JP2006199727A - シンチレータおよびそれを用いた放射線検出器 - Google Patents

シンチレータおよびそれを用いた放射線検出器 Download PDF

Info

Publication number
JP2006199727A
JP2006199727A JP2005009837A JP2005009837A JP2006199727A JP 2006199727 A JP2006199727 A JP 2006199727A JP 2005009837 A JP2005009837 A JP 2005009837A JP 2005009837 A JP2005009837 A JP 2005009837A JP 2006199727 A JP2006199727 A JP 2006199727A
Authority
JP
Japan
Prior art keywords
scintillator
crystal
sio
radiation detector
lanthanoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005009837A
Other languages
English (en)
Inventor
Takashi Matsumura
尚 松村
Yasunori Furukawa
保典 古川
Sadao Matsumura
禎夫 松村
Takeshi Ito
猛 伊藤
Osamu Nakamura
修 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Oxide Corp
Original Assignee
Oxide Corp
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxide Corp, Toshiba Ceramics Co Ltd filed Critical Oxide Corp
Priority to JP2005009837A priority Critical patent/JP2006199727A/ja
Publication of JP2006199727A publication Critical patent/JP2006199727A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Abstract

【課題】 高い蛍光出力を有し、減衰時間が短く、かつ、結晶内でのシンチレーション特性の均一化が図られたシンチレータおよびそれを用いた放射線検出器を提供する。
【解決手段】 一般式:Ce2xLn2yLu2(1-x-y)SiO5(式中、Lnは、Luを除くランタノイド元素のうちの少なくともいずれか1種の元素であり、2×10-4≦x≦3×10-2、1×10-4≦y≦1×10-3)で表されるセリウム活性化ランタノイドケイ酸塩の単結晶からなるシンチレータを用いる。
【選択図】 なし

Description

本発明は、ガンマ線、X線等の放射線に対する単結晶シンチレータおよびそれを用いた検出器に関し、特に、陽電子放射断層撮影(PET;Positron Emission Tomography)装置に好適なシンチレータおよびそれを用いた放射線検出器に関する。
ガンマ線やX線等の放射線の刺激を受けて発光するシンチレータは、放射線の数、エネルギー等に応じた光出力が得られることから、光電子増倍管と組み合わせて電気信号に変換したりすることにより、核医学、高エネルギー物理研究、鉱物・石油探査等の幅広い分野における各種放射線検出器に利用されている。
上記のようなシンチレータの利用分野のうち、核医学画像診断法においては、早期がん発見に有効であるとして、PET装置が注目されている。このPET装置の基本的原理は、放射性元素を含む薬剤を体内に投与し、放射されるガンマ線を検出器で捉えて画像化するものである。
前記PET装置においては、陽電子消滅に伴って放出される511keVと比較的エネルギーの高いガンマ線に応答して発光するシンチレータが使用されている。
前記PET用シンチレータ材料としては、(1)高エネルギーのガンマ線を高精度で検出するため、高密度で、構成元素の原子番号が大きいこと、(2)診断時間の短縮化を図るため、蛍光減衰時間が短く、蛍光出力が大きく、無色透明であること、(3)1台の装置に数万個の素子を使用するため、均一かつ安定であり、安価であること等が要求される。これらの要求のうち、特に、無色透明、高密度、特性均一性を満たすことから、従来より、無機単結晶からなるシンチレータが用いられている。
現在、PET装置において使用されている主な単結晶シンチレータとしては、ゲルマニウム酸ビスマス(BGO;Bi4Ge312)、セリウム活性化ケイ酸ガドリニウム(GSO:Ce;Gd2SiO5:Ce)、セリウム活性化ケイ酸ルテチウム(LSO:Ce;Lu2SiO5:Ce)等がある。
BGOは、古くから用いられており、蛍光出力が小さく、減衰時間が比較的長いという欠点があるものの、密度が高く、低コストで製造することができることから、一般のPET装置に多く採用されている。
また、GSO:Ceは、BGOに比べて、密度は低いものの、蛍光出力が大きく、減衰時間が短いため、シンチレーション特性に優れているが、その結晶は、強いへき開性を有しており、加工が困難であり、製造コストが高いという欠点を有している。
さらに、これらよりも後に開発されたLSO:Ceは、LSOの融点が高く、また、希少物質のルテチウムを用いることから、製造コストが高いが、密度が高く、GSOよりも蛍光出力が大きく、減衰時間が短いため、非常に優れたシンチレータ材料である。
このため、優れたシンチレーション特性を有するLSO:Ceは、高性能PET用シンチレータ材料として注目され、シンチレーション特性の向上を目的とする様々な改良研究がなされており、例えば、イットリウム(Y)、サマリウム(Sm)、テルビウム(Tb)等の各種元素を組み合わせたもの等も提案されている(例えば、特許文献1,2参照)。
米国特許第6,624,420号明細書 特開平2−64008号公報
しかしながら、上記のような従来のLSO:Ceは、成長結晶と溶融原料との間のセリウムイオンの分配係数が0.2と小さいことから、チョクラルスキー(CZ)法により成長させた単結晶インゴットは、セリウム濃度が、初期においては小さく、引き上げの進行に伴って増加していくため、同一インゴットから、蛍光出力および減衰時間が均一である単結晶シンチレータを大量に採取することは困難であった。
すなわち、特性が均一な結晶の製造が困難であり、また、蛍光出力の温度依存性が大きい等の課題を有していた。
したがって、高性能PET用シンチレータ材料として有望視されているLSO:Ceは、さらなるシンチレーション特性の向上を図るとともに、結晶中の特性の均一化が図られることが求められている。
本発明は、上記技術的課題を解決するためになされたものであり、高い蛍光出力を有し、減衰時間が短く、かつ、結晶内でのシンチレーション特性の均一化が図られたシンチレータおよびそれを用いた放射線検出器を提供することを目的とするものである。
本発明に係るシンチレータは、一般式:Ce2xLn2yLu2(1-x-y)SiO5(式中、Lnは、Luを除くランタノイド元素のうちの少なくともいずれか1種の元素であり、2×10-4≦x≦3×10-2、1×10-4≦y≦1×10-3)で表されるセリウム活性化ランタノイドケイ酸塩の単結晶からなることを特徴とする。
このような構成からなるシンチレータ結晶は、高い蛍光出力を有し、減衰時間が短く、かつ、結晶内におけるシンチレーション特性のばらつきを抑制することができる。
前記シンチレータにおいては、x,yが、1×10-3≦x≦4.5×10-3、5×10-4≦y≦1×10-3であることが好ましい。
蛍光出力、減衰時間およびエネルギー分解能等のシンチレーション特性のばらつきを抑制する観点からは、上記範囲の組成比とすることがより好ましい。
また、本発明に係る放射線検出器は、ガンマ線またはX線の検出器であって、前記シンチレータと、前記シンチレータに光学的に結合され、前記シンチレータによる光パルスの発生に応答して電気信号を発生する光検出器とを備えていることを特徴とする。
上記のような本発明に係るシンチレータを用いることにより、ガンマ線またはX線の検出器として非常に高性能である放射線検出器を得ることができ、PET装置の高性能化を図ることができる。
上述したとおり、本発明に係るシンチレータによれば、従来のLSO:Ce結晶からなるシンチレータと比較して、同等の高い蛍光出力を有し、かつ、減衰時間が短く、しかも、従来のLSO:Ce結晶よりも、結晶内でのシンチレーション特性の均一化を図ることができる。
したがって、前記シンチレータおよびこれを用いた放射線検出器は、早期がん発見に有効である高性能PET装置に好適に用いることができる。
以下、本発明について、より詳細に説明する。
本発明に係るシンチレータは、セリウム活性化ランタノイドケイ酸塩の単結晶からなり、その一般式は、Ce2xLn2yLu2(1-x-y)SiO5(式中、Lnは、Luを除くランタノイド元素のうちの少なくともいずれか1種の元素であり、2×10-4≦x≦3×10-2、1×10-4≦y≦1×10-3)で表される。
すなわち、このシンチレータは、従来のセリウム活性化ケイ酸ルテチウム(CexLu1-xSiO5;LSO:Ce)を改良したものであり、ルテチウム以外のランタノイド元素を所定の組成比で含むものである。
このような構成からなるシンチレータは、高い蛍光出力を有し、かつ、減衰時間が短いものであり、しかも、従来のLSO:Ceよりも、結晶内でのこれらのシンチレーション特性の均一化が図られる。
LSO:Ce結晶においては、発光に寄与するセリウムイオンは、ルテチウムイオンのサイトを置換する。ルテチウムイオンサイトには、第1タイプのルテチウム(Lu1)と第2タイプのルテチウム(Lu2)との2種類のサイトがある。それぞれ酸素の配位数が異なり、Lu1サイトは7配位、Lu2サイトは6配位である。
蛍光出力、最大発光波長および減衰時間は、Lu1およびLu2の各イオンサイトを置換したCe3+の数に依存する。Ce1(多面体Lu17)の中心は、30〜38nsの減衰時間、最大発光波長は410〜418nmであり、Ce2(多面体Lu26)の中心は、50〜60nmの減衰時間、最大発光波長は450〜520nmである。
したがって、シンチレーション光を検出する光電子増倍管の感度との関係、減衰時間が短いこと等から、配位多面体Lu17内にのみCe3+を含む結晶から、最大のシンチレーション光を取り出すことができる。
上記のような考えに基づき、従来から、希土類元素と他の多くの補助的添加元素を所定濃度添加する方法が試みられているが、確実な効果が得られているとは言えなかった。
これに対して、本発明は、イオン半径が近く、同じ系列である希土類元素、すなわち、ランタノイド元素のみを添加することが効果的であることを見出したことに基づくものである。
すなわち、セリウム元素に比べて、イオン半径が小さい他のランタノイド元素は、選択的にLu2サイトを埋めていくため、Ce3+はLu1サイトに効率的に入り、最大の発光が得られる。
また、LSO:Ceにおいては、結晶育成条件の不安定性が、セリウムイオンが入るLu1/Lu2サイト比を決定すると考えられるが、本発明のように、ランタノイド元素を所定濃度で添加することにより、Lu1/Lu2サイト比の散乱(ばらつき)が抑制され、シンチレーションの各パラメータの散乱(ばらつき)を抑制することができる。
前記シンチレータにおいては、ランタノイド元素の添加量が少なすぎる場合は、各シンチレーション特性のばらつきを抑制する効果が十分に得られない。
一方、ランタノイド元素の添加量が多すぎる場合は、該ランタノイド元素に起因する光の吸収ピークの影響により、ガンマ線による蛍光がシンチレータ結晶内で吸収され、光電子増倍管に十分な光が到達しないこととなる。
上記のような蛍光出力、減衰時間およびエネルギー分解能等のシンチレーション特性のばらつきを抑制する観点から、x,yが、1×10-3≦x≦4.5×10-3、5×10-4≦y≦1×10-3であることが好ましい。
上記のような本発明に係るシンチレータ結晶であるセリウム活性化ランタノイドケイ酸塩の単結晶の製造方法は、特に限定されるものではないが、例えば、CZ法単結晶引上装置により育成することができる。
以下、ランタノイド元素Lnとしてツリウムを用いる場合のCZ法による育成方法の具体例を示す。まず、純度99.99%のLu23、SiO2、CeO2、Tm23を出発原料として用い、組成がCe2xTm2yLu2(1-x-y)SiO5(2×10-4≦x≦3×10-2、1×10-4≦y≦1×10-3)となるように混合し、静水圧プレスにて押圧成型する。
前記原料の成型体を、RF誘導加熱方式による引上炉内に設置されたイリジウムるつぼ内に充填し、窒素雰囲気下で加熱溶融する。溶融原料に、直径数mmのイリジウムワイヤあるいは数mm角のLSO単結晶を種結晶として浸漬させ、前記溶融原料から単結晶を育成する。
育成に際しては、回転速度、温度(RFパワー)および結晶の引上速度等の条件を制御する。
上記のようにして得られる本発明に係るシンチレータを用いれば、該シンチレータに光学的に結合され、前記シンチレータによる光パルスの発生に応答して電気信号を発生する光検出器とを組み合わせることにより、ガンマ線またはX線の検出器として非常に高性能である放射線検出器を得ることができ、早期がん発見に有効であるPET装置のさらなる高性能化に寄与することができる。
以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1]
Lu23、SiO2、CeO2、Tm23を出発原料とし、これらが表1の実施例1に示すような組成となるように混合した溶融原料を、直径80mmのイリジウムるつぼ内に充填し、加熱溶融した。
CZ法により、窒素雰囲気下、引上速度1〜3mm/hr、結晶回転速度30〜50rpmで、直径40mm、長さ150mmのCe2xLn2yLu2(1-x-y)SiO5結晶を育成した。
育成終了後、30〜60時間かけて室温まで冷却した。結晶の固化率が10,30,50,70%における時点の結晶から、10mm×10mm×10mmの試料をそれぞれ採取し、鏡面加工した後、蛍光出力、減衰時間およびエネルギー分解能の評価を行った。
なお、ここで、固化率とは、(結晶化重量/るつぼへの全原料のチャージ量)の重量比を意味するものであり、結晶化の進行度を示すパラメータである。
これらの結果を、図1〜図3のグラフに示す。
また、上記により求めた蛍光出力、減衰時間およびエネルギー分解能の各ばらつきを表1に示す。
[実施例2]
溶融原料におけるCe2xLn2yLu2(1-x-y)SiO5を表1の実施例2に示すような組成となるように混合し、それ以外については、実施例1と同様にして、結晶を育成し、評価を行った。
これらの結果を、図1〜図3のグラフおよび表1に示す。
[比較例1]
出発原料において、Tm23を混合せず、それ以外については、実施例1と同様にして、Ce2xLu2(1-x)SiO5結晶を育成し、評価を行った。
これらの結果を、図1〜図3のグラフおよび表1に示す。
[比較例2,3]
溶融原料におけるCe2xLn2yLu2(1-x-y)SiO5を表1の比較例2,3に示すような組成となるように混合し、それ以外については、実施例1と同様にして、結晶を育成し、評価を行った。
これらの結果を、図1〜図3のグラフおよび表1に示す。
Figure 2006199727
上記評価の結果、図1〜図3に示したグラフおよび表1に示したように、実施例1,2においては、従来のLSO:Ce(比較例1)に比べて、蛍光出力、減衰時間およびエネルギー分解能のばらつきが15%以下に改善されることが認められた。
ツリウムの添加量が少なすぎる場合(比較例2)は、十分な改善効果は認められず、一方、ツリウムの添加量が多すぎる場合(比較例3)には、発光特性が阻害されることが認められた。
なお、上記実施例においては、LSO:Ceに、代表としてツリウム(Tm)を添加した場合を示したが、本発明はこれに限定されるものではなく、他のランタノイド元素の場合も同様の結果を得ることができる。
各実施例および比較例における蛍光出力の評価結果を示したグラフである。 各実施例および比較例における減衰時間の評価結果を示したグラフである。 各実施例および比較例におけるエネルギー分解能の評価結果を示したグラフである。

Claims (3)

  1. 一般式:Ce2xLn2yLu2(1-x-y)SiO5(式中、Lnは、Luを除くランタノイド元素のうちの少なくともいずれか1種の元素であり、2×10-4≦x≦3×10-2、1×10-4≦y≦1×10-3)で表されるセリウム活性化ランタノイドケイ酸塩の単結晶からなることを特徴とするシンチレータ。
  2. 前記x,yが、1×10-3≦x≦4.5×10-3、5×10-4≦y≦1×10-3であることを特徴とする請求項1記載のシンチレータ。
  3. ガンマ線またはX線の検出器であって、
    請求項1または請求項2記載のシンチレータと、前記シンチレータに光学的に結合され、前記シンチレータによる光パルスの発生に応答して電気信号を発生する光検出器とを備えていることを特徴とする放射線検出器。
JP2005009837A 2005-01-18 2005-01-18 シンチレータおよびそれを用いた放射線検出器 Pending JP2006199727A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009837A JP2006199727A (ja) 2005-01-18 2005-01-18 シンチレータおよびそれを用いた放射線検出器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009837A JP2006199727A (ja) 2005-01-18 2005-01-18 シンチレータおよびそれを用いた放射線検出器

Publications (1)

Publication Number Publication Date
JP2006199727A true JP2006199727A (ja) 2006-08-03

Family

ID=36958026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009837A Pending JP2006199727A (ja) 2005-01-18 2005-01-18 シンチレータおよびそれを用いた放射線検出器

Country Status (1)

Country Link
JP (1) JP2006199727A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509270A (ja) * 2004-08-09 2008-03-27 サン−ゴバン クリストー エ デテクトゥール 残光が少なく、高密度、高速のシンチレーター物質
JP2011026547A (ja) * 2009-06-29 2011-02-10 Hitachi Chem Co Ltd シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
US7983010B2 (en) 2006-07-21 2011-07-19 Tdk Corporation Perpendicular magnetic recording head and perpendicular magnetic recording/reproducing head with at least one shield layer having a substantially arched portion
JP2012526905A (ja) * 2009-05-15 2012-11-01 シュルンベルジェ ホールディングス リミテッド シンチレータ結晶材料、シンチレータおよび放射線検出器
JP2015038219A (ja) * 2009-06-29 2015-02-26 日立化成株式会社 シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
US8999281B2 (en) 2007-06-01 2015-04-07 Hitachi Chemical Company, Ltd. Scintillator single crystal, heat treatment method for production of scintillator single crystal, and method for production of scintillator single crystal
US9625586B2 (en) 2011-03-31 2017-04-18 Japan Atomic Energy Agency Scintillator plate, radiation measuring apparatus, radiation imaging apparatus, and scintillator plate manufacturing method
US9868900B2 (en) 2010-11-16 2018-01-16 Samuel Blahuta Scintillation compound including a rare earth element and a process of forming the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10324198B2 (en) 2004-08-09 2019-06-18 Saint-Gobain Cristaux Et Detecteurs Dense high-speed scintillator material of low afterglow
US11927708B2 (en) 2004-08-09 2024-03-12 Luxium Solutions, Llc Dense high-speed scintillator material of low afterglow
US9534170B2 (en) 2004-08-09 2017-01-03 Saint-Gobain Cristaux Et Detecteurs Dense high-speed scintillator material of low afterglow
US11927707B2 (en) 2004-08-09 2024-03-12 Luxium Solutions, Llc Dense high-speed scintillator material of low afterglow
US8574458B2 (en) 2004-08-09 2013-11-05 Saint-Gobain Cristaux Et Detecteurs Dense high-speed scintillator material of low afterglow
US10890670B2 (en) 2004-08-09 2021-01-12 Saint-Gobain Cristaux Et Detecteurs Dense high-speed scintillator material of low afterglow
JP2008509270A (ja) * 2004-08-09 2008-03-27 サン−ゴバン クリストー エ デテクトゥール 残光が少なく、高密度、高速のシンチレーター物質
US7983010B2 (en) 2006-07-21 2011-07-19 Tdk Corporation Perpendicular magnetic recording head and perpendicular magnetic recording/reproducing head with at least one shield layer having a substantially arched portion
US8999281B2 (en) 2007-06-01 2015-04-07 Hitachi Chemical Company, Ltd. Scintillator single crystal, heat treatment method for production of scintillator single crystal, and method for production of scintillator single crystal
US8889036B2 (en) 2009-05-15 2014-11-18 Schlumberger Technology Corporation Scintillator crystal materials, scintillators and radiation detectors
JP2012526905A (ja) * 2009-05-15 2012-11-01 シュルンベルジェ ホールディングス リミテッド シンチレータ結晶材料、シンチレータおよび放射線検出器
JP2015038219A (ja) * 2009-06-29 2015-02-26 日立化成株式会社 シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
JP2011026547A (ja) * 2009-06-29 2011-02-10 Hitachi Chem Co Ltd シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
JP2016056378A (ja) * 2009-06-29 2016-04-21 株式会社オキサイド シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
US9868900B2 (en) 2010-11-16 2018-01-16 Samuel Blahuta Scintillation compound including a rare earth element and a process of forming the same
US10647916B2 (en) 2010-11-16 2020-05-12 Saint-Gobain Cristaux Et Detecteurs Scintillation compound including a rare earth element in a tetravalent state
US10907096B2 (en) 2010-11-16 2021-02-02 Saint-Gobain Cristaux & Detecteurs Scintillation compound including a rare earth element and a process of forming the same
US11926777B2 (en) 2010-11-16 2024-03-12 Luxium Solutions, Llc Scintillation compound including a rare earth element and a process of forming the same
US9625586B2 (en) 2011-03-31 2017-04-18 Japan Atomic Energy Agency Scintillator plate, radiation measuring apparatus, radiation imaging apparatus, and scintillator plate manufacturing method

Similar Documents

Publication Publication Date Title
JP6644010B2 (ja) 向上した耐放射線性を有する多重ドープルテチウム系オキシオルトシリケートシンチレータ
US9279891B2 (en) Transparent glass scintillators, methods of making same and devices using same
JP5096005B2 (ja) 高輝度及び高速の中性子シンチレータ
EP2671940B1 (en) Garnet type crystal for scintillator and radiation detector using same
JP5103879B2 (ja) シンチレータ用結晶及び放射線検出器
Kimble et al. Scintillation properties of LYSO crystals
JP5389328B2 (ja) Prを含むシンチレータ用単結晶及びその製造方法並びに放射線検出器及び検査装置
US6921901B1 (en) Lutetium yttrium orthosilicate single crystal scintillator detector
JP6526651B2 (ja) 三元金属ハロゲン化物シンチレータ
US6995374B2 (en) Single crystal scintillators
JP2006199727A (ja) シンチレータおよびそれを用いた放射線検出器
US20140291580A1 (en) Cerium doped rare-earth ortosilicate materials having defects for improvement of scintillation parameters
KR20100125326A (ko) 중성자 검출용 신틸레이터 및 중성자 검출 장치
JPWO2012011506A1 (ja) ホスウィッチ型熱中性子検出器
JPH0264008A (ja) エツクス線及び/又はガンマ線の検出用のシンチレーターとして有用なランタニドケイ酸塩の単結晶
US9963356B2 (en) Alkali metal hafnium oxide scintillators
EP1466955B1 (en) Single crystal scintillators
CN101084329A (zh) 含Pr的闪烁体用单晶及其制造方法和放射线检测器以及检查装置
CN110628432A (zh) 一种lyso闪烁体及其制备方法和应用其的装置
Johnson et al. Opportunities for fluorochlorozirconate and other glass-ceramic detectors in medical imaging devices
RU2783941C1 (ru) Способ получения сцинтилляционного кристалла и изделий из него
Fujimoto Inorganic Halide Scintillators
Lertloypanyachai et al. Investigation CeF3 Doped SiO2-Al2O3-BaF2-Gd2O3 Glasses Effect on Luminescence and Scintillation Properties
WO2012105695A1 (ja) 中性子線検出用シンチレーター及び中性子線検出装置
Lecoq New scintillating crystals for PET scanners

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711