JP2006196893A - 磁気メモリ素子の熱アシスト切替えを行うためのハードマスク - Google Patents

磁気メモリ素子の熱アシスト切替えを行うためのハードマスク Download PDF

Info

Publication number
JP2006196893A
JP2006196893A JP2005378653A JP2005378653A JP2006196893A JP 2006196893 A JP2006196893 A JP 2006196893A JP 2005378653 A JP2005378653 A JP 2005378653A JP 2005378653 A JP2005378653 A JP 2005378653A JP 2006196893 A JP2006196893 A JP 2006196893A
Authority
JP
Japan
Prior art keywords
hard mask
memory element
magnetic
magnetic memory
electromagnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005378653A
Other languages
English (en)
Inventor
Janice H Nickel
ジャニス・エイチ・ニッケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of JP2006196893A publication Critical patent/JP2006196893A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】低コストで製造可能なヒータ構造を備えた磁気メモリ素子を提供すること。
【解決手段】複数のハードマスク(410)と、前記複数のハードマスクのうちの対応する1つを使用してそれぞれ形成された複数の磁気メモリ素子(100)と、前記ハードマスク(410)の近くに形成された少なくとも1つの導体(430a及び430b)とを含む、磁気ランダムアクセスメモリ。導体(430a及び430b)は、前記ハードマスク(410)によって吸収可能な高周波電磁界を生成するための電流を運び、前記ハードマスクを加熱して前記磁気メモリ素子(100)のうちの1以上の温度を上昇させ、その磁気的向きの切り換えを熱によって補助する働きをする。
【選択図】図4

Description

本発明は磁気メモリ素子に関し、特に、熱アシスト切り換えのためのヒータ構造を低コストで形成可能な磁気メモリ素子に関する。
メモリチップは一般に複数のメモリ素子を備え、それらがシリコンウェーハ上に堆積され、列導電性リード線(ビット線)及び行導電性リード線(ワード線)のアレイによってアドレス指定される。通常、メモリ素子はビット線とワード線が交差する場所に配置される。メモリ素子は、データの読み出しや書き込みの対象となる行及び列を指定する等の機能を備えた特殊な回路によって制御される。通常、各メモリ素子は、1ビットのデータを表す「1」又は「0」の形でデータを記憶する。
磁気メモリ素子のアレイは、磁気ランダムアクセスメモリ又はMRAMと呼ばれることがある。MRAMは一般に不揮発性メモリ(即ち、電源をオフにしてもデータを保持する固体チップ)である。図1は、関連技術分野におけるMRAMの磁気メモリ素子100の一例を示している。磁気メモリ素子100は、少なくとも1つの中間層120によって互いに分離された、データ層110及び基準層130を含む。データ層110はビット層、記憶層又はセンス層と呼ばれることもある。磁気メモリ素子は、1以上の導電性リード(例えば、ビット線とワード線)を介してデータ層110に「書き込み」を行うことにより、1ビットのデータ(例えば「1」又は「0」)を記憶する。データ層110は通常、1以上の強磁性材料から形成される。書込み動作は通常、2つの外部磁界を生成する書き込み電流によって行われる。2つの外部磁界は結合され、データ層の磁気モーメントの向きを所定の向きに設定する。
書き込み後は、1以上の導電性リード線(例えば読出し線)を通して磁気メモリ素子に読出し電流を供給することにより、記憶されたデータビットを読み出すことができる。各メモリ素子において、データ層110及び基準層130の磁気モーメントの向きは、互いに平行になるか(同じ方向を向く)、反平行になる(異なる方向を向く)かのどちらかになる。平行の度合いはメモリ素子の抵抗値に影響を与え、この抵抗値は、読み出し電流に応答してメモリ素子が生成する出力電流又は出力電圧を検出することにより(例えば、センス増幅器を用いて)、判定することができる。
具体的には、磁気モーメントが平行である場合、出力電流に基づいて判定される抵抗値は第1の相対値をとる(例えば、相対的に低い)。磁気モーメントが反平行である場合、判定される抵抗値は第2の相対値をとる(例えば、相対的に高い)。2つの状態(即ち、平行と反平行)に関するこれらの相対値は通常、はっきりと読み取れるくらいに大きく異なる。設計仕様に応じて、「1」又は「0」が、各相対値に割り当てられる。
中間層120は、スペーサ層とも呼ばれることもあり、絶縁性材料(例えば誘電体)、非磁性の導電性材料、及び/又は、他の既知の材料を含む。
上で述べた種々の層、及びそれらの特性、当該技術分野において既知のトンネル磁気抵抗(TMR)効果を利用する磁気メモリ素子にとって、一般的なものである。他の組み合わせの層及び特性を使用して、TMR効果を利用する磁気メモリ素子を形成する場合もある。
磁気メモリ素子の更に他の構成には、他の既知の物理的効果(例えば、巨大磁気抵抗(GMR)効果、異方性磁気抵抗(AMR)効果、コロッサル磁気抵抗(CMR)効果、及び/又は他の物理学効果)を利用するものもある。
本願では、最初に述べたTMRメモリ素子を参照し、種々の実施形態について説明する。それらの実施形態が、実施形態の要件に従って、当該技術分野において既知の他のタイプの磁気メモリ素子(例えば、他のタイプのTMRメモリ素子、GMRメモリ素子、AMRメモリ素子、CMRメモリ素子など)を使用して実施することも可能であることは、当業者には明らかであろう。
MRAM内のメモリ素子を選択し、メモリ素子に対するデータの読出しや書込みを行うための種々の導電性リード線(例えば、ビット線、ワード線、読出し線など)は、導電層(複数の場合もあり)と呼ばれる1以上の付加的な層に形成される。図2は、読出し動作又は書込み動作の際にビット線210a〜210b、ワード線220a〜220b及び読出し線(図示せず)によって選択可能な磁気メモリ素子100a〜100dを有するメモリアレイの一例200を示している。磁気メモリ素子100a〜100dは一般に、ビット線210a〜210bとワード線220a〜220bの交点に配置される。
読出し線は、ビット線210a〜210b又はワード線220a〜220bの上又は下に配置され(そして、それらの線から絶縁され)、あるいは、実施形態によっては任意の他の適当な構成に配置される。
上記のような従来の磁気メモリ素子は、選択されたメモリ素子において交差するビット線及びワード線を流れる電流が、その選択されたメモリ素子のデータ層の磁気的向きを切り替えるだけの十分な合成磁界を生成したときに、書き込まれる。磁気メモリ素子を加熱すると(例えば、室温よりも高い温度まで加熱した場合)、データ層の磁気的向きを比較的容易に(例えば、より小さな合成磁界で)切り替えられることが知られている。従って、メモリ素子の磁気的向きの切り換えを熱によって補助する機能が、しばしば必要とされる。
熱アシストは通常、メモリ素子に接触するヒータ構造、又はメモリ素子の近くに形成されたヒータ構造によって実施される。こうしたヒータ構造は通常、ヒータ構造に隣接するメモリ素子を加熱するためだけに形成される。しかしながら、付加的なヒータ構造の形成は、製造コストの増大を招く。
そのため、付加的なヒータ構造を形成することなくメモリ素子を加熱するための別の方法が求められている。
例示的な磁気ランダムアクセスメモリは、複数のハードマスクと、該複数のハードマスクのうちの対応する1つを使用してそれぞれ形成された複数の磁気メモリ素子と、該複数のハードマスクの近くに形成された少なくとも1つの導体とを含む。導体は、ハードマスクによって吸収可能な高周波電磁界を生成するための電流を運び、ハードマスクを加熱して磁気メモリ素子のうちの1以上の温度を上昇させ、その磁気的向きの切り替えを熱によって補助する機能を有する。
他の実施形態及び実施態様についても以下で説明する。
I.概要
セクションIIは磁気メモリ素子の飽和保磁力に対する熱の影響の例について説明する。
セクションIIIは独立したヒータ構造を必ずしも必要としない磁気メモリ構造の一例について説明する。
セクションIVはセクションIIIに記載した磁気メモリ構造を形成するためのプロセスの一例について説明する。
セクションVはセクションIIIに記載した複数の磁気メモリ構造の平面図の一例について説明する。
セクションVIはセクションIIIに記載した磁気メモリ構造の幾つかの応用形態の例について説明する。
II.飽和保磁力に対する熱の影響の例
多くの従来のMRAMでは、メモリ素子のデータ層の磁気的向きを切り替えることにより、「1」又は「0」がメモリ素子に書き込まれる。磁気的向きは通常、メモリ素子の上下に1本ずつ存在する2本の直交する書込み導体(即ちビット線及びワード線)を流れる書込み電流(I,I)により生じる磁界(のベクトル和)によって切り替わる。選択されたメモリ素子はビット線磁界とワード線磁界の両方を受ける一方、選択された行及び列上の他のメモリ素子はビット線磁界とワード線磁界のうちの一方しか受けない。
熱アシスト(熱補助式)MRAMでは、書込み動作の直前又は書き込み動作中に、選択されたメモリ素子が加熱される。加熱の結果、加熱されたメモリ素子の飽和保磁力(即ち、メモリ素子の磁気的向きを切り替える際の容易さ)は減少し、比較的小さい切替え磁界で、そのメモリ素子に書き込みを行うことが可能になる。
図3Aは、室温における飽和保磁力(Hc)の一例を示すグラフであり、図3Bは、高温(例えば室温よりも50℃高い温度)における飽和保磁力(Hc)の一例を示すグラフである。高温では、磁気メモリ素子のデータ層の磁気的向きが、比較的小さい合成磁界で切り替わる。従って、磁気メモリ素子を加熱すれば、書込み電流(I,I)のうちの一方又は両方の大きさを小さくすることができる。ただし、1以上の書込み電流の大きさを小さくしなくても、合成磁界が存在する状況では、加熱された磁気メモリ素子は、加熱されていない磁気メモリ素子に比べて、高い信頼性で切り替わるであろう。選択された磁気メモリ素子の加熱の程度や、磁気メモリ素子に印加される書込み電流の大きさは、所望の切換え特性に応じて調節(例えばトレードオフ)することができる。
III.独立した加熱構造を必ずしも必要としない磁気メモリ構造の例
図4は、デバイス製造時に磁気メモリ素子をパターニングし、形成するためのマスクとして機能し、その後は、磁気メモリ素子を加熱するためのヒータとして機能するハードマスクを含む磁気メモリ構造の一例400を示す。つまり、例えば書込み動作時に、磁気メモリ素子100を熱によって補助するための独立したヒータ構造は必要ない。
磁気メモリ構造400は、磁気メモリ素子100(データ層110、スペーサ層120及び基準層130を含む)と、磁気メモリ素子100の上に配置されたハードマスク410と、第1の書込み導体210(例えばビット線)と、第2の書込み導体220(例えばワード線)と、一対の付加的な導体430a〜430bと、第1の書込み導体210を付加的な導体430a〜430bから絶縁するための絶縁性材料(例えば誘電体)420とを含む。
ハードマスク410は、デバイス製造時に(例えば当該技術分野において既知のフォトリソグラフィプロセスを用いて)メモリ素子100のパターニングに使用され、パターニング工程が終了した後も除去されない。ハードマスク410によってパターニングされた磁気メモリ素子100は、有機物マスクによってパターニングされた素子に比べて安定した形状を有する。
一般に、ハードマスクは有機物フォトレジストに比べて、エッチングによる除去が難しい。ハードマスク材料の例には、C、TaN、SiC、SiN及びSiOなどがある。磁気メモリ構造400の場合、ハードマスク410は、ダイヤモンド状炭素のような高周波電磁界からのエネルギーを吸収可能な1以上の材料からなる。400℃程度の高温においても、ダイヤモンド状炭素は熱的にも、電気的にも、構造的にも安定している。
一実施形態において、ハードマスク410の横方向寸法は磁気メモリ素子と実質的に同じである。ハードマスク410の厚さはエッチング速度や他の考慮事柄(例えば使用される材料など)などによって異なる。ダイヤモンド状炭素のハードマスクは非常に薄くすることができ、例えば10〜100ナノメートルくらいにすることができる。
ハードマスク410は導電性であってもよい。一実施形態においてハードマスクは、メモリ素子100の抵抗値に対し、約0.5%〜50%の抵抗値を有する。一実施形態において、ハードマスク410は線形抵抗素子としても機能する場合がある。ハードマスク410の抵抗率は、堆積状態に応じて何桁も変化する可能性がある。例えば、ダイヤモンド状炭素の抵抗率は、ハードマスク410の堆積中にドープされる窒素(N)の量に応じて変化する可能性がある。ハードマスク410によって得られる抵抗は、単一の短絡した磁気メモリ素子によって、列全体(又は行全体)に誤りが発生することを防止するのに役立つ。ハードマスク410を付加的な抵抗素子として実施することによるこの利点、及び他の利点については、本願と同じ譲受人に譲渡されたNickelによる米国特許第6,633,497号に更に詳しく記載されている。
一実施形態では、ハードマスク410が導電性である場合、ハードマスク410と第2の導体220との間に絶縁層(図示せず)を形成する。
ハードマスク410は、例えば書込み動作の直前又は書き込み動作中に、磁気メモリ素子100のデータ層110を加熱できるくらい十分近くに配置されていれば、データ層110に接触している必要は必ずしもない(例えば、ハードマスク410とデータ層110との間に他の層を配置してもよい)が、接触していてもよい。
一実施形態において、付加的な導体430a〜430bは、Cu、Al、AlCu、Ta、W、Au、Agのような1以上の導電性材料、それらの導電性材料のうちの1以上からなる合金、及び/又は、他の導電性材料(複数の場合もあり)及び合金(複数の場合もあり)を含む。
図4に示した付加的な導体430a〜430bの物理構造は単なる例に過ぎない。当業者には直ぐに分かるとおり、付加的な導体430a〜430bはハードマスク410に隣接して形成することもでき、それによって、導体から発生する高周波電磁界をハードマスク410に効率よく吸収させ、ハードマスク410を所望の温度まで加熱させることもできる。
当該技術分野では、付加的な層を有するメモリ構造も知られている。それらは、設計上の選択によっては、本明細書に記載する種々の実施形態で実施することもできる。例えば、他の磁気メモリ構造には、シード層、反強磁性(AFM)層、保護キャップ層及び/又は他の層がある。シード層はAFM層における結晶配向を高める。シード層に使用される材料の例には、Ta、Ru、NiFe、Cu又はこれらの材料の組み合わせがある。AFM層は、基準層130の磁気安定性を向上させる。AFM層の材料の例には、IrMn、FeMn、NiMn、PtMn及び/又は他の既知の材料がある。保護キャップ層は、データ層110を環境から保護する働きをし(例えば、データ層110の酸化を抑制することにより)、当該技術分野において既知の任意の適当な材料を用いて形成される。保護キャップ層の材料の例には、Ta、TaN、Cr、Al、Ti、DLC及び/又は更に他の材料がある。説明を簡単にするために、これらの付加的層は図示していない。
書込み導体210及び220は、Cu、Al、AlCu、Ta、W、Au、Ag、それらの導電性材料のうちの1以上からなる合金、及び/又は、他の導電性材料(複数可)及び合金(複数可)から形成される。書込み導体210及び220は、堆積その他の当該技術分野において既知の技術(例えばスパッタリング、蒸着、電気めっきなど)によって形成することができる。図4に示した書込み導体210及び220は単なる例にすぎない。設計上の選択によっては、他の構造を実施することも可能であることは、当業者には明らかであろう。例えば、1以上の書込み導体210及び220の少なくとも一部を強磁性被覆材料によって被覆したり、断熱材料(例えば誘電体、空気、真空など)等によってメモリ素子100から断熱することもできる。被覆を実施する場合、その被覆は、低熱伝導率(例えばアモルファス金属、ドープされた半導体及び/又は他の材料又は合金)及び/又は強磁性の特性を有する1以上の材料から構成することができる。例えば、第1の書込み導体210に被覆を実施した場合、メモリ素子100は書込み導体210に接触するのではなく、書き込み導体210の被覆の一部に電気的に接触するため、書込み導体210を通る熱の伝達が減少する。
データ層110は、1以上の強磁性材料からなる。一実施形態において、データ層110に適した強磁性材料には、限定はしないが、NiFe、NiFeCo、CoFe、アモルファス強磁性合金(例えばCoZrNb、CoFeB)、及び他の材料などがある。一実施形態において、データ層110は、反強磁性体(AFM)に接触する強磁性体(FM)からなる。FM層をAFM層に結合することにより、データ層の飽和保磁力を所望の温度依存性にすることができる。例えば、大きなFM−AFM交換異方性により、室温において高い飽和保磁力を達成することができる。高い室温飽和保磁力は、選択された行及び/又は列上にある選択されていないメモリ素子が誤って書き込まれることを防止する。AFM材料の例には、限定はしないが、イリジウムマンガン(IrMn)、鉄マンガン(FeMn)、ニッケルマンガン(NiMn)、酸化ニッケル(NiO)、プラチナマンガン(PtMn)及び/又は他の材料などがある。
一実施形態において、スペーサ層120はトンネル障壁層である(例えば、メモリ素子100がTMRメモリ素子の場合)。この実施形態では、スペーサ層120は、SiO、SiN、MgO、Al、AlN及び/又は他の絶縁材料から形成することができる。
他の実施形態において、スペーサ層120は非磁性の導電層である(例えば、メモリ素子100がGMRメモリ素子の場合)。この実施形態では、スペーサ層120は、Cu、Au、Ag及び/又は他の非磁性の導電性材料から形成することができる。
基準層130は、単一の材料層であってもよいし、複数の材料層から形成してもよい。例えば、基準層130は1以上の強磁性材料を含む場合がある。一実施形態では、基準層130に適する強磁性材料には、NiFe、NiFeCo、CoFe、アモルファス強磁性合金(例えばCoZrNb、CoFeB)及び他の材料がある。
一般に、メモリ構造は、上側ピン止め構造(基準層130がデータ層110の上にある構造)又は下側ピン止め構造(基準層130がデータ層110の下にある構造)で形成される。説明を簡単にするために、図4は下側ピン止め構造の例を示している。当業者であれば、他の構造(例えば上側ピン止め)で実施してもよいことは明らかであろう。例えば、上側ピン止め構造の場合、ハードマスク410は、代わりに、基準層130に隣接して配置することができる。
図5は、磁気メモリ構造400を形成するためのプロセスの例を示す。
VI.図4の磁気メモリ構造を形成するためのプロセスの例
図5は、磁気メモリ構造400を形成するためのプロセスの一例を示している。図6A〜図6Iは、図5の処理ステップに従って形成される磁気メモリ構造の例を示す。
ステップ510では、堆積又は当該技術分野において既知の他の類似の技法により、誘電体材料の層を形成する。一実施形態では、形成された誘電体材料が、化学機械平坦化(CMP)のような平坦化処理によって平坦化される。図6Aは、平坦化された誘電体材料の層610の一例を示している。
ステップ520では、当該技術分野において既知のドライエッチング処理又はウエットエッチング処理により、誘電体材料にトレンチを形成する。図6Bは、トレンチ620を有する誘電体材料の層610の一例を示している。
ステップ530では、堆積又は当該技術分野において既知の他の類似の技法により、導電性材料の層を形成する。図6Cは、誘電体材料の層610上に形成された導電性材料の層630の一例を示している。
ステップ540では、異方性エッチングを実施し、導電性材料を異なる速度でエッチングする。一実施形態では、異方性エッチングによってトレンチの上側表面及び下側表面にある導電性材料を除去し、トレンチの側壁にある導電性材料は実質的に無傷のまま残される。異方性エッチングを実施するための技法は当該技術分野で既知のものであり、本明細書において詳しく説明する必要はない。図6Dは、トレンチの側壁に残った導電性材料640の例を示している。
ステップ550では、堆積又は当該技術分野において既知の他の類似の技法により、別の誘電体材料の層を形成する。一実施形態では、形成された誘電体材料が、化学機械平坦化(CMP)のような平坦化工程によって平坦化される。図6Eは、導電性材料640、及び最初の誘電体材料の層610の上に形成された、平坦化された別の誘電体材料の層650を示している。
ステップ560では、当該技術分野において既知の技法により、第1の導体210を形成する。一実施形態では、この第1の導体210は誘電体層によって互いに絶縁される。図6Fは、誘電体層660によって互いに絶縁された第1の導体210を示している。
ステップ570では、磁気メモリ素子及びハードマスク層を形成するための材料を当該技術分野において既知の堆積技法によって形成する。一実施形態では、磁気メモリ素子は、基準層130、スペーサ層120、及びデータ層110を含み(下側ピン止め構造の場合)、それらが記載した順に堆積される。図6Gは、第1の導体210上に形成された磁気メモリ素子110〜130と、データ層110上に形成されたハードマスク670とを示している。
ステップ580では、当該技術分野において既知のフォトリソグラフィパターニング技法によりハードマスク層670をパターニングし、(所望の)磁気メモリ素子と実質的に同じ寸法のハードマスクを形成し、そのハードマスク410を用いて、磁気メモリ素子100を形成する。図6Hは、ハードマスク410をマスクとして用いてパターニングされ、形成されたメモリ素子100の例を示している。
ステップ590では、当該技術分野において既知の技法を用いて、ハードマスク410の上に第2の導体220を形成する。一実施形態では、第2の導体220を形成する前に、誘電体材料の層(図示せず)を形成して磁気メモリ素子を互いに分離し、その後、エッチングして(例えばCMPによる)、磁気メモリ素子の上側を露出させる。図6Iは、図4の磁気メモリ構造400に似た磁気メモリ構造の例を示している。図6Iでは、導電性材料640をデコーダ及び電源(図7に示される)に結合し、付加的な導体430a〜430bを形成することができる。
説明を簡単にするために、図6Iには下側ピン止め構造しか描いていない。任意の特定の設計要件に従い、本明細書に開示した例示的なプロセスを用いて、上側ピン止め構造を実施することも可能であることは、当業者には明らかであろう。
V.例示的な磁気メモリ構造アレイの平面図の例
図7は、磁気メモリ素子100a〜100cのアレイの近くに形成された付加的な導体430a〜430bの例を示す平面図である。説明を簡単にするために、磁気メモリ構造内の種々の他の素子(例えば書込み導体、ハードマスク、磁気メモリ素子の種々の層など)は図示していない。
磁気メモリ素子100a〜100cの近くに配置されたハードマスク410(図示せず)の加熱に使用される高周波電流を供給するために、付加的な導体430a〜430b(の一端)が、デコーダ710及び電源720に接続される。一実施形態では、磁気メモリ素子の行(又は列)毎に、付加的な導体430a〜430b(の他端)は互いに接続される。従って、ある行のある磁気メモリ素子が選択されると(例えば書込み動作の際に)、電源720に結合されたデコーダ710は、その行の付加的な導体430a〜430bに、その行内の全てのハードマスクを加熱するだけの十分な電流を供給することになる。書込み動作の一例では、選択された磁気メモリ素子において交差する2つの書込み導体210及び220(図示せず)に、別々に書込み電流が供給される。交差する2つの書込み導体210及び220から生じる合成磁界により、選択された(そして加熱された)メモリ素子の磁気的向きは有効に切り替えられる。加熱されたハードマスクを有する行内の他の(加熱された)磁気メモリ素子は、2つの書込み導体210及び220のうちの一方から生じる磁界しか受けないことになる。一方から生じる磁界は、磁気的向きを切り替えるには不十分である。
VI.例示した磁気メモリ構造の応用形態の例
本明細書に例として記載した磁気メモリ構造は、任意のMRAMにおいて実施することができる。MRAMは、不揮発性メモリを必要とする任意のシステムにおいて実施することができる。例えば、MRAMはコンピュータ、デジタルカメラ、及び/又はプロセッサ及びインターフェースモジュールを有する他のコンピュータシステムで実施される場合がある。
VII.結び
上記の例は特定の実施形態を示すものであり、それらの実施形態から、他の実施形態、変形形態、及び変更形態も当業者には明らかであろう。従って、本発明が上で説明した特定の実施形態に限定されることはなく、本発明は特許請求の範囲によって規定される。
関連技術における磁気メモリ素子の例を示す図である。 関連技術における、複数の磁気メモリ素子を有するメモリアレイの例を示す図である。 磁気メモリ素子の磁気的向きを切り替えるための、室温における飽和保磁力の例を示す図である。 磁気メモリ素子の磁気的向きを切り替えるための、高温における飽和保磁力の例を示す図である。 製造工程において磁気メモリ素子の形成に利用され、後に磁気メモリ素子の加熱に使用されるハードマスクを有する磁気メモリ構造の例を示す断面図である。 図4の磁気メモリ構造を形成するためのプロセスの一例を示す図である。 図5のプロセスに従って製造されている一工程における磁気メモリ構造を示す図である。 図5のプロセスに従って製造中の一工程における磁気メモリ構造を示す図である。 図5のプロセスに従って製造中の一工程における磁気メモリ構造を示す図である。 図5のプロセスに従って製造中の一工程における磁気メモリ構造を示す図である。 図5のプロセスに従って製造中の一工程における磁気メモリ構造を示す図である。 図5のプロセスに従って製造中の一工程における磁気メモリ構造を示す図である。 図5のプロセスに従って製造中の一工程における磁気メモリ構造を示す図である。 図5のプロセスに従って製造中の一工程における磁気メモリ構造を示す図である。 図5のプロセスに従って製造中の一工程における磁気メモリ構造を示す図である。 磁気メモリ素子アレイの近くに付加的な導体を有する磁気メモリ構造アレイの一例を示す平面図である。

Claims (10)

  1. 複数のハードマスクと、
    前記複数のハードマスクのうちの対応する1つを使用してそれぞれ形成された複数の磁気メモリ素子と、
    前記ハードマスクの近くに配置された少なくとも1つの導体であって、前記ハードマスクによって吸収可能な高周波電磁界を生成するための電流を運び、前記磁気メモリ素子のうちの1以上の温度を上昇させ、その磁気的向きの切り換えを熱によって補助する働きをする、少なくとも1つの導体と
    からなる磁気ランダムアクセスメモリ。
  2. 前記導体に結合され、前記磁気メモリ素子のうちの1以上を加熱のために選択する働きをする、デコーダを更に含む、請求項1に記載の磁気ランダムアクセスメモリ。
  3. 前記ハードマスクはダイヤモンド状炭素を含む、請求項1に記載の磁気ランダムアクセスメモリ。
  4. メモリ素子アレイ内の熱アシスト磁気メモリ素子にデータを書き込む方法であって、
    選択されたメモリ素子に対応するハードマスクを加熱するステップであって、該ハードマスクが、
    前記アレイの製造時に前記選択されたメモリ素子をパターニングするのに使用されたものであり、
    前記ハードマスクの近くの高周波電磁界からのエネルギー吸収することによって加熱され、
    それによって前記選択されたメモリ素子の飽和保磁力を低下させるものである、加熱するステップと、
    低下された飽和保磁力において前記選択されたメモリ素子の磁気的状態を切り替えるのに十分なだけの書込み電流を印加するステップと
    からなる方法。
  5. 前記ハードマスクの近くに形成された導体を介して前記高周波電磁界を供給するステップを更に含む、請求項4に記載の方法。
  6. 前記ハードマスクはダイヤモンド状炭素を含む、請求項4に記載の方法。
  7. 熱アシスト磁気メモリ構造を形成する方法であって、
    ハードマスクを形成するステップと、
    前記ハードマスクを用いてメモリ素子をパターニングするステップと、
    前記ハードマスクを加熱するための高周波電磁界を供給するための少なくとも1つの導体を形成するステップと
    からなり、
    その後のデータ記憶動作の際に、前記高周波電磁界からのエネルギーを吸収することによって前記ハードマスクを加熱させることができ、それによって、書き込み電流が印加されたときの前記メモリ素子の磁気的状態の切り換えが熱によって補助される、方法。
  8. 前記ハードマスクは、前記高周波電磁界からのエネルギーを吸収可能な材料からなる、請求項7に記載の方法。
  9. ハードマスクを形成するステップと、
    前記ハードマスクを用いてメモリ素子をパターニングするステップと、
    前記ハードマスクを加熱するための高周波電磁界を供給するための少なくとも1つの導体を形成するステップとからなるプロセスによってそれぞれ生成された複数の熱アシスト磁気メモリ構造を含む不揮発性メモリアレイであって、
    その後の書き込み動作の際に、前記高周波電磁界からのエネルギーを吸収することによって前記ハードマスクを加熱させることができ、それによって、書き込み電流が印加されたときの前記メモリ素子の磁気的状態の切り換えが熱によって補助される、不揮発性メモリアレイ。
  10. メモリ素子アレイ内の熱アシスト磁気メモリ素子にデータを書き込むための装置であって、
    選択されたメモリ素子の近くに形成されたハードマスクを加熱し、その飽和保持力を低下させる手段と、
    低下された飽和保持力において前記選択されたメモリ素子の磁気的状態を切り替えるのに十分なだけの書き込み電流を印加する手段と
    を含み、前記ハードマスクは、
    前記メモリ素子の製造時に前記選択されたメモリ素子をパターニングするのに使用されたものであり、
    該ハードマスクの近辺における高周波電磁界からのエネルギーを吸収することによって加熱される、装置。

JP2005378653A 2005-01-12 2005-12-28 磁気メモリ素子の熱アシスト切替えを行うためのハードマスク Withdrawn JP2006196893A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/034,419 US7196955B2 (en) 2005-01-12 2005-01-12 Hardmasks for providing thermally assisted switching of magnetic memory elements

Publications (1)

Publication Number Publication Date
JP2006196893A true JP2006196893A (ja) 2006-07-27

Family

ID=36643184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378653A Withdrawn JP2006196893A (ja) 2005-01-12 2005-12-28 磁気メモリ素子の熱アシスト切替えを行うためのハードマスク

Country Status (3)

Country Link
US (1) US7196955B2 (ja)
JP (1) JP2006196893A (ja)
DE (1) DE102005059555A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196897A (ja) * 2005-01-12 2006-07-27 Hewlett-Packard Development Co Lp 磁気メモリ素子の切替えを熱的に支援するためのrf電磁界加熱式ダイオード
JP2020136661A (ja) * 2019-02-22 2020-08-31 サンディスク テクノロジーズ エルエルシー 垂直スピントランスファートルクmramメモリセル

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603678B2 (en) * 2001-01-11 2003-08-05 Hewlett-Packard Development Company, L.P. Thermally-assisted switching of magnetic memory elements
KR101124504B1 (ko) * 2005-09-22 2012-03-15 삼성전자주식회사 ALD 공정에 의한 비정질 NiO 박막의 제조방법 및상기 비정질 NiO 박막을 이용한 비휘발성 메모리 소자
FR2924851B1 (fr) 2007-12-05 2009-11-20 Commissariat Energie Atomique Element magnetique a ecriture assistee thermiquement.
KR20170116180A (ko) 2009-09-17 2017-10-18 아이아이아이 홀딩스 3, 엘엘씨 자기저항소자 및 이를 이용한 비휘발성 반도체 기억장치
US9576811B2 (en) 2015-01-12 2017-02-21 Lam Research Corporation Integrating atomic scale processes: ALD (atomic layer deposition) and ALE (atomic layer etch)
US9806252B2 (en) * 2015-04-20 2017-10-31 Lam Research Corporation Dry plasma etch method to pattern MRAM stack
US9870899B2 (en) 2015-04-24 2018-01-16 Lam Research Corporation Cobalt etch back
US9972504B2 (en) 2015-08-07 2018-05-15 Lam Research Corporation Atomic layer etching of tungsten for enhanced tungsten deposition fill
US10096487B2 (en) 2015-08-19 2018-10-09 Lam Research Corporation Atomic layer etching of tungsten and other metals
US9984858B2 (en) 2015-09-04 2018-05-29 Lam Research Corporation ALE smoothness: in and outside semiconductor industry
US10727073B2 (en) 2016-02-04 2020-07-28 Lam Research Corporation Atomic layer etching 3D structures: Si and SiGe and Ge smoothness on horizontal and vertical surfaces
US10229837B2 (en) 2016-02-04 2019-03-12 Lam Research Corporation Control of directionality in atomic layer etching
US9991128B2 (en) 2016-02-05 2018-06-05 Lam Research Corporation Atomic layer etching in continuous plasma
US10269566B2 (en) 2016-04-29 2019-04-23 Lam Research Corporation Etching substrates using ale and selective deposition
US9837312B1 (en) 2016-07-22 2017-12-05 Lam Research Corporation Atomic layer etching for enhanced bottom-up feature fill
US10566212B2 (en) 2016-12-19 2020-02-18 Lam Research Corporation Designer atomic layer etching
US10559461B2 (en) 2017-04-19 2020-02-11 Lam Research Corporation Selective deposition with atomic layer etch reset
US9997371B1 (en) 2017-04-24 2018-06-12 Lam Research Corporation Atomic layer etch methods and hardware for patterning applications
US10832909B2 (en) 2017-04-24 2020-11-10 Lam Research Corporation Atomic layer etch, reactive precursors and energetic sources for patterning applications
CN111937122A (zh) 2018-03-30 2020-11-13 朗姆研究公司 难熔金属和其他高表面结合能材料的原子层蚀刻和平滑化
US10840441B2 (en) 2018-09-14 2020-11-17 International Business Machines Corporation Diamond-like carbon hardmask for MRAM

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724674B2 (en) * 2000-11-08 2004-04-20 International Business Machines Corporation Memory storage device with heating element
US6385082B1 (en) * 2000-11-08 2002-05-07 International Business Machines Corp. Thermally-assisted magnetic random access memory (MRAM)
US6603678B2 (en) * 2001-01-11 2003-08-05 Hewlett-Packard Development Company, L.P. Thermally-assisted switching of magnetic memory elements
US6633497B2 (en) * 2001-06-22 2003-10-14 Hewlett-Packard Development Company, L.P. Resistive cross point array of short-tolerant memory cells
US6704220B2 (en) * 2002-05-03 2004-03-09 Infineon Technologies Ag Layout for thermally selected cross-point MRAM cell
US7105361B2 (en) * 2003-01-06 2006-09-12 Applied Materials, Inc. Method of etching a magnetic material
US6933239B2 (en) * 2003-01-13 2005-08-23 Applied Materials, Inc. Method for removing conductive residue
US7161875B2 (en) * 2003-06-12 2007-01-09 Hewlett-Packard Development Company, L.P. Thermal-assisted magnetic memory storage device
US6961263B2 (en) * 2003-09-08 2005-11-01 Hewlett-Packard Development Company, L.P. Memory device with a thermally assisted write
US6930369B2 (en) * 2003-11-14 2005-08-16 Hewlett-Packard Development Company, L.P. Thin film device and a method of providing thermal assistance therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196897A (ja) * 2005-01-12 2006-07-27 Hewlett-Packard Development Co Lp 磁気メモリ素子の切替えを熱的に支援するためのrf電磁界加熱式ダイオード
JP4690897B2 (ja) * 2005-01-12 2011-06-01 三星電子株式会社 磁気メモリ素子の切替えを熱的に支援するためのrf電磁界加熱式ダイオード
JP2020136661A (ja) * 2019-02-22 2020-08-31 サンディスク テクノロジーズ エルエルシー 垂直スピントランスファートルクmramメモリセル

Also Published As

Publication number Publication date
US20060152967A1 (en) 2006-07-13
DE102005059555A1 (de) 2006-07-20
US7196955B2 (en) 2007-03-27

Similar Documents

Publication Publication Date Title
US7196955B2 (en) Hardmasks for providing thermally assisted switching of magnetic memory elements
US6963098B2 (en) Thermally operated switch control memory cell
US7092283B2 (en) Magnetic random access memory devices including heat generating layers and related methods
CN103003883B (zh) 用于场复位自旋力矩mram的结构和方法
US6819586B1 (en) Thermally-assisted magnetic memory structures
KR102406722B1 (ko) 자기 메모리 장치 및 그 제조 방법
US9461243B2 (en) STT-MRAM and method of manufacturing the same
EP2656346B1 (en) Memory array having local source lines
WO2012050746A1 (en) Structures and operating method for a field-reset spin-torque mram
US9741929B2 (en) Method of making a spin-transfer-torque magnetoresistive random access memory (STT-MRAM)
JP2005150739A (ja) 薄膜デバイスおよび該薄膜デバイスにおいて熱による補助を実施する方法
JP4690897B2 (ja) 磁気メモリ素子の切替えを熱的に支援するためのrf電磁界加熱式ダイオード
JP4580211B2 (ja) 軟らかい基準層を有する磁気メモリセル、不揮発性メモリアレイ、および、磁気メモリセルを形成する方法
JP2005129950A (ja) 異なる寸法のメモリセル層を有する磁気メモリ構造を形成するための工程
US6911685B2 (en) Thermally-assisted magnetic memory structures
JP4572102B2 (ja) 状態の切り換えを容易化するための加熱式mramセル
US7056749B2 (en) Simplified magnetic memory cell
JP2005123628A (ja) 磁気メモリデバイス
US7138341B1 (en) Process for making a memory structure
US6924539B2 (en) Magnetic memory cell having an annular data layer and a soft reference layer

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090205