JP2007029899A - Mineral water - Google Patents

Mineral water Download PDF

Info

Publication number
JP2007029899A
JP2007029899A JP2005219417A JP2005219417A JP2007029899A JP 2007029899 A JP2007029899 A JP 2007029899A JP 2005219417 A JP2005219417 A JP 2005219417A JP 2005219417 A JP2005219417 A JP 2005219417A JP 2007029899 A JP2007029899 A JP 2007029899A
Authority
JP
Japan
Prior art keywords
water
mineral
concentrated
seawater
mineral water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005219417A
Other languages
Japanese (ja)
Inventor
Masayuki Ukon
雅幸 右近
Masahiro Nanbara
政広 南原
Yoshitaka Ohara
剛毅 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BENTEN KK
HAKATAKO KANRI KK
Benten Inc
Original Assignee
BENTEN KK
HAKATAKO KANRI KK
Benten Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BENTEN KK, HAKATAKO KANRI KK, Benten Inc filed Critical BENTEN KK
Priority to JP2005219417A priority Critical patent/JP2007029899A/en
Publication of JP2007029899A publication Critical patent/JP2007029899A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide mineral water abundantly containing mineral components originating from the ocean and the land, effective for promotion of health and improved in taste. <P>SOLUTION: Mineral water 12 is prepared using ocean deep layer water 1 originating from seawater and natural ground water 2 collected from a mountain district as a raw water. When the ocean deep layer water 1 is subjected to desalting treatment 3 based on a reverse osmotic method, concentrated seawater 5 and desalted treated water 4 are obtained. Since a supersaturated concentrated seawater 7 in which a salt is precipitated is obtained when moisture evaporation treatment 6 is next applied to the concentrated seawater 5, the precipitated salt 9 in a supersaturated concentrated seawater 7 is separated by applying a precipitating salt separation treatment 8 to the supersaturated concentrated seawater 7 to form a concentrated mineral liquid 10. The concentrated mineral liquid 10 and the natural ground water 2 are mixed in a predetermined mixing ratio in a mixing region to form mineral water 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自然界から採取した水を原料とするミネラル水に関する。   The present invention relates to mineral water made from water collected from nature.

近年、水道水の水質についての関心が高まり、一般家庭の水道水を浄化する浄水器あるいは水道水の代わりに使用する水の需要が高まっている。また、健康志向の高まりに伴い、海洋深層水や天然水などの需要も増大している。このような状況に対応して、様々な種類の水が製造されているが、本願に関連するものとして、陸上において採取した低硬度の陸系天然水と、海洋深層水を原料とする高硬度の海系天然水とからなる硬度調整天然水がある(例えば、特許文献1参照。)。   In recent years, interest in the quality of tap water has increased, and the demand for water used in place of water purifiers or tap water for purifying tap water in general households has increased. In addition, the demand for deep ocean water and natural water is also increasing as health consciousness increases. In response to this situation, various types of water have been produced, but as related to this application, low hardness land-based natural water collected on land and high hardness using deep ocean water as a raw material. There is a hardness-adjusted natural water composed of natural seawater (see, for example, Patent Document 1).

この硬度調整天然水は、陸系天然水として地下から採取したミネラルウォーターを使用し、海系天然水として海洋深層水から濃縮深層水を経て分離された濃縮ミネラル水や濃縮塩水を使用し、硬度を20〜1500に調整したものである。この硬度調整天然水は、陸系天然水の他に、人体に必要なミネラル成分を略含有している海系天然水を使用しているので、他から補給することのできにくい微量ミネラルの補給に有益である。   This hardness-adjusted natural water uses mineral water collected from the ground as terrestrial natural water, and uses concentrated mineral water or concentrated salt water separated from deep ocean water through concentrated deep water as marine natural water. Is adjusted to 20-1500. In addition to terrestrial natural water, this hardness-adjusted natural water uses marine natural water that contains almost all minerals necessary for the human body, so it is difficult to replenish minerals that are difficult to replenish. It is beneficial to.

特開2005−87894号公報Japanese Patent Laying-Open No. 2005-87894

特許文献1記載の硬度調整天然水の場合、その構成成分の一つである海系天然水は、海洋深層水を多段式電気透析法によって淡水と濃縮深層水とに分離した後、この濃縮深層水から分離した濃縮ミネラル水や濃縮塩水を用いている。このため、海水中において良好に保たれていたミネラルバランスが崩れることとなる。   In the case of hardness-adjusted natural water described in Patent Document 1, marine natural water, which is one of its constituent components, is obtained by separating deep sea water into fresh water and concentrated deep water by a multistage electrodialysis method, and then concentrating the deep water. Concentrated mineral water and concentrated salt water separated from water are used. For this reason, the mineral balance maintained favorable in seawater will collapse.

本発明が解決しようとする課題は、海洋および陸地を起源とする豊富なミネラル成分をバランス良く含んで健康増進に有効であり、風味も良好で、人間に不足しがちなミネラルを容易に供給可能なミネラル水を提供することにある。   The problems to be solved by the present invention include abundant mineral components from the ocean and land in a well-balanced manner, are effective for health promotion, have a good flavor, and can easily supply minerals that humans tend to lack Is to provide fresh mineral water.

本発明のミネラル水は、逆浸透法により海水を淡水化処理して得られる濃縮海水から塩を分離して生成される濃縮ミネラル液と、天然水と、を含むことを特徴とする。ここで、天然水とは、地下水、湧水など、陸地領域から採取されるあらゆる淡水を意味している。   The mineral water of the present invention includes a concentrated mineral solution produced by separating salt from concentrated seawater obtained by desalinating seawater by a reverse osmosis method, and natural water. Here, natural water means any fresh water collected from land areas such as groundwater and spring water.

このような構成とすれば、陸地由来の地下水や湧水などの天然水および海洋由来の濃縮ミネラル液が含有するカルシウム、マグネシウム、カリウム、窒素、リンなどの栄養塩に加え、セレン、亜鉛、マンガン、ヨウ素などの微量元素をバランス良く含有する、ミネラル成分豊富なミネラル水となる。また、逆浸透法で分離された濃縮海水から生成される濃縮ミネラル液は残存イオン量が高いので、ミネラル成分の豊富化に有効である。さらに、逆浸透法は、常温で相変化を伴うことなく溶質と水とを分離できるので、風味が悪化することがなく、酵母菌やカビ菌なども除去することができ、健康増進に有効であり、風味も良好である。   With this configuration, in addition to nutrient salts such as calcium, magnesium, potassium, nitrogen and phosphorus contained in natural water such as groundwater and spring water derived from land and concentrated mineral liquids derived from the ocean, selenium, zinc and manganese It becomes mineral water rich in mineral components, containing trace elements such as iodine in a well-balanced manner. Moreover, since the concentrated mineral liquid produced | generated from the concentrated seawater isolate | separated by the reverse osmosis method has a high amount of residual ions, it is effective for enrichment of a mineral component. In addition, the reverse osmosis method can separate solute and water at room temperature without phase change, so that the flavor does not deteriorate and yeast and fungi can be removed, which is effective for health promotion. Yes, the flavor is good.

ここで、前記濃縮ミネラル液は、前記濃縮海水の水分を蒸発させて得た過飽和濃縮海水に析出した析出塩を分離して生成したものが望ましい。このような構成とすれば、濃縮海水中のミネラル成分を余すことなく含んだ濃縮ミネラル液とすることができので、ミネラル成分の損失を防止することができる。   Here, the concentrated mineral liquid is preferably produced by separating the precipitated salt deposited on the supersaturated concentrated seawater obtained by evaporating the water of the concentrated seawater. If it is set as such a structure, since it can be set as the concentrated mineral liquid which contained the mineral component in concentrated seawater without leaving, loss of a mineral component can be prevented.

また、前記海水は、沿岸の内陸側の地表面から深さ200m以下の岩盤まで掘削された掘削孔と、地下水が浸出しない深さまで前記掘削孔に挿入された揚水管とを備えた取水路から揚水された海水、海洋から直接採取した海水、海洋深層水のうちの1以上を含むものであることが望ましい。このような海水若しくは海洋深層水を用いれば、海水中に含まれるミネラル成分を豊富かつバランス良く含有するミネラル水となる。この場合、特に、前記取水路から揚水された海水は、岩盤を濾材として濾過されることとなるため、細菌や農薬などの有害物質あるいは浮遊物などが除去されており、地下水(淡水)で希釈されることがなく水質も安定しているため、ミネラル水の品質安定化、清浄化を図ることができる。   In addition, the seawater is from an intake channel provided with an excavation hole excavated from a land surface on the coastal inland side to a bedrock of a depth of 200 m or less, and a pump pipe inserted into the excavation hole to a depth at which groundwater does not leach. It is desirable to include one or more of pumped seawater, seawater collected directly from the ocean, and deep seawater. When such seawater or deep sea water is used, the mineral water contained in the seawater is rich and well-balanced. In this case, in particular, the seawater pumped from the intake channel is filtered using the bedrock as a filter medium, so harmful substances such as bacteria and agricultural chemicals or suspended solids are removed and diluted with groundwater (fresh water). Since the water quality is stable, the quality of mineral water can be stabilized and cleaned.

一方、前記ミネラル水の導電率は、50μS/cm〜350μS/cmであることが望ましい。このような導電率の水は溶存イオン量が比較的多く、カルシウム、マグネシウム、カリウム、窒素、リンなどの栄養塩のほかセレン、亜鉛、マンガン、ヨウ素などの微量元素の含有率も高いので、ミネラル成分を豊富かつバランス良く含有するミネラル水となる。   On the other hand, the electrical conductivity of the mineral water is preferably 50 μS / cm to 350 μS / cm. Water with such conductivity has a relatively large amount of dissolved ions, and it has a high content of trace elements such as selenium, zinc, manganese and iodine in addition to nutrients such as calcium, magnesium, potassium, nitrogen and phosphorus. Mineral water containing abundant and balanced ingredients.

さらに、前記濃縮ミネラル液と天然水との混合比率は、体積比で、1:100000〜5:1000とすることが望ましい。このような混合比率とすれば、人間が必要とする五大栄養素(炭水化物、タンパク質、脂質、ビタミン、ミネラル)の一つであるミネラルを効率良く供給可能なミネラル水となる。   Furthermore, the mixing ratio of the concentrated mineral liquid and natural water is preferably 1: 100000 to 5: 1000 in volume ratio. With such a mixing ratio, it becomes a mineral water that can efficiently supply a mineral that is one of the five major nutrients (carbohydrate, protein, lipid, vitamin, mineral) required by humans.

本発明により、海洋および陸地を起源とするミネラル成分を豊富に含み健康増進に有効であり、風味も良好なミネラル水を得ることができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to obtain mineral water that is rich in mineral components originating from the ocean and land and is effective for health promotion and has a good flavor.

以下、図面に基づいて、本発明の実施の形態について説明する。図1は本発明の実施の形態であるミネラル水の製造方法を示す工程図、図2は本発明の実施の形態であるミネラル水の原料となる海洋深層水の採取方法を示す模式図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram illustrating a method for producing mineral water according to an embodiment of the present invention, and FIG. 2 is a schematic diagram illustrating a method for collecting deep ocean water as a raw material for mineral water according to an embodiment of the present invention. .

図1に示すように、本実施形態のミネラル水12は、海水を起源とする海洋深層水1と、山岳地帯から採取される天然地下水2とを原料とするものである。即ち、海洋深層水1に対し後述する処理を施すことによって得られた濃縮ミネラル液10と、天然地下水2とを所定の混合比率で混合することによってミネラル水12を得ることができる。   As shown in FIG. 1, the mineral water 12 of this embodiment uses the deep sea water 1 originating from seawater and natural groundwater 2 collected from a mountainous area as raw materials. That is, the mineral water 12 can be obtained by mixing the concentrated mineral liquid 10 obtained by performing the process described later on the deep ocean water 1 and the natural groundwater 2 at a predetermined mixing ratio.

原料の一つである海洋深層水1は、図2に示すように、海洋20の沿岸の内陸側の地表面21から深さ1200mの岩盤22まで掘削された掘削孔23と、周囲の地盤24から地下水が浸出しない深さまで掘削孔23に挿入された揚水管25とを備えた取水路26から揚水されたものである。一方、天然地下水2は、山岳地帯から採取された天然水であるが、汲み上げ水、湧水のどちらであってもよい。   As shown in FIG. 2, the deep sea water 1 that is one of the raw materials includes a drilling hole 23 excavated from an inland surface 21 on the coast of the ocean 20 to a rock 22 having a depth of 1200 m, and a surrounding ground 24. The water is pumped from an intake channel 26 having a pumping pipe 25 inserted into the excavation hole 23 to a depth at which groundwater does not leach out. On the other hand, the natural groundwater 2 is natural water collected from a mountainous area, but may be either pumped water or spring water.

ここで、図1を参照しながら、ミネラル水12の製造工程について説明する。図2に示すような取水路26を通して得られた海洋深層水1を逆浸透法に基づく淡水化処理3を施すと濃縮海水5と淡水4とが得られる。次に、この濃縮海水5を加熱することにより水分蒸発処理6を施すと、塩が析出した過飽和濃縮海水7が得られるので、これに析出塩分離処理8を行って過飽和濃縮海水7中の析出塩9を分離すると、濃縮ミネラル液10が形成される。この濃縮ミネラル液10の含有成分および含有量は概ね以下に示す通りである。   Here, the manufacturing process of the mineral water 12 is demonstrated, referring FIG. When the deep sea water 1 obtained through the intake channel 26 as shown in FIG. 2 is subjected to a desalination treatment 3 based on the reverse osmosis method, concentrated seawater 5 and fresh water 4 are obtained. Next, when the water evaporation process 6 is performed by heating the concentrated seawater 5, the supersaturated concentrated seawater 7 in which the salt is deposited is obtained, so that the precipitated salt separation process 8 is performed on this to precipitate in the supersaturated concentrated seawater 7. When the salt 9 is separated, a concentrated mineral liquid 10 is formed. The components and content of the concentrated mineral liquid 10 are as follows.

カルシウム 10mg/l〜100mg/l
マグネシウム 40000mg/l〜80000mg/l
カリウム 5000mg/l〜30000mg/l
ナトリウム 10000mg/l〜60000mg/l
セレン 0mg/l〜0.1mg/l
亜鉛 0mg/l〜0.5mg/l
マンガン 0mg/l〜5mg/l
ヨウ素 0mg/l〜30mg/l
Calcium 10mg / l-100mg / l
Magnesium 40000 mg / l to 80000 mg / l
Potassium 5000 mg / l to 30000 mg / l
Sodium 10,000 mg / l to 60000 mg / l
Selenium 0mg / l-0.1mg / l
Zinc 0 mg / l to 0.5 mg / l
Manganese 0mg / l-5mg / l
Iodine 0mg / l-30mg / l

このようにして形成された濃縮ミネラル液10と、天然地下水2とを、例えば、体積比で、1:5000に混合11すると、ミネラル水12が形成される。このミネラル水12の含有成分および含有量は概ね以下に示す通りである。なお、これは一例であり、この組成に限定するものではないので、必要に応じて、濃縮ミネラル液10と天然地下水2との混合比率を変えることによって変更可能である。   When the concentrated mineral liquid 10 thus formed and the natural groundwater 2 are mixed 11 in a volume ratio of, for example, 1: 5000, mineral water 12 is formed. The components and content of this mineral water 12 are generally as shown below. In addition, since this is an example and it does not limit to this composition, it can change by changing the mixing ratio of the concentrated mineral liquid 10 and the natural groundwater 2 as needed.

カルシウム 0mg/l〜100mg/l
マグネシウム 1mg/l〜100mg/l
カリウム 5mg/l〜30mg/l
ナトリウム 5mg/l〜180mg/l
セレン 0mg/l〜0.005mg/l
亜鉛 0mg/l〜0.09mg/l
マンガン 0mg/l〜0.04mg/l
ヨウ素 0mg/l〜3mg/l
鉄 0mg/l〜0.3mg/l
Calcium 0mg / l-100mg / l
Magnesium 1mg / l-100mg / l
Potassium 5mg / l-30mg / l
Sodium 5mg / l-180mg / l
Selenium 0 mg / l to 0.005 mg / l
Zinc 0 mg / l to 0.09 mg / l
Manganese 0mg / l-0.04mg / l
Iodine 0mg / l-3mg / l
Iron 0mg / l-0.3mg / l

図1,図2に示すような工程を経て形成されたミネラル水12は、陸地由来の天然地下水2と、海洋由来の海洋深層水1とが含有するカルシウム、マグネシウム、カリウム、窒素、リンなどの栄養塩に加え、セレン、亜鉛、マンガン、ヨウ素などの微量元素をバランス良く含有する、ミネラル成分豊富なミネラル水12となる。また、逆浸透法に基づく淡水化処理3によって分離された濃縮海水5から生成される濃縮ミネラル液10は残存イオン量が高いので、ミネラル成分の豊富化に有効である。さらに、逆浸透法は、常温で相変化を伴うことなく溶質と水とを分離可能であり、分離後の水の風味が悪化することがなく、酵母菌やカビ菌なども除去することができるため、ミネラル水12は健康増進にも有効であり、風味も良好である。   The mineral water 12 formed through the processes as shown in FIGS. 1 and 2 includes calcium, magnesium, potassium, nitrogen, phosphorus, etc. contained in the natural groundwater 2 derived from land and the deep seawater 1 derived from the ocean. In addition to nutrient salts, the mineral water 12 is rich in mineral components and contains trace elements such as selenium, zinc, manganese and iodine in a well-balanced manner. Moreover, since the concentrated mineral liquid 10 produced | generated from the concentrated seawater 5 isolate | separated by the desalination process 3 based on a reverse osmosis method has a high residual ion amount, it is effective for enrichment of a mineral component. Furthermore, the reverse osmosis method can separate solute and water without causing a phase change at room temperature, and does not deteriorate the flavor of the water after separation, and can also remove yeast and fungi. Therefore, the mineral water 12 is effective for health promotion and has a good flavor.

ここで、濃縮ミネラル液10は、濃縮海水5の水分を蒸発させて得た過飽和濃縮海水7に析出した析出塩9を分離して生成したものである。従って、濃縮海水5中のミネラル成分を余すことなく含有する濃縮ミネラル液10とすることができ、ミネラル成分の損失が極めて少ない。   Here, the concentrated mineral liquid 10 is produced by separating the precipitated salt 9 deposited on the supersaturated concentrated seawater 7 obtained by evaporating the water of the concentrated seawater 5. Therefore, it can be set as the concentrated mineral liquid 10 which contains the mineral component in the concentrated seawater 5 without leaving, and the loss of a mineral component is very small.

また、原料となる海洋深層水1(海水)は、沿岸の内陸側の地表面21から深さ1200mの岩盤22まで掘削された掘削孔23と、地下水が浸出しない深さまで掘削孔23に挿入された揚水管25とを備えた取水路26から揚水されたものである。従って、海洋深層水1は、岩盤22を濾材として濾過されることにより細菌や農薬などの有害物質あるいは浮遊物などが除去されており、地下水で希釈されることもないので、水質が安定しており、ミネラル水12の品質安定化、清浄化に有効である。   Further, the deep sea water 1 (seawater) as a raw material is inserted into the excavation hole 23 excavated from the land surface 21 on the coastal inland side to the rock 22 having a depth of 1200 m and to a depth at which the groundwater does not leach. The water is pumped from a water intake passage 26 provided with a water pumping pipe 25. Therefore, the deep ocean water 1 is filtered with the bedrock 22 as a filter medium to remove harmful substances such as bacteria and agricultural chemicals or suspended solids, and is not diluted with groundwater, so the water quality is stable. It is effective for stabilizing and cleaning the quality of the mineral water 12.

なお、本実施形態のミネラル水12の導電率は概ね50μS/cm〜350μS/cm程度であるが、このような導電率のミネラル水12は溶存イオン量が比較的多く、カルシウム、マグネシウム、カリウム、窒素、リンなどの栄養塩のほかセレン、亜鉛、マンガン、ヨウ素などの微量元素の含有率も高いので、豊富なミネラル成分をバランス良く含んでいる。   In addition, although the electrical conductivity of the mineral water 12 of this embodiment is approximately 50 μS / cm to 350 μS / cm, the mineral water 12 having such an electrical conductivity has a relatively large amount of dissolved ions, and calcium, magnesium, potassium, In addition to nutrients such as nitrogen and phosphorus, it has a high content of trace elements such as selenium, zinc, manganese and iodine, so it contains abundant minerals in a well-balanced manner.

さらに、本実施形態では、濃縮ミネラル液10と、天然地下水2との混合比率を、体積比で1:5000としたところ、ミネラルバランスが良好で、平均的に美味しく、飲用し易いミネラル水12を得ることができた。   Furthermore, in this embodiment, when the mixing ratio of the concentrated mineral liquid 10 and the natural groundwater 2 is 1: 5000 in volume ratio, the mineral balance is good, the average is delicious, and the mineral water 12 is easy to drink. I was able to get it.

本発明のミネラル水は、一般家庭やオフィスなどにおける飲料水あるいは料理用水などとして広く利用することができる。   The mineral water of the present invention can be widely used as drinking water or cooking water in general homes and offices.

本発明の実施の形態であるミネラル水の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the mineral water which is embodiment of this invention. 本発明の実施の形態であるミネラル水の原料となる海洋深層水の採取方法を示す模式図である。It is a schematic diagram which shows the collection method of the deep sea water used as the raw material of the mineral water which is embodiment of this invention.

符号の説明Explanation of symbols

1 海洋深層水
2 天然地下水
3 淡水化処理
4 淡水
5 濃縮海水
6 水分蒸発処理
7 過飽和濃縮海水
8 塩析出分離処理
9 析出塩
10 濃縮ミネラル液
11 混合
12 ミネラル水
20 海洋
21 地表面
22 岩盤
23 掘削孔
24 地盤
25 揚水管
26取水路
DESCRIPTION OF SYMBOLS 1 Deep sea water 2 Natural groundwater 3 Desalination 4 Fresh water 5 Concentrated seawater 6 Moisture evaporation 7 Supersaturated concentrated seawater 8 Salt precipitation separation treatment 9 Precipitation salt 10 Concentrated mineral liquid 11 Mixing 12 Mineral water 20 Ocean 21 Ground surface 22 Rock 23 Drilling Hole 24 Ground 25 Pumping pipe 26 Intake channel

Claims (5)

逆浸透法により海水を淡水化処理して得られる濃縮海水から塩を分離して生成される濃縮ミネラル液と、天然水と、を含むことを特徴とするミネラル水。   A mineral water comprising a concentrated mineral liquid produced by separating a salt from concentrated seawater obtained by desalinating seawater by a reverse osmosis method, and natural water. 前記濃縮ミネラル液が、前記濃縮海水の水分を蒸発させて得た過飽和濃縮海水に析出した析出塩を分離して生成したものである請求項1記載のミネラル水。   The mineral water according to claim 1, wherein the concentrated mineral liquid is produced by separating a deposited salt precipitated in supersaturated concentrated seawater obtained by evaporating water of the concentrated seawater. 前記海水が、沿岸の内陸側の地表面から深さ200m以下の岩盤まで掘削された掘削孔と、地下水が浸出しない深さまで前記掘削孔に挿入された揚水管とを備えた取水路から揚水された海水、海洋から直接採取した海水、海洋深層水のうちの1以上を含むものである請求項1または2記載のミネラル水。   The seawater is pumped from an intake channel comprising a drilling hole drilled from a coastal inland surface to a rock mass of a depth of 200 m or less and a pumping pipe inserted into the drilling hole to a depth at which groundwater does not leach. The mineral water according to claim 1, wherein the mineral water contains at least one of seawater, seawater collected directly from the ocean, and deep ocean water. 前記ミネラル水の導電率が50μS/cm〜350μS/cmである請求項1〜3のいずれかに記載のミネラル水。   The mineral water according to claim 1, wherein the mineral water has a conductivity of 50 μS / cm to 350 μS / cm. 前記濃縮ミネラル液と天然水との混合比率が、体積比で、
1:100000〜5:1000である請求項1〜4のいずれかに記載のミネラル水。
The mixing ratio of the concentrated mineral liquid and natural water is a volume ratio,
It is 1: 100,000-5: 1000, The mineral water in any one of Claims 1-4.
JP2005219417A 2005-07-28 2005-07-28 Mineral water Pending JP2007029899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219417A JP2007029899A (en) 2005-07-28 2005-07-28 Mineral water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005219417A JP2007029899A (en) 2005-07-28 2005-07-28 Mineral water

Publications (1)

Publication Number Publication Date
JP2007029899A true JP2007029899A (en) 2007-02-08

Family

ID=37789796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219417A Pending JP2007029899A (en) 2005-07-28 2005-07-28 Mineral water

Country Status (1)

Country Link
JP (1) JP2007029899A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274214A (en) * 2009-05-29 2010-12-09 Dhc Co Manufacturing method of drinking water, and drinking water
JP2011144166A (en) * 2009-12-14 2011-07-28 Shunkosha:Kk Potable water
JP2011242036A (en) * 2010-05-17 2011-12-01 Hitachi Plant Technologies Ltd Air conditioner and system using deep seawater
JP2018102137A (en) * 2016-12-22 2018-07-05 ▲かん▼東實業股▲ふん▼有限公司Quality Pure Co., Ltd. Concentrated liquid with high concentration of magnesium ions, drinking water manufacturing system and drinking water manufacturing method
JP2018118922A (en) * 2017-01-25 2018-08-02 大日本除蟲菊株式会社 Agent and method for inhibiting penetration of pest repellent component into the skin
JP2023025798A (en) * 2021-08-11 2023-02-24 株式会社東芝 Carbon dioxide fixation system and method using seawater electrolysis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274214A (en) * 2009-05-29 2010-12-09 Dhc Co Manufacturing method of drinking water, and drinking water
JP2011144166A (en) * 2009-12-14 2011-07-28 Shunkosha:Kk Potable water
JP2011242036A (en) * 2010-05-17 2011-12-01 Hitachi Plant Technologies Ltd Air conditioner and system using deep seawater
JP2018102137A (en) * 2016-12-22 2018-07-05 ▲かん▼東實業股▲ふん▼有限公司Quality Pure Co., Ltd. Concentrated liquid with high concentration of magnesium ions, drinking water manufacturing system and drinking water manufacturing method
JP2018118922A (en) * 2017-01-25 2018-08-02 大日本除蟲菊株式会社 Agent and method for inhibiting penetration of pest repellent component into the skin
JP2023025798A (en) * 2021-08-11 2023-02-24 株式会社東芝 Carbon dioxide fixation system and method using seawater electrolysis
JP7463323B2 (en) 2021-08-11 2024-04-08 株式会社東芝 System and method for fixing carbon dioxide by seawater electrolysis

Similar Documents

Publication Publication Date Title
Millar et al. Strategies for the management and treatment of coal seam gas associated water
Van der Bruggen et al. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry
Morillo et al. Comparative study of brine management technologies for desalination plants
JP2007029899A (en) Mineral water
KR100670474B1 (en) A Concentrate Method of Minerals from Sea Water, the Mineral Concentrate and its Use
de Nicolás et al. Reject brine management: Denitrification and zero liquid discharge (ZLD)—Current status, challenges and future prospects
JP2006192422A (en) Method for producing water suitable for drinking by reducing boron content in water
KR20160004063A (en) Removal system of sulfate in seawater using ion exchange resin
Zarzo Beneficial uses and valorization of reverse osmosis brines
KR101643146B1 (en) Manufacturing Apparatus for Mineral Water with Forward Osmosis Hybrid
KR100873841B1 (en) The preparation method of mineral water using magma seawater
Ketharani et al. A comparative study of community reverse osmosis and nanofiltration systems for total hardness removal in groundwater
KR101689059B1 (en) Removal of anions and conversion technology of carbonate ions from seawater
KR20140145309A (en) The manufacturing process development of Processed deep seawater using NF/RO/ED membrane connection system
JP2007289953A (en) Method for producing salt water, salt, and bittern using sea water as raw material, and salt water, salt, and bittern
KR200400448Y1 (en) A Manufacturing Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water
KR100663084B1 (en) A Manufacturing Method and Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water
KR100992428B1 (en) Method of mineral water manufacture through efficient mineral control and removal of anion by nf membrane
Kumar et al. RO Reject Water Management Techniques
KR20140073609A (en) The method for producing drinking water using deep sea water
KR101574327B1 (en) (Method for Separation of High Purity Minerals from Magma Seawater
JP2001190255A (en) Deep water drink containing mineral ingredient originated from mineral spring water
JP4045061B2 (en) Mineral water beverage containing mineral components derived from deep water
Phuntsho A novel fertiliser drawn forward osmosis desalination for fertigation
JP2009066461A (en) Intake and use of new unmixed deep sea water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020