JP2014240472A - Method and apparatus for coal/biomass co-gasification by improved three-column type circulated fluidized bed - Google Patents
Method and apparatus for coal/biomass co-gasification by improved three-column type circulated fluidized bed Download PDFInfo
- Publication number
- JP2014240472A JP2014240472A JP2013124183A JP2013124183A JP2014240472A JP 2014240472 A JP2014240472 A JP 2014240472A JP 2013124183 A JP2013124183 A JP 2013124183A JP 2013124183 A JP2013124183 A JP 2013124183A JP 2014240472 A JP2014240472 A JP 2014240472A
- Authority
- JP
- Japan
- Prior art keywords
- tower
- gasification
- gas
- cao
- fluidized bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002309 gasification Methods 0.000 title claims abstract description 192
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000002028 Biomass Substances 0.000 title claims description 35
- 239000003245 coal Substances 0.000 title claims description 23
- 239000000446 fuel Substances 0.000 claims abstract description 61
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 59
- 238000002485 combustion reaction Methods 0.000 claims abstract description 55
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 46
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000011593 sulfur Substances 0.000 claims abstract description 45
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 44
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 44
- 239000007788 liquid Substances 0.000 claims abstract description 42
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 32
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 31
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 14
- 239000003054 catalyst Substances 0.000 claims abstract description 14
- -1 methane Chemical class 0.000 claims abstract description 3
- 238000002407 reforming Methods 0.000 claims description 95
- 238000000197 pyrolysis Methods 0.000 claims description 36
- 239000004449 solid propellant Substances 0.000 claims description 14
- 238000010521 absorption reaction Methods 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 230000002745 absorbent Effects 0.000 claims description 9
- 239000002250 absorbent Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 7
- 238000001833 catalytic reforming Methods 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 238000005201 scrubbing Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 152
- 230000008569 process Effects 0.000 abstract description 14
- 239000006096 absorbing agent Substances 0.000 abstract description 7
- 230000004048 modification Effects 0.000 abstract 4
- 238000012986 modification Methods 0.000 abstract 4
- 239000002245 particle Substances 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000002994 raw material Substances 0.000 description 17
- 239000000126 substance Substances 0.000 description 11
- 238000005979 thermal decomposition reaction Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000000428 dust Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 4
- 238000006477 desulfuration reaction Methods 0.000 description 4
- 230000023556 desulfurization Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 3
- 230000005587 bubbling Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- SKZKKFZAGNVIMN-UHFFFAOYSA-N Salicilamide Chemical compound NC(=O)C1=CC=CC=C1O SKZKKFZAGNVIMN-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002802 bituminous coal Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052956 cinnabar Inorganic materials 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Industrial Gases (AREA)
Abstract
Description
本発明は、改質塔及び低温硫黄再吸収器を用いたガス化方法及びガス化装置に関する。 The present invention relates to a gasification method and a gasification apparatus using a reforming tower and a low-temperature sulfur reabsorber.
近年、バイオマス、石炭、廃棄物、石油残渣、重質油等の種々の有機物原料をガス化することにより合成ガスを製造する技術が提案されるようになってきている。
図1は二塔式と称されるガス化設備の一例を示すものであり、このようなガス化設備の代表例としては特許文献1がある。
特許文献1によれば、このガス化設備においては、流動層ガス化炉1に供給される原料2は、例えば800℃以上の高温を有して供給される循環粒子3(砂等)と、下部から供給される水蒸気、空気、酸素、二酸化炭素等のガス化剤4とにより形成される流動層5によって流動加熱され、ガス化されてガス化ガス6を生成する。流動層ガス化炉1で生成したガス化ガス6は、サイクロン等の分離器7に導いて固形分を除去した後、タール除去装置、電気集塵機等の精製装置を経た後、発電設備の燃料として供給したり、合成ガス原料として供給したり、或いは圧縮機で圧縮して液化したガス製品として取り出すようにしている。
In recent years, techniques for producing synthesis gas by gasifying various organic raw materials such as biomass, coal, waste, petroleum residue, heavy oil and the like have been proposed.
FIG. 1 shows an example of a gasification facility called a two-column type, and
According to
流動層ガス化炉1において原料2をガス化する際に生成したチャーは、循環粒子3と共に流動層燃焼炉8に供給され、流動層燃焼炉8において空気又は酸素等の酸化剤9の供給によりチャーを燃焼することによって循環粒子を例えば900℃以上の温度に加熱するようにしている。流動層燃焼炉8から導出される燃焼ガス10はサイクロン等の分離器11に導かれて循環粒子3と排ガス12とに分離され、分離した循環粒子3は前記流動層5に没入した降下管Aにより流動層ガス化炉1に供給するようにしている。又、分離器11で分離した排ガス12は、熱回収用の熱交換器13等を経てバグフィルター等の集塵器により集塵されて煙突に導かれる。
 前記流動層ガス化炉1においては、原料2が流動層5により加熱されて、熱分解により熱分解ガスを生成する熱分解反応と、熱分解残渣がガス化剤4の作用を受けて改質ガス化ガスを生成する改質ガス化反応とが混在した状態で起こっている。
熱分解反応では、メタンCH4、タール等の炭化水素や、その他一酸化炭素CO、二酸化炭素CO2、水素H2 等を含む熱分解ガスが生成され、改質ガス化反応では、水蒸気ガス化の場合は一酸化炭素CO、水素H2を主成分とする改質ガス化ガスが生成される。しかし、前記熱分解ガスには多くのタールが含まれており、前記したように流動層ガス化炉1において熱分解反応と改質ガス化反応が同時に行われる従来のガス化設備においては、熱分解反応によって生成した熱分解ガスが、改質ガス化反応を阻害するという問題があることが判明した。
The char generated when the
  In the fluidized
In the pyrolysis reaction, pyrolysis gas containing hydrocarbons such as methane CH 4 and tar and other carbon monoxide CO, carbon dioxide CO 2 , hydrogen H 2 and the like is generated. In the reforming gasification reaction, steam gasification is performed. In this case, reformed gasification gas mainly containing carbon monoxide CO and hydrogen H 2 is generated. However, the pyrolysis gas contains a large amount of tar, and in the conventional gasification facility in which the pyrolysis reaction and the reforming gasification reaction are simultaneously performed in the fluidized
そこで、特許文献2では、図2に示すように、循環粒子とガス化剤の存在下で原料をガス化するガス化炉と、ガス化炉でのガス化時に生成したチャーを導入して燃焼することにより循環粒子を加熱する燃焼炉と、燃焼炉からの燃焼ガスを分離器に導いて排ガスと循環粒子とに分離し循環粒子を前記ガス化炉に戻すようにしているガス化設備であって、分離器で分離した循環粒子を粒子移動部内に移動させつつ原料供給装置から原料を供給して原料を熱分解させ、熱分解ガス取出口により熱分解ガスを取り出すと共に、熱分解残渣を前記ガス化炉に供給する熱分解装置を備えたことを特徴とするガス化設備が提案された。
Therefore, in
このように構成することにより、分離器11と流動層ガス化炉1との間に熱分解装置14を備えた構成としている。熱分解装置14は、分離器11によって分離した循環粒子3を粒子移動部15内で移動させつつ原料供給装置16により原料2を供給して原料を熱分解させる一方、ガス導入装置17により上昇流形成ガス18を供給して熱分解ガスを上昇させ、熱分解残渣を循環粒子3と共に前記流動層ガス化炉1に供給するようにしている。更に、前記熱分解装置14には熱分解ガス19を取り出すための熱分解ガス取出口20を備えている。尚、図2では熱分解装置14に、ガス導入装置17により上昇流形成ガス18を供給しているが、上昇流形成ガス18は供給しなくてもよい。
即ち、図2に示すように、分離器11で分離された循環粒子3は流動層5に没入した降下管Aによってシールされて流動層ガス化炉1に供給されるため、降下管A内で発生した熱分解ガス19は自身の圧力によって上昇し熱分解ガス取出口20から取り出されるようになる。そのため、流動層ガス化炉1には、熱分解装置14によって分解された後の熱分解残渣が供給されるので、流動層ガス化炉1では熱分解ガスがほとんど生成されないため、熱分解ガスによる阻害をあまり受けることなく良好な改質ガス化反応が行われる。
しかしながら、まだまだ不十分であり、長時間使用すると生成したタールが熱交換器で目詰まりを起こす事態が発生し、運転に支障をきたしているのが現状である。
このため発明者は、すでに、温度900℃〜1000℃で運転する流動層燃焼塔と温度900℃〜1000℃で運転する流動層タール改質塔と温度700℃〜800℃で運転する流動層ガス化塔からなる三塔式循環流動層ガス化方法(図3)を考案し、CaOを伝熱媒体、タール改質触媒及びCO2とH2Sの吸収剤として、三塔を結ぶ装置内で循環させ、バイオマスや石炭等固体燃料と高温水蒸気をガス化塔に供給し、700-850℃の熱媒体と接触して熱分解を起こし、揮発分ガスとチャー(固定炭素)を生成し、チャーの一部は水蒸気とガス化してガス化ガスを生成し、揮発分とガス化ガスと水蒸気はタール改質塔に導入し、900-1000℃のCaO熱媒体と接触してタールの触媒改質を行い、残ったチャーは熱媒体と共に燃焼塔に導入し、空気でチャーを燃焼させ、熱媒体を加熱し、熱媒体はサイクロンを経てタール改質塔とガス化塔に戻り、タール改質塔とガス化塔の温度を維持する三塔式循環流動層ガス化方法を提案している(特許文献3特願2012−223683)。
また、固体燃料とガス化剤とを熱分解ガス化フェーズ反応器に供給し、該熱分解ガス化フェーズ反応器内において、熱媒体との接触により前記固体燃料を熱分解して生成したチャーを前記ガス化剤によりガス化し、該熱分解とガス化により生成されるガス化ガス中のCO2を所定該フェーズの反応温度下で活性ケミカルにより吸収する第一工程と、前記熱分解ガス化フェーズ反応器内でガス化し切れず残留したチャー、前記固体燃料の熱分解とガス化に寄与して低温化した熱媒体、前記CO2と反応して低活性化した低活性ケミカル及び新添加の未活性ケミカルをチャー燃焼フェーズ反応器に供給し、該チャー燃焼フェーズ反応器内において、酸化剤により前記チャーを燃焼させ、該燃焼熱で前記低温化した熱媒体を加熱するとともに、前記低活性ケミカルを焼成して再活性化し且つ前記未活性ケミカルを焼成して活性化する第二工程と、前記チャー燃焼フェーズ反応器内で加熱された熱媒体と活性化した活性ケミカルとともに前記熱分解ガス化フェーズ反応器から前記ガス化ガスをガス化ガス精製フェーズ反応器に供給し、該ガス化ガス精製フェーズ反応器内において、前記活性ケミカルを触媒として機能させて前記ガス化ガス中のタールを所定該フェーズの反応温度下で改質するとともに前記ガス化ガス中のH2S、HClを吸収して前記ガス化ガスを精製し、該ガス化ガスの精製に主に触媒として寄与した活性ケミカルを熱媒体とともに前記熱分解ガス化フェーズ反応器に循環させる第三工程と、からなることを特徴とする固体燃料のガス化方法が知られている(特許文献4)。しかし、ここでは、タールの改質が行われているものの、ガス化ガス及び液体燃料合成過程のオフガス中のメタン等難分解炭化水素(CnHm)ガスを水と反応させて合成ガスを得、並びにH2S、COS及びCO2ガスを徹底的に低減させる技術思想は開示されていない。
By comprising in this way, it is set as the structure provided with the
That is, as shown in FIG. 2, since the circulating particles 3 separated by the
However, the situation is still insufficient, and when the product is used for a long time, the generated tar is clogged with the heat exchanger, resulting in trouble in operation.
For this reason, the inventor already has a fluidized bed combustion tower operating at a temperature of 900 ° C to 1000 ° C, a fluidized bed tar reforming tower operating at a temperature of 900 ° C to 1000 ° C, and a fluidized bed gas operating at a temperature of 700 ° C to 800 ° C. Devised a three-column circulating fluidized bed gasification method (Fig. 3) consisting of gasification towers, using CaO as the heat transfer medium, tar reforming catalyst, and CO 2 and H 2 S absorbent in the equipment connecting the three towers Circulate and supply biomass fuel, coal and other solid fuel and high-temperature steam to the gasification tower, and contact with a heat medium of 700-850 ℃ to cause pyrolysis, and generate volatile gas and char (fixed carbon). A part of the gas is gasified with water vapor to produce gasified gas, and the volatile matter, gasified gas and water vapor are introduced into a tar reforming tower and contacted with a 900-1000 ° C CaO heat medium to catalytically reform tar. The remaining char is introduced into the combustion tower together with the heat medium, the char is burned with air, the heat medium is heated, A three-column circulating fluidized bed gasification method has been proposed in which the temperature of the tar reforming tower and the gasification tower is maintained by returning to the tar reforming tower and the gasification tower through the icron (Japanese Patent Application No. 2012-223683). ).
In addition, a solid fuel and a gasifying agent are supplied to a pyrolysis gasification phase reactor, and char generated by pyrolyzing the solid fuel by contact with a heat medium in the pyrolysis gasification phase reactor is obtained. Gasification by the gasifying agent, and a first step of absorbing CO 2 in the gasification gas generated by the pyrolysis and gasification with an active chemical under a reaction temperature of the predetermined phase; and the pyrolysis gasification phase Char remaining in the reactor without being completely gasified, a heat medium that has been reduced in temperature by contributing to thermal decomposition and gasification of the solid fuel, a low activity chemical that has been activated by reacting with the CO 2 and an unadded An active chemical is supplied to the char combustion phase reactor, and the char is combusted by an oxidant in the char combustion phase reactor, and the low-temperature heat medium is heated by the combustion heat, and the low activity A second step of calcination and reactivation of the chemical and calcination and activation of the inactive chemical, and the pyrolysis gasification together with the heat medium heated in the char combustion phase reactor and the activated active chemical. The gasification gas is supplied from the phase reactor to the gasification gas purification phase reactor, and the active chemical functions as a catalyst in the gasification gas purification phase reactor so that the tar in the gasification gas is predetermined. While reforming at the reaction temperature of the phase and absorbing H 2 S and HCl in the gasification gas, the gasification gas is purified, and the active chemical that has contributed mainly as a catalyst to the purification of the gasification gas is heated. A solid fuel gasification method characterized by comprising a third step of circulating to the pyrolysis gasification phase reactor together with a medium is known (Patent Document 4). However, although tar reforming is being carried out here, the synthesis gas is produced by reacting gas such as methane and other indestructible hydrocarbon (C n H m ) gas in the off-gas of the liquid fuel synthesis process with water. obtained, as well as H2 S, the technical idea for thoroughly reducing COS and CO 2 gas is not disclosed.
炭酸ガス排出量低減のため、再生可能エネルギー源であるバイオマス資源を用いた液体燃料製造の導入は大切であるが、バイオマス利用技術にとって、以下の問題点を克服しなければならない。
(1)ガス化原料の安定供給
化学プラントの運転にとって、プラント負荷の安定、長時間運転が要求される。過大な負荷変動や、頻繁な起動停止は設備損傷や生産性低下を与えるだけではなく、起動停止時の補助燃料の過剰投入により、CO2排出増にもなる。
(2)バイオマスガス化への熱供給
高カロリー燃料または合成ガスを製造するために、バイオマスのガス化は間接加熱方式を採用する場合がある。十分な熱伝達量を確保するため、伝熱面積の大きいガス化装置が必要となり、排ガスの熱ロスも大きい。一方、内部燃焼方式を採用するバイオマスガス化もあるが、酸素を用いて燃焼するため、酸素プラントが必要となる。
(3)ガス化後のタール除去、ガス組成調整、脱硫等の付属設備
今までのガス化方法はガス化の後にさらにタール改質、タール除去、シフト反応によるガス組成調整、脱硫等のガス精製過程が必要となり、プロセスが複雑し、設備費と保守のコストが高い。
(4)さまざまなバイオマスの利用
高水分、難粉砕のバイオマス、廃棄物等を利用可能なガス化炉が必要となる。
(5)小型プラントのため、高い合成液体燃料の選択性と収率が要求される。
本発明は、改良型三塔式循環流動層ガス化炉であって、今まで本発明者が取り組んできた三塔式循環流動層ガス化炉で石炭バイオマス燃料合成システムを構築したうえ、さらに、バイオマス利用の問題点の解決を図るものである。具体的に、ガス化過程と液体燃料合成過程で発生した難分解性CH4等炭化水素(CnHm)を三塔式ガス化炉の改質塔に導入し改質し、合成ガスを増量することで、液体燃料合成過程の選択性と収率をアップする。また、三塔式ガス化炉燃焼塔サイクロンから一部のCaO媒体を低温硫黄再吸収器に導入し、改質塔から出た改質ガス中のH2S、COS及びCO2を低温硫黄再吸収器でCaOによって再度に吸収し、高品位の合成ガスを製造する。低温硫黄再吸収器から出たCaSとCaCO3は再び燃焼塔に導入する。さらに、バイオマスと補助燃料をガス化炉に提供することで、原料性状の安定化とガス化熱収支安定化を図りつつ、循環流動層ガス化炉を用いてガス化、メタン等難分解炭化水素(CnHm)改質、炉内脱硫及びH2/CO比の調整を行い、高品位の合成ガスを製造し、流動層ガス化炉は高水分、難粉砕のバイオマス、廃棄物等を対応し易いガス化技術である。
In order to reduce carbon dioxide emissions, the introduction of liquid fuel production using biomass resources, which are renewable energy sources, is important, but the following problems must be overcome for biomass utilization technology.
(1) Stable supply of gasification raw materials For operation of a chemical plant, stable plant load and long-time operation are required. Excessive load fluctuations and frequent start / stops not only damage equipment and reduce productivity, but also increase CO 2 emissions due to excessive input of auxiliary fuel during start / stop.
(2) Heat supply to biomass gasification In order to produce high-calorie fuel or synthesis gas, biomass gasification may employ an indirect heating method. In order to ensure a sufficient amount of heat transfer, a gasifier with a large heat transfer area is required, and the heat loss of exhaust gas is also large. On the other hand, although there is biomass gasification which adopts an internal combustion method, since it burns using oxygen, an oxygen plant is needed.
(3) Attached equipment such as tar removal after gasification, gas composition adjustment, desulfurization, etc. Conventional gasification methods are gas reforming after gasification, gas composition adjustment by shift reaction, gas purification such as desulfurization, etc. A process is required, the process is complicated, and the cost of equipment and maintenance is high.
(4) Utilization of various biomass Gasifiers that can use high moisture, difficult-to-pulverize biomass, waste, etc. are required.
(5) Since the plant is small, high selectivity and yield of synthetic liquid fuel are required.
The present invention is an improved three-column circulating fluidized bed gasification furnace, and a coal biomass fuel synthesizing system is constructed in the three-column circulating fluidized bed gasification furnace that the present inventors have been working on, It aims to solve the problem of biomass utilization. Specifically, hydrocarbons such as persistent CH 4 (C n H m ) generated in the gasification process and liquid fuel synthesis process are introduced into the reforming tower of the three-column gasifier and reformed, and the synthesis gas is Increasing the amount increases the selectivity and yield of the liquid fuel synthesis process. In addition, a part of CaO medium is introduced into the low-temperature sulfur reabsorber from the three-column gasifier combustion tower cyclone, and H 2 S, COS, and CO 2 in the reformed gas discharged from the reforming tower are converted into low-temperature sulfur recycle. It is absorbed again with CaO in the absorber to produce high-quality synthesis gas. CaS and CaCO 3 from the low-temperature sulfur reabsorber are reintroduced into the combustion tower. Furthermore, by providing biomass and auxiliary fuel to the gasification furnace, gasification using a circulating fluidized bed gasification furnace, and refractory hydrocarbons such as methane, while stabilizing raw material properties and gasification heat balance (CnHm) reforming, in-furnace desulfurization and adjustment of H 2 / CO ratio to produce high quality synthesis gas, fluidized bed gasifier is easy to handle high moisture, difficult-to-grind biomass, waste, etc. Gasification technology.
すなわち、本発明は、温度850℃〜1000℃で運転する流動層燃焼塔と温度850℃〜1000℃で運転する流動層改質塔と温度650℃〜850℃で運転する流動層ガス化塔と400℃〜700℃で低温硫黄再吸収器からなる三塔式循環流動層ガス化方法であり、CaOを伝熱媒体、メタン等炭化水素(CnHm)改質触媒及びCO2とH2Sの吸収剤として、三塔及び低温硫黄再吸収器を結ぶ装置内で循環させ、バイオマスや石炭等固体燃料と高温水蒸気をガス化塔に供給し、650℃〜850℃の熱媒体と接触して熱分解とガス化を起こし、ガス化ガスとチャー(固定炭素)を生成し、また、ガス化塔でCaOによって一部CO2とH2Sを吸収しCaCO3とCaSを生成し、ガス化ガスと液体燃料合成から来たオフガスと水蒸気は改質塔に導入し、850℃〜1000℃のCaO熱媒体と接触してメタン等難分解炭化水素(CnHm)の触媒改質を行い、残ったチャーはCaO熱媒体、CaCO3及びCaSと共に燃焼塔に導入し、空気でチャーを燃焼させ、CaO熱媒体を加熱し、CaCO3をCaOに焼成、CaSをCaSO4に酸化し、CaO熱媒体はサイクロンを経て改質塔とガス化塔に戻り、改質塔とガス化塔の温度を維持し、また、サイクロンを経たCaO熱媒体の一部を低温硫黄再吸収器に導入し、改質塔から出た改質ガス中のH2S、COS及びCO2を再吸収し、吸収後のCaSとCaCO3含有熱媒体を再び燃焼塔に導入する三塔式循環流動層ガス化方法において、流動層改質塔において、CaOの存在下、H2Oとメタン等難分解炭化水素ガス(CnHm)を反応させてCOとH2に分解し、合成ガスとし、液体燃料合成をおこない、液体燃料を取り出し、液体燃料にならないオフガスと重質残渣は、流動層改質塔及び又はガス化塔に戻すことを特徴とする改良型三塔式循環流動層ガス化方法である。
また、本発明の改良型三塔式循環流動層ガス化方法においては、補助燃料として石炭を使用し、バイオマスと共ガス化することができる。
さらに、本発明の改良型三塔式循環流動層ガス化方法においては、流動層燃焼塔と流動層改質塔との間に、媒体サイクロンを設けることができる。
That is, the present invention includes a fluidized bed combustion tower operating at a temperature of 850 ° C. to 1000 ° C., a fluidized bed reforming tower operating at a temperature of 850 ° C. to 1000 ° C., and a fluidized bed gasification tower operating at a temperature of 650 ° C. to 850 ° C. A three-column circulating fluidized bed gasification method consisting of a low-temperature sulfur reabsorber at 400 ° C to 700 ° C, CaO as a heat transfer medium, hydrocarbon (CnHm) reforming catalyst such as methane, and absorption of CO 2 and H 2 S It is circulated in an apparatus connecting the three towers and the low-temperature sulfur reabsorber as an agent, supplying solid fuel such as biomass and coal and high-temperature steam to the gasification tower, and contacting with a heat medium at 650 ° C to 850 ° C for thermal decomposition Gasification and char (fixed carbon) are generated, and part of the gasification tower absorbs CO 2 and H 2 S with CaO to generate CaCO 3 and CaS. Off-gas and water vapor from liquid fuel synthesis are introduced into the reforming tower and contacted with CaO heat medium at 850 ° C to 1000 ° C to contact refractory hydrocarbons (CnHm) such as methane. Perform reforming, remaining char CaO heating medium is introduced into the combustion tower with CaCO 3 and CaS, the char with air is burned to heat the CaO heating medium, firing the CaCO 3 to CaO, the CaS to CaSO 4 Oxidized, the CaO heat medium returns to the reforming tower and gasification tower through the cyclone, maintains the temperature of the reforming tower and the gasification tower, and a part of the CaO heat medium passed through the cyclone is a low-temperature sulfur reabsorber. A three-column circulation flow in which H 2 S, COS and CO 2 in the reformed gas exiting from the reforming tower is reabsorbed and the absorbed CaS and CaCO 3 -containing heat medium is again introduced into the combustion tower. In the bed gasification method, in a fluidized bed reforming tower, H 2 O and a hardly-decomposable hydrocarbon gas such as methane (C n H m ) are reacted in the presence of CaO to decompose into CO and H 2 to produce synthesis gas. The liquid fuel synthesis is performed, the liquid fuel is taken out, and the off-gas and heavy residue that do not become the liquid fuel are returned to the fluidized bed reforming tower and / or the gasification tower. This is an improved three-column circulating fluidized bed gasification method.
In the improved three-column circulating fluidized bed gasification method of the present invention, coal can be used as auxiliary fuel and co-gasified with biomass.
Furthermore, in the improved three-column circulating fluidized bed gasification method of the present invention, a medium cyclone can be provided between the fluidized bed combustion tower and the fluidized bed reforming tower.
また、本発明の改良型三塔式循環流動層ガス化方法では、CaOベース媒体を伝熱媒体、改質触媒及びCO2とH2Sの吸収剤とし、三塔式循環流動層ガス化炉装置及び低温硫黄再吸収器内で循環させ、燃料石炭とバイオマスをガス化塔に供給し、熱媒体と接触して650-850℃で熱分解とガス化を起こし、ガス化ガスとチャー(固定炭素)を生成し、ガス化ガスと液体燃料合成過程で発生したオフガスは改質塔に導入し、850℃-1000℃の熱媒体と接触してガス化ガス及びオフガス中のメタン(CH4)等難分解性炭化水素(CnHm)の触媒改質を行い、改質炉から出た改質ガスは低温硫黄再吸収器でH2S、COS及びCO2を再吸収してガス洗浄塔を経て燃料合成装置に提供され、液体燃料として取り出すことができる。
さらに、本発明の改良型三塔式循環流動層ガス化方法では、ガス化塔の温度と圧力調整によって、CaOによるCO2の吸収量とCOとH2Oとシフト反応量を制御でき、ガス化生成ガスのH2/CO比を調整することができる。
また、本発明は、温度900℃〜1000℃で運転する流動層燃焼塔と温度900℃〜1000℃で運転する流動層改質塔と温度700℃〜800℃で運転する流動層ガス化塔と400℃〜800℃で運転する低温硫黄再吸収器からなる改良型三塔式循環流動層ガス化装置であり、CaOを伝熱媒体、触媒及びCO2とH2Sの吸収剤として、三塔及び低温硫黄再吸収器を結ぶ装置内で循環させ、バイオマスと石炭等固体燃料をガス化塔に供給し650-850℃の熱媒体と接触して熱分解とガス化を起こし、ガス化ガスとチャー(固定炭素)を生成し、また、ガス化塔でCaOが一部のCO2とH2Sを吸収し、CaCO3とCaSを生成し、ガス化ガスと液体燃料合成過程で発生したオフガスは改質塔に導入し、850-1000℃の熱媒体と接触してガス化ガスとオフガス中のメタン等難分解炭化水素(CnHm)の触媒改質を行い、チャーはCaO熱媒体、CaCO3及びCaSと共に燃焼塔に導入し、空気でチャーを燃焼させ、熱媒体を加熱し、CaCO3をCaOに焼成し、CaSをCaSO4に酸化し、熱媒体はサイクロンを経て改質塔とガス化塔に戻り、改質塔とガス化塔の温度を維持し、また、サイクロンを経たCaO熱媒体の一部を低温硫黄再吸収器に導入し、H2S、COS及びCO2を再吸収し、吸収後のCaSとCaCO3含有熱媒体を再び燃焼器に導入し、循環させる改良型三塔式循環流動層ガス化装置である。
Further, in the improved three-column circulating fluidized bed gasification method of the present invention, a three-column circulating fluidized bed gasifier using a CaO base medium as a heat transfer medium, a reforming catalyst, and CO 2 and H 2 S absorbents. It is circulated in the equipment and low-temperature sulfur reabsorber, fuel coal and biomass are supplied to the gasification tower, and contacted with the heat medium to cause pyrolysis and gasification at 650-850 ℃, gasified gas and char (fixed) Off gas generated during the synthesis of gasified gas and liquid fuel is introduced into the reforming tower and brought into contact with a heating medium at 850 ° C-1000 ° C to form methane (CH 4 ) in the gasified gas and offgas. Catalytic reforming of hard-to-decompose hydrocarbons (C n H m ), and the reformed gas emitted from the reforming furnace is re-absorbed with H 2 S, COS and CO 2 by a low-temperature sulfur reabsorber, and cleaned with gas It is provided to the fuel synthesizer via the tower and can be taken out as a liquid fuel.
Furthermore, in the improved three-column circulating fluidized bed gasification method of the present invention, the amount of CO 2 absorbed by CaO and the amount of CO, H 2 O, and shift reaction can be controlled by adjusting the temperature and pressure of the gasification tower. The H 2 / CO ratio of the chemical gas can be adjusted.
The present invention also includes a fluidized bed combustion tower operating at a temperature of 900 ° C to 1000 ° C, a fluidized bed reforming tower operating at a temperature of 900 ° C to 1000 ° C, and a fluidized bed gasification tower operating at a temperature of 700 ° C to 800 ° C. An improved three-column circulating fluidized bed gasifier consisting of a low-temperature sulfur reabsorber operating at 400 ° C to 800 ° C, with CaO as the heat transfer medium, catalyst, and CO 2 and H 2 S absorbent. And a solid fuel such as biomass and coal are supplied to the gasification tower and contacted with a heat medium of 650-850 ° C to cause pyrolysis and gasification. Char (fixed carbon) is produced, and CaO absorbs a part of CO 2 and H 2 S in the gasification tower to produce CaCO 3 and CaS, which is generated in the gasification gas and liquid fuel synthesis process. is introduced into the reforming tower performs catalytic reforming of methane, such as decomposition-hydrocarbon contact gasified gas and off gas in the heat medium of 850-1000 ℃ (C n H m) , Catcher chromatography is introduced into the combustion tower with CaO heat medium, CaCO 3 and CaS, the char with air is burned to heat the heat medium, firing the CaCO 3 to CaO and oxidation of CaS into CaSO 4, the heat medium cyclone To return to the reforming tower and the gasification tower, maintain the temperature of the reforming tower and the gasification tower, and introduce a part of the CaO heat medium through the cyclone into the low-temperature sulfur reabsorber, H 2 S, This is an improved three-column circulating fluidized bed gasifier that re-absorbs COS and CO 2 and recirculates the CaS and CaCO 3 -containing heat medium after absorption into the combustor.
本発明の改良型三塔式循環流動層ガス化方法又は三塔式循環流動層ガス化装置では、流動層改質塔において、CaOの存在下、H2Oとガス化ガス及びオフガス中のメタン等難分解炭化水素ガス(CnHm)を反応させてCOとH2に分解し、合成ガスを増量し、液体燃料合成をおこない、液体燃料を取り出ながら、液体燃料にならないオフガスと重質炭化水素を改質塔及び(或いは)ガス化塔に導入する。メタン等炭化水素成分(CnHm)が改質塔で分解されて合成ガス化が進むため、殆どメタンなどの炭化水素(CnHm)を生成することなく、また、改質ガスに残されたH2S、COS及びCO2が低温硫黄吸収器で殆ど再吸収されることで、高品位のクリーンな合成ガスを製造でき、簡単なガス洗浄処理で液体燃料合成に導入するため、ガスクリーンアップを簡素化しても長時間の連続運転が可能となり、極めて低コスト、高効率で運転できる。 In the improved three-column circulating fluidized bed gasification method or the three-column circulating fluidized bed gasification apparatus of the present invention, in the fluidized bed reforming tower, in the presence of CaO, H 2 O, gasified gas, and methane in off-gas It reacts with non-resolved hydrocarbon gas (C n H m ), decomposes it into CO and H 2 , increases the synthesis gas, performs liquid fuel synthesis, takes out the liquid fuel, and removes the liquid fuel. Quality hydrocarbons are introduced into the reforming tower and / or the gasification tower. Since hydrocarbon components (C n H m ) such as methane are decomposed in the reforming tower and the synthesis gas proceeds, almost no hydrocarbons (CnHm) such as methane are generated and left in the reformed gas. Since H 2 S, COS, and CO 2 are almost reabsorbed by low-temperature sulfur absorbers, high-quality clean synthesis gas can be produced, and it can be introduced into liquid fuel synthesis with a simple gas cleaning process. Even if it is simplified, continuous operation for a long time is possible, and operation is possible at extremely low cost and high efficiency.
本発明の原理について説明する。
本発明者が提供した初めての三塔式循環流動層ガス化方法を図3に示す(特願2012−223683参照)。しかし、この三塔式循環流動層ガス化方法では、タール成分が分解されてガス化が進むため、殆どタールを生成することなく、熱交換器等のパイプにタールが析出しないため、長時間の連続運転が可能となり、極めて高効率で合成ガスを液体燃料合成に提供し、液体燃料を合成できるものの、ガス化ガス及び液体燃料合成オフガス中のメタン等難分解炭化水素ガス(CnHm)、が発生するため、その有効利用が望まれていた。また、高温のガス化塔及びタール改質塔ではH2S、COS及びCO2をCaOによって十分に吸収できないため、さらに改善が望まれていた。
本発明者は、このメタン等難分解炭化水素ガス(CnHm)を合成ガスに変換し、液体燃料を得る、また、改質塔から出た改質ガス中の在留H2S、COS及びCO2を低温で再吸収し、高品位の合成ガスを製造できる改良型三塔式循環流動層ガス化方法を見出すに至った。
本発明で云うオフガスとは、液体燃料合成過程に発生した液体燃料にならないメタン等のガス状炭化水素(CnHm)をいう。
これらのオフガスは難分解性なものが多く、本発明では、ガス化ガス及び液体燃料合成過程で発生したオフガスを三塔式循環流動層ガス化炉の改質塔ガス化塔(オフガスはガス化炉にも導入可能)に導入し、ガス中のメタン等難分解炭化水素(CnHm)を改質することによって、液体燃料合成の選択性及び収率を高める方法である。
また、改質塔から出た改質ガスを低温硫黄吸収器に導入して、吸収器内のCaO粒子によってH2S、COS及びCO2を再吸収することで、きわめてクリーンな合成ガスを製造し、燃焼塔媒体サイクロンを経たCaO熱媒体の一部を低温硫黄再吸収器に導入し、吸収後のCaSとCaCO3含有媒体を再び燃焼塔に導入させる方法である。
本発明の原理は、図4に示すように、ガス化、改質及び燃焼三塔式循環流動層ガス化炉を用いて石炭、バイオマスから液体燃料を製造する際に、ガス化ガス及び液体燃料合成で発生したオフガスを三塔式循環流動層ガス化炉の改質塔(オフガスはガス化塔にも導入可能)に導入し、ガス中のCH4等難分解性炭化水素(CnHm)を改質することによって、合成ガスを生成し、液体燃料合成の選択性及び収率を高め、また、改質塔から出た改質ガスを低温硫黄吸収器に導入して、吸収器内のCaO粒子によってH2S、COS及びCO2を再吸収することによってきわめてクリーンな合成ガスを製造し、燃焼塔媒体サイクロンを経たCaO熱媒体の一部を低温硫黄再吸収器に導入し、吸収後のCaSとCaCO3含有媒体を再び燃焼器に導入させる方法である。
The principle of the present invention will be described.
FIG. 3 shows the first three-column circulating fluidized bed gasification method provided by the present inventor (see Japanese Patent Application No. 2012-223683). However, in this three-column circulating fluidized bed gasification method, since tar components are decomposed and gasification proceeds, tar is hardly deposited on pipes of heat exchangers and the like without generating tar. Although it is possible to operate continuously and provides synthesis gas to liquid fuel synthesis with extremely high efficiency and can synthesize liquid fuel, it is difficult to decompose hydrocarbon gas (C n H m ) such as methane in gasification gas and liquid fuel synthesis off-gas Therefore, effective use thereof has been desired. Further, since high-temperature gasification towers and tar reforming towers cannot sufficiently absorb H 2 S, COS and CO 2 by CaO, further improvement has been desired.
The present inventor converts the hardly decomposed hydrocarbon gas (C n H m ) such as methane into a synthesis gas to obtain a liquid fuel, and the residual H 2 S, COS in the reformed gas discharged from the reforming tower. As a result, the inventors have found an improved three-column circulating fluidized bed gasification method capable of reabsorbing CO 2 at low temperatures and producing high-quality synthesis gas.
The off-gas referred to in the present invention refers to a gaseous hydrocarbon (C n H m ) such as methane that does not become a liquid fuel generated during the liquid fuel synthesis process.
Many of these off-gases are hardly decomposable. In the present invention, off-gas generated in the synthesis process of gasification gas and liquid fuel is converted into a reforming tower gasification tower of a three-column circulating fluidized bed gasification furnace (off-gas is gasification). This is a method of improving the selectivity and yield of liquid fuel synthesis by reforming refractory hydrocarbons (C n H m ) such as methane in the gas.
In addition, by introducing the reformed gas from the reforming tower into the low-temperature sulfur absorber and reabsorbing H 2 S, COS and CO 2 by the CaO particles in the absorber, extremely clean synthesis gas is produced. Then, a part of the CaO heat medium that has passed through the combustion tower medium cyclone is introduced into the low-temperature sulfur reabsorber, and the CaS and CaCO 3 -containing medium after absorption is introduced into the combustion tower again.
The principle of the present invention is that, as shown in FIG. 4, when a liquid fuel is produced from coal and biomass using a gasification, reforming and combustion three-column circulating fluidized bed gasification furnace, the gasification gas and the liquid fuel are used. The off-gas generated in the synthesis is introduced into the reforming tower of the three-column circulating fluidized bed gasifier (off-gas can also be introduced into the gasification tower), and CH 4 and other difficult-to-decompose hydrocarbons in the gas (C n H m ) To improve the selectivity and yield of liquid fuel synthesis, and introduce the reformed gas from the reforming tower into the low-temperature sulfur absorber. By reabsorbing H 2 S, COS and CO 2 with CaO particles, a very clean synthesis gas is produced, and a part of the CaO heat medium passed through the combustion tower medium cyclone is introduced into the low-temperature sulfur reabsorber and absorbed. This is a method of introducing the CaS and CaCO 3 -containing medium later into the combustor again.
燃焼塔120はバブリング流動層であり、850℃〜1000℃でチャーを空気或いは酸素によって燃焼し、媒体を温め、CaCO3をCaOに焼成し、CaSをCaSO4に酸化するものである。ライザーはファスト流動層であり、温めたCaO媒体を必要な高度まで燃焼ガスで飛ばすものである。改質塔130はバブリング流動層或いは移動層であり、850℃〜1000℃でメタン(CH4)等難分解炭化水素(CnHm)を改質するものである。ガス化塔110はバブリング流動層或いは移動層であり、650℃〜850℃でバイオマスと石炭等固体燃料の熱分解及びガス化を起こすものである。低温硫黄再吸収器は400℃〜700℃で改質ガス中の残留H2S、COS及びCO2を再吸収するものである。
CaOベース媒体を伝熱媒体、改質触媒及びCO2とH2Sの吸収剤とし、三塔式循環流動層ガス化炉装置内で循環させ、また、一部CaOを低温硫黄再吸収器にバイパスして循環させる。装置内CaOの補充として、石灰石などCaCO3含有鉱物を燃焼塔に導入し、高温でCaOに分解させ、あるいはCaO含有物質をガス化塔に導入する。石炭とバイオマスをガス化器に供給し、熱媒体と接触して650-850℃で熱分解とガス化を起こし、ガス化ガスとチャー(固定炭素)を生成する。ガス化ガスと液体燃料合成過程で発生したオフガスは改質塔に導入し、850℃-1000℃のCaO熱媒体と接触してガス中のメタン(CH4)等難分解性炭化水素(CnHm)の触媒改質を行う。ガス化塔ではCaOがH2S及びCOSを吸収しCaSになり、CO2を吸収してCaCO3になる。チャーは未反応のCaO熱媒体及びCaS、CaCO3と共に燃焼塔に導入し、空気あるいは酸素でチャーを燃焼させ、熱媒体を加熱し、CaCO3をCaOに焼成し、CaSをCaSO4に酸化する。加熱されたCaO熱媒体はサイクロンを経て改質塔とガス化塔に戻り、改質塔とガス化塔の温度を維持する。また、サイクロンを経たCaO熱媒体の一部を低温硫黄再吸収器に導入し、H2S、COS及びCO2を再吸収し、吸収後のCaSとCaCO3含有熱媒体を再び燃焼器に導入し、循環させる。改質炉から出た改質ガスは低温硫黄再吸収器に導入し、低温条件でCaOによってガス中のH2SとCOS及びCO2を再吸収する。低温硫黄再吸収器から出たクリーン合成ガスはガス洗浄を経て燃料合成装置に提供する。
化学反応論によれば、水蒸気による炭化水素改質の難しさ順は、メタンCH4>ベンゼンC6H6>ナフタレンC10H8>プロパンC3H8である。
ガス化塔及び改質塔に供給するガス化剤及び改質剤は水蒸気、CO2、或いはオフガス中の水蒸気とCO2を利用することができる。
The
The CaO base medium is used as a heat transfer medium, reforming catalyst, and CO 2 and H 2 S absorbent, and is circulated in a three-column circulating fluidized bed gasifier. In addition, some CaO is used as a low-temperature sulfur resorber. Bypass and circulate. To replenish CaO in the equipment, a CaCO 3 -containing mineral such as limestone is introduced into the combustion tower and decomposed into CaO at a high temperature, or a CaO-containing substance is introduced into the gasification tower. Coal and biomass are supplied to a gasifier and contacted with a heat medium to cause pyrolysis and gasification at 650-850 ° C, producing gasified gas and char (fixed carbon). The gasified gas and off-gas generated during the liquid fuel synthesis process are introduced into the reforming tower and contacted with a CaO heating medium at 850 ° C-1000 ° C to produce a refractory hydrocarbon such as methane (CH 4 ) in the gas (C n Catalyst reforming of H m ) is performed. In the gasification tower, CaO absorbs H 2 S and COS to become CaS, and absorbs CO 2 to become CaCO 3 . Char is introduced into the combustion tower together with unreacted CaO heat medium and CaS, CaCO 3 , char is burned with air or oxygen, the heat medium is heated, CaCO 3 is calcined to CaO, and CaS is oxidized to CaSO 4 . The heated CaO heat medium returns to the reforming tower and the gasification tower through the cyclone and maintains the temperature of the reforming tower and the gasification tower. In addition, a part of the CaO heat medium that has passed through the cyclone is introduced into the low-temperature sulfur reabsorber, H 2 S, COS, and CO 2 are reabsorbed, and the CaS and CaCO 3 containing heat medium after absorption is reintroduced into the combustor. And circulate. The reformed gas from the reforming furnace is introduced into a low temperature sulfur reabsorber, and H 2 S, COS and CO 2 in the gas are reabsorbed by CaO at low temperature conditions. The clean syngas from the low temperature sulfur reabsorber is supplied to the fuel synthesizer through gas cleaning.
According to chemical reaction theory, the order of difficulty of hydrocarbon reforming with steam is methane CH 4 > benzene C 6 H 6 > naphthalene C 10 H 8 > propane C 3 H 8 .
Gasifying agent supplied to the gasifying column and reforming tower and modifiers can be used steam, CO 2, or water vapor and CO 2 in the off-gas.
本発明では、ガス化、改質及び燃焼の三塔式循環流動層ガス化炉を用いる(図4参照)。CaO粒子を用いて、伝熱媒体、触媒及びCO2とH2Sの吸収剤として、装置内と低温硫黄再吸収器内で循環させる。バイオマスや石炭等固体燃料とガス化剤をガス化塔に供給し、650℃-850℃の熱媒体と接触して熱分解とガス化を起こし、ガス化ガスとチャー(固定炭素)を生成させる。ガス化ガス及び液体燃料合成から来たオフガスは改質塔に導入し、850℃-1000℃のCaO熱媒体と接触してメタン等難分解炭化水素(CnHm)の改質を行う。チャーは未反応CaO熱媒体、CaCO3及びCaSと共に燃焼塔に導入し、空気でチャーを燃焼させ、熱媒体を加熱し、CaCO3をCaOに焼成し、CaSをCaSO4に酸化する。加熱されたCaO熱媒体は媒体サイクロン125を経て改質塔とガス化塔に戻り、改質塔とガス化塔の温度を維持する。また、サイクロン125を経たCaO熱媒体の一部を低温硫黄再吸収器150に導入し、改質塔130から出た改質ガスも硫黄再吸収器150に導入し、改質ガス中に残留されたH2S、COS及びCO2をCaOによって低温で再吸収し、吸収後のCaSとCaCO3含有熱媒体を再び燃焼塔に導入し、循環させる。低温硫黄吸収器から出たクリーン合成ガスはガス洗浄を経て燃料合成装置に提供する。
(ガス化塔の内部加熱方式)
燃焼塔で加熱されたCaO熱媒体がまず改質塔でガス化ガスとオフガスと接触しながらメタン(CH4)等の難分解炭化水素(CnHm)の触媒改質に熱を提供し、また、ガス化塔に導入され、バイオマス、石炭等固体燃料と直接接触しながらバイオマス、石炭等固体燃料の熱分解とガス化反応に熱を供与する。燃焼塔で加熱されたCaO熱媒体の一部を低温硫黄再吸収器に導入し、改質塔から出た改質ガス中に残留されたH2S、COS及びCO2を吸収する。
In the present invention, a three-column circulating fluidized bed gasification furnace for gasification, reforming and combustion is used (see FIG. 4). CaO particles are used as a heat transfer medium, catalyst, and CO 2 and H 2 S absorbent to circulate in the equipment and in the low temperature sulfur resorber. Supplying solid fuel such as biomass or coal and gasifying agent to the gasification tower, contacting with a heat medium of 650 ℃ -850 ℃, causing pyrolysis and gasification, generating gasified gas and char (fixed carbon) . Gasified gas and off-gas resulting from liquid fuel synthesis are introduced into the reforming tower and contacted with a CaO heat medium at 850 ° C-1000 ° C to reform refractory hydrocarbons (C n H m ) such as methane. Char is introduced into a combustion tower together with unreacted CaO heat medium, CaCO 3 and CaS, char is burned with air, the heat medium is heated, CaCO 3 is calcined to CaO, and CaS is oxidized to CaSO 4 . The heated CaO heat medium returns to the reforming tower and the gasification tower via the
(Internal heating method of gasification tower)
The CaO heating medium heated in the combustion tower first supplies heat to the catalytic reforming of refractory hydrocarbons (C n H m ) such as methane (CH 4 ) while contacting the gasification gas and off-gas in the reforming tower. In addition, it is introduced into a gasification tower and supplies heat to the thermal decomposition and gasification reaction of the solid fuel such as biomass and coal while in direct contact with the solid fuel such as biomass and coal. Part of the CaO heat medium heated in the combustion tower is introduced into the low-temperature sulfur reabsorber to absorb H 2 S, COS and CO 2 remaining in the reformed gas from the reforming tower.
(CaO媒体の使用)
本件発明では、CaOベース媒体は石灰石、ドロマイド天然鉱物から焼成することができる。石灰石、ドロマイド天然鉱物は直接に燃焼塔に供給し、燃焼塔で焼成し、装置内のCaOを補充する方法と、他の焼成装置を使用して焼成して、CaOをガス化炉に直接に供給し、装置内のCaOを補充する方法がある。また、CaOと他酸化物から人工調整で製造することができる。
三塔式循環流動層ガス化炉装置内で循環する際に、CaOベース媒体は単独に使用することができる。また、硅砂、アルミナー、酸化鉄等粒子と混合して使用することができる。
CaO媒体を系内で循環させ、以下の役割を発揮させる。
*伝熱媒体として、燃焼塔で加熱され、改質塔及びガス化塔で熱を放出し、ガス化ガス、オフガス中のメタン等難分解炭化水素(CnHm)の改質に熱を提供する。
*CO2吸収剤として、ガス化塔内で一部のCO2を吸収し、生成ガス中のH2/COの割合を調整しながら、CO2吸収熱をガス化塔内のバイオマスガス化に提供し、また、低温硫黄再吸収器内でCO2を吸収し、合成ガスの純度を高める。
ガス化塔と低温硫黄再吸収器内で下記の反応を起こす
CaO+CO2→CaCO3;ΔH298=−178KJ/mol 発熱
CO+H2O→CO2+H2;ΔH298=−41KJ/mol 発熱
図5は反応温度及び圧力により、ガス化器内で吸収できるCO2の平衡濃度である。
(Use of CaO media)
In the present invention, the CaO-based medium can be fired from limestone, dolomide natural mineral. Limestone and dolomide natural minerals are supplied directly to the combustion tower, calcined in the combustion tower, replenished with CaO in the equipment, and calcined using other calciners, and CaO directly into the gasifier There is a method to supply and replenish CaO in the device. Moreover, it can manufacture by artificial adjustment from CaO and another oxide.
When circulating in the three-column circulating fluidized bed gasifier, the CaO base medium can be used alone. Moreover, it can be used by mixing with particles such as cinnabar sand, alumina and iron oxide.
Circulate CaO medium in the system and play the following roles.
* As a heat transfer medium, it is heated in the combustion tower, released heat in the reforming tower and gasification tower, and heat is used for reforming refractory hydrocarbons (C n H m ) such as methane in the gasification gas and off-gas. provide.
* As a CO 2 absorbent, a part of CO 2 is absorbed in the gasification tower, and the CO 2 absorption heat is converted into biomass gasification in the gasification tower while adjusting the ratio of H 2 / CO in the product gas. Provide and also absorb CO 2 in a low temperature sulfur resorber to increase the purity of the synthesis gas.
The following reactions occur in the gasification tower and the low-temperature sulfur reabsorber:
CaO + CO 2 → CaCO 3 ; ΔH 298 = −178 KJ / mol Exotherm
CO + H 2 O → CO 2 + H 2 ; ΔH 298 = −41 KJ / mol Exotherm FIG. 5 shows the equilibrium concentration of CO 2 that can be absorbed in the gasifier depending on the reaction temperature and pressure.
*触媒として、改質塔でガス化ガスとオフガス中のメタン(CH4)等難分解炭化水素(CnHm)の改質を促進する。図6はCaOによるメタン(CH4)の水蒸気改質の実施例である。
ここで改質塔130の温度によるガス組成の予測は平衡計算から図7に示すことができる。
また、CaOは、脱硫剤として、ガス化塔110内及び低温硫黄再吸収器内でH2Sを吸収し、CaSを生成し、さらに燃焼塔120で酸素と反応してCaSO4になり、これはサイクロン(或いは集塵器)128で回収することが出来る。
ガス化塔では、CaO+H2S→CaS の反応が進み
燃焼塔では、
CaS+2O2
→CaSO4 の反応が進む。
循環媒体として投入したCaOはCO2吸収と伝熱が主目的であるため、その固体燃料中の硫黄に対するモル比は30-200があり、従来の脱硫目的として炉内に投入したCaO対硫黄のモル比(通常2-3)よりかなり大きいものである。従って、ガス化塔内及び低温硫黄再吸収器内でH2Sを吸収してもCaO粒子表面にごく薄い膜のCaSしか生成しないため、燃焼塔内で酸素によって酸化し易い。また、燃焼塔内の流動摩耗によって、粉粒化し、燃焼塔排ガスサイクロン(或いは集塵器)128で分級、回収される。
本発明では、CaO/H2Sのモル比30-200のガス化塔内及び低温硫黄再吸収器内でCaO粒子表面にCaS膜を生成し、燃焼塔でCaS膜を酸化してCaSO4を生成し、さらに、磨耗によってCaSO4が粉粒子して、集塵器やバグフィルターで回収することができる。
* As a catalyst, promote reforming of gasified gas and refractory hydrocarbons (C n H m ) such as methane (CH 4 ) in the off-gas in the reforming tower. FIG. 6 shows an example of steam reforming of methane (CH 4 ) with CaO.
Here, the prediction of the gas composition depending on the temperature of the reforming
In addition, as a desulfurization agent, CaO absorbs H 2 S in the
In the gasification tower, the reaction CaO + H 2 S → CaS proceeds, and in the combustion tower,
CaS + 2O 2
→ CaSO 4 reaction proceeds.
Since the main purpose of CaO input as a circulating medium is CO 2 absorption and heat transfer, its molar ratio with respect to sulfur in the solid fuel is 30-200. It is much larger than the molar ratio (usually 2-3). Accordingly, even if H 2 S is absorbed in the gasification tower and in the low-temperature sulfur reabsorber, only a very thin film of CaS is generated on the surface of the CaO particles, so that it is easily oxidized by oxygen in the combustion tower. Further, it is granulated by fluid wear in the combustion tower, and classified and recovered by the combustion tower exhaust gas cyclone (or dust collector) 128.
In the present invention, a CaS film is formed on the surface of CaO particles in a gasification tower having a CaO / H 2 S molar ratio of 30-200 and in a low-temperature sulfur reabsorber, and the CaS film is oxidized by a combustion tower to form CaSO 4 . In addition, CaSO 4 powders due to wear and can be recovered with a dust collector or bag filter.
(補助燃料の使用)
バイオマスガス化の際に、石炭を補助燃料としてバイオマスと一緒にガス化塔110に導入される共ガス化方式が採用できる。
補助燃料として石炭を約10%使用し、燃料性状の安定化とガス化原料供給の安定化を調整することで、熱効率の最大化を図る。石炭を投入することによるCO2発生量の増加を相殺して、バイオマス単独利用時よりも単位合成ガスあたりの実際のCO2排出量が低減できる。
バイオマスは通常、水分量が40〜60%と高いため、ガス化に必要な水蒸気量よりも過大な水分をガス化炉に持ち込んでしまい、水蒸気になった水分から熱回収を行っても大きなエクセルギー損失となってしまう。これを避けるため、バイオマスを乾燥してガス化炉に供給する方法も一部で行われているが、乾燥に必要なエネルギー消費量が大きく、プラントの熱効率改善効果はわずかである。一方、石炭は、わが国で最も利用されている瀝青炭の水分が少なく、ガス化に必要な水分を外部からガス化炉に補給することでより大きなガスへの転換が図れる。以上のことから、バイオマスと石炭共ガス化は互いの燃料特性を補う効果もある。
(Use of auxiliary fuel)
In the case of biomass gasification, a co-gasification method in which coal is used as an auxiliary fuel and introduced into the
About 10% of coal is used as auxiliary fuel, and the thermal efficiency is maximized by adjusting the stability of fuel properties and the stabilization of gasification raw material supply. By offsetting the increase in CO 2 generation due to the input of coal, the actual CO 2 emissions per unit synthesis gas can be reduced compared to when using biomass alone.
Biomass usually has a high moisture content of 40 to 60%, so it takes too much moisture into the gasification furnace than the amount of water vapor required for gasification, and even if heat recovery is performed from the water that has become steam, a large excel Gee loss. In order to avoid this, part of the method of drying biomass and supplying it to the gasifier is also performed, but the energy consumption required for drying is large, and the effect of improving the thermal efficiency of the plant is slight. On the other hand, the bituminous coal used most in Japan has little moisture, and coal can be converted to a larger gas by supplying moisture necessary for gasification from the outside to the gasifier. From the above, biomass and coal co-gasification also have the effect of supplementing each other's fuel characteristics.
(低温硫黄再吸収器の性能)
燃焼塔の媒体サイクロンを経たCaO熱媒体の一部を低温硫黄再吸収器に導入し、改質ガス中の残留H2S、COS及びCO2を再吸収し、吸収後のCaSとCaCO3含有熱媒体を再び燃焼塔に導入し、循環させる。従って、改質塔から出た改質ガスは低温条件でCaOによって残留のH2SとCOS及びCO2を十分に吸収され、クリーンな合成ガスを製造できる。図6はCaOによるH2S吸収可能な温度範囲である。ガス中の水蒸気が多いほど、H2S吸収可能な温度がより低温側に移動する。同様な運転温度なら、改質ガス中の水蒸気を事前に分離すれば、ガス中H2SをよりCaOによって吸収される。
(Performance of low-temperature sulfur reabsorber)
Part of the CaO heat medium that has passed through the medium cyclone of the combustion tower is introduced into the low-temperature sulfur reabsorber, and the residual H 2 S, COS, and CO 2 in the reformed gas are reabsorbed, and after absorption, contains CaS and CaCO 3 The heat medium is again introduced into the combustion tower and circulated. Accordingly, the reformed gas exiting the reforming tower is sufficiently absorbed by CaO with residual H 2 S, COS and CO 2 at low temperature conditions, and a clean synthesis gas can be produced. FIG. 6 shows the temperature range in which H 2 S can be absorbed by CaO. The more water vapor in the gas, the lower the temperature at which H 2 S can be absorbed moves to the lower temperature side. If the operating temperature is the same, if the water vapor in the reformed gas is separated in advance, the H 2 S in the gas can be absorbed more by CaO.
(改質塔とガス化塔の構造)
改質塔とガス化塔の構造は、図4に示したほかにさらに以下のいくつ形式が考えられる。
図8に示すものは、改質塔とガス化塔を通気性の床を介して一体化し、循環媒体は、改質塔とガス化塔の装置内で送り込むものである。
図9に示すものは、改質塔とガス化塔を通気性の床を介して一体化し、循環媒体は、改質塔とガス化塔の装置外で送り込むものである。
当業者であれば、目的に応じて、改質塔とガス化塔の構造を適宜変えることもできる。
(Structure of reforming tower and gasification tower)
In addition to the structure of the reforming tower and the gasification tower shown in FIG.
In the structure shown in FIG. 8, the reforming tower and the gasification tower are integrated through an air-permeable bed, and the circulation medium is sent in the apparatus of the reforming tower and the gasification tower.
In FIG. 9, the reforming tower and the gasification tower are integrated through a gas-permeable bed, and the circulation medium is sent outside the equipment of the reforming tower and the gasification tower.
A person skilled in the art can appropriately change the structures of the reforming tower and the gasification tower according to the purpose.
本発明の三塔式循環流動層ガス化方法又は三塔式循環流動層ガス化装置は、長時間の連続運転が可能であるばかりか、流動層改質塔において、CaOの存在下、H2Oとガス化ガス及び液体燃料合成オフガス中のメタン等難分解炭化水素(CnHm)を反応させてCOとH2に分解し、合成ガスとし、液体燃料合成をおこない、液体燃料を取り出すことができ、温室効果ガス削減効果も期待でき、産業上極めて利用価値が高いものである。 The three-column circulating fluidized bed gasification method or the three-column circulating fluidized bed gasification apparatus of the present invention is capable of continuous operation for a long time, and in the fluidized bed reforming tower, in the presence of CaO, H 2 Refractory hydrocarbons (C n H m ) such as methane in O and gasified gas and liquid fuel synthesis off-gas are reacted to decompose into CO and H 2 to produce synthesis gas, liquid fuel synthesis, and liquid fuel extraction It can also be expected to reduce greenhouse gases, and is extremely useful in industry.
1 流動層ガス化炉
2 原料
3 循環粒子(CaO)
7 分離器
8 流動層燃焼炉
10燃焼ガス
11分離器
12排ガス
14熱分解装置
15粒子移動部
16原料供給装置
17ガス導入装置
18上昇流形成ガス
19熱分解ガス
20熱分解ガス取出口
21改質ガス化ガス
22上側降下管
23傾斜管
24下側降下管
28流動化ガス
30溢流装置
31上段の溢流装置
32中間降下管
33下段の溢流装置
110 流動層ガス化塔
120 流動層燃焼塔
125 媒体サイクロン
128 排ガスサイクロン
130 改質塔
140 熱交換器
150 低温硫黄再吸収器
160 液体燃料合成器
1
7
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013124183A JP6304856B2 (en) | 2013-06-12 | 2013-06-12 | Biomass gasification method using improved three-column circulating fluidized bed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013124183A JP6304856B2 (en) | 2013-06-12 | 2013-06-12 | Biomass gasification method using improved three-column circulating fluidized bed |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014240472A true JP2014240472A (en) | 2014-12-25 |
JP6304856B2 JP6304856B2 (en) | 2018-04-04 |
Family
ID=52139880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013124183A Active JP6304856B2 (en) | 2013-06-12 | 2013-06-12 | Biomass gasification method using improved three-column circulating fluidized bed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6304856B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105062570A (en) * | 2015-07-17 | 2015-11-18 | 王启花 | Combined type circulating fluidized bed gasification device and method |
CN105779003A (en) * | 2016-04-05 | 2016-07-20 | 东南大学 | Biomass gasifying method and device using Cu/Ca-based compound |
CN106590757A (en) * | 2015-10-15 | 2017-04-26 | 中国石油化工股份有限公司 | Device and method for segmented-oxygen-blowing catalytic coal gasification |
JP2017137212A (en) * | 2016-02-03 | 2017-08-10 | エクセルギー・パワー・システムズ株式会社 | Power generator and power generation method |
JP2020128327A (en) * | 2019-02-08 | 2020-08-27 | 日立造船株式会社 | Hydrogen production method and hydrogen production apparatus |
CN114981392A (en) * | 2020-05-12 | 2022-08-30 | 株式会社Ihi | Gasified gas production apparatus |
CN115404091A (en) * | 2022-09-01 | 2022-11-29 | 西安石油大学 | Method for improving gasification reactivity of co-pyrolysis coke |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112852495A (en) * | 2020-12-29 | 2021-05-28 | 西安元创化工科技股份有限公司 | Feeding control method for coal slurry, hydrocarbon gas and oxygen |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575789A (en) * | 1980-06-16 | 1982-01-12 | Mitsubishi Chem Ind Ltd | Desulfurization of gas |
JPS57165489A (en) * | 1981-04-06 | 1982-10-12 | Mitsubishi Chem Ind Ltd | Desulfurization of gas |
JP2006213817A (en) * | 2005-02-03 | 2006-08-17 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for purifying fluidized bed gasification gas |
-
2013
- 2013-06-12 JP JP2013124183A patent/JP6304856B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575789A (en) * | 1980-06-16 | 1982-01-12 | Mitsubishi Chem Ind Ltd | Desulfurization of gas |
JPS57165489A (en) * | 1981-04-06 | 1982-10-12 | Mitsubishi Chem Ind Ltd | Desulfurization of gas |
JP2006213817A (en) * | 2005-02-03 | 2006-08-17 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for purifying fluidized bed gasification gas |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105062570A (en) * | 2015-07-17 | 2015-11-18 | 王启花 | Combined type circulating fluidized bed gasification device and method |
CN106590757A (en) * | 2015-10-15 | 2017-04-26 | 中国石油化工股份有限公司 | Device and method for segmented-oxygen-blowing catalytic coal gasification |
JP2017137212A (en) * | 2016-02-03 | 2017-08-10 | エクセルギー・パワー・システムズ株式会社 | Power generator and power generation method |
CN105779003A (en) * | 2016-04-05 | 2016-07-20 | 东南大学 | Biomass gasifying method and device using Cu/Ca-based compound |
JP2020128327A (en) * | 2019-02-08 | 2020-08-27 | 日立造船株式会社 | Hydrogen production method and hydrogen production apparatus |
JP7369053B2 (en) | 2019-02-08 | 2023-10-25 | 日立造船株式会社 | Hydrogen production method and hydrogen production device |
CN114981392A (en) * | 2020-05-12 | 2022-08-30 | 株式会社Ihi | Gasified gas production apparatus |
CN114981392B (en) * | 2020-05-12 | 2024-05-17 | 株式会社Ihi | Gasification gas manufacturing apparatus |
CN115404091A (en) * | 2022-09-01 | 2022-11-29 | 西安石油大学 | Method for improving gasification reactivity of co-pyrolysis coke |
CN115404091B (en) * | 2022-09-01 | 2024-02-27 | 西安石油大学 | Method for improving co-pyrolysis coke gasification reactivity |
Also Published As
Publication number | Publication date |
---|---|
JP6304856B2 (en) | 2018-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6304856B2 (en) | Biomass gasification method using improved three-column circulating fluidized bed | |
CA2609103C (en) | Method for gasifying solid fuel with unified gas purification and gasifier using said method | |
Chen et al. | Calcium looping gasification for high-concentration hydrogen production with CO2 capture in a novel compact fluidized bed: simulation and operation requirements | |
JP5686803B2 (en) | Method for gasifying carbon-containing materials including methane pyrolysis and carbon dioxide conversion reaction | |
US20100301273A1 (en) | Biomass gasification method and apparatus for production of syngas with a rich hydrogen content | |
TWI692440B (en) | A catalyst and process for catalytic gasification of carbonaceous feedstock | |
JP5630626B2 (en) | Organic raw material gasification apparatus and method | |
CN108946661B (en) | Method and system for preparing hydrogen through biomass gasification | |
Chein et al. | Thermodynamic analysis of syngas production via tri-reforming of methane and carbon gasification using flue gas from coal-fired power plants | |
JP7424861B2 (en) | Raw material processing equipment | |
JP5594370B2 (en) | Product gas reforming method and apparatus | |
JP2014074144A (en) | Co-gasification method of coal and biomass by three bed type circulation layer and its device | |
Sun et al. | Simulation of the calcium looping process (CLP) for hydrogen, carbon monoxide and acetylene poly-generation with CO2 capture and COS reduction | |
Wei et al. | Process simulation and economic analysis of calcium looping gasification for coal to synthetic natural gas | |
JP6406222B2 (en) | Method for gasifying carbonaceous fuel, method for operating steelworks and method for producing gasified gas | |
JP5384087B2 (en) | Woody biomass gas reforming system | |
WO2013182840A2 (en) | Process and apparatus for thermochemical conversion | |
Pfeifer | Sorption-enhanced gasification | |
CN104053754B (en) | The production method of biological methane | |
Lin | Development of in-situ CO2 capture coal utilization technologies | |
Lin | Development of Ca looping three-towers CFB biomass/coal gasification | |
Mostafavi | Sorption-Enhanced Hydrogen Production from Catalytic Steam Gasification of Coal | |
JP2018053053A (en) | Gasification method of carbonaceous fuel, operation method of iron mill and manufacturing method of gasification gas | |
Borodulya et al. | Hydrogen production with the use of an indirect-heat-input gasification scheme. | |
Gómez-Barea et al. | Improving char and tar conversion in fluidized bed gasification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170403 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180305 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6304856 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |