコンベヤ等を用いて機
械的に搬送するほかなく、高温粒子のハンドリングの困
難さ、顕熱ロスが多いといった課題を抱えている。In the field of refuse combustion power generation systems,
Pyrolyzes garbage, volatilizes chlorine components with volatiles,
A proposal has been made to perform high-efficiency power generation by performing steam superheating with the combustion heat of the remaining char whose chlorine content has been significantly reduced. However, generally, almost no char is generated in the thermal decomposition of general refuse, so there is a high possibility that the char combustion heat required for steam superheating cannot be obtained. The fluid medium and the char as the heat medium flow from the gasification chamber side to the char combustion chamber side, but the same amount of the fluid medium is supplied from the char combustion chamber side to the gasification chamber side from the point of mass balance. However, in the above arrangement, there is a problem in that there is no other than mechanical conveyance using a conveyor or the like, difficulty in handling high-temperature particles, and large sensible heat loss.
【0014】本発明は上述の事情に鑑みて為されたもの
で、ガス化室とチャー燃焼室の間に特別な圧力バランス
制御や、機械的な高温粒子のハンドリング手段を必要と
せず、性状の優れた生成ガスを安定して得ることがで
き、且つ燃料として塩素を含む可燃性の廃棄物を用いた
場合でも、蒸気過熱器(管)等の腐食が少なく、高効率発
電が可能な、統合型ガス化炉を提供することを目的とす
る。The present invention has been made in view of the above circumstances, and does not require any special pressure balance control between the gasification chamber and the char combustion chamber, and does not require any mechanical means for handling high-temperature particles. Excellent product gas can be obtained stably, and even when flammable waste containing chlorine is used as fuel, there is little corrosion of steam superheaters (tubes) etc. It is an object to provide a mold gasifier.
【0015】[0015]
【課題を解決するための手段】本発明は、1つの流動床
炉内に、燃料の熱分解・ガス化、チャー燃焼、及び層内
熱回収の3つの機能を共存させ、チャー燃焼室内の高温
流動媒体を熱分解・ガス化の熱源供給の熱媒体としてガ
ス化室に供給する統合型ガス化炉において、前記ガス化
室と熱回収室は仕切壁によって炉底から天井にわたって
完全に仕切るか、もしくは互いに接しないように配置
し、且つガス化室とチャー燃焼室は流動床の界面より上
部においては完全に仕切壁で仕切り、該仕切壁近傍のガ
ス化室側の流動化状態をチャー燃焼室側の流動化状態よ
りも相対的に弱い流動化状態に保つことによって、当該
仕切壁の炉底近傍に設けた開口部を通じて、チャー燃焼
室側からガス化室側へ流動媒体を移動させることを特徴
とする。SUMMARY OF THE INVENTION According to the present invention, three functions of pyrolysis / gasification of fuel, char combustion, and in-bed heat recovery coexist in one fluidized bed furnace, and a high temperature inside a char combustion chamber is obtained. In an integrated gasification furnace in which a fluidized medium is supplied to a gasification chamber as a heat medium for supplying a heat source for thermal decomposition and gasification, the gasification chamber and the heat recovery chamber are completely separated from the furnace bottom to the ceiling by a partition wall, Alternatively, the gasification chamber and the char combustion chamber are disposed so as not to be in contact with each other, and the gasification chamber and the char combustion chamber are completely partitioned by a partition wall above the interface of the fluidized bed, and the fluidized state on the gasification chamber side near the partition wall is referred to as the char combustion chamber. By maintaining the fluidized state relatively weaker than the fluidized state on the side, it is possible to move the fluidized medium from the char combustion chamber side to the gasification chamber side through the opening provided near the furnace bottom of the partition wall. Features.
【0016】係る上記発明によれば、ガス化室とチャー
燃焼室は流動床の界面より上部においては完全に仕切壁
で仕切られているので、それぞれの室のガス圧力が変動
しても圧力バランスが崩れて燃焼ガスと生成ガスが混ざ
るという問題を生じない。このため、ガス化室とチャー
燃焼室の間に特別な圧力バランス制御を必要としない。
そして、該仕切壁近傍のガス化室側の流動化状態をチャ
ー燃焼室側の流動化状態よりも相対的に弱い流動化状態
に保つことによって、当該仕切壁の炉底近傍に設けた開
口部を通じて、チャー燃焼室側からガス化室側へ安定に
流動媒体を大量に移動させることが出来る。このため、
チャー燃焼室側からガス化室側への流動媒体の移動に機
械的な高温粒子のハンドリング手段を必要としない。According to the above invention, since the gasification chamber and the char combustion chamber are completely separated by the partition wall above the interface of the fluidized bed, even if the gas pressure in each chamber fluctuates, the pressure balance is maintained. Does not occur and the combustion gas and the produced gas are mixed. Therefore, no special pressure balance control is required between the gasification chamber and the char combustion chamber.
By maintaining the fluidized state on the gasification chamber side near the partition wall relatively weaker than the fluidized state on the char combustion chamber side, an opening provided near the furnace bottom of the partition wall Through this, a large amount of fluidized medium can be stably moved from the char combustion chamber side to the gasification chamber side. For this reason,
No mechanical hot particle handling means is required to move the flowing medium from the char combustion chamber side to the gasification chamber side.
【0017】[0017]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図1乃至図12を参照して説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.
【0018】図1は、本発明の基本的な構成を模式的に
表現したものである。本発明の統合型ガス化炉は、熱分
解・ガス化、チャー燃焼、熱回収の3つの機能をそれぞ
れ担当するガス化室1、チャー燃焼室2、熱回収室3を
備え、例えば全体が円筒形又は矩形を成した炉体内に収
納されている。ガス化室1、チャー燃焼室2、熱回収室
3は仕切壁11,12,13,14,15で分割されて
おり、それぞれの底部が濃厚層を有する流動床により連
通して構成されている。即ち、ガス化室とチャー燃焼室
の間は第1仕切壁11で仕切られ、チャー燃焼室と熱回
収室の間は第2仕切壁12で仕切られ、ガス化室と熱回
収室の間は第3仕切壁13で仕切られている。更に、チ
ャー燃焼室のガス化室と接する面の近傍には、流動媒体
が下降するべく沈降チャー燃焼室4を設ける。このた
め、沈降チャー燃焼室4をチャー燃焼室の他の部分と仕
切るための第4仕切壁14が設けられている。また沈降
チャー燃焼室4とガス化室1は第5仕切壁15で仕切ら
れている。FIG. 1 schematically shows a basic configuration of the present invention. The integrated gasification furnace of the present invention includes a gasification chamber 1, a char combustion chamber 2, and a heat recovery chamber 3 which respectively perform three functions of pyrolysis / gasification, char combustion, and heat recovery. It is housed in a furnace having a shape or a rectangle. The gasification chamber 1, the char combustion chamber 2, and the heat recovery chamber 3 are divided by partition walls 11, 12, 13, 14, and 15, and their bottoms are connected by a fluidized bed having a dense layer. . That is, the first partition wall 11 separates the gasification chamber and the char combustion chamber, the second partition wall 12 separates the char combustion chamber and the heat recovery chamber, and the second partition wall 12 separates the gasification chamber and the heat recovery chamber. It is partitioned by a third partition wall 13. Further, a settling char combustion chamber 4 is provided near the surface of the char combustion chamber in contact with the gasification chamber so that the flowing medium descends. Therefore, a fourth partition wall 14 is provided for partitioning the settling char combustion chamber 4 from other parts of the char combustion chamber. The settling char combustion chamber 4 and the gasification chamber 1 are separated by a fifth partition wall 15.
【0019】ガス化室1とチャー燃焼室2の間の第1仕
切壁11は、炉の天井19から炉底に向かってほぼ全面
的に仕切っているが、下端は炉底に接することはなく、
炉底近傍に開口21がある。但しこの開口の上端が濃厚
層の界面より上部にまで達することはない。またチャー
燃焼室2と熱回収室3の間の第2仕切壁12はその上端
が濃厚層の上端近傍、下端は炉底近傍までであり、第一
仕切壁と同様下端が炉底に接することはなく、炉底近傍
に濃厚層の界面より上部に達することのない開口22が
ある。The first partition wall 11 between the gasification chamber 1 and the char combustion chamber 2 partitions almost entirely from the furnace ceiling 19 to the furnace bottom, but the lower end does not contact the furnace bottom. ,
There is an opening 21 near the furnace bottom. However, the upper end of this opening does not reach above the interface of the dense layer. The second partition wall 12 between the char combustion chamber 2 and the heat recovery chamber 3 has an upper end near the upper end of the dense layer and a lower end near the furnace bottom, and the lower end contacts the furnace bottom similarly to the first partition wall. However, there is an opening 22 near the bottom of the furnace that does not reach above the interface of the dense layer.
【0020】ガス化室1と熱回収室3の間の第3仕切壁
13は炉底から炉の天井にわたって完全に仕切ってい
る。沈降チャー燃焼室4を設けるべくチャー燃焼室2内
を仕切る第4仕切壁14の上端は濃厚層の界面近傍で、
下端は炉底に接している。沈降チャー燃焼室4とガス化
室1を仕切る第5仕切壁15は、第1仕切壁11と同様
であり、炉の天井から炉底に向かってほぼ全面的に仕切
っており、下端は炉底に接することはなく、炉底近傍に
開口25があり、この開口の上端が濃厚層の界面より下
にある。The third partition 13 between the gasification chamber 1 and the heat recovery chamber 3 completely partitions from the furnace bottom to the furnace ceiling. The upper end of the fourth partition wall 14 that partitions the inside of the char combustion chamber 2 to provide the settling char combustion chamber 4 is near the interface of the dense layer,
The lower end is in contact with the furnace bottom. A fifth partition wall 15 that separates the settling char combustion chamber 4 from the gasification chamber 1 is similar to the first partition wall 11, and partitions almost entirely from the furnace ceiling to the furnace bottom. There is an opening 25 near the furnace bottom, and the upper end of this opening is below the interface of the dense layer.
【0021】ガス化室に投入された石炭・ごみ等の燃料
は流動媒体から熱を受け、熱分解、ガス化される。残っ
た乾溜チャーは流動媒体と共に第1仕切壁11の下部開
口部21からチャー燃焼室2に流入する。チャー燃焼室
2でチャーの燃焼熱によって加熱された流動媒体は第2
仕切壁12の上を越えて熱回収室3に流入し、層内伝熱
管41で収熱され、冷却された後、再び第2仕切壁12
の下部開口22を通ってチャー燃焼室2に流入する。一
方チャー燃焼室2で加熱された流動媒体は第4仕切壁1
4の上を越えて沈降チャー燃焼室4に流入し、次いで第
5仕切壁15の下部開口25からガス化室1に流入す
る。The fuel such as coal and refuse introduced into the gasification chamber receives heat from the fluid medium, and is pyrolyzed and gasified. The remaining dry char flows into the char combustion chamber 2 from the lower opening 21 of the first partition wall 11 together with the fluid medium. The fluid medium heated by the combustion heat of the char in the char combustion chamber 2 is the second fluid.
After flowing into the heat recovery chamber 3 over the partition wall 12, the heat is collected and cooled by the in-layer heat transfer tube 41, and then the second partition wall 12 is again formed.
Through the lower opening 22 into the char combustion chamber 2. On the other hand, the fluid medium heated in the char combustion chamber 2 is the fourth partition 1
4, flows into the settling char combustion chamber 4, and then flows into the gasification chamber 1 through the lower opening 25 of the fifth partition wall 15.
【0022】ガス化室1の内部で沈降チャー燃焼室4に
接する面の近傍は、沈降チャー燃焼室4の流動化と比べ
て強い流動化状態が維持される。全体としては投入され
た燃料と流動媒体の混合拡散が促進される様に、場所に
よって流動化ガスの空塔速度を変化させるのが良く、一
例として図1に示したように旋回流を形成させるように
する。In the vicinity of the surface in contact with the settling char combustion chamber 4 inside the gasification chamber 1, a strong fluidized state is maintained as compared with the fluidization of the settling char combustion chamber 4. As a whole, the superficial velocity of the fluidizing gas may be changed depending on the location so as to promote the mixing and diffusion of the injected fuel and the fluidized medium. As an example, a swirling flow is formed as shown in FIG. To do.
【0023】チャー燃焼室2は中央部に弱流動化域2
a、周辺部に強流動化域2bを有し、流動媒体およびチ
ャーが内部旋回流を形成している。ガス化室、チャー燃
焼室内の強流動化域の流動化速度は5Umf以上、弱流動
化域の流動化速度は5Umf以下とするのが好適である
が、弱流動化域と強流動化域に相対的な明確な差を設け
れば、この範囲を超えても特に差し支えはない。チャー
燃焼室2内の熱回収室3、および沈降チャー燃焼室4に
接する部分には強流動化域2bを配するようにするのが
良い。また必要に応じて炉底には弱流動化域側から強流
動化域側に下るような勾配を設けるのが良い。The char combustion chamber 2 has a weak fluidized zone 2 in the center.
a, a strong fluidization zone 2b is provided in the peripheral portion, and the fluid medium and the char form an internal swirling flow. It is preferable that the fluidization speed in the strong fluidization zone in the gasification chamber and the char combustion chamber is 5 Umf or more, and the fluidization speed in the weak fluidization zone is 5 Umf or less. If there is a relative clear difference, there is no particular problem even if this range is exceeded. It is preferable to provide a strong fluidization zone 2b in a portion in contact with the heat recovery chamber 3 and the settling char combustion chamber 4 in the char combustion chamber 2. If necessary, the furnace bottom may be provided with a gradient from the weak fluidized region to the strong fluidized region.
【0024】熱回収室3は全体が均等に流動化され、通
常は最大でも熱回収室に接したチャー燃焼室2の流動化
状態より弱い流動化状態となるように維持される。従っ
て、熱回収室3の流動化ガスの空塔速度は0〜3Umfの
間で制御され、流動媒体は緩やかに流動しながら沈降流
動層を形成する。The entire heat recovery chamber 3 is fluidized evenly, and is usually maintained at a maximum at a fluidized state weaker than the fluidized state of the char combustion chamber 2 in contact with the heat recovery chamber. Therefore, the superficial velocity of the fluidizing gas in the heat recovery chamber 3 is controlled between 0 and 3 Umf, and the fluidized medium forms a settling fluidized bed while flowing slowly.
【0025】各室間の仕切壁は基本的にはすべて垂直壁
であるが、必要に応じてせり出し部を設けても良い。例
えば図2に示すように、仕切壁12,14のチャー燃焼
室2の流動層の界面近傍に中心向きのせり出し部32を
設けるようにしてもよい。これにより仕切壁近傍で流動
媒体の流れ方向を矯正し、内部旋回流の形成を促進する
こともできる。また、燃料中に含まれる比較的大きな不
燃物はガス化室の炉底に設けた不燃物排出口33から排
出する。また、各室の炉底面は水平でも良いが、図2に
示すように、流動媒体の流れの滞留部を作らないように
するために、炉底近傍の流動媒体の流れに従って、炉底
を傾斜させても良い。The partition walls between the chambers are basically all vertical walls, but a projection may be provided if necessary. For example, as shown in FIG. 2, a central protruding portion 32 may be provided near the interface of the fluidized bed of the char combustion chamber 2 of the partition walls 12 and 14. Thereby, the flow direction of the flowing medium can be corrected near the partition wall, and the formation of the internal swirling flow can be promoted. Further, relatively large non-combustible substances contained in the fuel are discharged from a non-combustible substance discharge port 33 provided at the furnace bottom of the gasification chamber. In addition, the furnace bottom of each chamber may be horizontal, but as shown in FIG. 2, the furnace bottom is inclined according to the flow of the fluid medium near the furnace bottom in order to prevent a stagnant portion of the flow of the fluid medium. You may let it.
【0026】ガス化室1の流動化ガスとして最も好まし
いのは生成ガスを昇圧してリサイクル使用することであ
る。このようにすればガス化室から出るガスは純粋に燃
料から発生したガスのみとなり、非常に高品質のガスを
得ることができる。それが不可能な場合は水蒸気等、で
きるだけ酸素を含まないガスを用いるのが良い。ガス化
の際の吸熱反応によって流動媒体の層温が低下する場合
は、必要に応じて酸素もしくは酸素を含むガス、例えば
空気を供給しても良い。チャー燃焼室2に供給する流動
化ガスは、チャー燃焼に必要な酸素を含むガス、例えば
空気、酸素と蒸気の混合ガスを供給する。また熱回収室
3に供給する流動化ガスは、空気、水蒸気、燃焼排ガス
等を用いる。The most preferable fluidizing gas for the gasification chamber 1 is to recycle the product gas at a high pressure. In this way, the gas leaving the gasification chamber is purely gas generated from the fuel, and very high quality gas can be obtained. If this is not possible, a gas containing as little oxygen as possible, such as water vapor, should be used. When the bed temperature of the fluidized medium decreases due to an endothermic reaction during gasification, oxygen or a gas containing oxygen, for example, air may be supplied as necessary. The fluidizing gas supplied to the char combustion chamber 2 supplies a gas containing oxygen necessary for char combustion, for example, air, a mixed gas of oxygen and steam. The fluidizing gas supplied to the heat recovery chamber 3 uses air, steam, combustion exhaust gas and the like.
【0027】ガス化室1とチャー燃焼室2のフリーボー
ド部は完全に仕切壁で仕切られているので、図3に示す
ように、チャー燃焼室2とガス化室1のそれぞれの圧力
P1,P2のバランスが多少乱れても、双方の流動層の層高
差が多少変化するだけで乱れを吸収することができる。
即ち、ガス化室1とチャー燃焼室2とは、流動床の界面
より上部においては、完全に仕切壁15で仕切られてい
るので、それぞれの室の圧力P1,P2が変動しても、この
圧力差は層高差で吸収でき、どちらかの層が開口25の
上端に下降するまで吸収可能である。従って、層高差で
吸収できるチャー燃焼室2とガス化室1のフリーボード
の圧力差(P1-P2又はP2-P1)の上限値は、互いを仕切る
仕切壁15の下部の開口25の上端から流動層界面まで
の高さに相当する流動層のヘッド差にほぼ等しい。Since the freeboard portions of the gasification chamber 1 and the char combustion chamber 2 are completely separated from each other by a partition wall, as shown in FIG.
Even if the balance between P1 and P2 is slightly disturbed, the disturbance can be absorbed by only slightly changing the height difference between the two fluidized beds.
That is, since the gasification chamber 1 and the char combustion chamber 2 are completely partitioned by the partition wall 15 above the interface of the fluidized bed, even if the pressures P1 and P2 of the respective chambers fluctuate, this is not the case. The pressure difference can be absorbed by the layer height difference, and can be absorbed until one of the layers falls to the upper end of the opening 25. Accordingly, the upper limit of the pressure difference (P1-P2 or P2-P1) between the free space of the char combustion chamber 2 and the freeboard of the gasification chamber 1 that can be absorbed by the layer height difference is determined by the upper end of the lower opening 25 of the partition wall 15 that separates each other. Is almost equal to the head difference of the fluidized bed corresponding to the height from the fluidized bed interface.
【0028】図4は、本発明を円筒型の炉に適用した場
合の実施形態である。円筒形の統合型ガス化炉10の炉
内には外壁と同心の円筒形の仕切壁10aが設けられて
おり、その仕切壁10aの内側はチャー燃焼室2を形成
している。その仕切壁10aの外側でチャー燃焼室を取
り巻く円環形状の部分には沈降チャー燃焼室4、ガス化
室1、熱回収室3がそれぞれ扇形状に配置されている。
ガス化室1、熱回収室3は、それぞれ沈降チャー燃焼室
4を挟んで反対側に配置されている。FIG. 4 shows an embodiment in which the present invention is applied to a cylindrical furnace. A cylindrical partition wall 10 a concentric with the outer wall is provided in the furnace of the cylindrical integrated gasifier 10, and the inside of the partition wall 10 a forms the char combustion chamber 2. A settling char combustion chamber 4, a gasification chamber 1, and a heat recovery chamber 3 are respectively arranged in a fan shape in an annular portion surrounding the char combustion chamber outside the partition wall 10a.
The gasification chamber 1 and the heat recovery chamber 3 are arranged on opposite sides of the settling char combustion chamber 4 respectively.
【0029】図5は、図4に示す実施形態の流動層部分
の水平断面図である。中央部にチャー燃焼室2、周辺部
にガス化室1、その反対側に熱回収室3が設けられ、ガ
ス化室1と熱回収室3の間に扇形の沈降チャー燃焼室4
が2個所設けられている。扇形のガス化室1の炉底に設
けられた散気装置も複数に分割されており、扇形の両端
部は空塔速度を早くした強流動化域1bが、中央部には
空塔速度を相対的に遅くした弱流動化域1aが設けら
れ、ガス化室内の流動媒体も強流動化域で吹き上がり、
弱流動化域で沈降する内部旋回流を形成している。この
旋回流によってガス化室に投入された燃料Fがガス化室
1内の全面に広く拡散し、ガス化室が効果的に利用でき
る。FIG. 5 is a horizontal sectional view of the fluidized bed portion of the embodiment shown in FIG. A char combustion chamber 2 is provided at a central portion, a gasification chamber 1 is provided at a peripheral portion, and a heat recovery chamber 3 is provided on the opposite side, and a fan-shaped settling char combustion chamber 4 is provided between the gasification chamber 1 and the heat recovery chamber 3.
Are provided at two places. The aeration device provided at the furnace bottom of the fan-shaped gasification chamber 1 is also divided into a plurality of parts. A relatively slow fluidization zone 1a is provided, and the fluid medium in the gasification chamber also blows up in the strong fluidization zone,
It forms an internal swirling flow that settles in the weak fluidization zone. The fuel F introduced into the gasification chamber is diffused widely throughout the gasification chamber 1 by the swirling flow, and the gasification chamber can be effectively used.
【0030】ガス化室1の流動化ガスは主に生成ガスを
リサイクルして用いたり、水蒸気や燃焼排ガスといった
酸素を含まないガスを用いる。しかしながら、ガス化室
の温度が下がりすぎるような場合には、必要に応じて酸
素もしくは酸素を含んだガス、例えば空気を混入させて
も良い。ガス化室1とチャー燃焼室2の仕切壁11には
炉底付近に開口部21が設けられており、その開口部以
外は天井にわたって完全に仕切られている。ガス化室1
で熱分解、ガス化を終えた燃料Fがその開口部を通って
チャー燃焼室2側へ流出する。開口21はガス化室1の
全面にわたって設けても良いが、弱流動化域に限って設
けても良い。尚、図5において黒い矢印は炉底部の仕切
壁開口部等を介した沈降流による流動媒体の移動経路を
示し、灰色の矢印は仕切壁上端部等を乗り越えた上昇流
による流動媒体の移動経路を示す。As the fluidizing gas in the gasification chamber 1, a product gas is mainly recycled and used, or a gas containing no oxygen such as steam or combustion exhaust gas is used. However, if the temperature of the gasification chamber is too low, oxygen or a gas containing oxygen such as air may be mixed as necessary. An opening 21 is provided in the vicinity of the furnace bottom in a partition wall 11 between the gasification chamber 1 and the char combustion chamber 2, and a part other than the opening is completely partitioned over the ceiling. Gasification room 1
The fuel F that has undergone thermal decomposition and gasification flows out to the char combustion chamber 2 through the opening. The opening 21 may be provided over the entire surface of the gasification chamber 1 or may be provided only in the weakly fluidized region. In FIG. 5, the black arrow indicates the moving path of the flowing medium due to the sedimentation flow through the partition wall opening at the bottom of the furnace, and the gray arrow indicates the moving path of the flowing medium due to the upward flow over the upper end of the partition wall. Is shown.
【0031】ガス化室1の運転温度は燃料によって最適
温度に調節することができる。石炭のように比較的ガス
化率が低く、チャーの発生が多い燃料の場合はガス化室
の温度を800〜900℃に保つことによって、高いガス化率
を得ることができる。また、都市ごみのように、殆どチ
ャーを発生しない燃料の場合は層温を350〜450℃に保つ
ことによって脱塩作用は維持しつつ、揮発分の放出速度
を抑えた安定した運転を行なうことができる。The operating temperature of the gasification chamber 1 can be adjusted to an optimum temperature by the fuel. In the case of a fuel such as coal which has a relatively low gasification rate and generates much char, a high gasification rate can be obtained by keeping the temperature of the gasification chamber at 800 to 900 ° C. In addition, in the case of fuel that generates little char, such as municipal solid waste, keep the bed temperature at 350 to 450 ° C to maintain stable desalination and perform stable operation with a reduced volatile emission rate. Can be.
【0032】チャー燃焼室2の炉底に設けられた散気装
置は中央部と周辺部とに分割されており、中央部が弱流
動化域2a、周辺部が強流動化域2bとなるように散気
している。強流動化域2bは流動媒体が吹き上がる上昇
流動層を、弱流動化域2aは逆に流動媒体が下降する沈
降流動層を形成し、全体として内部旋回流を形成してい
る。チャー燃焼室2はチャー燃焼を完結させ、且つガス
化室1への顕熱供給を容易にするため、できるだけ高温
に維持するのが良く、層温は900℃近辺に維持するのが
望ましい。一般に内部で発熱反応が生じる流動層燃焼の
場合、900℃近辺での運転ではアグロメ形成の危険性が
高まるが、上記実施形態の場合はチャー燃焼室内の旋回
流によって熱拡散、チャー拡散が促進され、アグロメ形
成のない安定したチャー燃焼が可能になる。The air diffuser provided at the furnace bottom of the char combustion chamber 2 is divided into a central part and a peripheral part. The central part is a weak fluidized area 2a and the peripheral part is a strong fluidized area 2b. Is diffusing. The strong fluidized zone 2b forms an ascending fluidized bed in which the fluid medium blows up, and the weak fluidized zone 2a forms a settling fluidized bed in which the fluidized medium descends, and forms an internal swirling flow as a whole. In order to complete the char combustion and facilitate the supply of sensible heat to the gasification chamber 1, the char combustion chamber 2 is preferably maintained at a temperature as high as possible, and the bed temperature is preferably maintained at around 900 ° C. Generally, in the case of fluidized-bed combustion in which an exothermic reaction occurs inside, the risk of agglomeration increases in the operation around 900 ° C., but in the above embodiment, the heat diffusion and the char diffusion are promoted by the swirling flow in the char combustion chamber. Thus, stable char combustion without agglomeration can be achieved.
【0033】沈降チャー燃焼室4は沈降流動層を形成す
べく、全体として弱流動化状態とするのが望ましいが、
図4に示すように、沈降チャー燃焼室4内部には熱拡散
を促進するために弱流動化域4aと強流動化域4bを設
け、ガス化室に接した側が沈降流動層になるように内部
旋回流を形成しても良い。この実施形態において、沈降
チャー燃焼室と熱回収室との間の仕切壁16は、図4に
示すように下端が炉底に接しており、上端は流動層の界
面よりもかなり高い位置まであり、沈降チャー燃焼室4
と熱回収室3との間の流動媒体の流れを防止している。
何故なら、石炭のように固定炭素の多い燃料について
は、沈降チャー燃焼室からガス化室に流入する流動媒体
はできるだけ高温であるほうが望ましく、熱回収室3で
冷却された流動媒体が混合すること、およびガス化室1
に流入すべき高温の流動媒体が、熱回収室3へ流入する
ことは好ましくないからである。It is desirable that the settling char combustion chamber 4 be in a weakly fluidized state as a whole in order to form a settling fluidized bed.
As shown in FIG. 4, a weak fluidization zone 4a and a strong fluidization zone 4b are provided inside the settling char combustion chamber 4 to promote heat diffusion, and the side in contact with the gasification chamber becomes a settling fluidized bed. An internal swirling flow may be formed. In this embodiment, the partition wall 16 between the settling char combustion chamber and the heat recovery chamber has a lower end contacting the furnace bottom as shown in FIG. 4 and an upper end extending to a position considerably higher than the interface of the fluidized bed. , Settling char combustion chamber 4
The flow of the fluid medium between the heat recovery chamber 3 and the heat recovery chamber 3 is prevented.
This is because, for fuels containing a large amount of fixed carbon, such as coal, it is desirable that the flow medium flowing into the gasification chamber from the sedimentation char combustion chamber be as hot as possible, and that the flow medium cooled in the heat recovery chamber 3 be mixed. , And gasification chamber 1
This is because it is not preferable that the high-temperature fluid medium to flow into the heat recovery chamber 3 flows into the heat recovery chamber 3.
【0034】但し、本発明をごみのガス化燃焼に供する
場合は仕切壁16の上端は流動層界面の近傍までとし、
炉底付近には開口を設け、沈降チャー燃焼室4と熱回収
室3の間の流動媒体循環を生じさせても良い。何故なら
ごみのようにチャー生成割合の低い燃料の場合、ガス化
室の温度を下げてガス化率を低下させないと、チャー燃
焼室内の燃焼温度が不足してしまうからである。このよ
うな場合には、図6に示すように、熱回収室3の炉底の
散気装置を分割し、且つ熱回収室3を仕切り壁16aに
て仕切り、1つはチャー燃焼室用、もう一つは沈降チャ
ー燃焼室用にすることで、チャー燃焼室とガス化室の温
度をそれぞれ独立に制御することが可能になる。この
時、沈降チャー燃焼室4の炉底の散気装置についても熱
回収室に接した部分が強流動化域4bを形成するように
分割するのが良い。However, when the present invention is used for gasification combustion of refuse, the upper end of the partition wall 16 should be close to the fluidized bed interface,
An opening may be provided near the furnace bottom to cause circulation of the fluid medium between the settling char combustion chamber 4 and the heat recovery chamber 3. This is because, in the case of a fuel having a low char generation rate such as refuse, the combustion temperature in the char combustion chamber becomes insufficient unless the gasification rate is lowered by lowering the temperature of the gasification chamber. In such a case, as shown in FIG. 6, the air diffuser at the furnace bottom of the heat recovery chamber 3 is divided, and the heat recovery chamber 3 is partitioned by the partition wall 16a. The other is for the settling char combustion chamber, which makes it possible to control the temperatures of the char combustion chamber and the gasification chamber independently. At this time, the air diffuser at the hearth of the settling char combustion chamber 4 is preferably divided so that the portion in contact with the heat recovery chamber forms the strong fluidization region 4b.
【0035】熱回収室3には放射状に層内伝熱管41が
配置されており、チャー燃焼室2から仕切壁12を越え
て流入した流動媒体はそこで冷却され、仕切壁12の下
部の開口部22から再びチャー燃焼室2に戻るが、周辺
部に向かって層内管ピッチが広がっていることにより、
流動媒体が層内管群を流れる際の抵抗が周辺部の方が小
さい。このため、チャー燃焼室2から流入した流動媒体
は周辺部にも均一に分散し、熱回収室3の容積全体を有
効に利用できるので、全体としてコンパクトな構造とな
る。In the heat recovery chamber 3, an in-layer heat transfer tube 41 is arranged radially, and the fluid medium flowing from the char combustion chamber 2 across the partition wall 12 is cooled there, and the lower opening of the partition wall 12 is opened. 22 returns to the char combustion chamber 2 again, but since the in-layer pipe pitch is widening toward the peripheral portion,
The resistance when the flowing medium flows through the inner tube group is smaller in the peripheral portion. For this reason, the fluid medium flowing from the char combustion chamber 2 is uniformly dispersed also in the peripheral portion, and the entire volume of the heat recovery chamber 3 can be effectively used, so that the overall structure is compact.
【0036】図7は、本発明の矩形炉での実施形態であ
る。本発明を常圧で実施する場合は、特にガス化炉外壁
を耐圧構造にする必要はないので、このような矩形炉が
製作の面からも好適である。燃料の種類によってガス化
炉の温度を下げて運転するほうが好ましい場合には、図
7に示すように前述の円筒型炉と同様、熱回収室3をチ
ャー燃焼室用と沈降チャー燃焼室用にそれぞれ仕切壁1
3,16で仕切り、ガス化室1に供給する流動媒体の温
度をチャー燃焼室2の温度と独立して制御できるように
するのが良い。FIG. 7 shows an embodiment of a rectangular furnace according to the present invention. When the present invention is carried out at normal pressure, it is not particularly necessary to make the outer wall of the gasification furnace pressure-resistant, so such a rectangular furnace is also suitable from the viewpoint of production. In the case where it is preferable to lower the temperature of the gasification furnace depending on the type of fuel and operate it, the heat recovery chamber 3 is used for the char combustion chamber and the sedimentation char combustion chamber as shown in FIG. Each partition wall 1
It is preferable that the temperature of the fluidized medium supplied to the gasification chamber 1 is controlled by controlling the temperature of the charcoal combustion chamber 2 independently of the temperature of the charcoal combustion chamber 2.
【0037】また図7に示すように矩形炉に適用した場
合、チャー燃焼室2の弱流動化域と熱回収室3とが接し
た部分の流動媒体は双方が共に弱流動化状態であるた
め、明確な移動方向が定まらず、熱媒体として有効に機
能しない場合がある。このような場合は図8に示すよう
に、その部分を炉外に開放し、例えばリサイクルチャー
の供給口を設けるなど、有効に利用しても良い。When applied to a rectangular furnace as shown in FIG. 7, the fluid medium in the portion where the weak fluidization zone of the char combustion chamber 2 and the heat recovery chamber 3 are in contact is both in a weak fluidized state. In some cases, a clear moving direction is not determined, and the function does not function effectively as a heat medium. In such a case, as shown in FIG. 8, the portion may be opened to the outside of the furnace and used effectively, for example, by providing a supply port for a recycler.
【0038】図9は、本発明を複合サイクル発電システ
ムに利用した場合の実施形態を示す。本発明の統合型ガ
ス化炉10が圧力容器50の中に配され、加圧下で運転
される。ガス化炉10の外壁が圧力容器を兼ねた一体構
造であっても良い。ガス化室1で発生した可燃ガスの一
部は常圧の溶融炉54に供給され、灰の溶融熱として利
用される。残りの可燃ガスはチャー燃焼ガスと共に脱塵
された後トッピングコンバスタ53に導かれ、ガスター
ビン55に供給するための高温ガスを生成する。FIG. 9 shows an embodiment in which the present invention is applied to a combined cycle power generation system. The integrated gasifier 10 of the present invention is disposed in a pressure vessel 50 and operates under pressure. The outer wall of the gasification furnace 10 may have an integral structure also serving as a pressure vessel. A part of the combustible gas generated in the gasification chamber 1 is supplied to a normal-pressure melting furnace 54 and is used as heat of melting ash. The remaining combustible gas is removed together with the char combustion gas and then guided to the topping combustor 53 to generate a high-temperature gas to be supplied to the gas turbine 55.
【0039】チャー燃焼室の上部には必要に応じて伝熱
管42を設置しても良い。燃料中に塩素が含まれている
場合でも、本実施形態におけるチャー燃焼ガスは殆ど塩
素を含まないので、この伝熱管は蒸気過熱器として500
℃以上の蒸気過熱に用いることができる。熱回収室3内
に配置された層内伝熱管41は伝熱管42よりもさらに
腐食環境ではないので、蒸気過熱器としては伝熱管42
よりも高温にまで対応できる。燃料中の塩素濃度が比較
的高い場合は、可燃ガス側の塩素濃度も高くなるので、
可燃ガスの全量を高温溶融炉54側に導き、トッピング
コンバスタ53、ガスタービン55の腐食を防止する。A heat transfer tube 42 may be provided in the upper part of the char combustion chamber as needed. Even if the fuel contains chlorine, the char combustion gas in the present embodiment hardly contains chlorine.
It can be used for steam superheating of ℃ or more. Since the in-layer heat transfer tube 41 disposed in the heat recovery chamber 3 is not more corrosive than the heat transfer tube 42, the heat transfer tube 42 is used as a steam superheater.
It can handle even higher temperatures. If the chlorine concentration in the fuel is relatively high, the chlorine concentration on the combustible gas side will also be high,
The entire amount of the combustible gas is led to the high-temperature melting furnace 54 to prevent corrosion of the topping combustor 53 and the gas turbine 55.
【0040】図10は、本発明の統合型ガス化炉を複合
サイクル発電システムに利用した場合の他の実施形態を
示す。石炭のように比較的発熱量の高い燃料の場合、高
温溶融炉を完全燃焼状態としなくとも溶融に充分な温度
にまで上げることができるので、このような場合には高
温溶融炉54の代わりに高温ガス化炉60を配置し、ガ
スを生成するのが効果的である。高温ガス化炉としては
ガスもスラグも下方に流下させ、ガスの熱でスラグを過
熱し、スラグの冷却による流動不良を防止しながらガス
を一度水にくぐらせて急冷するタイプのガス化炉が好適
である。何故なら、このようにして得られた生成ガスは
塩素を殆ど含まず、化学原料にはもちろんのこと、ガス
タービン燃料としても利用することが可能だからであ
る。FIG. 10 shows another embodiment in which the integrated gasifier of the present invention is used in a combined cycle power generation system. In the case of a fuel having a relatively high calorific value, such as coal, the temperature of the high-temperature melting furnace can be raised to a temperature sufficient for melting without bringing the high-temperature melting furnace into a complete combustion state. It is effective to arrange the high temperature gasifier 60 to generate gas. As a high-temperature gasification furnace, a gasification furnace of the type in which both gas and slag flow down, the slag is heated by the heat of the gas, and the gas is once immersed in water and quenched while preventing poor flow due to slag cooling. It is suitable. This is because the product gas thus obtained contains almost no chlorine and can be used not only as a chemical raw material but also as a gas turbine fuel.
【0041】図11は、常圧の流動床炉に本発明を適用
した実施形態である。この実施形態においては燃料中に
塩素を含んでいても、前述同様、熱回収室3に配された
層内伝熱管41やチャー燃焼室フリーボード部の伝熱管
42は殆ど塩素と接触することがないため、蒸気温度を
従来のごみ焼却炉の最高蒸気温度である350℃以上はも
ちろん、500℃以上にまで高めることができる。またチ
ャー燃焼室2からガス化室1側に燃焼ガスが吹き込む場
所は、燃焼ガス中の残酸素が可燃ガスと反応して高温に
なるので、チャーの燃焼、石灰石の脱炭酸化が促進さ
れ、燃焼効率、脱硫効率を向上させることができる。こ
の時、チャー燃焼室2からガス化室1へ吹き込む際の圧
力損失分は、約200〜400mmAq程度となるが、仕切壁15
の下端から流動床の界面までの流動層のヘッドは通常15
00〜2000mmAq以上であることから、図3に示すようにガ
ス化室の層高がチャー燃焼室の層高より若干層高が低く
なるだけで自然に圧力差を維持することができ、特別な
制御は不要である。FIG. 11 shows an embodiment in which the present invention is applied to a fluidized bed furnace at normal pressure. In this embodiment, even if chlorine is contained in the fuel, the heat transfer tube 41 in the layer disposed in the heat recovery chamber 3 and the heat transfer tube 42 in the free board portion of the char combustion chamber are almost in contact with chlorine as described above. Therefore, the steam temperature can be raised to not less than 350 ° C, which is the maximum steam temperature of the conventional refuse incinerator, and to 500 ° C or more. Further, in a place where the combustion gas is blown from the char combustion chamber 2 to the gasification chamber 1 side, the residual oxygen in the combustion gas reacts with the combustible gas and becomes high temperature, so that the combustion of the char and the decarboxylation of limestone are promoted, Combustion efficiency and desulfurization efficiency can be improved. At this time, the pressure loss when blowing from the char combustion chamber 2 into the gasification chamber 1 is about 200 to 400 mmAq.
The head of the fluidized bed from the bottom of
Since it is not less than 00 to 2000 mmAq, the pressure difference can be maintained naturally only by the height of the gasification chamber being slightly lower than the height of the char combustion chamber as shown in FIG. No control is required.
【0042】図12は、本発明の統合型ガス化炉から発
生したガスを用いて灰を溶融する場合のプロセスフロー
である。この実施形態においては、常温の炉体10内に
ガス化室1、チャー燃焼室2、熱回収室3、沈降チャー
燃焼室4等を備え、流動媒体を大量にこれらの各室を循
環させることで、安定な運転を可能ならしめることは、
上述の各実施形態と同様である。この実施形態において
も、図9と同様にガス化室1の熱分解ガスの一部は高温
溶融炉54に導入され、灰の溶融熱処理に利用される。
残りの熱分解ガスはチャー燃焼ガスと共に、脱塵器52
で脱塵された後、トッピングコンバスタ53に導かれ、
高温燃焼して生成した高温ガスを発電機57に直結した
ガスタービン55に供給する。FIG. 12 is a process flow for melting ash using gas generated from the integrated gasifier of the present invention. In this embodiment, a gasification chamber 1, a char combustion chamber 2, a heat recovery chamber 3, a settling char combustion chamber 4 and the like are provided in a furnace body 10 at normal temperature, and a large amount of a fluid medium is circulated through these chambers. In order to make stable driving possible,
This is the same as each of the above embodiments. Also in this embodiment, as in FIG. 9, a part of the pyrolysis gas in the gasification chamber 1 is introduced into the high-temperature melting furnace 54 and used for the ash melting heat treatment.
The remaining pyrolysis gas, together with the char combustion gas, is removed from the deduster 52.
After being dusted off, it is led to the topping combustor 53,
The high-temperature gas generated by the high-temperature combustion is supplied to a gas turbine 55 directly connected to a generator 57.
【0043】[0043]
【発明の効果】統合型ガス化炉を本発明のように構成す
ることにより、次のような効果が生まれる。まず第一
に、ガス化室ではチャー燃焼室から沈降チャー燃焼室を
経て流入する高温の流動媒体の持つ顕熱で燃料が熱分
解、ガス化されるため、ガス化室から出るガスは純粋に
燃料から発生したガスか、もしくは燃料から発生したガ
スとガス化室の流動化に最低限必要な流動化ガスとの混
合ガスであり、発熱量が高い。しかもチャー燃焼ガスと
生成ガスが混ざることがないので、発熱量の高いガスを
得ることができる。By configuring the integrated gasifier as in the present invention, the following effects are produced. First of all, in the gasification chamber, the fuel is pyrolyzed and gasified by the sensible heat of the high-temperature fluidized medium flowing from the char combustion chamber through the settling char combustion chamber, so the gas exiting the gasification chamber is pure. It is a gas generated from the fuel or a mixed gas of the gas generated from the fuel and the fluidizing gas necessary for fluidizing the gasification chamber at a minimum, and has a high calorific value. Moreover, since the char combustion gas and the produced gas do not mix, a gas having a high calorific value can be obtained.
【0044】発熱量の高い少量のガスが得られれば、生
成ガスクリーニングのための冷却による熱損失も少な
く、且つチャー燃焼ガスと混合してガスタービンに導く
高温ガスを容易に得ることができ、発電効率の向上が可
能になる。また、揮発分割合が大きく異なる多様な燃料
についても、チャー燃焼室やガス化室の温度の制御が自
在にできるので、設備の改造を行なうことなく対応でき
る。If a small amount of gas having a high calorific value is obtained, the heat loss due to cooling for cleaning the generated gas is small, and a high-temperature gas mixed with the char combustion gas and led to the gas turbine can be easily obtained. Power generation efficiency can be improved. In addition, various fuels having greatly different volatile components can be controlled without any modification of the equipment because the temperature of the char combustion chamber and the gasification chamber can be controlled freely.
【0045】また、塩素を含む都市ごみのような燃料を
利用する場合でも、燃料中の塩素の殆どはガス化室でガ
ス側に放出され、チャー燃焼室に流入するチャー中には
殆ど残留しない。このため、チャー燃焼室、熱回収室の
ガス中の塩素濃度は著しく低いレベルに維持され、熱回
収室に配置した層内管を過熱器管として高温の蒸気回収
を行なっても、高温腐食の危険性は殆どなく、高効率の
エネルギー回収が可能になる。Even when fuel such as municipal solid waste containing chlorine is used, most of the chlorine in the fuel is released to the gas side in the gasification chamber and hardly remains in the char flowing into the char combustion chamber. . For this reason, the chlorine concentration in the gas in the char combustion chamber and heat recovery chamber is maintained at a remarkably low level, and even if high-temperature steam recovery is performed using the in-layer pipe located in the heat recovery chamber as a superheater pipe, high-temperature corrosion will not occur. There is almost no danger and highly efficient energy recovery is possible.
【図1】本発明の統合型ガス化炉の基本的な概念を示す
構成図である。FIG. 1 is a configuration diagram showing a basic concept of an integrated gasification furnace of the present invention.
【図2】炉底の傾斜、および仕切壁にせり出しを設けた
場合の図1の変形例を示す図である。FIG. 2 is a view showing a modification of FIG. 1 in a case where a furnace bottom is inclined and a projection is provided on a partition wall.
【図3】本発明の統合型ガス化炉の圧力制御機能の説明
図である。FIG. 3 is an explanatory diagram of a pressure control function of the integrated gasification furnace of the present invention.
【図4】本発明の統合型ガス化炉を円筒型の炉にて具体
化した実施形態の構造図である。FIG. 4 is a structural view of an embodiment in which the integrated gasification furnace of the present invention is embodied by a cylindrical furnace.
【図5】図4の流動床部分の水平断面図である。FIG. 5 is a horizontal sectional view of the fluidized bed portion of FIG.
【図6】図5の変形例を示す図である。FIG. 6 is a diagram showing a modification of FIG. 5;
【図7】本発明の統合型ガス化炉を矩形型の炉にて具体
化した実施形態の水平断面図である。FIG. 7 is a horizontal sectional view of an embodiment in which the integrated gasification furnace of the present invention is embodied by a rectangular furnace.
【図8】図7の変形例を示す図である。FIG. 8 is a diagram showing a modification of FIG. 7;
【図9】本発明の統合型ガス化炉を用いた複合サイクル
発電システムの実施形態の説明図である。FIG. 9 is an explanatory diagram of an embodiment of a combined cycle power generation system using the integrated gasifier according to the present invention.
【図10】図9の変形例を示す図である。FIG. 10 is a diagram showing a modification of FIG. 9;
【図11】本発明の常圧型の統合型ガス化炉の一実施形
態の説明図である。FIG. 11 is an explanatory view of one embodiment of the normal-pressure integrated gasifier of the present invention.
【図12】図11の統合型ガス化炉を用いた複合サイク
ル発電システムの実施形態の説明図である。FIG. 12 is an explanatory diagram of an embodiment of a combined cycle power generation system using the integrated gasifier of FIG. 11;
【図13】従来の2塔循環型ガス化炉の説明図である。FIG. 13 is an explanatory view of a conventional two-tower circulation type gasification furnace.
【図14】従来の流動床炉を用いた複合発電システムの
説明図である。FIG. 14 is an explanatory diagram of a combined power generation system using a conventional fluidized bed furnace.
1 ガス化室 2 チャー燃焼室 3 熱回収室 4 沈降チャー燃焼室 10 統合型ガス化炉 11,12,13,14,15 仕切壁 21,22,25 開口 DESCRIPTION OF SYMBOLS 1 Gasification chamber 2 Char combustion chamber 3 Heat recovery chamber 4 Sedimentation char combustion chamber 10 Integrated gasifier 11, 12, 13, 14, 15 Partition wall 21, 22, 25 Opening
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02C 3/28 F23C 11/02 311 F23C 11/02 311 F23G 5/30 ZABS F23G 5/30 ZAB ZABH B09B 3/00 302F (72)発明者 鹿嶌 信孝 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 成瀬 克利 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 青木 克行 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 関川 真司 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 永東 秀一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F02C 3/28 F23C 11/02 311 F23C 11/02 311 F23G 5/30 ZABS F23G 5/30 ZAB ZABH B09B 3/00 302F (72 Inventor Nobutaka Kashima 11-1 Haneda Asahicho, Ota-ku, Tokyo Ebara Corporation (72) Inventor Katsutoshi Naruse 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Ebara Corporation (72) Inventor Katsuyuki Aoki 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside Ebara Corporation (72) Inventor Shinji Sekikawa 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside Ebara Corporation (72) Inventor Shuichi Nagato Tokyo 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Ebara Corporation
Claims (8)
ス化、チャー燃焼、及び層内熱回収の3つの機能を共存
させ、チャー燃焼室内の高温流動媒体を熱分解・ガス化
の熱源供給の熱媒体としてガス化室に供給する統合型ガ
ス化炉において、前記ガス化室と熱回収室は仕切壁によ
って炉底から天井にわたって完全に仕切るか、もしくは
互いに接しないように配置し、且つガス化室とチャー燃
焼室は流動床の界面より上部においては完全に仕切壁で
仕切り、該仕切壁近傍のガス化室側の流動化状態をチャ
ー燃焼室側の流動化状態よりも相対的に弱い流動化状態
に保つことによって、当該仕切壁の炉底近傍に設けた開
口部を通じて、チャー燃焼室側からガス化室側へ流動媒
体を移動させることを特徴とする統合型ガス化炉。1. A fluidized-bed furnace having three functions of pyrolysis and gasification of fuel, char combustion, and in-bed heat recovery in one fluidized-bed furnace to pyrolyze and gasify a high-temperature fluidized medium in a char combustion chamber. In the integrated gasifier for supplying a heat medium to the gasification chamber as a heat medium, the gasification chamber and the heat recovery chamber are completely separated from the furnace bottom to the ceiling by a partition wall, or are arranged so as not to be in contact with each other. In addition, the gasification chamber and the char combustion chamber are completely partitioned by a partition wall above the interface of the fluidized bed, and the fluidization state on the gasification chamber side near the partition wall is more relative to the fluidization state on the char combustion chamber side. An integrated gasification furnace characterized by moving a fluidized medium from a char combustion chamber side to a gasification chamber side through an opening provided in the vicinity of the furnace bottom of the partition wall by maintaining the fluidized state in a partially fluidized state. .
個所に設けた弱流動化域を沈降チャー燃焼室とし、炉底
から流動床界面近傍まで達する仕切壁によって、他のチ
ャー燃焼室と区分けしたことを特徴とする請求項1に記
載の統合型ガス化炉。2. A weakly fluidized region provided at a location in contact with the gasification chamber in the char combustion chamber is a settling char combustion chamber, and is separated from other char combustion chambers by a partition wall extending from the furnace bottom to near the fluidized bed interface. The integrated gasifier according to claim 1, wherein the gasifier is divided.
室、ガス化室内にそれぞれ強流動化域と弱流動化域を設
け、各室内に流動媒体の内部旋回流を生じさせるように
したことを特徴とする請求項1又は2に記載の統合型ガ
ス化炉。3. A strong fluidizing zone and a weak fluidizing zone are provided in the char combustion chamber, the settling char combustion chamber, and the gasification chamber, respectively, to generate an internal swirling flow of a fluid medium in each chamber. The integrated gasifier according to claim 1 or 2, wherein
域に接するように配置し、該熱回収室とチャー燃焼室は
炉底近傍に開口部を備え、且つその上端が流動床界面近
傍まで達する仕切壁で仕切り、且つ仕切壁近傍のチャー
燃焼室側の流動化状態を熱回収室側の流動化状態よりも
相対的に強くして流動媒体の循環力を生じさせるように
したことを特徴とする請求項1乃至3のいずれかに記載
の統合型ガス化炉。4. The heat recovery chamber is disposed so as to be in contact with the strong fluidization region of the char combustion chamber, and the heat recovery chamber and the char combustion chamber have an opening near a furnace bottom, and the upper end thereof has a fluidized bed interface. The partition wall reaching the vicinity of the partition wall, and the fluidized state on the side of the char combustion chamber near the partition wall is made relatively stronger than the fluidized state on the side of the heat recovery chamber to generate the circulating force of the fluid medium. The integrated gasifier according to any one of claims 1 to 3, characterized in that:
動化域に接するように配置し、該熱回収室と沈降チャー
燃焼室は炉底近傍に開口部を備え、且つその上端が流動
床界面近傍まで達する仕切壁で仕切り、且つ仕切壁近傍
の沈降チャー燃焼室側の流動化状態を熱回収室側の流動
化状態よりも相対的に強くして流動媒体の循環力を生じ
させるようにしたことを特徴とする請求項1乃至4のい
ずれかに記載の統合型ガス化炉。5. The heat recovery chamber is disposed so as to be in contact with a strong fluidization region of a settling char combustion chamber, wherein the heat recovery chamber and the settling char combustion chamber have an opening near a furnace bottom, and the upper end thereof is fluidized. The partition wall reaching the vicinity of the floor interface is partitioned, and the fluidized state on the settling char combustion chamber side near the partition wall is made relatively stronger than the fluidized state on the heat recovery chamber side to generate circulation force of the fluid medium. The integrated gasifier according to any one of claims 1 to 4, wherein:
気等の全く酸素を含まないガスを用いることを特徴とす
る請求項1乃至5のいずれかに記載の統合型ガス化炉。6. The integrated gasification furnace according to claim 1, wherein a gas containing no oxygen, such as steam, is used as the fluidizing gas in the gasification chamber.
の各室の炉底面を、炉底近傍の流動媒体の流線に沿って
傾斜させたことを特徴とする請求項1乃至6のいずれか
に記載の統合型ガス化炉。7. The furnace bottom of each of the gasification chamber, char combustion chamber and heat recovery chamber is inclined along a streamline of a fluid medium near the furnace bottom. An integrated gasifier according to any one of the above.
弱流動化域の流動化状態を制御することによって、該ガ
ス化室の温度を調節することを特徴とする請求項1乃至
7のいずれかに記載の統合型ガス化炉。8. The temperature of the gasification chamber according to claim 1, wherein the temperature of the gasification chamber is controlled by controlling the fluidization state of a weak fluidization zone in contact with the gasification furnace in the char combustion chamber. An integrated gasifier according to any one of the above.
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36461697A JPH11181450A (en) | 1997-12-18 | 1997-12-18 | Integrated gasification furnace |
CA002314986A CA2314986C (en) | 1997-12-18 | 1998-12-18 | Fuel gasification system |
BRPI9815349-8A BR9815349B1 (en) | 1997-12-18 | 1998-12-18 | fuel gasification system. |
PCT/JP1998/005740 WO1999031202A1 (en) | 1997-12-18 | 1998-12-18 | Fuel gasifying system |
IDW20001379A ID26163A (en) | 1997-12-18 | 1998-12-18 | FUEL PACKAGING SYSTEM |
EP98961414A EP1043385A4 (en) | 1997-12-18 | 1998-12-18 | Fuel gasifying system |
JP2000539108A JP4243919B2 (en) | 1997-12-18 | 1998-12-18 | Fuel gasification system |
RU2000119142/15A RU2220187C2 (en) | 1997-12-18 | 1998-12-18 | Fuel gasifying system |
CN98813559A CN1129662C (en) | 1997-12-18 | 1998-12-18 | Fuel gasifying system |
KR1020007006614A KR100595042B1 (en) | 1997-12-18 | 1998-12-18 | Fuel gasification system |
CNB2003101013532A CN1271176C (en) | 1997-12-18 | 1998-12-18 | Fuel gasification system |
AU16839/99A AU734203B2 (en) | 1997-12-18 | 1998-12-18 | Fuel gasification system |
KR1020057023060A KR100643253B1 (en) | 1997-12-18 | 1998-12-18 | Gasification furnace |
US09/581,593 US6949224B1 (en) | 1997-12-18 | 1998-12-18 | Fuel gasification system |
HK01105874A HK1035203A1 (en) | 1997-12-18 | 2001-08-21 | Fuel gasification system |
US11/073,688 US7390337B2 (en) | 1997-12-18 | 2005-03-08 | Fuel gasification system |
US12/153,049 US7618469B2 (en) | 1997-12-18 | 2008-05-13 | Fuel gasification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36461697A JPH11181450A (en) | 1997-12-18 | 1997-12-18 | Integrated gasification furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11181450A true JPH11181450A (en) | 1999-07-06 |
Family
ID=18482254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36461697A Pending JPH11181450A (en) | 1997-12-18 | 1997-12-18 | Integrated gasification furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11181450A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002253948A (en) * | 2001-03-01 | 2002-09-10 | Ebara Corp | Desulfurizing method and apparatus |
JP2003042421A (en) * | 2001-07-26 | 2003-02-13 | Ebara Corp | Apparatus and method for gas supply |
JP2006063290A (en) * | 2004-08-30 | 2006-03-09 | Ebara Corp | System and method for utilizing polymer hydrocarbon |
JP2006206842A (en) * | 2005-01-31 | 2006-08-10 | Nippon Steel Corp | Integrated gasification furnace and its operation method |
JP2006206840A (en) * | 2005-01-31 | 2006-08-10 | Nippon Steel Corp | Integrated gasification furnace and its operation method |
JP2007523218A (en) * | 2004-02-03 | 2007-08-16 | 株式会社荏原製作所 | Hydrocarbon raw material processing system and method |
JP2007217696A (en) * | 2007-02-22 | 2007-08-30 | Ebara Corp | Material production system and gas-supplying method |
WO2008102415A1 (en) * | 2007-02-22 | 2008-08-28 | Ihi Corporation | Method of gasifying gasification fuel and apparatus therefor |
JP2010001378A (en) * | 2008-06-20 | 2010-01-07 | Ihi Corp | Fluidized bed gasification apparatus |
WO2014148556A1 (en) * | 2013-03-21 | 2014-09-25 | 株式会社Ihi | Gasified-gas generation system |
JP2015044933A (en) * | 2013-08-28 | 2015-03-12 | 株式会社Ihi | Gasification gas generation system |
WO2021131634A1 (en) * | 2019-12-27 | 2021-07-01 | 荏原環境プラント株式会社 | Thermal decomposition apparatus and thermal decomposition method |
-
1997
- 1997-12-18 JP JP36461697A patent/JPH11181450A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002253948A (en) * | 2001-03-01 | 2002-09-10 | Ebara Corp | Desulfurizing method and apparatus |
JP2003042421A (en) * | 2001-07-26 | 2003-02-13 | Ebara Corp | Apparatus and method for gas supply |
JP2007523218A (en) * | 2004-02-03 | 2007-08-16 | 株式会社荏原製作所 | Hydrocarbon raw material processing system and method |
JP2006063290A (en) * | 2004-08-30 | 2006-03-09 | Ebara Corp | System and method for utilizing polymer hydrocarbon |
JP4528145B2 (en) * | 2005-01-31 | 2010-08-18 | 新日鉄エンジニアリング株式会社 | Integrated gasifier and method of operation thereof |
JP2006206840A (en) * | 2005-01-31 | 2006-08-10 | Nippon Steel Corp | Integrated gasification furnace and its operation method |
JP4520872B2 (en) * | 2005-01-31 | 2010-08-11 | 新日鉄エンジニアリング株式会社 | Integrated gasifier and method of operation thereof |
JP2006206842A (en) * | 2005-01-31 | 2006-08-10 | Nippon Steel Corp | Integrated gasification furnace and its operation method |
US8257453B2 (en) | 2007-02-22 | 2012-09-04 | Ihi Corporation | Method and device for gasifying gasification fuel |
JP2007217696A (en) * | 2007-02-22 | 2007-08-30 | Ebara Corp | Material production system and gas-supplying method |
WO2008102415A1 (en) * | 2007-02-22 | 2008-08-28 | Ihi Corporation | Method of gasifying gasification fuel and apparatus therefor |
JP2010001378A (en) * | 2008-06-20 | 2010-01-07 | Ihi Corp | Fluidized bed gasification apparatus |
WO2014148556A1 (en) * | 2013-03-21 | 2014-09-25 | 株式会社Ihi | Gasified-gas generation system |
JP2014181306A (en) * | 2013-03-21 | 2014-09-29 | Ihi Corp | Gasified gas production system |
AU2014239350B2 (en) * | 2013-03-21 | 2016-06-16 | Ihi Corporation | Gasified-gas generation system |
JP2015044933A (en) * | 2013-08-28 | 2015-03-12 | 株式会社Ihi | Gasification gas generation system |
WO2021131634A1 (en) * | 2019-12-27 | 2021-07-01 | 荏原環境プラント株式会社 | Thermal decomposition apparatus and thermal decomposition method |
JP2021107471A (en) * | 2019-12-27 | 2021-07-29 | 荏原環境プラント株式会社 | Thermal decomposition apparatus and thermal decomposition method |
CN114846123A (en) * | 2019-12-27 | 2022-08-02 | 荏原环境工程株式会社 | Thermal decomposition apparatus and thermal decomposition method |
CN114846123B (en) * | 2019-12-27 | 2024-07-05 | 荏原环境工程株式会社 | Thermal decomposition device and thermal decomposition method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4243919B2 (en) | Fuel gasification system | |
CA2377774C (en) | A method and an apparatus for the pyrolysis and gasification of organic substances or mixtures of organic substances | |
JPH07332614A (en) | Method for fluidized bed gasification and melting combustion as well as its apparatus | |
JP2003176486A (en) | Integrated circulating fluidized bed gasifying furnace | |
JPH11181450A (en) | Integrated gasification furnace | |
WO1999023431A1 (en) | Fluidized bed gasification combustion furnace | |
US6709636B1 (en) | Method and apparatus for gasifying fluidized bed | |
JP2009019870A (en) | Fluidized bed gasification combustion furnace | |
JP3770653B2 (en) | Gasification combustion method using fluidized bed furnace | |
JP2007147270A (en) | Processing method, and gasifying and melting device for waste | |
JP3825263B2 (en) | Gasification and melting equipment | |
JPH109511A (en) | Fluidized bed gasification and melting combustion method | |
JP3838699B2 (en) | Cylindrical fluidized bed gasification combustion furnace | |
JP2002115829A (en) | Method for waste treatment and gasification and melting apparatus | |
JP2001280615A (en) | Melting furnace | |
JP2003172501A (en) | Reactor with particle/gas separating device | |
JP3544953B2 (en) | Waste treatment method and gasification and melting equipment | |
JPH1180756A (en) | Fluidized-layer pressurized gasification furnace | |
RU2229073C2 (en) | Fluidized-bed combustion and gasification furnace | |
JP2004251618A (en) | Processing method and gasifying and fusing apparatus for combustible material | |
JP2004264017A (en) | Municipal waste gasification furnace and method | |
JP2004264017A5 (en) | ||
JP2004264018A (en) | Processing method, and gasifying and melting device for waste | |
JP2002115830A (en) | Method for waste treatment and gasification and melting apparatus | |
JP2001165416A (en) | Method of processing waste, gasifying and melting combustion apparatus and gasifying furnace of waste |