JP2006192422A - Method for producing water suitable for drinking by reducing boron content in water - Google Patents

Method for producing water suitable for drinking by reducing boron content in water Download PDF

Info

Publication number
JP2006192422A
JP2006192422A JP2005173607A JP2005173607A JP2006192422A JP 2006192422 A JP2006192422 A JP 2006192422A JP 2005173607 A JP2005173607 A JP 2005173607A JP 2005173607 A JP2005173607 A JP 2005173607A JP 2006192422 A JP2006192422 A JP 2006192422A
Authority
JP
Japan
Prior art keywords
water
boron
chelate
membrane
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005173607A
Other languages
Japanese (ja)
Inventor
Shigeyuki Matsuo
茂之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIURA DSW KK
Original Assignee
MIURA DSW KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIURA DSW KK filed Critical MIURA DSW KK
Priority to JP2005173607A priority Critical patent/JP2006192422A/en
Priority to KR1020050085875A priority patent/KR20060069237A/en
Publication of JP2006192422A publication Critical patent/JP2006192422A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/10Location of water treatment or water treatment device as part of a potable water dispenser, e.g. for use in homes or offices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing water suitable for drinking by reducing a boron content in water. <P>SOLUTION: Boron-containing water is passed through a reverse osmosis membrane separator, next the water permeating into the membrane and discharged from the apparatus is passed through an apparatus packed with a chelate formative fiber having chelate formation ability to a boron element and a boron compound, and a remaining boron content is reduced during permeating into the membrane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水中のホウ素含有量を低減させて飲用に適した水を製造する方法に関する。特に、本発明は、海水やかん水の淡水化処理、浄(上)水処理等、水中のホウ素含有量を低減させる方法に関する。また、本発明は、ホウ素含有量が低減された飲用に適したミネラル含有水を製造する方法にも関する。更に、本発明は、ホウ素含有量が低減され、塩等の溶質が濃縮された水及び1価イオンが濃縮された1価イオン濃縮水を製造する方法に関する。   The present invention relates to a method for producing water suitable for drinking by reducing the boron content in water. In particular, the present invention relates to a method for reducing the boron content in water, such as seawater and brackish water desalination treatment and purified (upper) water treatment. The present invention also relates to a method of producing mineral-containing water suitable for drinking with a reduced boron content. Furthermore, the present invention relates to a method for producing water in which the boron content is reduced and solutes such as salts are concentrated and monovalent ion concentrated water in which monovalent ions are concentrated.

近年、新たな水源の確保のために、逆浸透膜(以下、RO膜という)を用いた海水淡水化事業が進められている。また、井戸水しか無く、その水質が悪い地域では、RO膜を使用して浄化が行われている。RO膜を使用して海水等を浄化処理すれば、ホウ素等の一部のものを除き溶質の90%以上が除かれることから、ホウ素を除く水道水質管理項目の基準値あるいは指針値をほぼ満たす水質の淡水を得ることができる。   In recent years, seawater desalination projects using reverse osmosis membranes (hereinafter referred to as RO membranes) have been promoted in order to secure new water sources. In areas where there is only well water and the water quality is poor, purification is performed using RO membranes. If RO membranes are used to purify seawater, etc., 90% or more of the solute is removed except for some of the boron, etc., so it almost meets the standard or guideline values for tap water quality management items excluding boron. Water quality fresh water can be obtained.

ホウ素は、例えば海水中に約5mg/l程度(分析方法により若干異なる)含まれており、従来の海水淡水化RO膜による生産水のホウ素濃度は0.8〜1.5mg/l程度(水温、原水水質による)である。自然に存在する淡水中にも一般にホウ素は、約0〜2mg/l程度含まれる。   Boron is contained, for example, in seawater at about 5 mg / l (differs slightly depending on the analysis method), and the boron concentration of the produced water by the conventional seawater desalination RO membrane is about 0.8 to 1.5 mg / l (water temperature). , Depending on the quality of raw water). Generally, about 0 to 2 mg / l of boron is also contained in naturally occurring fresh water.

ホウ素に関しては、日本の水道法の規定に基づき、平成16年4月1日施行の水質基準に関する省令において、ホウ素及びその化合物は、ホウ素の量に関して、1.0mg/l以下が示され、WHO(世界保健機関)の飲料水水質ガイドラインで暫定値0.5mg/l以下が示され、最も厳しい値を設定していると思われる韓国においては0.3mg/l以下さえ示されている。ホウ素の量に関する日本の水道水の水質基準の要件が、世界的に見て緩やかであり、早晩引き下げられるのは必定である。   Regarding boron, in the Ministerial Ordinance on Water Quality Standards enforced on April 1, 2004 based on the provisions of the Water Supply Act of Japan, boron and its compounds are 1.0 mg / l or less in terms of the amount of boron. (World Health Organization) drinking water quality guidelines show a provisional value of 0.5 mg / l or less, and even South Korea, which seems to have set the strictest value, shows even 0.3 mg / l or less. The requirement of Japanese tap water quality standards regarding the amount of boron is gradual worldwide, and it must be lowered early.

ホウ素除去法として、海水をRO膜に通水して、ホウ素等の溶質が除去された膜透過水を取り出し、この膜透過水を陽イオン交換樹脂層に通水して、膜透過水中に残存するホウ素をイオン交換により除去する水処理方法が提案された(例えば特許文献1を参照)。しかし、ホウ素選択性吸着イオン交換樹脂により海水から選択的にホウ酸を捕捉する場合に、イオン交換に機能する部位として外周面と細孔部とがあるが、細孔部は拡散が遅くて実質的に全官能基がイオン交換に寄与し得ないので、イオン交換樹脂全体としては有効活用率が極めて低く、且つイオン交換し得る元素の絶対量も不十分とならざるを得ない。しかも、イオン交換樹脂は、イオン性のカチオンやアニオンを捕捉するため、ホウ素以外の金属イオン等を捕捉してイオン交換性能が早く低下する。更に、従来の粒状イオン樹脂では、上述したように細孔部への拡散が遅いため、非処理液に対してかなり長時間接触させなければ十分な除去効果を得ることができず、また実質的に有効な比表面積を拡大するために粒径を余りに小さくすると、圧力損失が大きくなる等の欠点があった。   As a boron removal method, seawater is passed through the RO membrane, the membrane permeate from which solutes such as boron have been removed is taken out, this membrane permeate is passed through the cation exchange resin layer, and remains in the membrane permeate. A water treatment method has been proposed in which boron to be removed is removed by ion exchange (see, for example, Patent Document 1). However, when boric acid is selectively captured from seawater by a boron-selective adsorption ion exchange resin, there are an outer peripheral surface and pores as sites that function for ion exchange. Since all functional groups cannot contribute to ion exchange, the effective utilization rate of the ion exchange resin as a whole is extremely low, and the absolute amount of elements capable of ion exchange must be insufficient. In addition, since the ion exchange resin captures ionic cations and anions, it captures metal ions other than boron, and the ion exchange performance quickly decreases. Further, in the conventional granular ion resin, since the diffusion into the pores is slow as described above, a sufficient removal effect cannot be obtained unless it is brought into contact with the non-treatment liquid for a considerably long time. However, if the particle size is made too small in order to increase the effective specific surface area, the pressure loss increases.

一方、ホウ素等の金属又はそれらの化合物とのキレート形成能を有する新規な繊維が提案されている(例えば特許文献2を参照)。このキレート形成性繊維は、ホウ素等の金属元素又はそれらの化合物に対して優れた捕捉性能を有するが、他の金属イオンに対してはキレート形成能を持たない。そのため、このキレート形成性繊維単独では、海水等を脱塩処理して淡水化するのに利用することはできない。   On the other hand, a novel fiber having chelating ability with metals such as boron or their compounds has been proposed (see, for example, Patent Document 2). This chelate-forming fiber has excellent trapping performance for metal elements such as boron or their compounds, but does not have chelate-forming ability for other metal ions. Therefore, this chelate-forming fiber alone cannot be used to desalinate seawater or the like to make it desalinated.

このように、飲料水において、ホウ素の含有量を低減させることが強く望まれている。   Thus, it is strongly desired to reduce the boron content in drinking water.

また、海水等は、人間にとって必要なカリウム、カルシウム、マグネシウム等のミネラルを豊富に含む資源である。かかるミネラルを豊富に含む資源から、直接飲用に適したミネラルを豊富に含有するミネラル含有水を製造することができるならば望ましいことである。   Seawater and the like are resources that are rich in minerals such as potassium, calcium, and magnesium necessary for humans. It would be desirable if mineral-containing water rich in minerals suitable for direct drinking could be produced from such mineral-rich resources.

更に、海水等から、ホウ素の含有量が低減され、塩等の溶質が濃縮された水及び1価イオンが濃縮された1価イオン濃縮水を製造することができるならば望ましいことである。
特開平10−15356号公報 再表98−42910号公報
Furthermore, it would be desirable if water with reduced boron content and concentrated solutes such as salt and monovalent ion-enriched water with concentrated monovalent ions could be produced from seawater or the like.
Japanese Patent Laid-Open No. 10-15356 No. 98-42910

本発明の目的は、前記事情に鑑み、飲料用水において、ホウ素の含有量を簡便に低減させる方法を提供することである。本発明の目的は、また、飲用に適したミネラル含有水を製造する方法も提供することである。本発明の目的は、更に、ホウ素の含有量が低減され、塩等の溶質が濃縮された濃縮水及び1価イオンが濃縮された1価イオン濃縮水を製造する方法を提供することである。   In view of the above circumstances, an object of the present invention is to provide a method for easily reducing the boron content in drinking water. The object of the present invention is also to provide a method for producing mineral-containing water suitable for drinking. Another object of the present invention is to provide a method for producing a concentrated water in which the boron content is reduced and a solute such as a salt is concentrated and a monovalent ion concentrated water in which a monovalent ion is concentrated.

本発明者は、海水淡水化やホウ素含有水処理において、ホウ素選択性のキレート形成性繊維を用いることにより、ホウ素の含有量を簡便に低減させることが可能であることを見出し、本発明を完成するに至った。また、本発明者は、海水等から塩化ナトリウムのような塩を除き、ホウ素の含有量を簡便に低減させることにより、有用なミネラルを豊富に含むミネラル含有水を直接製造することができることを見出し、本発明を完成するに至った。更に、本発明者は、海水等から得られる溶質が濃縮された濃縮水及び1価イオンが濃縮された1価イオン濃縮水のホウ素の含有量を簡便に低減させることが可能であることを見出し、本発明を完成するに至った。   The present inventor found that the boron content can be easily reduced by using a boron-selective chelate-forming fiber in seawater desalination and boron-containing water treatment, and the present invention has been completed. It came to do. In addition, the present inventors have found that mineral-containing water rich in useful minerals can be directly produced by removing a salt such as sodium chloride from seawater or the like and simply reducing the boron content. The present invention has been completed. Furthermore, the present inventor has found that it is possible to easily reduce the boron content of concentrated water enriched with solutes obtained from seawater or the like and monovalent ion concentrated water enriched with monovalent ions. The present invention has been completed.

かくして本発明によれば、以下の1〜12の発明が提供される。
1.ホウ素含有水を逆浸透膜分離装置に通し、膜を透過して装置を出た水を、次いでホウ素やその化合物に対してキレート形成能を有するキレート形成性繊維を充填した装置に通して、膜透過水中に残存するホウ素含有量を低減させて飲用に適した水を製造する方法。
2.ホウ素含有水を、ホウ素やその化合物に対してキレート形成能を有するキレート形成性繊維を充填した装置に通してホウ素含有量を低減させ、次いで逆浸透膜分離装置に通して膜を透過する溶質が除去された飲用に適した水と膜を透過せずに溶質が濃縮された非透過水とを製造する方法。
3.ホウ素含有水を電気透析装置に通し、1価イオンが除去された脱1価イオン化水を、次いでホウ素やその化合物に対して優れたキレート形成能を有するキレート形成性繊維を充填した装置に通して、脱1価イオン化水中に残存するホウ素含有量を低減させて飲用に適したミネラル含有水を製造する方法。
4.ホウ素含有水を、ホウ素やその化合物に対して優れたキレート形成能を有するキレート形成性繊維を充填した装置に通してホウ素含有量を低減させ、次いで電気透析装置に通して1価イオンが除去された飲用に適したミネラル含有水と1価イオンが濃縮された1価イオン濃縮水とを製造する方法。
5.キレート形成性繊維が、繊維にキレート官能基を化学反応で結合させたものである上記1〜4のいずれか一に記載の方法。
6.前記電気透析装置が、陽イオン膜として1価イオン選択性膜を使用する上記3又は4に記載の方法。
7.前記ホウ素含有水が海水又はかん水である上記1〜6のいずれか一に記載の方法。
8.飲用に適した水は、ホウ素含有量が1.0mg/l以下でありかつミネラルをほとんど含有しないものである上記1、2、5、7のいずれか一に記載の方法。
9.飲用に適したミネラル含有水は、ホウ素含有量が1.0mg/l以下でありかつ1価イオンが選択的に低減されたものである上記3〜7のいずれか一に記載の方法。
10.ホウ素含有量が0.5mg/l以下である上記8又は9に記載の方法。
11.ホウ素含有量が0.3mg/l以下である上記10に記載の方法。
12.前記キレート形成性繊維は、繊維の分子中にアミノ基と、炭素に結合した少なくとも2個のヒドロキシル基とを持った基を有し、ホウ素やその化合物に対したものである上記1〜11のいずれか一に記載の方法。
Thus, according to the present invention, the following inventions 1 to 12 are provided.
1. The boron-containing water is passed through a reverse osmosis membrane separation device, the water that has permeated the membrane and exited the device is then passed through a device filled with chelating fibers that have chelating ability to boron and its compounds, and the membrane A method for producing water suitable for drinking by reducing the boron content remaining in permeated water.
2. Boron-containing water is passed through a device filled with chelating fibers that have chelating ability for boron and its compounds to reduce the boron content, and then passed through a reverse osmosis membrane separator to produce a solute that permeates the membrane. A method for producing removed drinking water and non-permeated water in which a solute is concentrated without passing through a membrane.
3. Boron-containing water is passed through an electrodialyzer, and demonovalent ionized water from which monovalent ions have been removed is then passed through a device filled with chelate-forming fibers having excellent chelate-forming ability for boron and its compounds. A method for producing mineral-containing water suitable for drinking by reducing the boron content remaining in demonovalent ionized water.
4). Boron-containing water is passed through a device filled with chelating fibers having excellent chelating ability for boron and its compounds to reduce the boron content and then passed through an electrodialyzer to remove monovalent ions. A method for producing mineral-containing water suitable for drinking and monovalent ion-enriched water enriched with monovalent ions.
5. 5. The method according to any one of 1 to 4 above, wherein the chelate-forming fiber is obtained by binding a chelate functional group to the fiber by a chemical reaction.
6). 5. The method according to 3 or 4 above, wherein the electrodialyzer uses a monovalent ion selective membrane as a cation membrane.
7). The method according to any one of 1 to 6 above, wherein the boron-containing water is seawater or brine.
8). 8. The method according to any one of the above 1, 2, 5, and 7, wherein water suitable for drinking has a boron content of 1.0 mg / l or less and hardly contains minerals.
9. The mineral-containing water suitable for drinking is the method according to any one of 3 to 7 above, wherein the boron content is 1.0 mg / l or less and monovalent ions are selectively reduced.
10. 10. The method according to 8 or 9 above, wherein the boron content is 0.5 mg / l or less.
11. The method according to 10 above, wherein the boron content is 0.3 mg / l or less.
12 The chelate-forming fiber has a group having an amino group and at least two hydroxyl groups bonded to carbon in a fiber molecule, and is directed to boron or a compound thereof. The method as described in any one.

本発明によれば、ホウ素含有水中のホウ素濃度を簡便にかつ効率的に低減させることができ、ホウ素の量に関する飲料水の水質基準の要件を、世界的に満足させることができる。また、ホウ素の含有量が低減され、かつ人間にとって必要なカリウム、カルシウム、マグネシウム等のミネラルを豊富に含む飲用に適したミネラル含有水を簡便に得ることができる。これより、飲料水とミネラル含有水とを任意の割合で配合しても、ホウ素の量に関する飲料水の水質基準の要件を、世界的に満足させることができる。更に、ホウ素の含有量が低減され、塩等の溶質が濃縮された濃縮水及び1価イオンが濃縮された1価イオン濃縮水を簡便に得ることができる。   According to the present invention, the boron concentration in the boron-containing water can be reduced easily and efficiently, and the requirements of the drinking water quality standard regarding the amount of boron can be satisfied worldwide. In addition, it is possible to easily obtain mineral-containing water suitable for drinking that contains abundant minerals such as potassium, calcium, and magnesium necessary for humans with a reduced boron content. From this, even if it mix | blends drinking water and mineral containing water in arbitrary ratios, the requirement of the water quality standard regarding the quantity of boron can be satisfied worldwide. Furthermore, it is possible to easily obtain concentrated water in which the boron content is reduced and solutes such as salts are concentrated and monovalent ion concentrated water in which monovalent ions are concentrated.

以下、本発明の第一の実施形態を図面を参照しながら説明する。図1において、海水等、ホウ素を含有する被処理水1を処理する水処理装置は、必要に応じて濾過槽等の前処理装置2と、RO膜を設けた膜分離装置3と、キレート形成性繊維充填塔4とを備えてなる。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In FIG. 1, a water treatment device that treats treated water 1 containing boron, such as seawater, includes a pretreatment device 2 such as a filtration tank, a membrane separation device 3 provided with an RO membrane, and chelate formation as necessary. And a fiber-filled tower 4.

キレート形成性繊維充填塔4はホウ素選択性のキレート形成性繊維床5を内部に充填してなる。   The chelate-forming fiber packed tower 4 is formed by filling a boron-selective chelate-forming fiber bed 5 inside.

このような水処理装置で処理を行う際には、被処理水1を必要に応じて前処理装置2に導入して精密濾過等を行い、浮遊物質等が十分に除去された濾過水6を得る。この濾過水6を膜分離装置3のRO膜に供給して、濾過水6中のホウ素等の溶質を膜分離により除去する。RO膜を透過してこれらの溶質が低減された水を透過水7として得、これらの溶質がRO膜を透過しないで濃縮された水を非透過水9として得る。   When processing with such a water treatment device, the treated water 1 is introduced into the pretreatment device 2 as necessary and subjected to microfiltration and the filtered water 6 from which suspended substances are sufficiently removed is obtained. obtain. This filtered water 6 is supplied to the RO membrane of the membrane separation device 3, and solutes such as boron in the filtered water 6 are removed by membrane separation. Water in which these solutes have been reduced by passing through the RO membrane is obtained as permeated water 7, and water concentrated without these solutes permeating through the RO membrane is obtained as non-permeated water 9.

このRO膜透過水7を更にキレート形成性繊維充填塔4に導入し、キレート形成性繊維床5を通過させて、RO膜透過水7中に残存するホウ素とキレートを形成させることによりホウ素を除去し、処理水8を得る。   This RO membrane permeated water 7 is further introduced into the chelate-forming fiber packed tower 4 and passed through the chelate-forming fiber bed 5 to remove boron by forming a chelate with boron remaining in the RO membrane permeated water 7. Then, treated water 8 is obtained.

このようにして得られた処理水8は、ホウ素やその他の溶質をほとんど含んでおらず、ホウ素含有量については、日本の水道水の水質基準の要件1.0mg/l以下、更にWHOの飲料水水質ガイドラインで暫定値0.5mg/l以下、なお更に韓国における水質基準0.3mg/l以下を十分に下回るか、あるいは検出限界以下であり、飲用に適した水である。   The treated water 8 thus obtained contains almost no boron or other solute, and the boron content is 1.0 mg / l or less of Japanese tap water quality standard, and further, a WHO beverage. The water quality guideline is 0.5 mg / l or less, and is still well below the water quality standard of 0.3 mg / l or less in Korea, or below the detection limit.

この実施形態に従って海水淡水化処理を行う場合に、処理水8中のホウ素の目標値を、例えば0.1mg/l以下と設定し、処理水8中のホウ素濃度を連続して検出していて、処理水8中のホウ素濃度が0.1mg/lを越える際に、キレート形成性繊維床を代える。   When performing seawater desalination according to this embodiment, the target value of boron in the treated water 8 is set to, for example, 0.1 mg / l or less, and the boron concentration in the treated water 8 is continuously detected. When the boron concentration in the treated water 8 exceeds 0.1 mg / l, the chelate-forming fiber bed is replaced.

ホウ素を捕捉したキレート形成性繊維床の交換は、例えばキレート形成性繊維充填塔4を並列に2個以上有し、ホウ素を捕捉したキレート形成性繊維床へのRO膜透過水7の供給を停止し、別のキレート形成性繊維充填塔へのRO膜透過水7の供給を開始するのが好ましい。別のキレート形成性繊維充填塔にRO膜透過水7を供給する間に、ホウ素を捕捉したキレート形成性繊維床を充填塔から取り出して新たなキレート形成性繊維を充填塔に充填することができる。また、別のキレート形成性繊維充填塔にRO膜透過水7を供給する間に、ホウ素を捕捉したキレート形成性繊維床を、例えば塩酸や硫酸等の強酸水溶液で処理することにより、キレートを形成して捕捉されたホウ素を簡単に離脱させることができ、それにより容易に再生することができる。   The exchange of the chelate-forming fiber bed capturing boron has, for example, two or more chelate-forming fiber packed towers 4 in parallel, and the supply of the RO membrane permeate 7 to the chelate-forming fiber bed capturing boron is stopped. Then, it is preferable to start supplying the RO membrane permeated water 7 to another chelate-forming fiber packed tower. While supplying RO membrane permeate 7 to another chelating fiber packed tower, the chelating fiber bed that has captured boron can be removed from the packed tower and filled with new chelating fiber. . Further, while supplying RO membrane permeated water 7 to another chelate-forming fiber packed tower, chelate is formed by treating the chelate-forming fiber bed capturing boron with a strong acid aqueous solution such as hydrochloric acid or sulfuric acid. Thus, the trapped boron can be easily separated and thereby easily regenerated.

膜分離装置3において、RO膜として、例えば酢酸セルロース膜や合成高分子膜(ポリビニール系、架橋アラミド系、架橋ポリアミド系等)等を用いることができる。また、RO膜は、中空糸型、スパイラル型等、種々のものを用いることができ、モジュール形状のものを使用するのが好都合である。   In the membrane separation device 3, as the RO membrane, for example, a cellulose acetate membrane, a synthetic polymer membrane (polyvinyl, crosslinked aramid, crosslinked polyamide, etc.) can be used. Various RO membranes such as a hollow fiber type and a spiral type can be used, and it is convenient to use a module shape.

本発明において用いるキレート形成性繊維は、それ自体知られているものである。キレート形成性繊維は、繊維にキレート官能基を化学反応で結合させたものである。本発明においては、キレート形成性繊維の内、ホウ素に対して優れたキレート形成能をもつものを使用する。このようなキレート官能基の例は、例えば特許文献2に記載されており、かかるキレート官能基を化学反応で結合させたキレート形成性繊維を本発明において用いてよい。   The chelate-forming fibers used in the present invention are known per se. The chelate-forming fiber is a fiber in which a chelate functional group is bonded to the fiber by a chemical reaction. In the present invention, a chelate-forming fiber having excellent chelate-forming ability for boron is used. Examples of such chelate functional groups are described in, for example, Patent Document 2, and chelate-forming fibers obtained by binding such chelate functional groups by chemical reaction may be used in the present invention.

このようなキレート形成性繊維には、繊維の分子中にアミノ基と、2個以上のヒドロキシル基、とりわけ隣接する炭素に結合した少なくとも2個のヒドロキシル基とを持った基を有し、ホウ素やその化合物に対して優れたキレート形成能を有している繊維状のキレート捕捉材がある。
上記ホウ素やその化合物とのキレート形成能を与えるために繊維分子中に導入される好ましい基を一般式で示すと、下記一般式[1]で表わすことができる:

Figure 2006192422
[式中、Gは糖アルコール残基または多価アルコール残基、Rは水素原子、アルキル基または−G(Gは上記と同じ意味を表わし、上記Gと同一もしくは異なる基であってもよい)を表わす]。 Such chelating fibers have groups in the fiber molecule with amino groups and two or more hydroxyl groups, especially at least two hydroxyl groups bonded to adjacent carbons, such as boron and There are fibrous chelate scavengers that have excellent chelating ability for the compounds.
A preferred group introduced into the fiber molecule in order to provide chelating ability with the boron or its compound can be represented by the following general formula [1]:
Figure 2006192422
[Wherein, G represents a sugar alcohol residue or a polyhydric alcohol residue, R represents a hydrogen atom, an alkyl group, or -G (G represents the same meaning as described above, and may be the same as or different from G). Represents].

その中でも特に好ましいのは、前記式[1]中のGが、D−グルカミンからアミノ基を除いた残基またはジヒドロキシプロピル基であり、Rが水素または低級アルキル基である。   Among these, G in the formula [1] is particularly preferably a residue obtained by removing an amino group from D-glucamine or a dihydroxypropyl group, and R is hydrogen or a lower alkyl group.

これらホウ素やその化合物とのキレート形成性能(以下、類金属キレート形能と言うことがある)を与えるために繊維分子中に導入される好ましい基は、繊維分子中の反応性官能基(ヒドロキシル基、アミノ基、イミノ基、アルデヒド基、カルボキシル基、チオール基等)等に直接結合していてもよく、あるいは架橋結合によって間接的に結合していても構わない。またベースとなる繊維としては、天然繊維、再生繊維、合成繊維のいずれも使用可能であるが、上記のようなキレート形成能を有する基を効率よく導入する上で特に好ましいのは天然繊維もしくは再生繊維である。   A preferred group introduced into the fiber molecule in order to give chelating ability with these boron and its compounds (hereinafter sometimes referred to as metal-like chelate formability) is a reactive functional group (hydroxyl group) in the fiber molecule. , An amino group, an imino group, an aldehyde group, a carboxyl group, a thiol group, or the like), or may be indirectly bonded by a cross-linking bond. As the base fiber, any of natural fiber, regenerated fiber, and synthetic fiber can be used, but natural fiber or regenerated fiber is particularly preferable for efficiently introducing the group having the chelate forming ability as described above. Fiber.

このような金属キレート形成性繊維の製法は、特許文献2に記載されている。   A method for producing such a metal chelate-forming fiber is described in Patent Document 2.

本発明において、ホウ素のキレート形成性繊維は、例えばキレスト(株)社よりキレストファイバーGCP、GRY、GRY−L、GRY−LW等として市販されているものを好適に用いることができる。特に、キレストファイバーGRY−LWを使用するのが好ましい。   In the present invention, as the boron chelate-forming fibers, for example, those commercially available as Kirest Fibers GCP, GRY, GRY-L, GRY-LW, etc. from Kirest Corporation can be suitably used. In particular, it is preferable to use a Kirest fiber GRY-LW.

本発明の第一の実施形態の変形を図2に示す。この変形に従って処理を行う際には、被処理水11を必要に応じて前処理装置12に導入して精密濾過等を行い、浮遊物質等が十分に除去された濾過水16を得る。この濾過水16をキレート形成性繊維充填塔14に導入し、キレート形成性繊維床15を通過させて、水中のホウ素とキレートを形成させることによりホウ素を除去する。キレート形成性繊維充填塔14を出たホウ素含有量が低減された水17を膜分離装置13のRO膜に供給して、水17中の塩等の溶質を膜分離により除去し、RO膜を透過してこれらの溶質が低減された水を透過水18として得、これらの溶質がRO膜を透過しないで濃縮された水を非透過水19として得る。   A modification of the first embodiment of the present invention is shown in FIG. When the treatment is performed according to this deformation, the treated water 11 is introduced into the pretreatment device 12 as necessary and subjected to microfiltration to obtain filtered water 16 from which suspended substances are sufficiently removed. The filtered water 16 is introduced into the chelate-forming fiber packed tower 14 and passed through the chelate-forming fiber bed 15 to form boron and chelate to remove boron. Water 17 with reduced boron content exiting the chelate-forming fiber packed tower 14 is supplied to the RO membrane of the membrane separation device 13, and solutes such as salts in the water 17 are removed by membrane separation. Water that has been permeated to reduce these solutes is obtained as permeated water 18, and water that is concentrated without these solutes permeating the RO membrane is obtained as non-permeated water 19.

このようにして得られた透過水18は、ホウ素やその他の溶質をほとんど含んでおらず、ホウ素含有量については、日本の水道水の水質基準の要件1.0mg/l以下、更にWHOの飲料水水質ガイドラインで暫定値0.5mg/l以下、なお更に韓国における水質基準0.3mg/l以下を十分に下回るか、あるいは検出限界以下であり、飲用に適した水である。また、非透過水19中には、塩等の溶質が濃縮されて含有され、ホウ素はほとんど含有されていない。これより、非透過水19は、更に脱ホウ素処理を施さないで、食品や医薬・化粧品分野において有効に用いることができる。   The permeated water 18 thus obtained contains almost no boron or other solutes, and the boron content is 1.0 mg / l or less of Japanese tap water quality standard, and further, a WHO beverage. The water quality guideline is 0.5 mg / l or less, and is still well below the water quality standard of 0.3 mg / l or less in Korea, or below the detection limit. Further, the non-permeated water 19 contains a solute such as a salt in a concentrated manner, and hardly contains boron. Accordingly, the non-permeated water 19 can be effectively used in the food, pharmaceutical and cosmetic fields without further deboronation treatment.

この第一の実施形態の変形に従って海水淡水化処理を行う場合に、キレート形成性繊維充填塔14を出た水17中のホウ素濃度を連続して検出していて、水17中のホウ素濃度がある値を越える際に、キレート形成性繊維床を代える。かかる操作は、第一の実施形態で説明したのと同様にして実施する。   When performing seawater desalination according to the modification of the first embodiment, the boron concentration in the water 17 exiting the chelate-forming fiber packed tower 14 is continuously detected, and the boron concentration in the water 17 is When a certain value is exceeded, the chelating fiber bed is replaced. Such an operation is performed in the same manner as described in the first embodiment.

次に、本発明の第二の実施形態を図面を参照しながら説明する。図3において、海水等、ホウ素を含有する被処理水101を処理する水処理装置は、必要に応じて濾過槽等の前処理装置102と、電気透析装置103と、キレート形成性繊維充填塔104とを備えてなる。   Next, a second embodiment of the present invention will be described with reference to the drawings. In FIG. 3, a water treatment device for treating the water to be treated 101 containing boron, such as seawater, includes a pretreatment device 102 such as a filtration tank, an electrodialysis device 103, and a chelate-forming fiber packed tower 104. And comprising.

電気透析装置103は、イオン交換膜で仕切られた部屋からなり、イオン交換膜は、陽イオンだけを選択的に透過させる陽イオン膜と、陰イオンだけを選択的に透過させる陰イオン膜とが交互に組み付けられている。本発明において、電気透析装置103を通る海水等から、ナトリウムイオンや塩素イオン等を極力脱塩し、カリウム、カルシウム、マグネシウム等の有用なミネラルは脱塩せずにできるだけ多く残るようにするのが好ましい。しかし、カリウム、カルシウム、マグネシウム等の所望の金属イオンを透過させずに残留させる陽イオン膜は存在しない。そのため、陽イオン膜として1価イオン選択性膜を使用する。これにより、海水等からナトリウム、カリウム、塩素イオン等の1価イオンが選択的に除かれ、2価以上のイオンは除去されずに原水中に存在するものがほとんど残留する。   The electrodialysis apparatus 103 includes a room partitioned by an ion exchange membrane. The ion exchange membrane includes a cation membrane that selectively transmits only cations and an anion membrane that selectively transmits only anions. They are assembled alternately. In the present invention, sodium ions, chlorine ions, and the like are desalted as much as possible from seawater passing through the electrodialyzer 103, so that useful minerals such as potassium, calcium, and magnesium remain as much as possible without desalting. preferable. However, there is no cation membrane that does not allow permeation of desired metal ions such as potassium, calcium, magnesium and the like. Therefore, a monovalent ion selective membrane is used as the cation membrane. As a result, monovalent ions such as sodium, potassium, and chlorine ions are selectively removed from seawater and the like, and most of the ions existing in the raw water remain without removing divalent or higher ions.

電気透析装置103において用いるかかる1価イオン選択性膜として、例えば(株)アストム社製の品番k−192を挙げることができる。また、陰イオン交換膜(アニオン膜)としては、任意のものを使用することができるが、例えば(株)アストム社製の品番A−501を挙げることができる。   As such a monovalent ion selective membrane used in the electrodialyzer 103, for example, product number k-192 manufactured by Astom Co., Ltd. can be mentioned. Moreover, as an anion exchange membrane (anion membrane), arbitrary things can be used, For example, product number A-501 by Astom Co., Ltd. can be mentioned.

このような水処理装置で処理を行う際には、被処理水101を必要に応じて前処理装置102に導入して精密濾過等を行い、浮遊物質等が十分に除去された濾過水106を得る。この濾過水106を電気透析装置103に供給して、濾過水106中の溶解1価イオン類をイオン交換膜を透過させ、これらの1価イオン類が低減された水を脱1価イオン化水107として得、1価イオン類が濃縮された水を濃縮水109として得る。   When performing treatment with such a water treatment apparatus, the treated water 101 is introduced into the pretreatment apparatus 102 as necessary and subjected to microfiltration, and filtered water 106 from which suspended substances are sufficiently removed is obtained. obtain. The filtered water 106 is supplied to the electrodialyzer 103 to allow the dissolved monovalent ions in the filtered water 106 to pass through the ion exchange membrane, and the water in which these monovalent ions are reduced is removed from the monovalent ionized water 107. Water obtained by concentrating monovalent ions is obtained as concentrated water 109.

この脱1価イオン化水107を更にキレート形成性繊維充填塔104に導入し、キレート形成性繊維床105を通過させて、脱1価イオン化水107中に残存するホウ素とキレートを形成させることによりホウ素を除去し、ミネラル含有水108を得る。   This demonovalent ionized water 107 is further introduced into the chelate-forming fiber packed tower 104 and passed through the chelate-forming fiber bed 105 to form a chelate with boron remaining in the demonovalent ionized water 107. To obtain the mineral-containing water 108.

電気透析装置103は、脱塩利用率(濃縮倍率)を適度に調整して脱1価イオン化水107中のミネラル分を所望の通りに調整することができる。   The electrodialyzer 103 can appropriately adjust the desalting utilization rate (concentration ratio) to adjust the mineral content in the demonovalent ionized water 107 as desired.

また、キレート形成性繊維は、他の金属イオン、例えばMg、Ca、Zn、Na、K等の金属、あるいはその他の陰イオン、例えばフッ素、塩素、沃素等のハロゲンイオン等が共存する場合でも類金属成分と選択的にキレートを形成するという特性を有している。そのため、脱1価イオン化水107中に残存するホウ素とキレートを形成させることによりホウ素を除去し、ミネラル分を低減させずにミネラル含有水108を得ることができる。   Further, the chelate-forming fiber can be used even when other metal ions such as metals such as Mg, Ca, Zn, Na, and K, or other anions such as halogen ions such as fluorine, chlorine, and iodine coexist. It has the property of selectively forming a chelate with a metal component. Therefore, by forming a chelate with boron remaining in the demonovalent ionized water 107, the boron can be removed and the mineral-containing water 108 can be obtained without reducing the mineral content.

このようにして得られたミネラル含有水108は、1価イオンが低減されるが2価以上の金属イオン等を豊富に含有する。ミネラル含有水108は、またホウ素をほとんど含んでおらず、ホウ素含有量については、日本の水道水の水質基準の要件1.0mg/l以下、更にWHOの飲料水水質ガイドラインで暫定値0.5mg/l以下、なお更に韓国における水質基準0.3mg/l以下を十分に下回るか、あるいは検出限界以下であり、飲用に適したミネラル含有水である。   The mineral-containing water 108 thus obtained contains abundant metal ions and the like that are divalent or higher although monovalent ions are reduced. Mineral-containing water 108 also contains almost no boron, and the boron content is 1.0 mg / l or less of Japanese tap water quality standard requirements, and the provisional value 0.5 mg in the WHO drinking water quality guidelines. / L or less, and still well below the water quality standard of 0.3 mg / l or less in Korea, or below the detection limit, and is a mineral-containing water suitable for drinking.

この実施態様に従って海水からミネラル含有水を製造する場合に、ミネラル含有水108中のホウ素の目標値を、例えば0.1mg/l以下と設定し、ミネラル含有水108中のホウ素濃度を連続して検出していて、ミネラル含有水108中のホウ素濃度が0.1mg/lを越える際に、キレート形成性繊維床を代える。   When producing mineral-containing water from seawater according to this embodiment, the target value of boron in the mineral-containing water 108 is set to 0.1 mg / l or less, for example, and the boron concentration in the mineral-containing water 108 is continuously set. Detecting and replacing the chelating fiber bed when the boron concentration in the mineral-containing water 108 exceeds 0.1 mg / l.

本発明の第二の実施形態の変形を図4に示す。この変形に従って処理を行う際には、被処理水201を必要に応じて前処理装置202に導入して精密濾過等を行い、浮遊物質等が十分に除去された濾過水206を得る。この濾過水206をキレート形成性繊維充填塔204に導入し、キレート形成性繊維床205を通過させて、水中のホウ素とキレートを形成させることによりホウ素を除去する。キレート形成性繊維充填塔204を出たホウ素含有量が低減された水207を電気透析装置203に供給して、水207中の溶解1価イオン類をイオン交換膜を透過させ、これらの1価イオン類が低減された水をミネラル含有水208として得、1価イオン類が濃縮された水を濃縮水209として得る。   A modification of the second embodiment of the present invention is shown in FIG. When the treatment is performed according to this deformation, the treated water 201 is introduced into the pretreatment device 202 as necessary and subjected to microfiltration to obtain filtered water 206 from which suspended substances are sufficiently removed. This filtered water 206 is introduced into the chelate-forming fiber packed tower 204, and passed through the chelate-forming fiber bed 205 to form a chelate with boron in the water to remove boron. Water 207 having a reduced boron content exiting the chelate-forming fiber packed tower 204 is supplied to the electrodialyzer 203, and dissolved monovalent ions in the water 207 are allowed to permeate through the ion exchange membrane, and these monovalents. Water in which ions are reduced is obtained as mineral-containing water 208, and water in which monovalent ions are concentrated is obtained as concentrated water 209.

このようにして得られたミネラル含有水208は、1価イオンが低減されるが2価以上の金属イオン等を豊富に含有し、ホウ素をほとんど含んでおらず、ホウ素含有量については、日本の水道水の水質基準の要件1.0mg/l以下、更にWHOの飲料水水質ガイドラインで暫定値0.5mg/l以下、なお更に韓国における水質基準0.3mg/l以下を十分に下回るか、あるいは検出限界以下である。また、濃縮水209中には、塩化ナトリウム等の1価イオン類が濃縮されて含有され、ホウ素はほとんど含有されていない。これより、濃縮水209は、更に脱ホウ素処理を施さないで、食品や水産分野において有効に用いることができる。   The mineral-containing water 208 thus obtained contains abundant metal ions and the like containing divalent or higher valent ions, but contains almost no boron. About the boron content, The water quality standard requirement for tap water is 1.0 mg / l or less, and it is well below the provisional value of 0.5 mg / l in the WHO drinking water quality guidelines, and still well below the water quality standard of 0.3 mg / l in Korea, or Below the detection limit. In the concentrated water 209, monovalent ions such as sodium chloride are concentrated and contained, and boron is hardly contained. Thus, the concentrated water 209 can be effectively used in the food and fishery fields without further deboronation treatment.

本発明の方法に従って海水から得られる飲用に適した水及びミネラル含有水は、共に世界的なホウ素の水質基準を満足する。これより、ミネラル含有水に飲用に適した水を混合してミネラル分の濃度の異なる水を製造する場合に、ホウ素の水質基準を気にせずに、自由な割合で配合することができる。   Drinkable water and mineral-containing water obtained from seawater according to the method of the present invention both meet the global boron water quality standards. From this, when mixing the water suitable for drinking with mineral containing water and manufacturing the water from which the density | concentration of a mineral content differs, it can mix | blend in a free ratio, without minding the water quality standard of boron.

更に、本発明に従って海水処理を行う場合に、海水をキレート形成性繊維充填塔に通し、キレート形成性繊維充填塔を出た水は、ホウ素が除去されるが、塩素イオン、EDTA硬度、硫酸イオン等は低減されず、キレート形成性繊維充填塔の前後で顕著な変動は認められない。これより、従来塩やニガリ等、海水をそのまま原料にして作られていた製品についても、キレート形成性繊維充填塔を出た水を原料にして作る場合には、ホウ素が除去されて安全である。   Furthermore, when seawater treatment is performed according to the present invention, the seawater is passed through a chelate-forming fiber packed tower, and the water exiting the chelate-forming fiber packed tower is free of boron, but chlorine ions, EDTA hardness, sulfate ions Etc. are not reduced, and no significant fluctuation is observed before and after the chelate-forming fiber packed tower. From this, it is safe to remove boron from products that have been made from seawater as raw materials, such as salt and bittern, when the water from the chelate-forming fiber packed tower is used as raw materials. .

次に本発明の実施例を示すが、本発明はもとより下記実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することももちろん可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Next, examples of the present invention will be shown. However, the present invention is not limited by the following examples as a matter of course, and it is of course possible to implement the invention with appropriate modifications within a range that can be adapted to the gist of the preceding and following descriptions. These are all included in the technical scope of the present invention.

実施例1
図1に示す通りの水処理装置を使用し、海水の淡水化処理を行った。被処理水1として三浦沖海洋深層水を500L/h通水した。キレート形成性繊維床5として、キレスト(株)社より入手したキレストファイバーGRY−LW15kg(固形分)をキレート形成性繊維充填塔4としてのボンベ(直径30cm×高さ105cm)に50L充填した。空間速度(SV)は10h-1であった。
Example 1
Seawater desalination treatment was performed using a water treatment apparatus as shown in FIG. As the treated water 1, offshore Miura offshore water was passed through 500 L / h. As the chelate-forming fiber bed 5, 15 kg (solid content) of Kirest fiber GRY-LW obtained from Kirest Co., Ltd. was packed into a cylinder (diameter 30 cm × height 105 cm) as the chelate-forming fiber packed tower 4. The space velocity (SV) was 10 h- 1 .

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 2006192422
Figure 2006192422

実施例2
図3に示す通りの水処理装置を使用し、ミネラル含有水を製造した。電気透析装置103において、陽イオン膜(カチオン膜)として1価イオン選択性膜である(株)アストム社製のk−192を、陰イオン交換膜(アニオン膜)として(株)アストム社製のA−501を使用した。被処理水11として三浦沖海洋深層水を500L/h通水した。キレート形成性繊維床15として、キレスト(株)社より入手したキレストファイバーGRY−LW15kg(固形分)をキレート形成性繊維充填塔14としてのボンベ(直径30cm×高さ105cm)に50L充填した。空間速度(SV)は10h-1であった。
Example 2
Mineral-containing water was produced using a water treatment apparatus as shown in FIG. In the electrodialysis apparatus 103, k-192 manufactured by Astom Co., Ltd., which is a monovalent ion selective membrane as a cation membrane (cation membrane), and Astom Co., Ltd. manufactured as an anion exchange membrane (anion membrane). A-501 was used. As the treated water 11, offshore Miura offshore water was passed through 500 L / h. As the chelate-forming fiber bed 15, 15 kg (solid content) of the Kirest fiber GRY-LW obtained from Kirest Co., Ltd. was packed into a cylinder (diameter 30 cm × height 105 cm) as the chelate-forming fiber packed tower 14. The space velocity (SV) was 10 h- 1 .

得られた結果を表2に示す。   The obtained results are shown in Table 2.

Figure 2006192422
Figure 2006192422

表中、ナトリウムは、厚生労働省告示第261号に従って分析し、硫酸イオンはイオンクロマトグラフ法に従って分析し、その他は厚生労働省告示第370号に従って分析した。また、ホウ素は、ICP法に従って分析した。海水中の有機物等(過マンガン酸カリウム消費量)は、塩素イオンを多く含むため測定不可であった。海水の味は、飲用検査不可であった。   In the table, sodium was analyzed according to Ministry of Health, Labor and Welfare Notification No. 261, sulfate ion was analyzed according to the ion chromatography method, and the others were analyzed according to Ministry of Health, Labor and Welfare Notification No. 370. Boron was analyzed according to the ICP method. Organic substances in seawater (potassium permanganate consumption) were not measurable because they contained a lot of chloride ions. The taste of seawater was not drinkable.

表1から分かる通りに、処理量が91.4トンで、処理水中のホウ素濃度が0.1mg/lを越えたので運転を停止した。   As can be seen from Table 1, since the treatment amount was 91.4 tons and the boron concentration in the treated water exceeded 0.1 mg / l, the operation was stopped.

表2から、脱塩水は、ナトリウム、カリウム及び塩素イオン等の1価イオンが除去されるが、マグネシウムやカルシウム等の2価イオンは、原水とほぼ同じ濃度で残存することが分かる。また、キレート形成性繊維は、他の金属イオン、例えばMg、Ca、Zn、Na、K等の金属、あるいはその他の陰イオン、例えばフッ素、塩素、沃素等のハロゲンイオン等が共存する場合でもホウ酸と選択的にキレートを形成するという特性を有していることが分かる。   Table 2 shows that monovalent ions such as sodium, potassium and chlorine ions are removed from the desalted water, but divalent ions such as magnesium and calcium remain at substantially the same concentration as the raw water. In addition, chelate-forming fibers can be used in the presence of other metal ions such as metals such as Mg, Ca, Zn, Na, and K, or other anions such as halogen ions such as fluorine, chlorine, and iodine. It turns out that it has the characteristic of forming a chelate selectively with an acid.

実施例3
図2に示す装置を使用し、被処理水1として三浦沖海洋深層水を17mL/分で通水した。キレート形成性繊維床15として、キレストファイバーGRY−LW15g(固形分)をキレート形成性繊維充填塔14としてのボンベ(内径2.5cm×高さ11.5cm)に56.5mL充填した。空間速度(SV)は18.1h-1であった。
Example 3
Using the apparatus shown in FIG. 2, Miura-oki offshore deep water was passed as treated water 1 at 17 mL / min. As the chelate-forming fiber bed 15, 56.5 mL of a cylinder (inner diameter 2.5 cm × height 11.5 cm) as a chelate-forming fiber packed tower 14 was filled with 15 g (solid content) of chilled fiber GRY-LW. The space velocity (SV) was 18.1 h −1 .

海洋深層水の性状は、下記の通りであった:
ホウ素濃度 : 4.4mg/L(ICP発光分光分析)
EDTA硬度 : 6400mgCaCO3/L(EDTA滴定)
塩素イオン濃度 : 19000mg/L(イオンクロマトグラフィ)
硫酸イオン濃度 : 2400mg/L(イオンクロマトグラフィ)
The properties of deep sea water were as follows:
Boron concentration: 4.4 mg / L (ICP emission spectroscopic analysis)
EDTA hardness: 6400 mg CaCO 3 / L (EDTA titration)
Chlorine ion concentration: 19000 mg / L (ion chromatography)
Sulfate ion concentration: 2400 mg / L (ion chromatography)

キレート形成性繊維充填塔14を出た水17の性状は、図5〜7に示す通りである。
図5〜7から、海洋深層水をキレート形成性繊維充填塔14に通して処理した場合に、ホウ素濃度は床容積約200まで定量下限(0.01mg/L)以下であり、キレート形成性繊維を使用して海洋深層水中のホウ素が良好に除去されることが分かる。また、塩素イオン、EDTA硬度、硫酸イオン等は低減されず、キレート形成性繊維充填塔14の前後で顕著な変動は認められない。
Properties of the water 17 exiting the chelate-forming fiber packed tower 14 are as shown in FIGS.
5-7, when deep sea water is processed through the chelate-forming fiber packed tower 14, the boron concentration is below the lower limit of quantification (0.01 mg / L) up to a bed volume of about 200, and the chelate-forming fiber. It can be seen that the boron in the deep ocean water is removed well. Further, chlorine ions, EDTA hardness, sulfate ions, etc. are not reduced, and no significant fluctuation is observed before and after the chelate-forming fiber packed tower 14.

これより、キレート形成性繊維充填塔14を出た水は、ホウ素が除去されて安全である。従って、従来塩やニガリ等、海水をそのまま原料にして作られていた製品についても、キレート形成性繊維充填塔14を出た水17を原料にして作る場合には、ホウ素が除去されて安全である。   Accordingly, the water exiting the chelate-forming fiber packed tower 14 is safe because the boron is removed. Therefore, for products that have been made from seawater as raw materials, such as salt and bitterns, when boron is used as the raw material from the water 17 exiting the chelate-forming fiber packed tower 14, boron is removed and is safe. is there.

また、キレート形成性繊維充填塔14を出た水は、ホウ素濃度が低減されていることから、RO膜分離装置13を透過しない非透過水19からもホウ素が除去されることが分かる。   Further, since the boron concentration in the water exiting the chelate-forming fiber packed tower 14 is reduced, it can be seen that boron is also removed from the non-permeated water 19 that does not permeate the RO membrane separation device 13.

上述したのと同様のことが、図4に示す装置に関しても言え、キレート形成性繊維充填塔204を出た水は、ホウ素濃度が低減されていることから、電気透析装置203の濃縮水209からもホウ素が除去されることが分かる。   The same as described above can be applied to the apparatus shown in FIG. 4, and the water exiting the chelate-forming fiber packed tower 204 has a reduced boron concentration, and therefore, from the concentrated water 209 of the electrodialyzer 203. It can also be seen that boron is removed.

本発明の水中のホウ素含有量を低減させて飲用に適した水を製造する方法は、一般的に海水やかん水の淡水化処理、浄(上)水処理等、水中のホウ素含有量を低減させるのに利用することができる。また、本発明のホウ素含有量を低減させて飲用に適したミネラル含有水を製造する方法は、健康食品等の食品、バイオ、添加剤等の医薬・化粧品、栽培液・土壌改良等の農業分野を含む広い分野において原材料として利用することができる。本発明の方法において副生物として製造される非透過水は、更に脱ホウ素処理を施さないで、発酵促進剤、製塩、製菓等の食品分野や温浴・添加剤等の医薬・化粧品分野において有効に用いることができる。また、本発明の方法において副生物として製造される濃縮水は、更に脱ホウ素処理を施さないで、製塩、製菓、食肉加工等の食品や水産加工等の水産分野において有効に用いることができる。従来塩やニガリ等、海水をそのまま原料にして作られていた製品についても、キレート形成性繊維充填塔を出た水を原料にして作る場合には、ホウ素が除去されて安全である。   The method for producing water suitable for drinking by reducing the boron content in the water of the present invention generally reduces the boron content in water such as seawater and brackish water desalination, purified (up) water treatment, etc. Can be used for In addition, the method for producing mineral-containing water suitable for drinking by reducing the boron content of the present invention includes foods such as health foods, biotechnology, pharmaceuticals and cosmetics such as additives, and agricultural fields such as cultivation liquid and soil improvement. Can be used as a raw material in a wide range of fields. The non-permeated water produced as a by-product in the method of the present invention is not further subjected to deboronation treatment, and is effective in the field of food such as fermentation accelerators, salt-making, confectionery, etc. Can be used. In addition, the concentrated water produced as a by-product in the method of the present invention can be effectively used in food products such as salt production, confectionery and meat processing, and in the marine products field such as fish processing without further deboronation treatment. Conventionally, products made from seawater as raw materials, such as salt and bittern, are safe because boron is removed when the water from the chelate-forming fiber packed tower is used as a raw material.

本発明の第一の実施形態の水処理方法を実施する水処理装置の概略全体構成を示す。The schematic whole structure of the water treatment apparatus which enforces the water treatment method of 1st embodiment of this invention is shown. 本発明の第一の実施形態の変形の水処理方法を実施する水処理装置の概略全体構成を示す。The schematic whole structure of the water treatment apparatus which implements the modified water treatment method of 1st embodiment of this invention is shown. 本発明の第二の実施形態の水処理方法を実施する水処理装置の概略全体構成を示す。The schematic whole structure of the water treatment apparatus which enforces the water treatment method of 2nd embodiment of this invention is shown. 本発明の第二の実施形態の変形の水処理方法を実施する水処理装置の概略全体構成を示す。The schematic whole structure of the water treatment apparatus which implements the modified water treatment method of 2nd embodiment of this invention is shown. 図2又は図4において、充填塔14又は204をそれぞれ出た水の性状を示す。In FIG. 2 or FIG. 4, the properties of water exiting the packed tower 14 or 204, respectively, are shown. 図2又は図4において、充填塔14又は204をそれぞれ出た水の性状を示す。In FIG. 2 or FIG. 4, the properties of water exiting the packed tower 14 or 204, respectively, are shown. 図2又は図4において、充填塔14又は204をそれぞれ出た水の性状を示す。In FIG. 2 or FIG. 4, the properties of water exiting packed tower 14 or 204, respectively, are shown.

符号の説明Explanation of symbols

1 被処理水
3 RO膜分離装置
4 充填塔
5 キレート形成性繊維床
7 透過水
8 処理水
9 非透過水
11 被処理水
13 RO膜分離装置
14 充填塔
15 キレート形成性繊維床
18 透過水
19 非透過水
101 被処理水
103 電気透析装置
104 充填塔
105 キレート形成性繊維床
108 ミネラル含有水
109 濃縮水
201 被処理水
203 電気透析装置
204 充填塔
205 キレート形成性繊維床
208 ミネラル含有水
209 濃縮水
DESCRIPTION OF SYMBOLS 1 Water to be treated 3 RO membrane separation device 4 Packing tower 5 Chelate-forming fiber bed 7 Permeated water 8 Treated water 9 Non-permeated water 11 Water to be treated 13 RO membrane separator 14 Packing tower 15 Chelate-forming fiber bed 18 Permeated water 19 Non-permeated water 101 Water to be treated 103 Electrodialyzer 104 Packing tower 105 Chelate-forming fiber bed 108 Mineral-containing water 109 Concentrated water 201 Water to be treated 203 Electrodialyzer 204 Packed tower 205 Chelate-forming fiber bed 208 Mineral-containing water 209 Concentration water

Claims (12)

ホウ素含有水を逆浸透膜分離装置に通し、膜を透過して装置を出た水を、次いでホウ素やその化合物に対してキレート形成能を有するキレート形成性繊維を充填した装置に通して、膜透過水中に残存するホウ素含有量を低減させて飲用に適した水を製造する方法。   The boron-containing water is passed through a reverse osmosis membrane separation device, the water that has permeated the membrane and exited the device is then passed through a device filled with chelating fibers that have chelating ability to boron and its compounds, and the membrane A method for producing water suitable for drinking by reducing the boron content remaining in permeated water. ホウ素含有水を、ホウ素やその化合物に対してキレート形成能を有するキレート形成性繊維を充填した装置に通してホウ素含有量を低減させ、次いで逆浸透膜分離装置に通して膜を透過する溶質が除去された飲用に適した水と膜を透過せずに溶質が濃縮された非透過水とを製造する方法。   Boron-containing water is passed through a device filled with chelating fibers that have chelating ability for boron and its compounds to reduce the boron content, and then passed through a reverse osmosis membrane separator to produce a solute that permeates the membrane. A method for producing removed drinking water and non-permeated water in which a solute is concentrated without passing through a membrane. ホウ素含有水を電気透析装置に通し、1価イオンが除去された脱1価イオン化水を、次いでホウ素やその化合物に対して優れたキレート形成能を有するキレート形成性繊維を充填した装置に通して、脱1価イオン化水中に残存するホウ素含有量を低減させて飲用に適したミネラル含有水を製造する方法。   Boron-containing water is passed through an electrodialyzer, and demonovalent ionized water from which monovalent ions have been removed is then passed through a device filled with chelate-forming fibers having excellent chelate-forming ability for boron and its compounds. A method for producing mineral-containing water suitable for drinking by reducing the boron content remaining in demonovalent ionized water. ホウ素含有水を、ホウ素やその化合物に対してキレート形成能を有するキレート形成性繊維を充填した装置に通してホウ素含有量を低減させ、次いで電気透析装置に通して1価イオンが除去された飲用に適したミネラル含有水と1価イオンが濃縮された1価イオン濃縮水とを製造する方法。   Drinking with boron-containing water passed through a device filled with chelating fibers that have chelating ability to boron and its compounds to reduce boron content and then passed through an electrodialyzer to remove monovalent ions A method for producing mineral-containing water suitable for water and monovalent ion-enriched water enriched with monovalent ions. キレート形成性繊維が、繊維にキレート官能基を化学反応で結合させたものである請求項1〜4のいずれか一に記載の方法。   The method according to any one of claims 1 to 4, wherein the chelate-forming fiber has a chelate functional group bonded to the fiber by a chemical reaction. 前記電気透析装置が、陽イオン膜として1価イオン選択性膜を使用する請求項3又は4に記載の方法。   The method according to claim 3 or 4, wherein the electrodialyzer uses a monovalent ion selective membrane as a cation membrane. 前記ホウ素含有水が海水又はかん水である請求項1〜6のいずれか一に記載の方法。   The method according to any one of claims 1 to 6, wherein the boron-containing water is seawater or brine. 飲用に適した水は、ホウ素含有量が1.0mg/l以下でありかつミネラルをほとんど含有しないものである請求項1、2、5、7のいずれか一に記載の方法。   8. The method according to any one of claims 1, 2, 5, and 7, wherein the water suitable for drinking has a boron content of 1.0 mg / l or less and contains almost no minerals. 飲用に適したミネラル含有水は、ホウ素含有量が1.0mg/l以下でありかつ1価イオンが選択的に低減されたものである請求項3〜7のいずれか一に記載の方法。   The method according to any one of claims 3 to 7, wherein the mineral-containing water suitable for drinking has a boron content of 1.0 mg / l or less and monovalent ions are selectively reduced. ホウ素含有量が0.5mg/l以下である請求項8又は9に記載の方法。   The method according to claim 8 or 9, wherein the boron content is 0.5 mg / l or less. ホウ素含有量が0.3mg/l以下である請求項10に記載の方法。   The method according to claim 10, wherein the boron content is 0.3 mg / l or less. 前記キレート形成性繊維は、繊維の分子中にアミノ基と、炭素に結合した少なくとも2個のヒドロキシル基とを持った基を有し、ホウ素やその化合物に対してキレート形成能を有しているものである請求項1〜11のいずれか一に記載の方法。   The chelate-forming fiber has a group having an amino group and at least two hydroxyl groups bonded to carbon in the molecule of the fiber, and has chelate-forming ability for boron and its compounds. The method according to claim 1, wherein the method is one.
JP2005173607A 2004-12-17 2005-06-14 Method for producing water suitable for drinking by reducing boron content in water Pending JP2006192422A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005173607A JP2006192422A (en) 2004-12-17 2005-06-14 Method for producing water suitable for drinking by reducing boron content in water
KR1020050085875A KR20060069237A (en) 2004-12-17 2005-09-14 Method of producing drinkable water by reducing boron from water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004365852 2004-12-17
JP2005173607A JP2006192422A (en) 2004-12-17 2005-06-14 Method for producing water suitable for drinking by reducing boron content in water

Publications (1)

Publication Number Publication Date
JP2006192422A true JP2006192422A (en) 2006-07-27

Family

ID=36798897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173607A Pending JP2006192422A (en) 2004-12-17 2005-06-14 Method for producing water suitable for drinking by reducing boron content in water

Country Status (2)

Country Link
JP (1) JP2006192422A (en)
KR (1) KR20060069237A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190025A (en) * 2008-01-18 2009-08-27 Asahi Kasei Chemicals Corp Method of manufacturing drinking water
JP2010069399A (en) * 2008-09-17 2010-04-02 Toshiba Corp Boron separation system
WO2010089877A1 (en) * 2009-02-06 2010-08-12 赤穂化成株式会社 Process for producing mineral drinking water, apparatus for producing mineral drinking water, and drinking water obtained by the process
JP2011505241A (en) * 2007-11-30 2011-02-24 シーメンス ウォーター テクノロジース コーポレイション System and method for water treatment
JP2014098720A (en) * 2008-09-25 2014-05-29 E M D Millipore Corp Electrochemical method for detecting boron in water
JP2014161794A (en) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd Water treatment system and method for manufacturing valuable materials from seawater
JP2015029934A (en) * 2013-07-31 2015-02-16 三菱重工業株式会社 Desalination apparatus and desalination method, and method for co-producing fresh water, salt and valuable-material
JP2016527077A (en) * 2013-07-05 2016-09-08 ステラルマー エスアールエル Method for industrial production of seawater basically suitable for food

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927022B1 (en) * 2007-08-31 2009-11-16 관동대학교산학협력단 Boron Removal from Seawater
KR100903421B1 (en) * 2007-08-31 2009-06-18 관동대학교산학협력단 Manufacturing method of composition for removing boron in seawater
KR101388862B1 (en) * 2011-08-23 2014-04-23 동국대학교 산학협력단 Method for removing boron in seawater by using mineral cluster

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015356A (en) * 1996-07-09 1998-01-20 Kubota Corp Water treatment
JPH1085743A (en) * 1996-09-12 1998-04-07 Japan Organo Co Ltd Method and apparatus for treating water containing boron
WO1998042910A1 (en) * 1997-03-25 1998-10-01 Chelest Corporation Chelate-forming fiber, process for preparing the same, and use thereof
JP2001179253A (en) * 1999-12-24 2001-07-03 Kiresuto Kk Method for treating metal or metalloid-containing water
JP2002292371A (en) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
JP2002335923A (en) * 2001-05-16 2002-11-26 Rausu Kaiyo Shinsosui:Kk Drinking water given by using ocean deep water as raw material and method for producing the same
JP2002361246A (en) * 2001-06-07 2002-12-17 Japan Organo Co Ltd Method and device for manufacturing drinking water
WO2003062151A1 (en) * 2002-01-22 2003-07-31 Toray Industries, Inc. Method of generating fresh water and fresh-water generator
JP2004167335A (en) * 2002-11-19 2004-06-17 Wataru Murota Seawater desalting method and apparatus therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015356A (en) * 1996-07-09 1998-01-20 Kubota Corp Water treatment
JPH1085743A (en) * 1996-09-12 1998-04-07 Japan Organo Co Ltd Method and apparatus for treating water containing boron
WO1998042910A1 (en) * 1997-03-25 1998-10-01 Chelest Corporation Chelate-forming fiber, process for preparing the same, and use thereof
JP2001179253A (en) * 1999-12-24 2001-07-03 Kiresuto Kk Method for treating metal or metalloid-containing water
JP2002292371A (en) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
JP2002335923A (en) * 2001-05-16 2002-11-26 Rausu Kaiyo Shinsosui:Kk Drinking water given by using ocean deep water as raw material and method for producing the same
JP2002361246A (en) * 2001-06-07 2002-12-17 Japan Organo Co Ltd Method and device for manufacturing drinking water
WO2003062151A1 (en) * 2002-01-22 2003-07-31 Toray Industries, Inc. Method of generating fresh water and fresh-water generator
JP2004167335A (en) * 2002-11-19 2004-06-17 Wataru Murota Seawater desalting method and apparatus therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505241A (en) * 2007-11-30 2011-02-24 シーメンス ウォーター テクノロジース コーポレイション System and method for water treatment
JP2009190025A (en) * 2008-01-18 2009-08-27 Asahi Kasei Chemicals Corp Method of manufacturing drinking water
JP2010069399A (en) * 2008-09-17 2010-04-02 Toshiba Corp Boron separation system
JP2014098720A (en) * 2008-09-25 2014-05-29 E M D Millipore Corp Electrochemical method for detecting boron in water
WO2010089877A1 (en) * 2009-02-06 2010-08-12 赤穂化成株式会社 Process for producing mineral drinking water, apparatus for producing mineral drinking water, and drinking water obtained by the process
JP2014161794A (en) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd Water treatment system and method for manufacturing valuable materials from seawater
JP2016527077A (en) * 2013-07-05 2016-09-08 ステラルマー エスアールエル Method for industrial production of seawater basically suitable for food
JP2015029934A (en) * 2013-07-31 2015-02-16 三菱重工業株式会社 Desalination apparatus and desalination method, and method for co-producing fresh water, salt and valuable-material

Also Published As

Publication number Publication date
KR20060069237A (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP2006192422A (en) Method for producing water suitable for drinking by reducing boron content in water
Millar et al. Strategies for the management and treatment of coal seam gas associated water
EP3436411B1 (en) Method for separation of magnesium and calcium ions from saline water, for improving the quality of soft and desalinated waters
Banasiak et al. Desalination using electrodialysis as a function of voltage and salt concentration
KR101639848B1 (en) The manufacturing process of high hardness drinking water using NF/RO/ED membrane connection system
US20140227151A1 (en) Recovery and purification of monovalent salt contaminated with divalent salt
US10899646B2 (en) Methods of separating and isolating water and other desired constituents from oilfield produced brines for reuse
EP2753581B1 (en) A water purification system
CN108585262B (en) Method for purifying water and apparatus suitable for said method
KR100944538B1 (en) Method for producing high hardness mineral water containing mineral using sea water
JP2015029931A (en) Desalination apparatus and desalination method, method for producing fresh water, and method for co-producing fresh water, salt and valuable-material
CN104071808A (en) Method for preparing industrial salt through separation, evaporation and crystallization of coal chemical strong brine
WO2009075430A1 (en) Method for producing mineral water from deep sea water
KR20160004063A (en) Removal system of sulfate in seawater using ion exchange resin
KR101643146B1 (en) Manufacturing Apparatus for Mineral Water with Forward Osmosis Hybrid
KR20140145309A (en) The manufacturing process development of Processed deep seawater using NF/RO/ED membrane connection system
Bellona Nanofiltration–theory and application
KR101896227B1 (en) Method for preparing mineral water with high hardness using deep sea water or saline groundwater
KR101689059B1 (en) Removal of anions and conversion technology of carbonate ions from seawater
AU2005100689A4 (en) Process for desalination of seawater with zero effluent and zero greenhouse gas emission
JP2005279384A (en) Method for producing ideal drinking water from sea water
JP2007029899A (en) Mineral water
GB2394678A (en) A solution rich in magnesium chloride (MgCl2) produced from seawater.
KR100992428B1 (en) Method of mineral water manufacture through efficient mineral control and removal of anion by nf membrane
Turek et al. Nanofiltration process for seawater desalination–salt production integrated system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928