JP6406222B2 - Method for gasifying carbonaceous fuel, method for operating steelworks and method for producing gasified gas - Google Patents
Method for gasifying carbonaceous fuel, method for operating steelworks and method for producing gasified gas Download PDFInfo
- Publication number
- JP6406222B2 JP6406222B2 JP2015224917A JP2015224917A JP6406222B2 JP 6406222 B2 JP6406222 B2 JP 6406222B2 JP 2015224917 A JP2015224917 A JP 2015224917A JP 2015224917 A JP2015224917 A JP 2015224917A JP 6406222 B2 JP6406222 B2 JP 6406222B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- gasification
- carbonaceous fuel
- gasifying agent
- fluidized bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims description 101
- 238000000034 method Methods 0.000 title claims description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 238000002309 gasification Methods 0.000 claims description 143
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 97
- 239000003795 chemical substances by application Substances 0.000 claims description 61
- 239000000292 calcium oxide Substances 0.000 claims description 49
- 235000012255 calcium oxide Nutrition 0.000 claims description 49
- 239000000047 product Substances 0.000 claims description 43
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 42
- 239000006227 byproduct Substances 0.000 claims description 41
- 238000006243 chemical reaction Methods 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 21
- 229910000831 Steel Inorganic materials 0.000 claims description 19
- 239000010959 steel Substances 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 17
- 229930195733 hydrocarbon Natural products 0.000 claims description 11
- 239000003077 lignite Substances 0.000 claims description 11
- 238000012986 modification Methods 0.000 claims description 11
- 230000004048 modification Effects 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims description 9
- 239000003476 subbituminous coal Substances 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 239000003415 peat Substances 0.000 claims description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims description 5
- 238000011017 operating method Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 163
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 229910052799 carbon Inorganic materials 0.000 description 18
- 239000003245 coal Substances 0.000 description 18
- 239000003054 catalyst Substances 0.000 description 14
- 238000002485 combustion reaction Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 239000000203 mixture Substances 0.000 description 8
- 239000003607 modifier Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 7
- 238000002407 reforming Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000002028 Biomass Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000012159 carrier gas Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002737 fuel gas Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000009628 steelmaking Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000011335 coal coke Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 150000002505 iron Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- -1 C 3 hydrocarbon Chemical class 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000000629 steam reforming Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000010920 waste tyre Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/04—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0966—Hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0969—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0983—Additives
- C10J2300/0993—Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0983—Additives
- C10J2300/0996—Calcium-containing inorganic materials, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0073—Selection or treatment of the reducing gases
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Industrial Gases (AREA)
Description
本発明は、流動層ガス化炉を用いる、炭素質燃料のガス化方法、製鉄所の操業方法、および、ガス化ガスの製造方法に関する。 The present invention relates to a carbonized fuel gasification method, a steel mill operation method, and a gasification gas production method using a fluidized bed gasification furnace.
石炭などの炭素質燃料をガス化して比較的発熱量の高い生成ガスに変換する方法は、過去、多くの技術が開示されてきた。 Many techniques have been disclosed in the past for gasifying carbonaceous fuels such as coal and converting them into product gas having a relatively high calorific value.
例えば、特許文献1には、石炭ガス化炉で生成した生成ガスの一部を抜き出して、抜き出した生成ガスを酸素で燃焼させてCO2とH2Oとに変換し、このCO2とH2Oとの混合ガスを石炭ガス化炉に石炭を供給する搬送ガスとする石炭ガス化設備が開示されている。
特許文献1の石炭ガス化設備では、このような構成を有することにより、N2で石炭を搬送する場合と比較して、生成ガスの燃焼熱を高めている。
For example, Patent Document 1, an extracted portion of the product gas produced in the coal gasification furnace, by burning the extracted product gas with oxygen to convert into CO 2 and H 2 O, the CO 2 and H A coal gasification facility using a mixed gas with 2 O as a carrier gas for supplying coal to a coal gasifier is disclosed.
In the coal gasification facility of Patent Document 1, by having such a configuration, the combustion heat of the product gas is increased as compared with the case of transporting coal with N 2 .
特許文献2には、純酸素を供給するガス化炉であって、ガス化炉に製鋼炉から発生するCO2を含む製鉄副生ガスを供給して、石炭ガス化で生成するチャーと製鉄副生ガス中のCO2との反応により生成するCOによって、生成ガスを改質して発熱量を増加させる方法が開示されている。 Patent Document 2 discloses a gasification furnace for supplying pure oxygen, in which an iron by-product gas containing CO 2 generated from a steelmaking furnace is supplied to the gasification furnace, and char and iron production by-product generated by coal gasification are disclosed. A method is disclosed in which the generated gas is reformed and the calorific value is increased by CO generated by reaction with CO 2 in the raw gas.
特許文献3には、石炭コークスのガス化装置として、石炭コークス粒子および流動媒体の混合物からなる流動層を収容した流動層ガス化炉(反応器)と、流動層の上面に太陽光を集光する手段とを備え、かつ、ガス化炉が、流動層に埋没して設けられるドラフト管と、下方からガス化炉に水蒸気を導入する手段と有し、導入する水蒸気によって流動層がドラフト管の内外で循環流動する構成を有するガス化装置が開示されている。また、特許文献3においては、流動媒体として、主に石英砂(SiO2)を用いている。
特許文献3に記載される装置は、石炭コークス粒子と流動媒体との混合物からなる流動層を用いることにより、流動層粒子の反応速度の低下を防止して、ガス化反応を円滑に進行させている。
In Patent Document 3, as a coal coke gasification device, a fluidized bed gasification furnace (reactor) containing a fluidized bed made of a mixture of coal coke particles and a fluidized medium, and sunlight is concentrated on the upper surface of the fluidized bed. And a gasification furnace having a draft pipe buried in the fluidized bed and a means for introducing water vapor into the gasification furnace from below, and the fluidized bed becomes a draft pipe by the introduced water vapor. A gasifier having a configuration of circulating and flowing inside and outside is disclosed. In Patent Document 3, quartz sand (SiO 2 ) is mainly used as a fluid medium.
The apparatus described in Patent Document 3 uses a fluidized bed made of a mixture of coal coke particles and a fluidized medium, thereby preventing a decrease in the reaction rate of the fluidized bed particles and allowing the gasification reaction to proceed smoothly. Yes.
さらに、特許文献4には、バイオマスと石炭との共ガス化において、水蒸気をガス化剤とし、CaOを流動触媒とするガス化方法が開示されている。
具体的には、特許文献4には、バイオマスと石炭との共ガス化において、流動層燃焼塔、流動層タール改質塔および流動層ガス化塔からなる三塔式循環流動層を用い、伝熱媒体、タール改質触媒、ならびに、CO2およびH2Sの吸収剤としてCaOを用い、CaOを三塔を結ぶ装置内で循環させると共に、バイオマスと石炭と高温水蒸気とをガス化塔に供給して熱媒体と接触させて熱分解することで、揮発分ガスとチャー(固定炭素)とを生成し、かつ、チャーの一部を水蒸気によってガス化してガス化ガスを生成する方法が開示されている。また、特許文献4には、ガス化塔で生成した揮発分ガスおよびガス化ガスと水蒸気とをタール改質塔に導入して、熱媒体と接触してタールの触媒改質を行い、かつ、チャーを熱媒体と共に燃焼塔に導入して、空気でチャーを燃焼することで熱媒体を加熱し、加熱した熱媒体をサイクロンを経てタール改質塔とガス化塔とに戻すことで、タール改質塔とガス化塔の温度を維持することも開示されている。
この方法は水蒸気ガス化なので、ガス化反応は式(1)に代表されるメタンの水蒸気改質反応が主な反応であると考えられる。
CH4+H2O→CO+3H2 ・・・ 式(1)
Further, Patent Document 4 discloses a gasification method using steam as a gasifying agent and CaO as a fluid catalyst in co-gasification of biomass and coal.
Specifically, Patent Document 4 uses a three-column circulating fluidized bed composed of a fluidized bed combustion tower, a fluidized bed tar reforming tower, and a fluidized bed gasification tower in co-gasification of biomass and coal. Using CaO as a heat medium, tar reforming catalyst, and CO 2 and H 2 S absorbent, circulating CaO in an apparatus connecting three towers and supplying biomass, coal, and high-temperature steam to the gasification tower Then, a method of generating gasified gas by generating volatile gas and char (fixed carbon) by gasifying the gas with steam by thermally decomposing in contact with a heat medium is disclosed. ing. Further, Patent Document 4 introduces volatile matter gas generated in a gasification tower, gasification gas, and water vapor into a tar reforming tower, performs catalytic reforming of tar in contact with a heat medium, and Char is introduced into the combustion tower together with the heat medium, the heat medium is heated by burning the char with air, and the heated heat medium is returned to the tar reforming tower and the gasification tower through the cyclone. Maintaining the temperature of the quality column and gasification column is also disclosed.
Since this method is steam gasification, the gasification reaction is considered to be mainly a steam reforming reaction of methane represented by the formula (1).
CH 4 + H 2 O → CO + 3H 2 Formula (1)
しかしながら、上記従来技術には、以下のような問題がある。
特許文献1に記載の設備は、ガス化炉で生成した生成ガスの一部を抜出して酸素で燃焼させてCO2とH2Oとに変換し、このCO2とH2Oの混合ガスを石炭の搬送ガスとする。
そのため、搬送ガスとしてガス化炉内に供給されるCO2とH2Oの比率を任意に制御することができない。その結果、下記の式(2)および式(3)の各反応量を制御して、生成ガスを高い収率で製造することができない。
C+CO2 → 2CO ・・・ 式(2)
C+H2O → CO+H2 ・・・ 式(3)
However, the above prior art has the following problems.
The facility described in Patent Document 1 extracts a part of the generated gas generated in the gasifier and burns it with oxygen to convert it into CO 2 and H 2 O. This mixed gas of CO 2 and H 2 O is converted into CO 2 and H 2 O. Coal carrier gas.
Therefore, the ratio of CO 2 and H 2 O supplied into the gasification furnace as the carrier gas cannot be arbitrarily controlled. As a result, the product gas cannot be produced in high yield by controlling the reaction amounts of the following formulas (2) and (3).
C + CO 2 → 2CO (2)
C + H 2 O → CO + H 2 Formula (3)
特許文献2に記載の方法は、製鉄副生ガス中のCO2およびガス化炉で得られるチャーによって、上記式(2)によって生成ガスを改質する方法であり、製鉄副生ガスにおけるCO2濃度に依存して改質効率が決まる方法である。
そのため、生成ガスを高い収率で製造することができない問題点を有することは、特許文献1に記載の設備と同じである。
The method described in Patent Document 2 is a method of reforming the generated gas by the above formula (2) with the CO 2 in the iron by-product gas and the char obtained in the gasifier, and CO 2 in the iron by-product gas. In this method, the reforming efficiency is determined depending on the concentration.
Therefore, it is the same as the equipment described in Patent Document 1 that it has a problem that the produced gas cannot be produced with high yield.
特許文献3に記載の装置では、太陽エネルギーを用いてガス化反応を行うことができ、かつ、ガス化反応を円滑に進行させることができるものの、生成ガスの収率という点では、充分とは言えない。
また、流動媒体として二酸化硅素を用いた場合には、ガス化原料として亜瀝青炭のようにナトリウム分が多い炭素質燃料を用いると、ナトリウムと二酸化硅素とが反応してソーダガラスになって、ソーダガラスがガス化炉で溶融してしまい、円滑にガス化を行うことができないという問題も有る。
In the apparatus described in Patent Document 3, the gasification reaction can be performed using solar energy and the gasification reaction can proceed smoothly, but in terms of the yield of the product gas, it is sufficient. I can not say.
In addition, when silicon dioxide is used as the fluid medium, if a carbonaceous fuel with a high sodium content such as subbituminous coal is used as the gasification raw material, sodium and silicon dioxide react to form soda glass, soda There is also a problem that the glass is melted in the gasification furnace and cannot be smoothly gasified.
さらに、特許文献4に記載の方法では、原料中の石炭の割合は最大で10%に過ぎないため、炭素質燃料を高い収率でガス化することができない。また、CaOは、多量のH2が生成する、前述の式(1)に代表されるメタンの水蒸気改質反応の触媒として作用することから、生成ガス中の高燃焼熱成分であるCOを高い収率で製造することができないという問題点も有する。 Furthermore, in the method described in Patent Document 4, since the maximum proportion of coal in the raw material is only 10%, carbonaceous fuel cannot be gasified with a high yield. Further, since CaO acts as a catalyst for the steam reforming reaction of methane represented by the above-described formula (1), in which a large amount of H 2 is generated, CO that is a high combustion heat component in the generated gas is high. There is also a problem that it cannot be produced in a yield.
したがって本発明の目的は、炭素質燃料を高い収率でガス化できる炭素質燃料のガス化方法、炭素質燃料を高い収率でガス化して利用する製鉄所の操業方法、および、炭素質燃料から高い収率でガス化ガスを製造できるガス化ガスの製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a gasification method for carbonaceous fuel capable of gasifying carbonaceous fuel with high yield, a method for operating a steelworks using gasification of carbonaceous fuel with high yield, and carbonaceous fuel. Another object of the present invention is to provide a gasification gas production method capable of producing gasification gas with high yield.
本発明者らは、上記課題を解決するため検討を重ねた結果、炭素質燃料を流動層ガス化炉でガス化するにあたり、H2、CO2およびH2Oを含むガス化剤を流動層ガス化炉に供給すると共に、流動媒体として生石灰(CaO)を用いることが有効であることを見出した。さらに、使用するガス化剤の好ましい製造方法などについても知見を得、本発明を完成した。
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
As a result of repeated studies to solve the above-mentioned problems, the inventors of the present invention used a gasifying agent containing H 2 , CO 2, and H 2 O for fluidizing a carbonaceous fuel in a fluidized bed gasification furnace. While supplying to a gasification furnace, it discovered that it was effective to use quicklime (CaO) as a fluid medium. Furthermore, the present invention was completed by obtaining knowledge about a preferable production method of the gasifying agent to be used.
The present invention has been made on the basis of such findings and has the following gist.
すなわち、本発明の炭素質燃料のガス化方法は、炭素質燃料を流動層ガス化炉でガス化するにあたり、流動媒体として生石灰を用い、H2、CO2およびH2Oを含むガス化剤を前記流動層ガス化炉に供給することを特徴とする炭素質燃料のガス化方法を提供する。 That is, according to the gasification method for carbonaceous fuel of the present invention, when gasifying carbonaceous fuel in a fluidized bed gasification furnace, quick lime is used as a fluid medium, and a gasifying agent containing H 2 , CO 2 and H 2 O is used. Is supplied to the fluidized bed gasifier, and a carbonaceous fuel gasification method is provided.
このような本発明の炭素質燃料のガス化方法において、前記ガス化剤が、製鉄副生ガスに過剰の水蒸気を添加してシフト変性することで得たものであるのが好ましい。
また、前記製鉄副生ガスは、CO濃度が5vol%以上で、N2濃度が60vol%以下であるのが好ましい。
さらに、前記炭素質燃料が、泥炭、褐炭および亜瀝青炭から選ばれる1種以上であるのが好ましい。
In such a method for gasifying carbonaceous fuel according to the present invention, the gasifying agent is preferably obtained by shift modification by adding excess water vapor to an iron by-product gas.
The iron by-product gas preferably has a CO concentration of 5 vol% or more and an N 2 concentration of 60 vol% or less.
Furthermore, the carbonaceous fuel is preferably at least one selected from peat, lignite and subbituminous coal.
本発明の製鉄所の操業方法の第1の態様は、流動媒体として生石灰を用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、前記炭素質燃料をガス化して、生成したガスを製鉄所のエネルギー源の少なくとも一部として用いる製鉄所の操業方法を提供する。 The first aspect of the method for operating a steel mill according to the present invention is to supply a carbonaceous fuel and a gasifying agent containing H 2 , CO 2 and H 2 O to a fluidized bed gasifier using quick lime as a fluidized medium. By doing so, the operation method of the steelworks which gasifies the said carbonaceous fuel and uses the produced | generated gas as at least one part of the energy source of a steelworks is provided.
また、本発明の製鉄所の操業方法の第2の態様は、流動媒体として生石灰を用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、前記炭素質燃料をガス化して、生成したガスを酸化鉄の還元材の少なくとも一部として用いる製鉄所の操業方法を提供する。 The second aspect of the operation method of the steelworks of the present invention, the fluidized-bed gasification furnace used quicklime as flow medium, and carbonaceous fuel, and the gasifying agent comprising H 2, CO 2 and H 2 O To provide a method for operating a steel mill that gasifies the carbonaceous fuel and uses the generated gas as at least a part of the iron oxide reducing material.
このような本発明の製鉄所の操業方法において、前記ガス化剤が、製鉄副生ガスに過剰の水蒸気を添加してシフト変性することで得たものであるのが好ましい。
また、前記生成したガスが、CO、H2および炭素数1〜4の炭化水素を含む混合ガスであるのが好ましい。
In such a method for operating a steel mill according to the present invention, the gasifying agent is preferably obtained by shift modification by adding excess water vapor to a steelmaking byproduct gas.
The gas mentioned above generated, CO, is preferably a mixed gas containing hydrocarbons H 2 and 1 to 4 carbon atoms.
さらに、本発明のガス化ガスの製造方法は、流動媒体として生石灰を用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、前記炭素質燃料をガス化することを特徴とするガス化ガスの製造方法を提供する。 Furthermore, the method for producing gasified gas of the present invention supplies a carbonaceous fuel and a gasifying agent containing H 2 , CO 2, and H 2 O to a fluidized bed gasifier using quick lime as a fluidized medium. Provides a method for producing gasified gas, characterized in that the carbonaceous fuel is gasified.
このような本発明のガス化ガスの製造方法において、前記ガス化剤が、製鉄副生ガスに過剰の水蒸気を添加してシフト変性することで得たものであるのが好ましい。 In such a gasification gas production method of the present invention, it is preferable that the gasifying agent is obtained by shift modification by adding excess water vapor to an iron byproduct gas.
本発明の炭素質燃料のガス化方法によれば、炭素質燃料を高い収率でガス化することができ、炭素質燃料のガス化を低コストで行うことができる。また、本発明の製鉄所の操業方法によれば、炭素質燃料を高い収率でガス化して、生成したガスを製鉄所のエネルギー源や酸化鉄の還元に用いることにより、製鉄所における操業コストを低減できる。さらに、本発明のガス化ガスの製造方法によれば、炭素質燃料のガス化によって高い収率でガス化ガスを製造できる。 According to the gasification method for carbonaceous fuel of the present invention, the carbonaceous fuel can be gasified with high yield, and the carbonization fuel can be gasified at low cost. Further, according to the method of operating a steel plant of the present invention, the operation cost in the steel plant is obtained by gasifying the carbonaceous fuel with a high yield and using the generated gas for the energy source of the steel plant and the reduction of iron oxide. Can be reduced. Furthermore, according to the gasification gas production method of the present invention, gasification gas can be produced with high yield by gasification of carbonaceous fuel.
以下、本発明の炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法について、添付の図面に示される好適例を基に詳細に説明する。 Hereinafter, the gasification method for carbonaceous fuel, the method for operating a steel mill, and the method for producing gasification gas according to the present invention will be described in detail based on preferred examples shown in the accompanying drawings.
図1に、本発明の炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法の一例を説明するための概念図を示す。なお、本発明の製鉄所の操業方法は、図1に示す方法で生成した生成ガスを、製鉄所におけるエネルギーの少なくとも一部、あるいは、製鉄所での酸化鉄の還元における還元材の少なくとも一部として用いるものである。 In FIG. 1, the conceptual diagram for demonstrating an example of the gasification method of the carbonaceous fuel of this invention, the operating method of a steel mill, and the manufacturing method of gasification gas is shown. In addition, the operation method of the steelworks of the present invention is that the generated gas generated by the method shown in FIG. 1 is converted into at least part of the energy in the steelworks or at least part of the reducing material in the reduction of iron oxide at the steelworks. It is used as
本発明は、石炭などの炭素質燃料をガス化するものである。
図1に示す例において、流動層ガス化炉10内にはガス分散板12が設けられ、流動層ガス化炉10内のガス分散板12の上には、流動媒体として生石灰(粉状)が充填され、流動層16を形成する。なお、以下の説明では、『流動層ガス化炉10』を『ガス化炉10』とも言う。
また、ガス化炉10の下方には、シフト変性器14が設けられる。図1においては、製鉄副生ガスおよび水蒸気をシフト変性器14に供給して、シフト変性器14で変性した製鉄副生ガス(シフト変性製鉄副生ガス)をガス化剤とする。このガス化剤をガス分散板12を介して流動層16に吹き込むことで、ガス化剤をガス化炉10に供給し、かつ、流動層16すなわち流動媒体である生石灰を流動化させる。
The present invention gasifies carbonaceous fuel such as coal.
In the example shown in FIG. 1, a gas dispersion plate 12 is provided in the fluidized bed gasification furnace 10, and quick lime (powder) is used as a fluidized medium on the gas dispersion plate 12 in the fluidized bed gasification furnace 10. Filled to form a fluidized bed 16. In the following description, “fluidized bed gasifier 10” is also referred to as “gasifier 10”.
A shift modifier 14 is provided below the gasification furnace 10. In FIG. 1, an iron-produced by-product gas and water vapor are supplied to the shift modifier 14 and the iron-produced by-product gas (shift-modified iron-produced byproduct gas) modified by the shift modifier 14 is used as a gasifying agent. By blowing this gasifying agent into the fluidized bed 16 via the gas dispersion plate 12, the gasifying agent is supplied to the gasification furnace 10, and the fluidized bed 16, that is, the quick lime as the fluidizing medium is fluidized.
ガス化原料となる褐炭などの炭素質燃料は、図示しない供給器によって所定量が切り出されて、上部からガス化炉10内に、連続的あるいは断続的に定量供給される。ガス化炉10に供給された炭素質燃料は、ガス化剤と流動媒体である生石灰との作用によってガス化される。炭素質燃料のガス化によって生成した生成ガスは、ガス化炉10の上部から排出(回収)される。 A predetermined amount of carbonaceous fuel such as lignite, which is a gasification raw material, is cut out by a feeder (not shown), and is quantitatively supplied into the gasification furnace 10 continuously or intermittently from above. The carbonaceous fuel supplied to the gasification furnace 10 is gasified by the action of the gasifying agent and quicklime which is a fluidized medium. The product gas generated by the gasification of the carbonaceous fuel is discharged (recovered) from the upper part of the gasification furnace 10.
本発明において、ガス化炉10には制約はない。従って、一般的な気泡流動層の他に、高速流動層、外部循環流動層、あるいは、内部循環流動層など、公知の各種形式の流動層ガス化炉を用いることができる。
本発明は、熱の移動が早い流動層ガス化炉を用い、かつ、流動媒体として生石灰を使用することにより、温度分布を無くしてガス化炉内における反応の進行および生成ガスの均一化を図り、さらに、後述する生石灰の触媒としての作用を充分に発現させることにより、高収率で炭素質燃料をガス化することを可能にしている。
In the present invention, the gasification furnace 10 is not limited. Therefore, in addition to a general bubble fluidized bed, various known types of fluidized bed gasification furnaces such as a high-speed fluidized bed, an external circulating fluidized bed, or an internal circulating fluidized bed can be used.
The present invention uses a fluidized bed gasification furnace with fast heat transfer and uses quick lime as a fluidized medium, thereby eliminating the temperature distribution and making the reaction progress in the gasification furnace uniform. Furthermore, the carbonaceous fuel can be gasified with a high yield by fully expressing the action of quicklime as described below as a catalyst.
シフト変性器14にも制約はなく、固定床反応器、流動床反応器など、シフト変性反応を行うことができる公知の反応器を用いることができる。
シフト変性器14には、通常、市販のシフト触媒が充填される。なお、シフト触媒としては低温シフト触媒と高温シフト触媒とが有るが、本発明では、そのどちらも用いることができる。
図示例において、シフト変性器14には、製鉄副生ガスおよび水蒸気が、共に公知の方法で流量を調節されて供給される。また、必要に応じて、製鉄副生ガス、もしくは、水蒸気、もしくは、製鉄副生ガスと水蒸気との混合ガスを予熱してもよい。
There is no restriction | limiting also in the shift modifier 14, The well-known reactor which can perform shift modification reaction, such as a fixed bed reactor and a fluidized bed reactor, can be used.
The shift modifier 14 is usually filled with a commercially available shift catalyst. In addition, although there exist a low temperature shift catalyst and a high temperature shift catalyst as a shift catalyst, both can be used in this invention.
In the illustrated example, the shift-modifier 14 is supplied with both the iron-produced by-product gas and water vapor with the flow rate adjusted by a known method. Moreover, you may preheat the iron-producing by-product gas, water vapor | steam, or the mixed gas of iron-manufacturing by-product gas and water vapor | steam as needed.
シフト変性器14には、製鉄副生ガスと、過剰な水蒸気との混合ガスが供給される。なお、過剰な水蒸気とは、後述する式(4)において、製鉄副生ガスに含まれるCOに対して過剰の量という意味である。
製鉄副生ガスには、COおよびH2Oが含まれる。シフト変性器14に製鉄副生ガスと過剰の水蒸気とを供給すると、下記の式(4)のように製鉄副生ガスがシフト変性して、CO2、H2およびH2Oを含むガス化剤(シフト変性製鉄副生ガス)となる。
CO+H2O → CO2+H2 ・・・ 式(4)
すなわち、製鉄副生ガスに過剰の水蒸気を添加してシフト変性したガス化剤には、シフト変性によるCO2およびH2と、過剰に添加した水蒸気の余剰分のH2Oとが含まれる。
The shift modifier 14 is supplied with a mixed gas of iron by-product gas and excess water vapor. In addition, excess water vapor | steam means the excessive quantity with respect to CO contained in iron-making byproduct gas in Formula (4) mentioned later.
The ironmaking byproduct gas contains CO and H 2 O. When iron-produced by-product gas and excess water vapor are supplied to the shift reformer 14, the iron-produced by-product gas is shift-modified as shown in the following formula (4), and gasification containing CO 2 , H 2 and H 2 O is performed. It becomes an agent (shift-modified steelmaking byproduct gas).
CO + H 2 O → CO 2 + H 2 Formula (4)
That is, the gasifying agent that has been shift-denatured by adding excess water vapor to the iron by-product gas contains CO 2 and H 2 resulting from shift denaturation, and H 2 O that is an excess of water vapor added excessively.
前述のように、ガス化原料である炭素質燃料は、ガス化炉10の上部から、連続的あるいは断続的に、定量供給される。
ガス化炉10の内部に供給された炭素質燃料は、ガス化剤と流動媒体との作用によってガス化される。後に実施例でも示すが、本発明は、流動層ガス化炉を用いる炭素質燃料のガス化において、流動媒体(流動層16)として生石灰を用いることにより、高い収率で炭素質燃料をガス化して生成ガス(ガス化ガス)を製造できる。そのため、生石灰は、炭素質燃料のガス化反応に対する触媒機能を有していると推察されるが、詳細は不明である。
As described above, the carbonaceous fuel that is the gasification raw material is supplied in a constant amount from the upper portion of the gasification furnace 10 continuously or intermittently.
The carbonaceous fuel supplied into the gasification furnace 10 is gasified by the action of the gasifying agent and the fluidized medium. As will be shown later in the examples, the present invention gasifies carbonaceous fuel in a high yield by using quicklime as a fluidized medium (fluidized bed 16) in the gasification of carbonaceous fuel using a fluidized bed gasification furnace. The produced gas (gasification gas) can be produced. For this reason, quick lime is presumed to have a catalytic function for the gasification reaction of carbonaceous fuel, but details are unknown.
なお、生石灰による触媒機能の例としては、式(5)〜式(8)のような各種の改質反応や、式(9)のような水素化分解反応が挙げられる。本発明では、ガス化剤中のCO2が高い転化率で反応するので、これらの反応の内、式(5)および式(7)の反応の寄与が大きいものと推察される。
C+CO2 → 2CO ・・・ 式(5)
C+H2O → CO+H2 ・・・ 式(6)
CH4+CO2 → 2CO+2H2 ・・・ 式(7)
CH4+H2O → CO+3H2 ・・・ 式(8)
C2H6+H2 → 2CH4 ・・・ 式(9)
In addition, as an example of the catalyst function by quicklime, various reforming reaction like Formula (5)-Formula (8), and hydrocracking reaction like Formula (9) are mentioned. In the present invention, since CO 2 in the gasifying agent reacts at a high conversion rate, it is speculated that among these reactions, the contributions of the reactions of formulas (5) and (7) are large.
C + CO 2 → 2CO (5)
C + H 2 O → CO + H 2 Formula (6)
CH 4 + CO 2 → 2CO + 2H 2 Formula (7)
CH 4 + H 2 O → CO + 3H 2 Formula (8)
C 2 H 6 + H 2 → 2CH 4 Formula (9)
なお、図1に示す例では、炭素質燃料をガス化炉10の上部から供給するように示しているが、炭素質燃料は、ガス化炉10の中段に供給してもよく、あるいは、下段の流動層16の領域に直接供給するようにしても良い。
また、ガス化炉10に炭素質燃料を供給する配管に、N2などの搬送ガスを供給し、搬送ガスと共に、炭素質燃料をガス化炉10に供給するようにしても良い。
In the example shown in FIG. 1, the carbonaceous fuel is shown as being supplied from the upper part of the gasification furnace 10, but the carbonaceous fuel may be supplied to the middle stage of the gasification furnace 10, or the lower stage. Alternatively, it may be supplied directly to the fluidized bed 16 region.
Further, a carrier gas such as N 2 may be supplied to a pipe for supplying the carbonaceous fuel to the gasifier 10, and the carbonaceous fuel may be supplied to the gasifier 10 together with the carrier gas.
炭素質燃料のガス化によって生成された生成ガスは、ガス化炉10の上部から抜き出され、図示しないサイクロン、ガス洗浄器、油水分離機などを経由して精製された後、生成ガスとして系外に取り出される。
取り出された生成ガスは、燃料として広く利用可能である。また、本発明の製鉄所の操業方法では、このようにして生成した生成ガスを、製鉄所のエネルギー源や製鉄所における酸化鉄の還元材として使用する。
The product gas generated by the gasification of the carbonaceous fuel is extracted from the upper part of the gasification furnace 10 and purified through a cyclone, a gas scrubber, an oil-water separator (not shown), etc. It is taken out.
The extracted product gas can be widely used as fuel. Moreover, in the operation method of the steelworks of this invention, the produced | generated gas produced | generated in this way is used as a reducing material of the iron oxide in an energy source of a steelworks, or a steelworks.
以下、本発明の炭素質燃料のガス化方法、製鉄所の操業方法、および、ガス化ガスの製造方法の詳細と好ましい条件について説明する。 Hereinafter, the details and preferred conditions of the gasification method for carbonaceous fuel, the method for operating a steel mill, and the method for producing gasification gas according to the present invention will be described.
本発明では流動層ガス化炉を用いて炭素質燃料をガス化する。また、流動媒体として生石灰を用いる。
生石灰(CaO)は、公知の各種の物が利用可能である。一例として、炭酸カルシウム(CaCO3)をか焼して製造した生石灰や、消石灰(Ca(OH)2)を焼成して製造した生石灰などを例示することができる。なお、生石灰は、大気中のCO2を吸収してCaCO3に戻ったり、大気中の水蒸気と反応してCa(OH)2に変化したりするので、乾燥空気やN2などの不活性ガス中で生石灰を保管するのが良い。
生石灰は、炭素質燃料のガス化に対応する充分な耐熱性を有するのみならず、前述のように炭素質燃料のガス化反応の触媒としても作用する。そのため、本発明によれば、高い収率で炭素質燃料をガス化して生成ガス(ガス化ガス)を製造することができ、また、高い収率で製造した生成ガスを製鉄所のエネルギーや酸化鉄の還元材として用いることができる。
In the present invention, carbonaceous fuel is gasified using a fluidized bed gasification furnace. Moreover, quicklime is used as a fluid medium.
As the quicklime (CaO), various known materials can be used. As an example, quicklime produced by calcining calcium carbonate (CaCO 3 ), quicklime produced by firing slaked lime (Ca (OH) 2 ), and the like can be exemplified. In addition, quick lime absorbs CO 2 in the atmosphere and returns to CaCO 3 , or reacts with water vapor in the atmosphere and changes to Ca (OH) 2 , so that inert gas such as dry air or N 2 is used. It is better to store quicklime in it.
Quick lime not only has sufficient heat resistance corresponding to the gasification of carbonaceous fuel, but also acts as a catalyst for the gasification reaction of carbonaceous fuel as described above. Therefore, according to the present invention, a carbonaceous fuel can be gasified with a high yield to produce a product gas (gasification gas), and the produced gas produced with a high yield can be converted into the energy and oxidation of a steelworks. It can be used as an iron reducing material.
生石灰の平均粒径には制限はなく、ガス化炉10の大きさや想定される充填量、ガス化剤の供給量等に応じて、適宜、設定すればよい。
ここで、本発明では、生石灰を(流動層)ガス化炉10の流動媒体として用いる。この点を考慮すると、生石灰の平均粒径は30〜300μm程度が好ましく、50〜200μm程度がより好ましい。生石灰の平均粒径を30〜300μmとすることにより、良好な流動性を確保することができ、ガス化炉10の操業を安定して行うことが可能になる。
There is no restriction | limiting in the average particle diameter of quicklime, What is necessary is just to set suitably according to the magnitude | size of the gasification furnace 10, the filling amount assumed, the supply amount of a gasifying agent, etc.
Here, in the present invention, quicklime is used as a fluid medium of the (fluidized bed) gasification furnace 10. Considering this point, the average particle size of quicklime is preferably about 30 to 300 μm, and more preferably about 50 to 200 μm. By setting the average particle size of quicklime to 30 to 300 μm, good fluidity can be secured, and the operation of the gasification furnace 10 can be stably performed.
生石灰の充填量には制限はなく、ガス化炉10の大きさ、ガス化炉10に供給する炭素質燃料の量、ガス化炉10に供給するガス化剤の量等に応じて、炭素質燃料のガス化を適正に行える供給量を、適宜、設定すればよい。 There is no limit to the amount of quicklime filled, depending on the size of the gasifier 10, the amount of carbonaceous fuel supplied to the gasifier 10, the amount of gasifying agent supplied to the gasifier 10, etc. What is necessary is just to set suitably the supply amount which can gasify fuel appropriately.
炭素質燃料のガス化に用いるガス化剤は、H2、CO2およびH2Oを含むものである。
本発明においては、流動層ガス化炉の流動媒体として生石灰を用いると共に、H2Oに加えて、H2およびCO2も含むガス化剤を用いることにより、炭素質燃料を高い収率でガス化することを可能にしている。
The gasifying agent used for the gasification of the carbonaceous fuel contains H 2 , CO 2 and H 2 O.
In the present invention, quick lime is used as a fluidized medium of a fluidized bed gasifier, and a gasifying agent containing H 2 and CO 2 in addition to H 2 O is used to produce carbonaceous fuel in a high yield. It is possible to make it.
前述のように、特許文献4には、三塔式の循環流動層を用いるバイオマスおよび石炭の共ガス化において、流動媒体(伝熱媒体、タール改質触媒、ならびに、CO2およびH2Sの吸収剤)として生石灰(CaO)を用い、ガス化剤として高温水蒸気(H2O)を用いることが記載されている。
しかしながら、生石灰を流動媒体として用いる炭素質燃料のガス化において、ガス化剤がH2およびCO2を含まず、H2Oのみを含む場合には、前述の式(5)および式(7)に示す反応による炭素質燃料のガス化反応が進行しないため、高い収率で炭素質燃料をガス化することができない。
As described above, in Patent Document 4, in co-gasification of biomass and coal using a three-column circulating fluidized bed, a fluid medium (a heat transfer medium, a tar reforming catalyst, and CO 2 and H 2 S It is described that quick lime (CaO) is used as the absorbent and high-temperature steam (H 2 O) is used as the gasifying agent.
However, in the gasification of carbonaceous fuel using quicklime as a fluid medium, when the gasifying agent does not contain H 2 and CO 2 but contains only H 2 O, the above-mentioned formulas (5) and (7) Since the gasification reaction of the carbonaceous fuel by the reaction shown in FIG.
これに対し、本発明においては、炭素質燃料のガス化において、流動層ガス化炉で生石灰を流動媒体として用いると共に、H2Oに加え、H2およびCO2を含むガス化剤を用いる。後に実施例でも示すが、これにより、前述のように式(5)および式(7)に示す反応を大きく寄与させて、CO2を高い転化率で反応させることができ、その結果、炭素質燃料を高い収率でガス化できる。 On the other hand, in the present invention, in the gasification of carbonaceous fuel, quick lime is used as a fluid medium in a fluidized bed gasification furnace, and a gasifying agent containing H 2 and CO 2 in addition to H 2 O is used. As will be shown later in the examples, this makes it possible to make the reaction represented by the formulas (5) and (7) greatly contribute as described above, thereby allowing the CO 2 to react at a high conversion rate. Fuel can be gasified with high yield.
前述のように、本発明において、炭素質燃料のガス化に用いるガス化剤は、H2、CO2およびH2Oを含むものである。
図示例においては、好ましい態様として、製鉄副生ガスに過剰の水蒸気を添加してシフト変性して得られたシフト変性製鉄副生ガスを、H2、CO2およびH2Oを含むガス化剤として用いている。
ガス化剤として、製鉄副生ガスをシフト変性して得られたガス化剤を用いることにより、H2およびCO2の純ガスを水蒸気に混合したガス化剤よりも、ガス化剤が安価となり好ましい。
As described above, in the present invention, the gasifying agent used for gasification of the carbonaceous fuel contains H 2 , CO 2 and H 2 O.
In the illustrated example, as a preferred embodiment, a gasification agent containing H 2 , CO 2, and H 2 O is used as a shift-modified iron-produced by-product gas obtained by shift modification by adding excess water vapor to the iron-produced by-product gas. It is used as.
By using a gasification agent obtained by shift-modifying iron-produced by-product gas as the gasification agent, the gasification agent becomes cheaper than a gasification agent in which pure H 2 and CO 2 gas is mixed with water vapor. preferable.
シフト変性してガス化剤とする製鉄副生ガスは、CO濃度が5vol%以上で、N2濃度が60vol%以下であるのが好ましい。
製鉄副生ガスのCO濃度を5vol%以上とすることにより、シフト変性によって得られるガス化剤中のH2およびCO2の濃度を充分に高くして、生成ガス収率を向上できる。また、製鉄副生ガスのN2濃度を60vol%以下とすることにより、充分な気体燃料の燃焼熱を得られると共に、シフト反応速度も向上できる。
The iron by-product gas used as a gasifying agent by shift modification preferably has a CO concentration of 5 vol% or more and an N 2 concentration of 60 vol% or less.
By setting the CO concentration of the iron by-product gas to 5 vol% or more, the concentrations of H 2 and CO 2 in the gasifying agent obtained by shift modification can be sufficiently increased, and the product gas yield can be improved. In addition, by setting the N 2 concentration of the iron by-product gas to 60 vol% or less, it is possible to obtain sufficient combustion heat of the gaseous fuel and to improve the shift reaction rate.
製鉄副生ガスの具体例としては、上述した好ましいガス組成の観点から、特に高炉ガスやシャフト炉ガス(一般的なガス組成は、CO:10〜30vol%、CO2:10〜30vol%、N2:30〜55vol%、H2:0〜10vol%)が好ましい。
なお、製鉄副生ガスとしては、高炉ガスやシャフト炉ガス以外のCOを含有する製鉄副生ガスを用いてもよいが、上述した好適範囲のガス組成を有するものが好ましい。例えば、製鉄所内の燃焼炉から排出される排ガスや転炉ガスなどの冶金炉発生排ガスなどが挙げられる。以上のような製鉄副生ガスは、1種を単独で若しくは2種以上を混合して用いることができる。
Specific examples of the iron-product gases, in terms of preferred gas composition mentioned above, in particular blast furnace gas and the shaft furnace gas (typical gas composition, CO: 10~30vol%, CO 2 : 10~30vol%, N 2: 30~55vol%, H 2: 0~10vol%) are preferred.
In addition, as iron-produced by-product gas, iron-produced by-product gas containing CO other than blast furnace gas and shaft furnace gas may be used, but those having a gas composition in the above-described preferred range are preferable. For example, exhaust gas discharged from a combustion furnace in a steelworks or metallurgical furnace generated exhaust gas such as converter gas can be used. The above steelmaking byproduct gas can be used alone or in combination of two or more.
本発明において、ガス化剤におけるH2、CO2およびH2Oの濃度に制限はない。
ここで、生成ガスの収率を確保する一方で、生成ガス中のCO2の残留を抑えるなどの観点から、H2O濃度は5〜70vol%程度であるのが好ましい。また、生成ガスの収率を確保する観点から、ガス化剤中のH2濃度およびCO2濃度は、共に、3vol%以上であるのが好ましい。また、同様の観点から、ガス化剤の好ましい組成は、H2O:20〜70vol%、H2:5〜40vol%、CO2:5〜40vol%である。なお、ガス化剤には、これらの成分の他に、他の成分(例えば、N2など)が含まれることは妨げない。
In the present invention, there are no restrictions on the concentrations of H 2 , CO 2 and H 2 O in the gasifying agent.
Here, the H 2 O concentration is preferably about 5 to 70 vol% from the viewpoint of ensuring the yield of the product gas and suppressing CO 2 residue in the product gas. Further, from the viewpoint of ensuring the yield of the product gas, both the H 2 concentration and the CO 2 concentration in the gasifying agent are preferably 3 vol% or more. From the same viewpoint, the preferred composition of the gasifying agent, H 2 O: 20~70vol%, H 2: 5~40vol%, CO 2: a 5~40vol%. Note that the gasification agent, in addition to these components, other components (e.g., N 2) does not prevent be included.
なお、本発明に用いるガス化剤は、前述のような、製鉄副生ガスに過剰な水蒸気を添加してシフト変性して得られるシフト変性製鉄副生ガスに限定はされない。
すなわち、本発明においては、例えば、H2ガスおよび液化ガスを気化したCO2に、ボイラ等で生成した水蒸気を混合して調製したガス化剤を用いてもよい。あるいは、製鉄工程等において副生されるガスを精製、混合して調製した、H2、CO2およびH2Oを含むガス化剤を用いても良い。
The gasifying agent used in the present invention is not limited to the shift-modified iron-produced by-product gas obtained by shift modification by adding excess water vapor to the iron-produced by-product gas as described above.
That is, in the present invention, for example, a gasifying agent prepared by mixing water vapor generated in a boiler or the like with CO 2 obtained by vaporizing H 2 gas and liquefied gas may be used. Alternatively, a gasifying agent containing H 2 , CO 2, and H 2 O prepared by purifying and mixing gases produced as a by-product in an iron manufacturing process or the like may be used.
ガス化剤の供給量には制限はなく、ガス化炉10の大きさ、ガス化炉10に充填する生石灰の量、炭素質燃料の供給量等に応じて、炭素質燃料のガス化を適正に行える供給量を、適宜、設定すればよい。 There is no limitation on the supply amount of the gasifying agent, and the gasification of the carbonaceous fuel is appropriate according to the size of the gasification furnace 10, the amount of quicklime filled in the gasification furnace 10, the supply amount of the carbonaceous fuel, etc. The amount of supply that can be performed in a short time may be set as appropriate.
ガス化原料となる炭素質燃料としては、石炭、バイオマス、廃タイヤや廃プラスチック等の廃棄物類等、公知の各種の炭素質燃料を用いることができる。
中でも、炭素質燃料は、泥炭、褐炭、亜瀝青炭から選ばれる1種以上であるのが好ましい。泥炭や褐炭や亜瀝青炭は、比較的ガス化し易い炭素質燃料であると共に、比較的安価で、かつ、大量に存在する資源であるため、好ましく用いられる。
As the carbonaceous fuel used as the gasification raw material, various known carbonaceous fuels such as coal, biomass, wastes such as waste tires and plastics can be used.
Among these, the carbonaceous fuel is preferably at least one selected from peat, lignite, and sub-bituminous coal. Peat, lignite, and subbituminous coal are preferably used because they are carbonaceous fuels that are relatively easily gasified, are relatively inexpensive, and are resources that exist in large quantities.
本発明において、炭素質燃料の供給方式には制限はなく、乾式供給でもよく、水スラリー等を用いる湿式供給でもよい。
また、炭素質燃料の大きさは特に制約はないが、流動層に供給する固体原料として標準的なサイズとすれば良い。具体的には、1〜50mmが好ましく、3〜30mmがより好ましい。炭素質燃料の造粒も公知の方法で行えばよい。
In the present invention, the carbonaceous fuel supply method is not limited, and may be dry supply or wet supply using water slurry or the like.
The size of the carbonaceous fuel is not particularly limited, but may be a standard size as a solid raw material supplied to the fluidized bed. Specifically, 1 to 50 mm is preferable, and 3 to 30 mm is more preferable. The granulation of the carbonaceous fuel may be performed by a known method.
炭素質燃料の供給量にも制限はなく、ガス化炉10の大きさ、ガス化炉10に充填する生石灰の量、供給できるガス化剤の量等に応じて、炭素質燃料のガス化を適正に行える供給量を、適宜、設定すればよい。 There is no limit to the amount of carbonaceous fuel supplied. Depending on the size of the gasification furnace 10, the amount of quicklime charged in the gasification furnace 10, the amount of gasifying agent that can be supplied, etc. What is necessary is just to set suitably the supply amount which can be performed appropriately.
炭素質燃料のガス化反応温度にも制限は無いが、ガス化反応温度は600〜1500℃が好ましく、800〜1200℃がより好ましい。
反応温度を600℃以上とすることにより、生成ガスの収率を向上できると共に、高粘性のタール状物質の副生も防止して、配管の閉塞などのトラブルの発生を防止できる。また、反応温度を1500℃以下とすることにより、燃焼熱の高い生成ガスを得ることができる。さらに、反応温度を1500℃以下とすることにより、ガス化炉10に投入する熱源の量を抑制して、コストを低減できる点でも好ましい。
Although there is no restriction | limiting also in the gasification reaction temperature of carbonaceous fuel, 600-1500 degreeC is preferable and the gasification reaction temperature has more preferable 800-1200 degreeC.
By setting the reaction temperature to 600 ° C. or higher, the yield of the product gas can be improved, and the by-product of a highly viscous tar-like substance can be prevented, and troubles such as blockage of piping can be prevented. Further, by setting the reaction temperature to 1500 ° C. or less, a product gas having high combustion heat can be obtained. Furthermore, by setting the reaction temperature to 1500 ° C. or less, it is preferable in that the cost can be reduced by suppressing the amount of the heat source input to the gasification furnace 10.
ガス化炉10の加熱方法にも制限はなく、外熱式ヒーターを用いる方法、ガス化炉を被覆するジャケットに加熱媒体を供給して加熱する方法等、炭素質燃料のガス化におけるガス化炉の加熱に利用されている公知の方法で行えばよい。 There is no limitation on the heating method of the gasification furnace 10, such as a method using an external heating heater, a method of supplying a heating medium to a jacket covering the gasification furnace, and heating the gasification furnace 10. What is necessary is just to perform by the well-known method utilized for heating of this.
本発明の製鉄所の操業方法は、本発明の炭素質燃料のガス化方法と同様の処理を行って生成したガスを、製鉄所の操業に利用するもので、流動媒体として生石灰を用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、炭素質燃料をガス化して、第1の態様では、生成したガスを製鉄所のエネルギー源の少なくとも一部として用い、第2の態様では、生成したガスを製鉄における酸化鉄の還元における還元材の少なくとも一部として用いるものである。
本発明による生成ガスは、燃料ガスとして広範囲の用途を持っているが、前述のようにガス化剤としてシフト変性した製鉄副生ガスを用いるのが好ましいことから、製鉄所内のエネルギー源として利用することが合理的である。具体的には、自家発電設備用燃料、鉄鉱石焼結用燃料ガス、高炉熱風炉用燃料ガス、あるいは、種々の副生ガスを混合して製造するミックスガスの原料ガス等を挙げることができる。
また、本発明による生成ガスは、CO、H2、炭素数1〜4までの炭化水素を含むガスである。そのため、この生成ガスは、高炉やシャフト炉等に投入する酸化鉄の還元材として利用することもできる。ここで、酸化鉄とは、鉄鉱石の他に、高炉や転炉等で発生する酸化鉄を含有するダストやスラッジ類も含まれる。
後に実施例でも示すが、本発明によれば、炭素質燃料から、高い収率で生成ガスを得ることができる。そのため、本発明の製鉄所の操業方法によれば、製鉄所で使用するエネルギーのコストや、酸化ガスの還元コストを低減できる。
The operation method of the steel mill of the present invention is to use the gas generated by performing the same treatment as the gasification method of the carbonaceous fuel of the present invention for the operation of the steel mill, and a fluidized bed using quick lime as a fluid medium. By supplying carbonaceous fuel and a gasifying agent containing H 2 , CO 2, and H 2 O to the gasifier, the carbonaceous fuel is gasified, and in the first aspect, the generated gas is made into iron. In the second embodiment, the generated gas is used as at least a part of a reducing material in the reduction of iron oxide in iron making.
Although the product gas according to the present invention has a wide range of uses as a fuel gas, it is preferable to use a shift-modified iron production by-product gas as a gasifying agent as described above, so that it is used as an energy source in a steel plant. It is reasonable. Specifically, the fuel gas for private power generation facilities, the fuel gas for sintering iron ore, the fuel gas for blast furnace hot stove, or the raw material gas of mixed gas produced by mixing various by-product gases can be mentioned. .
The product gas according to the present invention is a gas containing CO, H 2 , and a hydrocarbon having 1 to 4 carbon atoms. Therefore, this generated gas can be used as a reducing material for iron oxide to be introduced into a blast furnace, a shaft furnace, or the like. Here, the iron oxide includes dust and sludge containing iron oxide generated in a blast furnace, a converter and the like in addition to iron ore.
As will be shown later in Examples, according to the present invention, product gas can be obtained from carbonaceous fuel with high yield. Therefore, according to the operation method of the steelworks of the present invention, the cost of energy used at the steelworks and the reduction cost of the oxidizing gas can be reduced.
また、本発明のガス化ガスの製造方法は、本発明の炭素質燃料のガス化方法と同様の処理を行ってガス化ガスを製造するもので、流動媒体として生石灰を用いる流動層ガス化炉に、炭素質燃料と、H2、CO2およびH2Oを含むガス化剤とを供給することにより、炭素質燃料をガス化する、ガス化ガスの製造方法である。
前述のように、本発明によれば、炭素質燃料から、高い収率で生成ガスを得ることができる。そのため、本発明のガス化ガスの製造方法によれば、高い収率でガス化ガスを製造して、ガス化ガスの製造コストを低減できる。
The gasified gas production method of the present invention is a gasified gas produced by performing the same process as the carbonaceous fuel gasification method of the present invention, and a fluidized bed gasification furnace using quick lime as a fluidized medium. In addition, a carbonized fuel and a gasifying agent containing H 2 , CO 2, and H 2 O are supplied to gasify the carbonaceous fuel to produce a gasified gas.
As described above, according to the present invention, product gas can be obtained from carbonaceous fuel with high yield. Therefore, according to the gasification gas production method of the present invention, the gasification gas can be produced with a high yield, and the production cost of the gasification gas can be reduced.
以上、本発明の炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法について詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 As mentioned above, although the gasification method of the carbonaceous fuel of this invention, the operation method of a steel mill, and the manufacturing method of gasification gas were demonstrated in detail, this invention is not limited to the above-mentioned example, The summary of this invention is shown. Of course, various improvements and modifications may be made without departing from the scope.
以下、本発明の具体的実施例を挙げ、本発明の炭素質燃料のガス化方法、製鉄所の操業方法およびガス化ガスの製造方法について、より詳細に説明する。
なお、本発明は、以下の実施例に限定されないのは、もちろんである。
Hereinafter, specific examples of the present invention will be given, and the gasification method for carbonaceous fuel, the method for operating a steel mill, and the method for producing gasification gas according to the present invention will be described in more detail.
Needless to say, the present invention is not limited to the following examples.
[実施例1]
乾式供給によって石炭を10〜30g/h(時間)供給できる、マイクロ流動層ガス化試験装置(内径22mm)を準備した。
ガス化試験装置内部に、流動媒体として、高純度化学研究所製の試薬CaOを、静止時層高として75mm充填した。また、H2:14vol%、H2O:35vol%、CO2:24vol%、N2:27vol%を含む混合ガスを模擬シフト変性製鉄副生ガスとして調製して、ガス化剤とした。
このガス化剤400mL(リットル)/minを流動層の下部から供給し、CaOを流動化させた。
炭素質燃料は、水をバインダーとして褐炭(揮発分55wt%、固定炭素36wt%、灰分8wt%)をφ1〜3mmに造粒したものを用いた(造粒後の含水率:14wt%)。
[Example 1]
A micro fluidized bed gasification test apparatus (inner diameter: 22 mm) capable of supplying coal by dry feeding at 10 to 30 g / h (hour) was prepared.
The gasification test apparatus was filled with a reagent CaO (manufactured by High-Purity Chemical Laboratory) as a fluid medium at 75 mm as a bed height at rest. Further, a mixed gas containing H 2 : 14 vol%, H 2 O: 35 vol%, CO 2 : 24 vol%, N 2 : 27 vol% was prepared as a simulated shift-modified iron byproduct gas and used as a gasifying agent.
This gasifying agent 400 mL (liter) / min was supplied from the lower part of the fluidized bed to fluidize CaO.
As the carbonaceous fuel, pulverized coal (water content 55 wt%, fixed carbon 36 wt%, ash content 8 wt%) granulated to φ1 to 3 mm using water as a binder (water content after granulation: 14 wt%) was used.
外熱式ヒーターによって流動層内部の温度を1000℃に昇温した後、供給量20g/hで造粒褐炭を供給し、ガス化反応を開始した。反応時間は1時間とし、20分毎に3回のガスサンプリングを行い、生成ガスの分析を行った。
3回のガス分析結果を平均した結果として、炭素基準の生成ガス収率は61%、生成ガスの燃焼熱は2.6Mcal/Nm3と、比較的高燃焼熱のガスが高い収率で得られた。この結果および後述する比較例1の結果を考慮すると、生石灰は、炭素質燃料のガス化反応における良好な触媒として作用していると考えられる。なお、ガス化剤として供給したCO2の67vol%が、式(5)等の反応で消費されていた。
生成ガス中のガス成分としては、CO、H2、炭素数1〜4の炭化水素(パラフィンおよびオレフィンの混合物)が合計で80vol%含まれていた。この他、不燃成分としてN2およびCO2を含んでいた。この生成ガスは、CO、H2、炭素数1〜4の炭化水素濃度の合計が80vol%であるので、製鉄所のエネルギー源としても、酸化鉄の還元材としても問題ないことが明らかである。
After the temperature inside the fluidized bed was raised to 1000 ° C. with an external heating heater, granulated lignite was supplied at a supply rate of 20 g / h to start a gasification reaction. The reaction time was 1 hour, gas sampling was performed 3 times every 20 minutes, and the generated gas was analyzed.
As a result of averaging the three gas analysis results, the carbon-based product gas yield is 61%, and the combustion heat of the product gas is 2.6 Mcal / Nm 3. It was. Considering this result and the result of Comparative Example 1 described later, quick lime is considered to act as a good catalyst in the gasification reaction of the carbonaceous fuel. Incidentally, 67Vol% of CO 2 was supplied as a gasifying agent, has been consumed in the reaction, such as formula (5).
As gas components in the product gas, CO, H 2 , and hydrocarbons having 1 to 4 carbon atoms (a mixture of paraffin and olefin) were contained in a total of 80 vol%. In addition, N 2 and CO 2 were included as incombustible components. Since this product gas has a total concentration of CO, H 2 , and hydrocarbons having 1 to 4 carbon atoms of 80 vol%, it is clear that there is no problem as an energy source for ironworks or a reducing material for iron oxide. .
なお、炭素基準の生成ガス収率は、以下のようにして求めた。
本発明において、ガス化炉(ガス化試験装置)に供給する炭素源は、炭素質燃料(褐炭)およびガス化剤(模擬シフト変性製鉄副生ガス)である。
ガス化炉に供給する炭素質燃料の供給量をAkg/h、炭素質燃料の炭素濃度をxwt%とすると、炭素質燃料による炭素のガス化炉への供給量β[kmol/h]は、下記式で算出できる。なお、下記式において、『12』は炭素の原子量である。
β[kmol/h]=(A/12)×(x/100)
また、ガス化炉に供給するガス化剤の供給量をBNm3/h、ガス化剤のCO2濃度をyvol%とすると、ガス化剤による炭素のガス化炉への供給量γ[kmol/h]は、下記式で算出できる。なお、下記式において、『22.4』は1molの気体の体積(L)である。
γ[kmol/h]=(B/22.4)×(y/100)
すなわち、β+γ[kmol/h]が、ガス化炉に供給する炭素の量となる。
In addition, the carbon-based product gas yield was determined as follows.
In the present invention, the carbon sources supplied to the gasification furnace (gasification test apparatus) are carbonaceous fuel (brown coal) and a gasifying agent (simulated shift-modified iron byproduct gas).
When the supply amount of carbonaceous fuel supplied to the gasification furnace is Akg / h and the carbon concentration of the carbonaceous fuel is xwt%, the supply amount β [kmol / h] of carbon to the gasification furnace by carbonaceous fuel is It can be calculated by the following formula. In the following formula, “12” is the atomic weight of carbon.
β [kmol / h] = (A / 12) × (x / 100)
Further, when the supply amount of the gasifying agent supplied to the gasification furnace is BNm 3 / h and the CO 2 concentration of the gasifying agent is yvol%, the supply amount γ [kmol / h] can be calculated by the following equation. In the following formula, “22.4” is the volume (L) of 1 mol of gas.
γ [kmol / h] = (B / 22.4) × (y / 100)
That is, β + γ [kmol / h] is the amount of carbon supplied to the gasifier.
一方、ガス化炉で生成される生成ガスの量をCNm3/hとする。
前述のように、生成ガスには、炭素化合物として、CO、CO2、炭素数1の炭化水素(C1)、炭素数2の炭化水素(C2)、炭素数3の炭化水素(C3)および炭素数4の炭化水素(C4)が含まれる。ここで、生成ガス中におけるCOの含有量をZ1vol%、同CO2の含有量をZ2vol%、同C1の含有量をZ3vol%、同C2の含有量をZ4vol%、同C3の含有量をZ5vol%、同C4の含有量をZ6vol%とすると、生成ガス中の炭素の量α[kmol/h]は、下記式となる。なお、下記式において、『22.4』は1molの気体の体積(L)である。
α[kmol/h]=
{C×[(Z1+Z2+Z3+2Z4+3Z5+4Z6)/100]}/22.4
On the other hand, the amount of generated gas generated in the gasifier is CNm 3 / h.
As described above, the product gas includes, as a carbon compound, CO, CO 2 , C 1 hydrocarbon (C 1 ), C 2 hydrocarbon (C 2 ), C 3 hydrocarbon (C 3 ) And C 4 hydrocarbons (C 4 ). Here, the content of CO in the product gas is Z 1 vol%, the content of CO 2 is Z 2 vol%, the content of C 1 is Z 3 vol%, and the content of C 2 is Z 4 When the vol%, the C 3 content is Z 5 vol%, and the C 4 content is Z 6 vol%, the carbon amount α [kmol / h] in the product gas is represented by the following formula. In the following formula, “22.4” is the volume (L) of 1 mol of gas.
α [kmol / h] =
{C × [(Z 1 + Z 2 + Z 3 + 2Z 4 + 3Z 5 + 4Z 6 ) / 100]} / 22.4
ここで、本発明においては、ガス化炉で生成される生成ガスの中には、ガス化剤に起因する炭素も含まれる。これに応じて、生成ガス中の炭素の量αから、ガス化剤による炭素の供給量γを減算して、下記式によって炭素基準の生成ガス収率[%]を算出する。
生成ガス収率[%]=[(α−γ)/(β+γ)]×100
Here, in this invention, carbon resulting from a gasifying agent is also contained in the product gas produced | generated with a gasifier. Accordingly, the carbon supply amount γ by the gasifying agent is subtracted from the carbon amount α in the product gas, and the carbon- based product gas yield [%] is calculated by the following formula.
Product gas yield [%] = [(α−γ) / (β + γ)] × 100
[実施例2]
炭素質燃料を揮発分40wt%、固定炭素52wt%、灰分9wt%、造粒後の含水率3wt%である亜瀝青炭とした以外は、実施例1と同様にしてガス化試験を行った。
その結果、炭素基準の生成ガス収率は32%、生成ガスの燃焼熱は2.5Mcal/Nm3であった。褐炭に比べてガス収率は低くなったものの、固定炭素が52wt%含有されていることを考慮すれば、比較的高い収率で高燃焼熱のガスが得られた。この結果および後述する比較例2の結果を考慮すると、実施例1と同様、生石灰は、炭素質燃料のガス化反応における良好な触媒として作用していると考えられる。なお、ガス化剤として供給したCO2の49vol%が、式(5)等の反応で消費されていた。
生成ガス中のガス成分としては、CO、H2、炭素数1〜4の炭化水素(パラフィンおよびオレフィンの混合物)が合計で73vol%含まれていた。この他、不燃成分としてN2およびCO2を含んでいた。この生成ガスは、CO、H2、炭素数1〜4の炭化水素濃度の合計が73vol%であったので、製鉄所のエネルギー源としても、酸化鉄の還元材としても問題ないことが明らかである。
[Example 2]
A gasification test was conducted in the same manner as in Example 1 except that the carbonaceous fuel was sub-bituminous coal having a volatile content of 40 wt%, fixed carbon of 52 wt%, ash content of 9 wt%, and a moisture content of 3 wt% after granulation.
As a result, the carbon-based product gas yield was 32%, and the combustion heat of the product gas was 2.5 Mcal / Nm 3 . Although the gas yield was lower than that of lignite, a gas with high combustion heat was obtained at a relatively high yield considering that 52 wt% of fixed carbon was contained. Considering this result and the result of Comparative Example 2 described later, it is considered that quick lime acts as a good catalyst in the gasification reaction of the carbonaceous fuel as in Example 1. Incidentally, 49Vol% of CO 2 was supplied as a gasifying agent, has been consumed in the reaction, such as formula (5).
As gas components in the generated gas, CO, H 2 , and hydrocarbons having 1 to 4 carbon atoms (a mixture of paraffin and olefin) were contained in a total of 73 vol%. In addition, N 2 and CO 2 were included as incombustible components. Since the total concentration of CO, H 2 , and hydrocarbons having 1 to 4 carbon atoms is 73 vol%, it is clear that this product gas has no problem as an energy source for ironworks or as a reducing material for iron oxide. is there.
[比較例1]
流動媒体を工業珪砂(SiO2)とした以外は、実施例1と同様にしてガス化試験を行った。
その結果、炭素基準の生成ガス収率は36%、生成ガスの燃焼熱は2.7Mcal/Nm3であった。SiO2は、ガス化反応の触媒としてはまったく不活性であると考えられるので、生石灰を流動媒体とした実施例1に比べて、ガス収率が非常に低くなった。なお、生成ガスの燃焼熱は実施例1と同程度であった。
[Comparative Example 1]
A gasification test was performed in the same manner as in Example 1 except that the fluid medium was industrial silica sand (SiO 2 ).
As a result, the carbon-based product gas yield was 36%, and the combustion heat of the product gas was 2.7 Mcal / Nm 3 . Since SiO 2 is considered to be completely inactive as a catalyst for the gasification reaction, the gas yield was very low as compared with Example 1 using quicklime as a fluid medium. The combustion heat of the product gas was almost the same as in Example 1.
[比較例2]
流動媒体を工業珪砂(SiO2)とした以外は、実施例2と同様にしてガス化試験を行った。
その結果、炭素基準の生成ガス収率は10%、生成ガスの燃焼熱は2.4Mcal/Nm3であった。比較例1と同様、触媒活性のないSiO2を流動媒体とした本例では、実施例2に比べてガス収率が非常に低くなった。なお、生成ガスの燃焼熱は実施例2と同程度であった。
[Comparative Example 2]
A gasification test was performed in the same manner as in Example 2 except that the fluid medium was industrial silica sand (SiO 2 ).
As a result, the carbon-based product gas yield was 10%, and the combustion heat of the product gas was 2.4 Mcal / Nm 3 . As in Comparative Example 1, in this example using SiO 2 having no catalytic activity as a fluid medium, the gas yield was much lower than that in Example 2. The combustion heat of the product gas was about the same as in Example 2.
鉄鋼業や発電業などで使用する燃料ガスの生成や製鉄所における酸化鉄の還元に好適に利用可能である。 It can be suitably used for the production of fuel gas used in the steel industry and the power generation industry and the reduction of iron oxide in steelworks.
10 ガス化炉
12 ガス分散板
14 シフト変性器
16 流動層
10 Gasifier 12 Gas Dispersion Plate 14 Shift Modifier 16 Fluidized Bed
Claims (9)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015224917A JP6406222B2 (en) | 2015-11-17 | 2015-11-17 | Method for gasifying carbonaceous fuel, method for operating steelworks and method for producing gasified gas |
AU2016357856A AU2016357856A1 (en) | 2015-11-17 | 2016-10-18 | Method for gasifying carbonaceous fuel, method for operating iron mill, and method for producing gasified gas |
EP16866072.8A EP3378921A4 (en) | 2015-11-17 | 2016-10-18 | Method for gasifying carbonaceous fuel, method for operating iron mill, and method for producing gasified gas |
KR1020187012291A KR20180061323A (en) | 2015-11-17 | 2016-10-18 | Gasification method of carbonaceous fuel, operating method of steel mill and method of producing gasified gas |
PCT/JP2016/080783 WO2017086070A1 (en) | 2015-11-17 | 2016-10-18 | Method for gasifying carbonaceous fuel, method for operating iron mill, and method for producing gasified gas |
CN201680066930.4A CN108350370A (en) | 2015-11-17 | 2016-10-18 | The manufacturing method of the gasification process of carbonaceous fuel, the operating method of iron-smelter and gasifying gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015224917A JP6406222B2 (en) | 2015-11-17 | 2015-11-17 | Method for gasifying carbonaceous fuel, method for operating steelworks and method for producing gasified gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017088831A JP2017088831A (en) | 2017-05-25 |
JP6406222B2 true JP6406222B2 (en) | 2018-10-17 |
Family
ID=58718698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015224917A Active JP6406222B2 (en) | 2015-11-17 | 2015-11-17 | Method for gasifying carbonaceous fuel, method for operating steelworks and method for producing gasified gas |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3378921A4 (en) |
JP (1) | JP6406222B2 (en) |
KR (1) | KR20180061323A (en) |
CN (1) | CN108350370A (en) |
AU (1) | AU2016357856A1 (en) |
WO (1) | WO2017086070A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6955895B2 (en) | 2017-04-27 | 2021-10-27 | オークマ株式会社 | Chip processing equipment |
JP7251978B2 (en) * | 2018-12-28 | 2023-04-04 | 川崎重工業株式会社 | Fluidized bed furnace |
CN110437884B (en) * | 2019-09-10 | 2020-09-01 | 吉林大学 | Method for hydrogen production and power generation through biomass charcoal catalysis |
CN112480969B (en) * | 2020-11-12 | 2022-06-10 | 新奥科技发展有限公司 | Fluidized bed gasification furnace and gasification process |
CN114806644A (en) * | 2022-06-06 | 2022-07-29 | 北京清创晋华科技有限公司 | Pyrolysis gasifier |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB673170A (en) * | 1950-01-05 | 1952-06-04 | Consolidation Coal Co | Improvements in or relating to the process of making gas from carbonaceous solid fuels |
EP0776962B1 (en) * | 1995-11-28 | 2002-10-02 | Ebara Corporation | Method and apparatus for treating wastes by gasification |
JP2000355693A (en) | 1999-06-14 | 2000-12-26 | Ishikawajima Harima Heavy Ind Co Ltd | Coal gasification equipment |
JP2004149556A (en) * | 2002-10-28 | 2004-05-27 | Nishinippon Environmental Energy Co Inc | Method for gasifying biomass and gasifying apparatus therefor |
JP2007009069A (en) | 2005-06-30 | 2007-01-18 | Hitachi Ltd | Method and system for reforming byproduct gas in steelmaking plant |
WO2010090863A2 (en) * | 2009-01-21 | 2010-08-12 | Rentech, Inc. | System and method for dual fluidized bed gasification |
WO2012029283A1 (en) * | 2010-08-31 | 2012-03-08 | Jfeスチール株式会社 | Method for decomposing organic substance into lower molecules, and method for utilizing exhaust gas generated by metallurgical furnace |
WO2013062800A1 (en) * | 2011-10-26 | 2013-05-02 | Rentech, Inc. | Gasifier fluidization |
CN102676232A (en) * | 2012-05-17 | 2012-09-19 | 山东万丰煤化工设备制造有限公司 | Method for preparing pulverized coal into hydrogen gas |
JP6227293B2 (en) * | 2012-07-18 | 2017-11-08 | Jfeスチール株式会社 | Method for reducing the molecular weight of organic substances |
JP2014074144A (en) | 2012-10-05 | 2014-04-24 | Japan Coal Energy Center (Jcoal) | Co-gasification method of coal and biomass by three bed type circulation layer and its device |
US9150800B2 (en) * | 2012-12-10 | 2015-10-06 | Southern Company | Second stage gasifier in staged gasification and integrated process |
JP6232923B2 (en) | 2013-10-28 | 2017-11-22 | 国立大学法人 新潟大学 | Coal coke gasifier using internal circulating fluidized bed and gasification method |
JP6070580B2 (en) * | 2014-01-14 | 2017-02-01 | Jfeスチール株式会社 | Method and system for reducing the molecular weight of organic substances |
JP5999114B2 (en) * | 2014-01-14 | 2016-09-28 | Jfeスチール株式会社 | Method and system for reducing the molecular weight of organic substances |
-
2015
- 2015-11-17 JP JP2015224917A patent/JP6406222B2/en active Active
-
2016
- 2016-10-18 WO PCT/JP2016/080783 patent/WO2017086070A1/en active Application Filing
- 2016-10-18 CN CN201680066930.4A patent/CN108350370A/en active Pending
- 2016-10-18 AU AU2016357856A patent/AU2016357856A1/en not_active Abandoned
- 2016-10-18 EP EP16866072.8A patent/EP3378921A4/en not_active Withdrawn
- 2016-10-18 KR KR1020187012291A patent/KR20180061323A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
EP3378921A4 (en) | 2019-01-09 |
CN108350370A (en) | 2018-07-31 |
AU2016357856A1 (en) | 2018-05-17 |
KR20180061323A (en) | 2018-06-07 |
JP2017088831A (en) | 2017-05-25 |
WO2017086070A1 (en) | 2017-05-26 |
EP3378921A1 (en) | 2018-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6406222B2 (en) | Method for gasifying carbonaceous fuel, method for operating steelworks and method for producing gasified gas | |
Huang et al. | Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier | |
Hildor et al. | Steel converter slag as an oxygen carrier for chemical-looping gasification | |
WO2017061482A1 (en) | Carbonaceous fuel gasification method, steel mill operation method, and gasified gas production method | |
Luo et al. | Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas | |
CN1692071A (en) | Method for the production of hydrogen-containing gaseous mixtures | |
US20130101476A1 (en) | Two stage dry feed gasification system | |
JP5630626B2 (en) | Organic raw material gasification apparatus and method | |
JP6304856B2 (en) | Biomass gasification method using improved three-column circulating fluidized bed | |
Jenkins | Thermal gasification of biomass—a primer | |
JP2018538502A (en) | Industrial furnace integrated with biomass gasification system | |
Gupta et al. | An experimental investigation of high-ash coal gasification in a pilot-scale bubbling fluidized bed reactor | |
CN103992820B (en) | Comprehensive utilization method of coal gangue | |
JP2015507082A (en) | Method for manufacturing pig iron or basic products in carbothermal or electrothermal method | |
JP2014074144A (en) | Co-gasification method of coal and biomass by three bed type circulation layer and its device | |
GB2180849A (en) | Producing clean gas containing hydrogen and carbon monoxide | |
CN113583719B (en) | Synthesis gas production method and system for synergetic hydrogen-rich gasification and reforming pyrolysis | |
Han et al. | Fluidized bed chemical looping gasification of sewage sludge with bituminous coal to produce H2 rich syngas: An examination on fuel synergy and reaction conditions | |
JP2008163257A (en) | Fluidized-bed gasifier, method for operating the same, and coal gasification hybrid power generating system | |
Speight | Types of gasifier for synthetic liquid fuel production: Design and technology | |
CN102361961A (en) | Coal gasification with additional production of useful materials | |
JP2015507031A (en) | Counterflow gasification method using synthesis gas as working medium | |
JP2018053053A (en) | Gasification method of carbonaceous fuel, operation method of iron mill and manufacturing method of gasification gas | |
JP2008025929A (en) | Waste melting method | |
Harp | Production of activated carbon and other products from low rank coals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6406222 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |