JP2011242036A - Air conditioner and system using deep seawater - Google Patents

Air conditioner and system using deep seawater Download PDF

Info

Publication number
JP2011242036A
JP2011242036A JP2010113489A JP2010113489A JP2011242036A JP 2011242036 A JP2011242036 A JP 2011242036A JP 2010113489 A JP2010113489 A JP 2010113489A JP 2010113489 A JP2010113489 A JP 2010113489A JP 2011242036 A JP2011242036 A JP 2011242036A
Authority
JP
Japan
Prior art keywords
water
heat exchange
heat
cooling
deep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010113489A
Other languages
Japanese (ja)
Other versions
JP5437909B2 (en
Inventor
Koji Suzuki
浩二 鈴木
Yukihiro Hachiya
幸裕 蜂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2010113489A priority Critical patent/JP5437909B2/en
Publication of JP2011242036A publication Critical patent/JP2011242036A/en
Application granted granted Critical
Publication of JP5437909B2 publication Critical patent/JP5437909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of cooling a heat exchanged medium to a temperature lower than that of the deep seawater and capable of producing fresh water from the deep seawater efficiently, and a system using deep seawater.SOLUTION: The system using deep seawater includes: a first heat exchanger 8a cooling the heat exchanged medium by using the deep seawater; and turbo refrigerating machines 9a, 9b further cooling the heat exchanged medium of which temperature is lowered by the heat exchange with the deep seawater by using a refrigerant. The air conditioners uses the heat exchanged medium cooled by the turbo refrigerating machines 9a, 9b as a cold source. The air conditioner and the system using deep seawater further include: a second heat exchanger 8b cooling the cooling water of which temperature is increased by cooling the refrigerant of the turbo refrigerant machines 9a, 9b by using the deep seawater of which temperature is increased by the heat exchange with the heat exchanged medium; and a desalination unit 300 performing the desalination of the deep seawater of which temperature is increased by cooling the cooling water by the second heat exchanger 8b.

Description

本発明は、海洋深層水で被熱交換媒体を冷却する空調装置および海洋深層水利用システムに関する。   The present invention relates to an air conditioner and a deep ocean water utilization system that cools a heat exchange medium with deep ocean water.

200mより深海に存在する海洋深層水は従来から積極的に利用され、例えば特許文献1〜4には海洋深層水を冷暖房(空調装置)に用いる技術、特許文献5には海洋深層水を淡水化する技術が開示されている。   Deep sea water existing in the deep sea from 200 m has been actively used. For example, Patent Documents 1 to 4 describe techniques for using deep sea water for cooling and heating (air conditioners), and Patent Document 5 describes desalination of deep sea water. Techniques to do this are disclosed.

特開2006−180735号公報JP 2006-180735 A 特開2005−308314号公報JP 2005-308314 A 特開2005−308313号公報JP 2005-308313 A 特開2005−156125号公報JP 2005-156125 A 特開2005−334882号公報JP 2005-334882 A

例えば特許文献1〜4に開示されるように海洋深層水を空調装置に使用する技術ではプレート式など単純間接熱交換器を使用している。しかしながら、プレート式などの単純間接熱交換器では、冷媒となる海洋深層水より低温の冷水を得ることができないため、取水時点で10〜12℃の温度となる海洋深層水を利用する場合、空調装置に必要な低温の冷水を得ることができず、空調装置の室内機ユニットが備わる室内を快適な環境に保つことが困難であるという問題がある。   For example, as disclosed in Patent Documents 1 to 4, a simple indirect heat exchanger such as a plate type is used in the technology that uses deep ocean water in an air conditioner. However, in a simple indirect heat exchanger such as a plate type, cold water having a temperature lower than that of the deep ocean water serving as a refrigerant cannot be obtained. Therefore, when using deep ocean water having a temperature of 10 to 12 ° C. at the time of water intake, air conditioning There is a problem that low-temperature cold water required for the apparatus cannot be obtained, and it is difficult to maintain a comfortable environment in the room provided with the indoor unit of the air conditioner.

また、淡水化装置で海洋深層水を淡水化する淡水化装置の場合、海洋深層水の温度が低すぎると淡水化装置における淡水化の効率が低くなる。
例えば、特許文献5に開示される技術は海洋深層水を直接淡水化する技術であって、海洋深層水を加熱するエネルギが必要となるためCOの排出量が増えるという問題がある。
In addition, in the case of a desalination apparatus that desalinates deep seawater with a desalination apparatus, if the temperature of the deep seawater is too low, the desalination efficiency of the desalination apparatus decreases.
For example, the technique disclosed in Patent Document 5 is a technique for directly desalinating deep ocean water, and requires energy to heat the deep ocean water, resulting in an increase in CO 2 emissions.

そこで、本発明は、被熱交換媒体を海洋深層水より低温に冷却でき、さらに、効率よく海洋深層水から淡水を製造できる空調装置および海洋深層水利用システムを提供することを課題とする。   Therefore, an object of the present invention is to provide an air conditioner and a deep ocean water utilization system that can cool the heat exchange medium to a temperature lower than that of the deep ocean water and that can efficiently produce fresh water from the deep ocean water.

前記課題を解決するため、本発明は、被熱交換媒体を冷却する第1熱交換器と、第1熱交換器で冷却された被熱交換媒体をさらに冷却するチラーユニットと、チラーユニットの冷媒を冷却する冷却水を海洋深層水で冷却する第2熱交換器と、チラーユニットの冷却水を冷却して温度が上昇した海洋深層水を淡水化する淡水化ユニットと、を備える海洋深層水利用システムとする。また、第1熱交換器で冷却された被熱交換媒体を冷熱源とする空調装置とする。   In order to solve the above problems, the present invention provides a first heat exchanger that cools a heat exchange medium, a chiller unit that further cools the heat exchange medium cooled by the first heat exchanger, and a refrigerant of the chiller unit. Deep sea water use comprising: a second heat exchanger that cools the cooling water that cools the water with deep sea water; and a desalination unit that cools the cooling water of the chiller unit and desalinates the deep sea water that has risen in temperature. System. Moreover, it is set as the air-conditioning apparatus which uses the to-be-heated exchange medium cooled with the 1st heat exchanger as a cold heat source.

本発明によると、被熱交換媒体を海洋深層水より低温に冷却でき、さらに、効率よく海洋深層水から淡水を製造できる空調装置および海洋深層水利用システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, a to-be-heated exchange medium can be cooled to low temperature from deep sea water, and also the air-conditioning apparatus and deep sea water utilization system which can manufacture fresh water from deep sea water efficiently can be provided.

本実施形態に係る空調装置の構成を示す図である。It is a figure which shows the structure of the air conditioner which concerns on this embodiment. 熱交換装置の構成を示す図である。It is a figure which shows the structure of a heat exchange apparatus. (a)は、取水配管を敷設した状態を示す図、(b)は、取水口の構成を示す図である。(A) is a figure which shows the state which laid intake piping, (b) is a figure which shows the structure of an intake port. (a)〜(c)は、取水配管を敷設する手順を説明する図である。(A)-(c) is a figure explaining the procedure of laying intake piping. 主に海洋深層水の温度の変化を示す図である。It is a figure which mainly shows the change of the temperature of deep sea water.

以下、本発明の実施形態について、適宜図を参照して詳細に説明する。
図1に示すように、本実施形態に係る海洋深層水利用システムは、冷熱源となる被熱交換媒体(冷房用水)を海洋深層水を利用して冷却する熱交換ユニット200と、海洋深層水を浄化して上水供給装置310から利用者に供給する上水を製造する淡水化ユニット300を含んで構成される熱交換装置1aを有する空調装置1とする。
空調装置1の空調端末210(室内機ユニット)で室内の周囲の空気を冷却して温度が上昇した冷房用水は、熱交換ユニット200(室外機ユニット)に戻り海洋深層水によって冷却される。
また、淡水化ユニット300で製造された上水は、上水供給装置310から利用者に供給される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1, the deep sea water utilization system according to the present embodiment includes a heat exchange unit 200 that cools a heat exchange medium (cooling water) serving as a cold heat source using deep sea water, and deep sea water. It is set as the air conditioner 1 which has the heat exchange apparatus 1a comprised including the desalination unit 300 which purifies this and manufacture the clean water supplied to a user from the clean water supply apparatus 310. FIG.
The cooling water whose temperature has been increased by cooling the ambient air in the air conditioner terminal 210 (indoor unit) of the air conditioner 1 returns to the heat exchange unit 200 (outdoor unit) and is cooled by deep ocean water.
Moreover, the clean water produced by the desalination unit 300 is supplied from the clean water supply device 310 to the user.

図2に示すように、本実施形態に係る熱交換装置1aは、深度600〜800m程度の海洋深層水を汲み上げる汲み上げ装置100と、汲み上げた海洋深層水を利用して冷熱源となる冷房用水を冷却する熱交換ユニット200と、海洋深層水を淡水化して上水を製造する淡水化ユニット300と、を含んで構成される。   As shown in FIG. 2, the heat exchange device 1 a according to the present embodiment includes a pumping device 100 that pumps deep ocean water having a depth of about 600 to 800 m, and cooling water that serves as a cooling heat source using the pumped ocean water. It includes a heat exchange unit 200 that cools, and a desalination unit 300 that desalinates deep seawater to produce clean water.

汲み上げ装置100は、例えば海底に沿って海洋深層水の汲み上げ深度(600〜800m)まで敷設されて先端に取水口2aが取り付けられている取水配管2、例えば並列に2つ配置されるバケットトラップ3、海洋深層水を汲み上げる取水ポンプ4、汲み上げた海洋深層水を一時的に溜める原水槽5、および原水槽5に溜まる海洋深層水を取り出す原水ポンプ6を備えて構成される。なお、原水槽5には排水管5aが接続され、原水槽5における余剰の海洋深層水は、排水管5aを流通して海洋に排水される。さらに、原水槽5には、海洋深層水の貯水量を調節する調節弁5bが備わる。
調節弁5bは、原水槽5における海洋深層水の貯水量を減量するときに開弁して原水槽5に溜まる海洋深層水を排水管5aに流すように構成される。
また、2つの原水ポンプ6が並列に配設される構成であってもよい。この構成によって、一方の原水ポンプ6が故障しても他方の原水ポンプ6を駆動することによって、汲み上げ装置100を稼動することができる。
The pumping device 100 is, for example, a water intake pipe 2 that is laid to the deep water depth (600 to 800 m) along the seabed and has a water intake port 2a attached to the tip, for example, two bucket traps 3 arranged in parallel. , A water intake pump 4 for pumping up deep ocean water, a raw water tank 5 for temporarily storing the pumped deep ocean water, and a raw water pump 6 for taking out deep sea water collected in the raw water tank 5. In addition, the drain pipe 5a is connected to the raw | natural water tank 5, and the excess deep sea water in the raw | natural water tank 5 distribute | circulates the drain pipe 5a, and is drained by the ocean. Furthermore, the raw water tank 5 is provided with a regulating valve 5b for regulating the amount of deep ocean water stored.
The control valve 5b is configured to open the deep sea water accumulated in the raw water tank 5 to flow to the drain pipe 5a when the amount of deep sea water stored in the raw water tank 5 is reduced.
Moreover, the structure by which the two raw | natural water pumps 6 are arrange | positioned in parallel may be sufficient. With this configuration, even if one raw water pump 6 breaks down, the pumping device 100 can be operated by driving the other raw water pump 6.

例えば、図3の(a)に示すように、熱交換装置1aは海岸部に近い陸上部GDに建設される建物BLDの屋内に設置され、取水配管2は、建物BLDから海底に沿って敷設される。
取水配管2の敷設方法は特に限定するものではないが、海面SL付近(30〜50mまでの深度)は、例えば、スクリューによる取水配管2の破損など、船舶の航行に影響する深度であることから、この領域は取水配管2を地中に敷設することが考えられる。
For example, as shown in FIG. 3 (a), the heat exchange device 1a is installed indoors in a building BLD constructed in a land part GD near the coast, and the intake pipe 2 is laid along the seabed from the building BLD. Is done.
Although the method of laying the intake pipe 2 is not particularly limited, the vicinity of the sea surface SL (depth of 30 to 50 m) is a depth that affects the navigation of the ship, such as breakage of the intake pipe 2 due to a screw, for example. In this area, it is considered that the intake pipe 2 is laid in the ground.

例えば、図3の(a)に示すように、建物BLDからトンネルTNを海面下30〜50mまで地面を掘って開通し、建物BLDから海面下30〜50mまでは、取水配管2をトンネルTN内に敷設する。さらに、トンネルTNの先は、複数の重り2bを取り付けた取水配管2を海底に沈めて海洋深層水の汲み上げ深度(600〜800m)まで、取水配管2を敷設する。   For example, as shown in FIG. 3A, a tunnel TN is opened from a building BLD to a depth of 30 to 50 m below the sea level, and the intake pipe 2 is placed in the tunnel TN from the building BLD to a depth of 30 to 50 m below the sea level. Lay in. Further, the tip of the tunnel TN lays the intake pipe 2 up to the depth of pumping deep seawater (600 to 800 m) by sinking the intake pipe 2 attached with a plurality of weights 2b to the seabed.

また、取水口2aが取り付けられる取水配管2の先端部には重り2bを取り付けず、取水口2aが自身の浮力等で海底から数m〜数十mだけ浮上して浮遊する構成が好ましい。この構成によって、海底の堆積物が舞い上がったときに、取水口2aから堆積物が取り込まれることを抑制できる。取水口2aの形状は限定するものではないが、例えば、図3の(b)に示すように、円筒形の本体2a1の側面に複数の取水孔2a2が開口する構成とする。
この構成によると、海水中を沈降してくる浮遊物が溜まりやすい取水口2aの天頂部2a3には取水孔2a2が開口せず、取水口2aによる浮遊物の取り込み量を抑制できる。
In addition, a configuration in which the weight 2b is not attached to the tip of the intake pipe 2 to which the intake port 2a is attached, and the intake port 2a floats by floating several m to several tens of meters from the sea floor by its own buoyancy or the like. With this configuration, it is possible to prevent the sediment from being taken in from the water intake port 2a when the sediment on the seabed soars. Although the shape of the water intake 2a is not limited, For example, as shown to (b) of FIG. 3, it is set as the structure which the some water intake hole 2a2 opens in the side surface of the cylindrical main body 2a1.
According to this configuration, the water intake hole 2a2 does not open in the zenith portion 2a3 of the water intake port 2a in which the floating material that sinks in the seawater easily collects, and the amount of suspended matter taken up by the water intake port 2a can be suppressed.

また、必要とされる数より多い数の取水孔2a2を設けることにより、海中の浮遊物等によって取水口2aが塞がれることによる故障の発生を抑制できる。なお、図3の(a)に示す取水配管2には1つの取水口2aが備わっているが、例えば、取水配管2の先端を2つ以上に分岐し、分岐した先端にそれぞれ取水口2aが備わる取水配管2であってもよい。   Further, by providing a larger number of intake holes 2a2 than necessary, it is possible to suppress the occurrence of a failure due to the intake port 2a being blocked by suspended matter in the sea. The intake pipe 2 shown in FIG. 3 (a) is provided with one intake port 2a. For example, the intake pipe 2 is branched into two or more ends, and each of the branched ends has an intake port 2a. The intake pipe 2 provided may be sufficient.

また、取水配管2は、例えば、対腐食性に優れた高密度ポリエチレン管を素材とし、長期間に亘って空調装置1を使用した場合であっても腐食の進行が抑制されることが好ましい。この構成によって、保守作業が実質的に不可能である海底部における保守作業の必要性がなくなり、空調装置1の長期間に亘る運用を可能とすることができる。   Moreover, it is preferable that the intake pipe 2 is made of, for example, a high-density polyethylene pipe having excellent corrosion resistance and the progress of corrosion is suppressed even when the air conditioner 1 is used for a long period of time. With this configuration, there is no need for maintenance work at the sea floor where maintenance work is substantially impossible, and the air conditioner 1 can be operated over a long period of time.

取水配管2は、例えば図4の(a)〜(c)に示す手順で敷設可能である。図4の(a)に示すように、陸上部GDから水面下30〜50mの海底に向かって、ボーリング(水平ボーリング)などの工法によってトンネルTNを開通し、そのとき使用する掘削装置(例えばドリル400)でワイヤ401を牽引してトンネルTN内にワイヤ401を通す。そしてトンネルTNの貫通後にドリル400のみを陸上部GD側に引き上げると、トンネルTN内にワイヤ401が残る。   The intake pipe 2 can be laid, for example, according to the procedure shown in FIGS. As shown in FIG. 4 (a), the tunnel TN is opened by a method such as boring (horizontal boring) from the land part GD toward the seabed 30 to 50 m below the surface of the water, and a drilling device (for example, a drill) used at that time 400) pulls the wire 401 and passes the wire 401 into the tunnel TN. Then, when only the drill 400 is pulled up to the land portion GD side after passing through the tunnel TN, the wire 401 remains in the tunnel TN.

そして、図4の(b)に示すように、海面SL上を航行する作業船402に、例えばリール403に巻かれて搭載される取水配管2の先端とトンネルTN内を通るワイヤ401の先端を海中で連結し、図示しないウインチ等によってワイヤ401を陸上部GD側に引き上げる。
取水配管2がワイヤ401に引かれてトンネルTN内を進行し、トンネルTN内に取水配管2が敷設される。
Then, as shown in FIG. 4 (b), for example, the tip of the intake pipe 2 and the tip of the wire 401 passing through the tunnel TN are wound around the work ship 402 that sails on the sea surface SL. It connects in the sea and the wire 401 is pulled up to the land part GD side by a winch or the like (not shown).
The intake pipe 2 is pulled by the wire 401 and travels through the tunnel TN, and the intake pipe 2 is laid in the tunnel TN.

その後、図4の(c)に示すように、複数の重り2bを適宜取り付けた取水配管2をリール403から解放して海中に投入しながら作業船402を取水配管2の敷設方向に進行すると、重り2bの重さで取水配管2が海中に沈み、取水配管2を海底に敷設できる。
このように、取水配管2を海底に敷設することができるが、図4の(a)〜(c)に示す方法は一例であってこの方法に限定するものではない。
Thereafter, as shown in FIG. 4 (c), when the water intake pipe 2 to which a plurality of weights 2b are appropriately attached is released from the reel 403 and thrown into the sea, the work ship 402 is advanced in the direction of laying the water pipe 2. The intake pipe 2 sinks in the sea with the weight of the weight 2b, and the intake pipe 2 can be laid on the seabed.
Thus, although the intake pipe 2 can be laid on the seabed, the method shown in FIGS. 4A to 4C is an example and is not limited to this method.

説明を図2に戻す。熱交換ユニット200は、汲み上げた海洋深層水と被熱交換媒体を熱交換して被熱交換媒体を冷却する装置であり、本実施形態の熱交換装置1aでは、熱交換ユニット200としてチラープラントを使用することを特徴とする。
また、本実施形態において、被熱交換媒体は空調装置1(図1参照)の冷熱源となる冷房用水とするが、被熱交換媒体は冷房用水に限定されるものではなく、例えば、代替フロンなどの冷媒であってもよい。
Returning to FIG. The heat exchange unit 200 is a device that cools the heat exchange medium by exchanging the pumped deep ocean water and the heat exchange medium. In the heat exchange apparatus 1a of this embodiment, a chiller plant is used as the heat exchange unit 200. It is characterized by using.
In the present embodiment, the heat exchange medium is cooling water that is a cooling heat source of the air conditioner 1 (see FIG. 1). However, the heat exchange medium is not limited to cooling water, for example, an alternative chlorofluorocarbon A refrigerant such as

汲み上げ装置100によって汲み上げられて原水槽5に溜められた冷たい海洋深層水(温度:T11)は、原水ポンプ6によって熱交換ユニット200に送水される。熱交換ユニット200に送水された海洋深層水は熱交換器(第1熱交換器8a)に導入され、空調端末210で温度が高くなって破線で示すように冷却ポンプ10で送水される冷房用水(温度:T21(但し、T21>T11))と熱交換して冷房用水を冷却する。そして、冷房用水と熱交換して温度が上昇した海洋深層水(T11→T12)は、他の熱交換器(第2熱交換器8b)に導入される。第1熱交換器8a、第2熱交換器8bは、例えば、プレート式熱交換器である。   Cold deep ocean water (temperature: T11) pumped up by the pumping device 100 and stored in the raw water tank 5 is sent to the heat exchange unit 200 by the raw water pump 6. The deep sea water sent to the heat exchange unit 200 is introduced into the heat exchanger (first heat exchanger 8a), and the cooling water is fed by the cooling pump 10 as the temperature rises at the air conditioning terminal 210 and is indicated by the broken line. (Temperature: T21 (however, T21> T11)) and heat exchange to cool the cooling water. Then, the deep sea water (T11 → T12) whose temperature has been increased by heat exchange with the cooling water is introduced into another heat exchanger (second heat exchanger 8b). The first heat exchanger 8a and the second heat exchanger 8b are, for example, plate heat exchangers.

第1熱交換器8aは、熱交換ユニット200を海洋深層水が流通する流路(主流路200a)と並列に配置され、第1熱交換器8aに流入する海洋深層水の流通量は、調節弁8a1によって調節される。また、第2熱交換器8bも主流路200aと並列に配置され、第2熱交換器8bに流入する海洋深層水の流通量は、調節弁8b1によって調節される。   The first heat exchanger 8a is disposed in parallel with the flow path (main flow path 200a) through which the deep sea water flows through the heat exchange unit 200, and the flow of deep sea water flowing into the first heat exchanger 8a is adjusted. Regulated by valve 8a1. The second heat exchanger 8b is also arranged in parallel with the main flow path 200a, and the circulation amount of the deep sea water flowing into the second heat exchanger 8b is adjusted by the control valve 8b1.

調節弁8a1による海洋深層水の流通量の調節および調節弁8b1による海洋深層水の流通量の調節は、例えば、海洋深層水の温度、空調端末210で利用者が設定する設定温度等に基づいて図示しない制御装置が制御する。
例えば、海洋深層水の温度が高いとき、図示しない制御装置は、第1熱交換器8aおよび第2熱交換器8bに流入する海洋深層水の流量を増量して、海洋深層水による冷房用水および冷却水の冷却効果を増大する。
The adjustment of the flow rate of the deep sea water by the control valve 8a1 and the adjustment of the flow rate of the deep sea water by the control valve 8b1 are based on, for example, the temperature of the deep sea water, the set temperature set by the user at the air conditioning terminal 210, and the like. Control is performed by a control device (not shown).
For example, when the temperature of the deep ocean water is high, the control device (not shown) increases the flow rate of the deep ocean water flowing into the first heat exchanger 8a and the second heat exchanger 8b, and the cooling water by the ocean deep water and Increase cooling effect of cooling water.

また、熱交換ユニット200には、例えば2つのターボ冷凍機9a、9bが直列に配設され、第1熱交換器8aで海洋深層水と熱交換して温度が低下した冷房用水(の一部)をさらに冷却する。ターボ冷凍機9a、9bは、細い実線で示すように内部を循環する冷媒と冷房用水が熱交換して冷房用水の温度を下げるように構成される。また、ターボ冷凍機9a、9bの内部の冷媒は、冷却水ポンプ11によって点線で示すように循環する冷却水との熱交換で温度が下がり、冷却水は冷却水ポンプ11によって第2熱交換器8bとターボ冷凍機9a、9bとの間を循環する。そして、冷媒との熱交換で温度が上昇した冷却水(温度:T31(但し、T31>T12))は第2熱交換器8bで海洋深層水と熱交換して温度が低下する。一方、海洋深層水は温度が上昇する(T12→T13)。   In addition, in the heat exchange unit 200, for example, two turbo chillers 9a and 9b are arranged in series, and a part of the cooling water (the part of which is cooled by exchanging heat with deep sea water in the first heat exchanger 8a). ) Is further cooled. The turbo chillers 9a and 9b are configured to reduce the temperature of the cooling water by exchanging heat between the refrigerant circulating inside and the cooling water as indicated by thin solid lines. The refrigerant in the turbo chillers 9a and 9b is cooled by heat exchange with the cooling water circulating as shown by the dotted line by the cooling water pump 11, and the cooling water is supplied to the second heat exchanger by the cooling water pump 11. It circulates between 8b and turbo refrigerator 9a, 9b. And the cooling water (temperature: T31 (however, T31> T12)) whose temperature rose by heat exchange with the refrigerant exchanges heat with deep ocean water in the second heat exchanger 8b, and the temperature drops. On the other hand, the temperature of deep ocean water rises (T12 → T13).

このように、ターボ冷凍機9a、9bは、冷却水ポンプ11で循環する冷却水で冷媒が冷却されるように構成され、ターボ冷凍機9a、9bおよび冷却水ポンプ11を含んでチラーユニットが構成される。そして、熱交換ユニット200は、チラーユニットを備えるチラープラントとなる。   As described above, the turbo chillers 9a and 9b are configured such that the refrigerant is cooled by the cooling water circulating in the cooling water pump 11, and the chiller unit including the turbo chillers 9a and 9b and the cooling water pump 11 is configured. Is done. And the heat exchange unit 200 becomes a chiller plant provided with a chiller unit.

さらに、本実施形態に係る熱交換装置1aは、海洋深層水を淡水化して上水を製造する淡水化ユニット300を備える。
淡水化ユニット300は、熱交換ユニット200の第2熱交換器8bで熱交換した後の海洋深層水(の一部)を一時的に溜める補給水槽12と、RO膜モジュール17で海洋深層水をろ過して淡水化するSW(Sea Water)ROシステム301と、SWROシステム301を洗浄するためのCIP(Cleaning in Place)システム302と、後処理システム303と、を備えて構成される。
Furthermore, the heat exchange apparatus 1a according to this embodiment includes a desalination unit 300 that desalinates deep ocean water to produce clean water.
The desalination unit 300 includes a supplementary water tank 12 for temporarily storing (part of) the deep sea water after heat exchange by the second heat exchanger 8 b of the heat exchange unit 200, and deep sea water by the RO membrane module 17. It comprises a SW (Sea Water) RO system 301 for filtering and desalting, a CIP (Cleaning in Place) system 302 for cleaning the SWRO system 301, and an aftertreatment system 303.

補給水槽12は、熱交換ユニット200の第2熱交換器8bで熱交換した後の海洋深層水の一部を溜める水槽であり、第2熱交換器8bで熱交換した後の海洋深層水のうち、補給水槽12に溜まらない海洋深層水は、排水管201を流通して海洋に排水される。
淡水化ユニット300における海洋深層水の使用量は、上水供給装置310から利用者に供給される上水の使用量に応じて変化するため、補給水槽12に海洋深層水を溜めることによって上水の使用量に影響されずに、SWROシステム301に安定して必要量の海洋深層水を供給できるように構成する。なお、補給水槽12における余剰の海洋深層水は補給水槽12に備わる排水管12aを流通して海洋に排水される。さらに、補給水槽12には、海洋深層水の貯水量を調節する調節弁12bが備わる。
調節弁12bは、補給水槽12における海洋深層水の貯水量を減量するときに開弁して補給水槽12に溜まる海洋深層水を排水管12aに流すように構成される。
The make-up water tank 12 is a water tank for storing a part of the deep sea water after the heat exchange with the second heat exchanger 8b of the heat exchange unit 200, and the deep sea water after the heat exchange with the second heat exchanger 8b. Among them, deep sea water that does not accumulate in the replenishing water tank 12 flows through the drain pipe 201 and is drained to the ocean.
Since the amount of deep ocean water used in the desalination unit 300 changes according to the amount of clean water supplied to the user from the clean water supply device 310, the deep water is stored in the make-up water tank 12 to collect clean water. The required amount of deep ocean water can be stably supplied to the SWRO system 301 without being affected by the amount of water used. The surplus deep ocean water in the replenishing water tank 12 is drained to the ocean through a drain pipe 12a provided in the replenishing water tank 12. Furthermore, the replenishing water tank 12 is provided with a regulating valve 12b that regulates the amount of deep ocean water stored.
The control valve 12b is configured to open the deep sea water accumulated in the make-up water tank 12 to flow into the drain pipe 12a when the amount of deep sea water stored in the make-up water tank 12 is reduced.

本実施形態に係るSWROシステム301は、逆浸透膜を利用したRO膜モジュール17を保護するために備わる保全フィルタ18を経由した海洋深層水が加圧ポンプ19によって加圧されてRO膜モジュール17に加圧送水される。また、本実施形態に係るSWROシステム301には圧力交換機24が備わっている。圧力交換機24は、RO膜を通過せずにRO膜モジュール17から排出される加圧された海洋深層水(加圧水)の圧力で駆動して加圧ポンプ19の駆動を補助する装置であり、保全フィルタ18の手前から圧力交換機24に取り込まれた海洋深層水が、加圧水の圧力で駆動する圧力交換機24で加圧され、ブースターポンプ24aでさらに加圧された後に加圧ポンプ19の吐出側に戻される。この構成によって、加圧ポンプ19の仕事の一部を圧力交換機24に分担することができ、加圧ポンプ19で消費するエネルギを抑えることができる。また、加圧水の圧力を有効に利用することができる。
なお、圧力交換機24を駆動した後の加圧水は、排水管24bを流通して海洋に排水される。
In the SWRO system 301 according to the present embodiment, deep sea water passing through the maintenance filter 18 provided for protecting the RO membrane module 17 using the reverse osmosis membrane is pressurized by the pressurizing pump 19 to the RO membrane module 17. Pressurized water is supplied. Further, the SWRO system 301 according to the present embodiment includes a pressure exchanger 24. The pressure exchanger 24 is a device that assists the drive of the pressurizing pump 19 by being driven by the pressure of pressurized deep sea water (pressurized water) discharged from the RO membrane module 17 without passing through the RO membrane. Deep sea water taken into the pressure exchanger 24 from before the filter 18 is pressurized by the pressure exchanger 24 driven by the pressure of the pressurized water, further pressurized by the booster pump 24a, and then returned to the discharge side of the pressure pump 19. It is. With this configuration, part of the work of the pressurization pump 19 can be shared by the pressure exchanger 24, and energy consumed by the pressurization pump 19 can be suppressed. Moreover, the pressure of pressurized water can be utilized effectively.
The pressurized water after driving the pressure exchanger 24 is drained to the ocean through the drain pipe 24b.

RO膜モジュール17で淡水化された海洋深層水(淡水)は、後処理システム303に備わるソーダ灰容器15から取り出されるソーダ灰と、次亜塩素酸容器16から取り出される次亜塩素酸Na/Caが混合されて上水となり、上水供給装置310から利用者に供給される。また、利用者に供給されない上水は図示しない受水槽に蓄えられる。   The deep ocean water (fresh water) desalinated by the RO membrane module 17 includes soda ash taken out from the soda ash container 15 provided in the post-processing system 303 and hypochlorite Na / Ca taken out from the hypochlorous acid container 16. Are mixed to form clean water, which is supplied from the clean water supply device 310 to the user. Moreover, the clean water which is not supplied to the user is stored in a water receiving tank (not shown).

CIPシステム302は、主にRO膜モジュール17に備わる図示しないRO膜に付着した不純物を洗浄するための装置で、CIPタンク21、CIPポンプ22、バッグフィルタ23を備えて構成される。
RO膜モジュール17を洗浄する場合、RO膜モジュール17から排出された海洋深層水(淡水、加圧水)がCIPタンク21に取り込まれて必要な薬品が投入された後、CIPポンプ22によってバッグフィルタ23に加圧送水されて不純物がろ過され、SWROシステム301に備わる加圧ポンプ19の入力側に戻される。
The CIP system 302 is a device for cleaning impurities attached to an RO membrane (not shown) mainly provided in the RO membrane module 17 and includes a CIP tank 21, a CIP pump 22, and a bag filter 23.
When the RO membrane module 17 is washed, the deep sea water (fresh water, pressurized water) discharged from the RO membrane module 17 is taken into the CIP tank 21 and necessary chemicals are introduced, and then the bag filter 23 is supplied by the CIP pump 22. Impurities are filtered by being fed under pressure, and returned to the input side of the pressure pump 19 provided in the SWRO system 301.

以上のように、本実施形態に係る熱交換装置1aは、600〜800mの深海から海洋深層水を汲み上げる汲み上げ装置100と、汲み上げた海洋深層水で冷熱源となる冷房用水を冷却するチラープラントからなる熱交換ユニット200と、海洋深層水を淡水化して上水を製造する淡水化ユニット300を備えて構成される。
そして、冷房用水を低温の海洋深層水より低温に冷却するとともに、冷房用水の冷却で温度が上昇した海洋深層水を淡水化して上水を製造することによって、低温の海洋深層水を効率よく利用できる。
なお、淡水化ユニット300の構成は淡水の原水となる海洋深層水の水質等によって適宜決定されるものであり、図2に示す構成に限定するものではない。また、後処理システム303で淡水に混合される薬品も海洋深層水の水質等によって適宜変更されるものであり、ソーダ灰と次亜塩素酸Na/Caに限定するものではない。
As described above, the heat exchange device 1a according to the present embodiment includes a pumping device 100 that pumps deep ocean water from a deep sea of 600 to 800 m, and a chiller plant that cools cooling water that is a cooling heat source using the pumped deep ocean water. And a desalination unit 300 that desalinates deep ocean water to produce clean water.
Cooling water is cooled to a temperature lower than that of low-temperature deep ocean water, and deep sea water that has risen in temperature due to cooling of the cooling water is desalinated to produce clean water, thereby efficiently using low-temperature deep ocean water. it can.
Note that the configuration of the desalination unit 300 is determined as appropriate depending on the quality of the deep ocean water that is the raw water of the fresh water, and is not limited to the configuration shown in FIG. Moreover, the chemical | medical agent mixed with fresh water by the post-processing system 303 is suitably changed by the water quality etc. of deep sea water, and is not limited to soda ash and hypochlorite Na / Ca.

本実施形態における空調装置1(図1参照)で冷房用水を冷却し、さらに上水を製造する過程を、主に図5を参照してより具体的に説明する(適宜図2〜図4参照)。
なお、図5に示す具体的な数値(温度等)は説明のための一例であり、本実施形態に係る空調装置1が設置される周囲環境、季節、規模等によって変化する数値である。
The process of cooling the cooling water with the air conditioner 1 (see FIG. 1) in the present embodiment and further producing clean water will be described more specifically with reference mainly to FIG. 5 (see FIGS. 2 to 4 as appropriate). ).
In addition, the specific numerical values (temperature etc.) shown in FIG. 5 are an example for description, and are numerical values which change with the surrounding environment where the air conditioner 1 which concerns on this embodiment is installed, a season, a scale, etc.

例えば、海洋深層水の汲み取り深度が600mで温度が8℃のとき、海洋深層水は、汲み上げ装置100の取水ポンプ4によって海面SLまで汲み上げられると、周囲温度(海水温)の上昇にともなって、温度が10〜12℃まで上昇する。
そして、汲み上げられた海洋深層水は、バケットトラップ3を経由して原水槽5に送水され、例えば12℃の海洋深層水が原水槽5に溜まる。
For example, when the depth of deep sea water is 600 m and the temperature is 8 ° C., when the deep sea water is pumped up to the sea surface SL by the water intake pump 4 of the pump 100, the ambient temperature (sea water temperature) increases. The temperature rises to 10-12 ° C.
Then, the deep ocean water pumped up is sent to the raw water tank 5 via the bucket trap 3, and, for example, 12 ° C. deep sea water is accumulated in the raw water tank 5.

原水槽5に溜まる12℃の海洋深層水は、原水ポンプ6によって第1熱交換器8aに導入され、冷却ポンプ10によって空調端末210から送られる高温(19℃)の冷房用水と第1熱交換器8aで熱交換する。そして、海洋深層水は、第1熱交換器8aで冷房用水と熱交換して温度が16℃まで上昇し、冷房用水は第1熱交換器8aで海洋深層水と熱交換して温度が低下する。さらに、冷房用水は2つ備わるターボ冷凍機9a、9bによって8℃まで温度が下げられて空調端末210に戻る。   The deep sea water at 12 ° C. accumulated in the raw water tank 5 is introduced into the first heat exchanger 8a by the raw water pump 6 and is subjected to the first heat exchange with high-temperature (19 ° C.) cooling water sent from the air conditioning terminal 210 by the cooling pump 10. Heat is exchanged in the vessel 8a. Then, the deep ocean water heat-exchanges with the cooling water in the first heat exchanger 8a and the temperature rises to 16 ° C., and the cooling water heat-exchanges with the deep ocean water in the first heat exchanger 8a and the temperature decreases. To do. Further, the temperature of the cooling water is lowered to 8 ° C. by the two turbo chillers 9 a and 9 b and returns to the air conditioning terminal 210.

一方、第1熱交換器8aにおける熱交換で16℃に温度上昇した海洋深層水は、第2熱交換器8bに導入され、冷却水ポンプ11によって第2熱交換器8bと2つのターボ冷凍機9a、9bを循環する冷却水と熱交換する。冷却水は、ターボ冷凍機9a、9b内の冷媒と熱交換して高温の状態であり、第2熱交換器8bで冷却水と熱交換器した海洋深層水は26℃まで温度が上昇する。   On the other hand, the deep ocean water whose temperature has increased to 16 ° C. by heat exchange in the first heat exchanger 8a is introduced into the second heat exchanger 8b, and the second heat exchanger 8b and the two centrifugal chillers are cooled by the cooling water pump 11. Heat is exchanged with the cooling water circulating through 9a and 9b. The cooling water is in a high temperature state by exchanging heat with the refrigerant in the turbo chillers 9a and 9b, and the temperature of the deep sea water that has been heat exchanged with the cooling water in the second heat exchanger 8b rises to 26 ° C.

熱交換ユニット200の第2熱交換器8bで、ターボ冷凍機9a、9bの冷却水と熱交換して26℃に上昇した海洋深層水は分岐し、一方は排水管201を流通して海洋に排水される。このとき、排水する海洋深層水の温度(26℃)と海水温が等しい深度に海洋深層水が排水されることが好ましい。すなわち、排水管201を流通する海洋深層水の温度が26℃の場合、海水温が26℃の深度に海洋深層水を排水することが好ましい。   In the second heat exchanger 8b of the heat exchange unit 200, the deep sea water that has been heated to 26 ° C. by exchanging heat with the cooling water of the centrifugal chillers 9a and 9b is branched, and one of them circulates through the drain pipe 201 to the ocean Drained. At this time, it is preferable that the deep ocean water is drained to a depth where the temperature of the deep ocean water to be drained (26 ° C.) and the seawater temperature are equal. That is, when the temperature of the deep sea water flowing through the drain pipe 201 is 26 ° C., it is preferable to drain the deep sea water to a depth where the sea water temperature is 26 ° C.

第2熱交換器8bから排出されて分岐した一方の海洋深層水は淡水化ユニット300の補給水槽12に溜められた後、必要に応じて加圧ポンプ19によって取り出されて26℃の温度で保全フィルタ18を経由し、RO膜モジュール17に圧送される。
海洋深層水は加圧ポンプ19で加圧された圧力によってRO膜モジュール17で淡水化され、淡水となって後処理システム303に導入される。そして、後処理システム303に導入された淡水にソーダ灰と次亜塩素酸Na/Caが適宜混合されて上水が製造される。
なお、前記した必要に応じてとの趣旨は、例えば、利用者が上水供給装置310に備わる図示しない給水栓を開いて淡水化ユニット300で製造される上水を利用する必要が生じたような場合である。
One of the deep ocean waters that has been discharged from the second heat exchanger 8b and branched off is stored in the make-up water tank 12 of the desalination unit 300, and then taken out by the pressure pump 19 as necessary, and maintained at a temperature of 26 ° C. It is pumped to the RO membrane module 17 via the filter 18.
The deep sea water is desalinated by the RO membrane module 17 by the pressure pressurized by the pressurizing pump 19 and is introduced into the post-processing system 303 as fresh water. And the soda ash and hypochlorous acid Na / Ca are mixed suitably with the fresh water introduced into the post-processing system 303, and water is manufactured.
In addition, the purpose of the above-described necessity is that, for example, the user needs to open the water tap (not shown) provided in the water supply device 310 and use the water produced by the desalination unit 300. This is the case.

海洋深層水は、海面SL付近の海水温より低温(例えば8℃)であり、空調装置1の冷熱源となる冷房用水の冷却に利用できるが、海面SL付近まで汲み上げたときに周囲の海水温によって例えば10〜12℃まで温度上昇することから、冷房用水を10〜12℃以下に冷却することができない。   Deep sea water is at a lower temperature (for example, 8 ° C.) than the sea water temperature near the sea surface SL, and can be used for cooling water for cooling, which is a cooling source of the air conditioner 1. For example, since the temperature rises to 10 to 12 ° C., the cooling water cannot be cooled to 10 to 12 ° C. or lower.

そこで、本実施形態に係る空調装置1の熱交換装置1a(図2参照)は、海洋深層水で冷房用水を冷却する第1熱交換器8aの他にターボ冷凍機9a、9bを備え、冷房用水を10〜12℃以下(例えば8℃)に冷却可能とした。
そして、ターボ冷凍機9a、9bは冷媒を冷却水で冷却するチラーユニットを構成し、本実施形態においては、ターボ冷凍機9a、9bの冷媒を冷却した冷却水を、第2熱交換器8bで海洋深層水と熱交換して冷却する構成とした。
Therefore, the heat exchange device 1a (see FIG. 2) of the air conditioner 1 according to the present embodiment includes turbo chillers 9a and 9b in addition to the first heat exchanger 8a that cools the cooling water with deep ocean water. The water can be cooled to 10 to 12 ° C. or lower (for example, 8 ° C.).
And the turbo refrigerator 9a, 9b comprises the chiller unit which cools a refrigerant | coolant with cooling water, and in this embodiment, the cooling water which cooled the refrigerant | coolant of turbo chiller 9a, 9b is made into 2nd heat exchanger 8b. It was configured to cool by exchanging heat with deep ocean water.

さらに、第2熱交換器8bでの熱交換によって温度が上昇した海洋深層水(例えば26℃)を、RO膜モジュール17を使用する淡水化ユニット300で淡水化して上水を製造する構成とした。RO膜モジュール17を使用する淡水化ユニット300は、被処理水(本実施形態においては海洋深層水)の温度が低すぎると効率が低下し、25〜30℃の被処理水を淡水化するときに効率を向上できることから、例えば26℃に温度が上昇した海洋深層水は、RO膜モジュール17を使用する淡水化ユニット300で効率よく淡水化可能であり、淡水化ユニット300で効率よく上水を製造できる。   Further, the deep sea water (for example, 26 ° C.) whose temperature has been increased by heat exchange in the second heat exchanger 8 b is desalinated by the desalination unit 300 using the RO membrane module 17 to produce clean water. . When the temperature of the water to be treated (in this embodiment, deep sea water) is too low, the desalination unit 300 using the RO membrane module 17 has a reduced efficiency, and when the water to be treated at 25 to 30 ° C. is desalinated. For example, deep ocean water whose temperature has risen to 26 ° C. can be efficiently desalinated by the desalination unit 300 using the RO membrane module 17, and the fresh water can be efficiently discharged by the desalination unit 300. Can be manufactured.

このように、本実施形態に係る熱交換装置1a(図2参照)は、熱交換ユニット200(図2参照)に備わるプレート式熱交換器である第1熱交換器8a(図2参照)とチラーユニットを構成するターボ冷凍機9a、9b(図2参照)を備え、海洋深層水を利用して冷房用水を冷却できる。
また、ターボ冷凍機9a、9bの冷媒を冷却する冷却水を海洋深層水で冷却できる。
さらに、ターボ冷凍機9a、9bの冷却水との熱交換で温度が上昇した海洋深層水を淡水化ユニット300(図2参照)に導入してRO膜モジュール17(図2参照)で効率よく淡水化できる。
As described above, the heat exchange device 1a (see FIG. 2) according to the present embodiment includes the first heat exchanger 8a (see FIG. 2) which is a plate heat exchanger provided in the heat exchange unit 200 (see FIG. 2). Turbo chillers 9a and 9b (see FIG. 2) constituting a chiller unit are provided, and cooling water can be cooled using deep ocean water.
Moreover, the cooling water which cools the refrigerant | coolant of the turbo refrigerator 9a, 9b can be cooled with deep sea water.
Further, deep sea water whose temperature has been increased by heat exchange with the cooling water of the turbo chillers 9a and 9b is introduced into the desalination unit 300 (see FIG. 2), and the RO membrane module 17 (see FIG. 2) efficiently introduces fresh water. Can be

以上のように、本発明は、被熱交換媒体を海洋深層水より低温に冷却して冷熱源とすることができ、さらに、淡水化処理に好適な温度になった海洋深層水を淡水化することで効率よく淡水を製造できる空調装置(海洋深層水利用システム)を提供することができる。そして、海洋深層水の温度を効率よく利用できるという優れた効果を奏する。
また、例えば電気駆動のヒートポンプによって空気を冷却する従来の空調装置や、ターボ冷凍機のみで冷房用水を冷却するシステムよりも大幅にCOを削減することができる。
As described above, according to the present invention, the heat exchange medium can be cooled to a temperature lower than that of the deep sea water and used as a cold heat source, and further, the deep sea water at a temperature suitable for the desalination treatment is desalinated. Therefore, it is possible to provide an air conditioner (deep ocean water utilization system) that can produce fresh water efficiently. And the outstanding effect that the temperature of deep sea water can be utilized efficiently is produced.
Further, CO 2 can be greatly reduced as compared with, for example, a conventional air conditioner that cools air using an electrically driven heat pump or a system that cools cooling water using only a turbo refrigerator.

なお、図2に示す淡水化ユニット300に導入される海洋深層水の温度を25〜30℃に維持するためには、熱交換ユニット200の第1熱交換器8aに導入される海洋深層水、すなわち、第1熱交換器8aの入口における海洋深層水の温度が10〜12℃であることが好ましい。したがって、第1熱交換器8aの入口における海洋深層水の温度を10〜12℃に維持する水温調節装置(図示せず)を備える構成としてもよい。
このような水温調節装置は、例えば、原水槽5に備わる加熱装置や冷却装置とすることができる。そして、原水槽5における海洋深層水の温度を10〜12℃に維持するように構成すればよい。この構成によって、淡水化ユニット300に導入される海洋深層水の温度を25〜30℃に維持することができ、淡水化ユニット300で上水を製造する効率を高く維持できる。
In order to maintain the temperature of deep ocean water introduced into the desalination unit 300 shown in FIG. 2 at 25 to 30 ° C., deep ocean water introduced into the first heat exchanger 8a of the heat exchange unit 200, That is, it is preferable that the temperature of deep ocean water at the inlet of the first heat exchanger 8a is 10 to 12 ° C. Therefore, it is good also as a structure provided with the water temperature control apparatus (not shown) which maintains the temperature of deep sea water in the inlet_port | entrance of the 1st heat exchanger 8a at 10-12 degreeC.
Such a water temperature adjusting device can be, for example, a heating device or a cooling device provided in the raw water tank 5. And what is necessary is just to comprise so that the temperature of the deep sea water in the raw water tank 5 may be maintained at 10-12 degreeC. With this configuration, the temperature of deep ocean water introduced into the desalination unit 300 can be maintained at 25 to 30 ° C., and the efficiency of producing clean water in the desalination unit 300 can be maintained high.

本発明は、熱帯地方の海岸沿いの地域、特に南国の島国などで好適に実施することができ、COの削減によって地球温暖化を抑制しながら空調装置や上水の供給設備を整備することに寄与するものである。 INDUSTRIAL APPLICABILITY The present invention can be suitably implemented in regions along the coast of the tropics, particularly in southern island countries, etc., and improving air conditioning equipment and water supply facilities while suppressing global warming by reducing CO 2. It contributes to.

1 空調装置(海洋深層水利用システム)
1a 熱交換装置
8a 第1熱交換器
8b 第2熱交換器
9a,9b ターボ冷凍機(チラーユニット)
11 冷却水ポンプ(チラーユニット)
200 熱交換ユニット
210 空調端末
300 淡水化ユニット
1 Air conditioner (ocean deep water utilization system)
1a Heat exchanger 8a 1st heat exchanger 8b 2nd heat exchanger 9a, 9b Turbo refrigerator (chiller unit)
11 Cooling water pump (chiller unit)
200 Heat Exchange Unit 210 Air Conditioning Terminal 300 Desalination Unit

Claims (5)

海洋深層水と被熱交換媒体が熱交換して前記被熱交換媒体を冷却する第1熱交換器と、
前記海洋深層水との熱交換で温度が低下した前記被熱交換媒体を冷媒でさらに冷却するチラーユニットと、
前記被熱交換媒体との熱交換で温度が上昇した前記海洋深層水と前記チラーユニットで前記冷媒を冷却して温度が上昇した冷却水が熱交換して前記冷却水を冷却する第2熱交換器と、を含んで構成される熱交換装置を備え、
前記熱交換装置で冷却された前記被熱交換媒体を冷熱源とすることを特徴とする空調装置。
A first heat exchanger for exchanging heat between the deep ocean water and the heat exchange medium to cool the heat exchange medium;
A chiller unit that further cools the heat exchange medium whose temperature has been lowered by heat exchange with the deep sea water with a refrigerant;
Second heat exchange in which the deep sea water whose temperature has been raised by heat exchange with the heat exchange medium and the cooling water whose temperature has been raised by cooling the refrigerant in the chiller unit exchange heat to cool the cooling water. And a heat exchange device configured to include,
An air conditioner characterized in that the heat exchange medium cooled by the heat exchange device is used as a cold heat source.
前記冷却水との熱交換で温度が上昇した前記海洋深層水をRO膜を利用して淡水化する淡水化ユニットを備えることを特徴とする請求項1に記載の空調装置。   The air conditioner according to claim 1, further comprising a desalination unit that desalinates the deep sea water whose temperature has been increased by heat exchange with the cooling water using an RO membrane. 前記第1熱交換器の入口における前記海洋深層水の温度が10〜12℃であることを特徴とする請求項1または請求項2に記載の空調装置。   The air conditioner according to claim 1 or 2, wherein a temperature of the deep sea water at an inlet of the first heat exchanger is 10 to 12 ° C. 海洋深層水と被熱交換媒体が熱交換して前記被熱交換媒体を冷却する第1熱交換器と、
前記海洋深層水との熱交換で温度が低下した前記被熱交換媒体を冷媒でさらに冷却するチラーユニットと、
前記被熱交換媒体との熱交換で温度が上昇した前記海洋深層水と前記チラーユニットで前記冷媒を冷却して温度が上昇した冷却水が熱交換して前記冷却水を冷却する第2熱交換器と、を含んで構成される熱交換装置を有し、
前記第2熱交換器で前記冷却水と熱交換して温度が上昇した前記海洋深層水をRO膜を利用して淡水化する淡水化ユニットを備えることを特徴とする海洋深層水利用システム。
A first heat exchanger for exchanging heat between the deep ocean water and the heat exchange medium to cool the heat exchange medium;
A chiller unit that further cools the heat exchange medium whose temperature has been lowered by heat exchange with the deep sea water with a refrigerant;
Second heat exchange in which the deep sea water whose temperature has been increased by heat exchange with the heat exchange medium and the cooling water whose temperature has been increased by cooling the refrigerant in the chiller unit exchange heat to cool the cooling water. And a heat exchange device configured to include,
A deep sea water utilization system comprising a desalination unit that desalinates the deep sea water whose temperature has been increased by exchanging heat with the cooling water in the second heat exchanger using an RO membrane.
前記第1熱交換器の入口における前記海洋深層水の温度が10〜12℃であることを特徴とする請求項4に記載の海洋深層水利用システム。   5. The deep sea water utilization system according to claim 4, wherein a temperature of the deep sea water at an inlet of the first heat exchanger is 10 to 12 ° C. 6.
JP2010113489A 2010-05-17 2010-05-17 Air conditioner and deep sea water utilization system Expired - Fee Related JP5437909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113489A JP5437909B2 (en) 2010-05-17 2010-05-17 Air conditioner and deep sea water utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113489A JP5437909B2 (en) 2010-05-17 2010-05-17 Air conditioner and deep sea water utilization system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013256875A Division JP5856134B2 (en) 2013-12-12 2013-12-12 Air conditioner and deep sea water utilization system

Publications (2)

Publication Number Publication Date
JP2011242036A true JP2011242036A (en) 2011-12-01
JP5437909B2 JP5437909B2 (en) 2014-03-12

Family

ID=45408880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113489A Expired - Fee Related JP5437909B2 (en) 2010-05-17 2010-05-17 Air conditioner and deep sea water utilization system

Country Status (1)

Country Link
JP (1) JP5437909B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050810A (en) * 2012-09-07 2014-03-20 Asahi Kasei Chemicals Corp Water treatment apparatus and operation method of water treatment apparatus
JP2014119135A (en) * 2012-12-13 2014-06-30 Hitachi Ltd Air-conditioning system utilizing deep-sea water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014378A (en) 2014-07-03 2016-01-28 横河電機株式会社 Water intake method, and water intake system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087579A (en) * 1998-09-11 2000-03-28 Toshiba Corp Multi-purpose use plant for deep layer water in ocean
JP2003336866A (en) * 2002-05-20 2003-11-28 Mayekawa Mfg Co Ltd Cooling device, and recovery method for process cooling drainage using the same device
JP2005308314A (en) * 2004-04-22 2005-11-04 Toyo Eng Works Ltd Air conditioning system using ocean deep water
JP2006180735A (en) * 2004-12-27 2006-07-13 Dainichiseika Color & Chem Mfg Co Ltd Multiple stage type utilization system of deep sea water
JP2007029899A (en) * 2005-07-28 2007-02-08 Hakatako Kanri Kk Mineral water
WO2008153274A1 (en) * 2007-06-11 2008-12-18 Yoo, Yung-Geun Preparation method of mineral water and mineral salt from deep ocean water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087579A (en) * 1998-09-11 2000-03-28 Toshiba Corp Multi-purpose use plant for deep layer water in ocean
JP2003336866A (en) * 2002-05-20 2003-11-28 Mayekawa Mfg Co Ltd Cooling device, and recovery method for process cooling drainage using the same device
JP2005308314A (en) * 2004-04-22 2005-11-04 Toyo Eng Works Ltd Air conditioning system using ocean deep water
JP2006180735A (en) * 2004-12-27 2006-07-13 Dainichiseika Color & Chem Mfg Co Ltd Multiple stage type utilization system of deep sea water
JP2007029899A (en) * 2005-07-28 2007-02-08 Hakatako Kanri Kk Mineral water
WO2008153274A1 (en) * 2007-06-11 2008-12-18 Yoo, Yung-Geun Preparation method of mineral water and mineral salt from deep ocean water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050810A (en) * 2012-09-07 2014-03-20 Asahi Kasei Chemicals Corp Water treatment apparatus and operation method of water treatment apparatus
JP2014119135A (en) * 2012-12-13 2014-06-30 Hitachi Ltd Air-conditioning system utilizing deep-sea water
US9453653B2 (en) 2012-12-13 2016-09-27 Hitachi, Ltd. Air conditioning system using deep seawater

Also Published As

Publication number Publication date
JP5437909B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5575015B2 (en) Fresh water production system
JP4762048B2 (en) Desalination power plant
JP7335480B2 (en) Thermal energy conversion underwater reverse osmosis desalination system
US11846305B2 (en) Submerged reverse osmosis system
JP5413709B2 (en) Water treatment equipment.
JP5856134B2 (en) Air conditioner and deep sea water utilization system
KR101361104B1 (en) Water purification system
JP2011167628A (en) Hollow fiber membrane module, membrane distillation type fresh water generator, and membrane distillation type desalination apparatus
JP5437909B2 (en) Air conditioner and deep sea water utilization system
US8657528B2 (en) Brine disposal system for a brine source
TW202325663A (en) Ocean alkalinity system and method for capturing atmospheric carbon dioxide
JP5495404B2 (en) Accompanying water concentration system and accompanying water concentration method
Voutchkov et al. Desalination process technology
NO20150946A1 (en) System for desalination of seawater and method for providing water of a predetermined salinity, and maintaining said salinity in an open water reservoir
JP5037175B2 (en) Cooling water supply method and apparatus for large capacity transformer
KR101317711B1 (en) Desalination system for recirculation water of cooling/heating equipment using brackish water
JP2016117016A (en) Recovery filtration unit
Huovilainen Utilization of cold seawater with heat pumps in district heat production
US20230286836A1 (en) System and Method for Purification of Water by Membrane Distillation
TWI842017B (en) Mass production system of deep sea water desalination for people's livelihood
JP6431356B2 (en) Method and apparatus for supplying cooling water for cooling tower of oil-feed water-cooled transformer
TW202404909A (en) Mass production system of deep sea water desalination for people's livelihood
Chavez Techno-Economic Analysis of Large Scale DCMD Systems
WO2021229585A1 (en) System and method to replenish a natural salt waterbody
JP2022103850A (en) Seawater temperature controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5437909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees