JP2002361246A - Method and device for manufacturing drinking water - Google Patents

Method and device for manufacturing drinking water

Info

Publication number
JP2002361246A
JP2002361246A JP2001173049A JP2001173049A JP2002361246A JP 2002361246 A JP2002361246 A JP 2002361246A JP 2001173049 A JP2001173049 A JP 2001173049A JP 2001173049 A JP2001173049 A JP 2001173049A JP 2002361246 A JP2002361246 A JP 2002361246A
Authority
JP
Japan
Prior art keywords
water
boron
treatment
passing
secondary treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001173049A
Other languages
Japanese (ja)
Other versions
JP2002361246A5 (en
Inventor
Masashi Fujita
藤田雅司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2001173049A priority Critical patent/JP2002361246A/en
Publication of JP2002361246A publication Critical patent/JP2002361246A/en
Publication of JP2002361246A5 publication Critical patent/JP2002361246A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which drinking water of stable quality can be mass-produced on an industrial scale for a long period by combining selective adsorption/separation of boron by a boron-selective resin with RO treatment. SOLUTION: The method for manufacturing drinking water has primary treatment in which pretreatment for removing suspended matter in raw water is executed and then pretreated water is made to pass through a reverse osmosis membrane, secondary treatment in which boron is removed by making membrane-permeated water of the first treatment pass through the boron- selective resin and neutralization treatment for neutralizing water after secondary treatment. Raw water containing boron ions is subjected to the primary treatment, the secondary treatment, and the neutralization treatment, and drinking water is manufactured. Hydrogen ion concentration (pH) of the water after the secondary treatment is continuously monitored, and when pH of the water after the secondary treatment is below 10, water flow is interrupted and a mineral acid is passed to remove boron. Then, regeneration in which the boron- selective resin is treated by passing a caustic alkali is performed and drinking water is manufactured while maintaining pH of the water after the secondary treatment at >=10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、ホウ素を高含有し
た原水から飲料水を製造するための方法及び装置に関す
るものである。
TECHNICAL FIELD The present invention relates to a method and an apparatus for producing drinking water from raw water containing high boron.

【0002】[0002]

【従来の技術】ホウ素は、海草に多く含まれまた海水に
は4〜5mg/L程度含まれている。また、海水の淡水
化も従来から種々試みられていて、我が国の水道水水質
基準でも監視項目となり、指針として0.2mg/L以
下という値が示されている。したがって、ホウ素を含ん
だ海水等の水から飲料水を製造する処理においてはホウ
素の除去が必要である。
2. Description of the Related Art Boron contains about 4 to 5 mg / L of seawater contained in seaweed. In addition, various attempts have been made to desalinate seawater, and it is also a monitoring item in Japan's tap water quality standards, and a value of 0.2 mg / L or less is indicated as a guideline. Therefore, it is necessary to remove boron in the process of producing drinking water from water such as seawater containing boron.

【0003】ところで、ホウ素は一般的な樹脂による吸
着・イオン交換などで分離することは困難である。
By the way, it is difficult to separate boron by adsorption and ion exchange with a general resin.

【0004】また、水中において一般に中性付近では非
解離のB(OH)3 として存在していると考えられて
いるホウ素は逆浸透(RO)膜による処理では分離が困
難である。例えば、被処理水をpH9よりも高いpHと
することでホウ素をできるだけRO処理で分離可能なB
(OH)4−の形態にした後、ROに透過させて処理す
る方法が考えられるが、このようにしても、水中のホウ
素を全てB(OH)4−とすることは困難であるだけで
なく、pHを高い値にするとホウ素がB(OH)4−の
形態になる傾向は高くなる一方で、水中の硬度成分(C
a,Mg等)が水酸化物として析出してRO膜を目詰り
させるという工業的な装置としては致命的な問題を招い
てしまう。
[0004] Further, boron, which is generally considered to exist as undissociated B (OH) 3 in the vicinity of neutrality in water, is difficult to separate by treatment with a reverse osmosis (RO) membrane. For example, by setting the pH of the water to be treated to be higher than pH 9, B can be separated by RO treatment as much as possible.
After forming into the form of (OH) 4−, a method of treating by passing through RO can be considered, but even in this case, it is only difficult to convert all boron in water to B (OH) 4−. However, when the pH is increased, the tendency of boron to form B (OH) 4− increases, while the hardness component in water (C
a, Mg, etc.) precipitate as hydroxides and clog the RO film, causing a fatal problem as an industrial device.

【0005】上記とは別に、水中のホウ素を分離・除去
する方法として例えば特公平3−10378号公報等に
記載のホウ素選択樹脂を利用することが考えられる。こ
の方法に用いるホウ素選択樹脂は、ホウ素を選択的に吸
着する官能基として多価アルコールを導入して、ホウ素
を選択的に吸着できる性質を有したものである。したが
って、この樹脂層にホウ素含有水を通水させることで水
中のホウ素を吸着し、除去することが可能となる。
[0005] Apart from the above, as a method for separating and removing boron in water, it is conceivable to use a boron selective resin described in, for example, Japanese Patent Publication No. 3-10378. The boron selective resin used in this method has a property of introducing a polyhydric alcohol as a functional group capable of selectively adsorbing boron and capable of selectively adsorbing boron. Therefore, by passing boron-containing water through this resin layer, it becomes possible to adsorb and remove boron in water.

【0006】このホウ素選択樹脂を用いる方法として、
一例的に海水から飲料水を製造する場合を検討すると、
ホウ素以外の塩類は逆浸透膜、ホウ素はホウ素選択樹脂
でそれぞれ除去することが考えられる。
As a method using the boron selective resin,
Considering the case of producing drinking water from seawater as an example,
It is considered that salts other than boron are removed by a reverse osmosis membrane, and boron is removed by a boron selective resin.

【0007】しかしながら、ホウ素選択樹脂を用いる場
合は、再生を行う時期の検出が従来は間欠的にしか行え
ないという問題がある。すなわち、ホウ素イオン漏洩量
・除去性能の監視や終期確認は、一定時間毎又は間欠的
に処理水(ホウ素吸着塔出口水)のサンプリングを行
い、実験室・分析室でホウ素イオン濃度測定法(クミン
変法、マンニット法、JIS K0102、ICP発光
法)で手作業で測定する必要があり、測定に数多くの手
間・時間を要し、操作が複雑で、分析者の技倆などの差
により測定値に差異を招くことが避けられないという問
題である。また、サンプリング方式はオフラインで測定
するため、状況によりコンタミネーションによる外乱を
招く虞もある。又更に、間欠的なサンプリング測定方法
は、サンプリング期間途中での水質変動には逐次的に対
処できないので長期に渡って水質の安定した飲料水の製
造には適していないという方式それ自体の本来的な問題
もある。
However, when a boron selective resin is used, there is a problem that the timing of the regeneration can be detected only intermittently conventionally. In other words, the monitoring and final confirmation of the boron ion leakage / removal performance are performed at regular intervals or intermittently by sampling the treated water (boron adsorption tower outlet water) and measuring the boron ion concentration (cumin It is necessary to measure manually by the modified method, Mannit method, JIS K0102, ICP light emission method), it takes a lot of labor and time for the measurement, the operation is complicated, and it is measured due to the difference in the skill of the analyst. The problem is that it is inevitable that the values will differ. In addition, since the sampling method measures off-line, there is a possibility that disturbance due to contamination may be caused depending on the situation. Furthermore, the intermittent sampling measurement method is not suitable for the production of drinking water with stable water quality for a long period of time because it cannot sequentially deal with water quality fluctuations during the sampling period. There are also problems.

【0008】[0008]

【発明が解決しようとする課題】以上のように、上述し
たいずれの従来技術によっても安価にかつ連続的に安定
した水質の飲料水を製造することは難しく、またこれに
代わる適当な方法は従来知られていない。
As described above, it is difficult to produce inexpensively and continuously stable drinking water of any quality by any of the above-described prior arts. unknown.

【0009】本発明は、以上のような現状の下でなされ
たものであり、その目的の一つは、ホウ素選択樹脂によ
るホウ素の選択的吸着・分離と、RO処理を組み合わせ
ることにより、工業的な規模で長期に渡る水質の安定し
た飲料水の大量製造を可能とするところにある。
The present invention has been made under the above-mentioned circumstances, and one of the objects thereof is to provide an industrial method by combining the selective adsorption and separation of boron with a boron selective resin and the RO treatment. It is intended to enable the large-scale production of drinking water with stable water quality for a long time on a large scale.

【0010】本発明はまた、上記の目的を達成するため
に以下の問題を解決するところにある。 :飲料水製造装置を簡易な構造のものとして提供しな
がら、装置の運転状況に則した飲料水の製造、停止、再
生の制御を容易に行えるようにする。 :オンラインの飲料水の水質監視の精度を向上するこ
とができ、適切な水質維持が可能な飲料水製造装置の運
転を可能とする。 :オンラインの水質監視を実現することで、従来の処
理水サンプリング作業をなくすことができ作業の簡易化
を実現可能とする。 :従来のサンプリング測定方式による測定者の違いに
よる測定値のバラツキがなく、客観的に差のない測定結
果を得ることを可能とする。 :連続的なオンラインの水質測定を実現することで、
飲料水製造途中での工程異常や原水水質の変化に迅速に
対応できる飲料水の製造を可能とする。
Another object of the present invention is to solve the following problems to achieve the above object. : To easily control the production, stop, and regeneration of drinking water in accordance with the operation state of the drinking water production device while providing the drinking water production device with a simple structure. : The accuracy of online monitoring of drinking water quality can be improved, and the operation of a drinking water production device capable of maintaining appropriate water quality can be performed. A: By realizing online water quality monitoring, the conventional process water sampling work can be eliminated and the work can be simplified. A: It is possible to obtain a measurement result that is objectively free from variations in measured values due to differences in the measurers according to the conventional sampling measurement method. : By providing continuous online water quality measurement,
It is possible to manufacture drinking water that can promptly respond to process abnormalities and changes in raw water quality during the production of drinking water.

【0011】[0011]

【課題を解決するための手段】本発明の飲料水の製造方
法の特徴は、従来は個別的に考えられていたRO処理と
ホウ素選択樹脂の有効な点を効果的に利用、併用して両
者の有効性を都合よく活用できる新たな方法を提供する
ことで、上記の目的を達成するためになされたものであ
り、その飲料水の製造方法の特徴は以下の通りである。 (1)必要に応じて原水中の懸濁物質を除去する前処理
を行った前処理水を逆浸透膜に通水する一次処理工程
と、一次処理工程の膜透過水をホウ素選択樹脂に通水し
てホウ素を除去する二次処理工程と、二次処理工程の出
口水を中和する中和工程とを備え、ホウ素含有の原水を
前記一次処理工程→二次処理工程→中和工程の順に通し
て飲料水を製造する方法であって、二次処理工程の出口
水の水素イオン濃度(pH)を連続的に監視し、該二次
処理工程出口水のpHが10未満となった時点で通水を
中断して鉱酸の通薬でホウ素を脱離した後、苛性アルカ
リの通薬でホウ素選択樹脂を処理する再生を用い、二次
処理工程出口水のpHが10以上となるように維持しな
がら飲料水を製造することを特徴とする飲料水の製造方
法。 (2)上記発明(1)において原水は海水又はかん水で
あることを特徴とする飲料水の製造方法。 (3)上記発明(1)又は(2)において、鉱酸による
ホウ素脱離後に通薬する薬剤が苛性ナトリウム又は苛性
カリウムであり、通薬量が1eq/L−R以上であるこ
とを特徴とする飲料水の製造方法。
SUMMARY OF THE INVENTION The feature of the method for producing drinking water of the present invention is that the effective points of the RO treatment and the boron-selective resin, which have been conventionally considered individually, are effectively used and used in combination. The present invention has been made to achieve the above-described object by providing a new method that can conveniently utilize the effectiveness of the present invention. The characteristics of the method for producing drinking water are as follows. (1) A primary treatment step in which pretreatment water, which has been subjected to pretreatment for removing suspended substances in raw water as necessary, is passed through a reverse osmosis membrane, and a membrane permeated water in the primary treatment step is passed through a boron selective resin. A secondary treatment step of removing boron by water, and a neutralization step of neutralizing outlet water of the secondary treatment step, wherein the boron-containing raw water is subjected to the primary treatment step → secondary treatment step → neutralization step It is a method of producing drinking water by passing through sequentially, wherein the hydrogen ion concentration (pH) of the outlet water of the secondary treatment step is continuously monitored, and when the pH of the outlet water of the secondary treatment step becomes less than 10 After the removal of boron by passing mineral water and stopping the passing of water by using a regeneration treatment of treating the boron selective resin with passing of caustic alkali, the pH of the secondary treatment process outlet water is 10 or more. A method for producing drinking water, comprising producing drinking water while maintaining the temperature. (2) The method for producing drinking water according to the invention (1), wherein the raw water is seawater or brine. (3) In the above invention (1) or (2), the chemical which passes after desorption of boron by a mineral acid is caustic sodium or potassium, and the passing amount is 1 eq / LR or more. Drinking water production method.

【0012】また、上記方法を実現する本発明のホウ素
含有原水から飲料水を製造する装置の特徴は以下の通り
である。 (4)ホウ素を含有した原水を通水することでこの原水
中に含まれる懸濁物質を除去する前処理装置と、前処理
装置から流出する前処理水を逆浸透膜に通水することで
膜透過水である一次処理水を得る一次処理装置と、一次
処理水をホウ素選択樹脂に通水することでホウ素を除去
した二次処理水を得る二次処理装置と、二次処理装置か
ら流出する二次処理水を通水して中和する中和装置と、
二次処理水のpHを監視する監視装置と、二次処理水の
pHが10以上となったきに通水を中断しかつホウ素選
択樹脂に鉱酸次いで苛性アルカリを通薬して再生する再
生処理装置とを備えたことを特徴とするホウ素含有原水
から飲料水を製造する装置。
Further, the features of the apparatus for producing drinking water from the boron-containing raw water of the present invention that realizes the above method are as follows. (4) A pretreatment device that removes suspended substances contained in the raw water by passing raw water containing boron, and a pretreatment water flowing out of the pretreatment device is passed through a reverse osmosis membrane. Primary treatment device that obtains primary treatment water that is membrane permeated water, secondary treatment device that obtains secondary treatment water from which boron is removed by passing the primary treatment water through a boron selective resin, and outflow from the secondary treatment device A neutralizing device for neutralizing by passing the secondary treated water through
A monitoring device for monitoring the pH of the secondary treatment water, and a regeneration treatment for interrupting the passage of water when the pH of the secondary treatment water becomes 10 or more, and regenerating the boron selective resin by passing a mineral acid and then a caustic alkali. An apparatus for producing drinking water from raw water containing boron, comprising: an apparatus;

【0013】上記した各発明において、前処理というの
は、原水中に含まれている浮遊物や非溶解性の物質を除
去する処理をいい、これの除去に必要な除去手段、除去
方法は従来から知られている適宜のものが採用される。
代表的には浮遊物除去のためには網、微細粒子などの懸
濁物質を除去するためには懸濁物質沈降除去手段あるい
は砂濾過手段等を挙げることができるが、その手段,方
法に特に限定されるものではない。なお前処理は原水の
性状からして必要がなければ省略することも可能であ
る。
In each of the above-mentioned inventions, the pretreatment refers to a treatment for removing suspended matters and insoluble substances contained in raw water. Is adopted as appropriate.
Typically, in order to remove suspended matters such as nets and fine particles for removing suspended matters, suspended matter sedimentation removing means or sand filtration means can be used. It is not limited. It should be noted that the pretreatment can be omitted if it is not necessary due to the nature of the raw water.

【0014】一次処理工程は、イオンを除去するための
RO膜(逆浸透膜)からなる装置に前処理水を通水する
工程をいい、このRO膜を用いた一次処理工程の装置は
RO手段が一段であっても複数段であってもよい。ここ
で用いるRO手段としては、種々の型式のRO膜を特に
限定されることなく採用できる。
The primary treatment step is a step in which pretreatment water is passed through an apparatus comprising an RO membrane (reverse osmosis membrane) for removing ions, and the apparatus for the primary treatment step using this RO membrane is an RO means. May be a single step or a plurality of steps. As the RO means used here, various types of RO films can be employed without particular limitation.

【0015】二次処理工程は、一般的には、ホウ素選択
樹脂を固定床として充填したホウ素選択樹脂塔に一次処
理水を通水させる工程をいい、ホウ素選択樹脂には上述
したものが用いられられる。
[0015] The secondary treatment step generally refers to a step in which primary treatment water is passed through a boron selective resin tower filled with a boron selective resin as a fixed bed, and the above-mentioned boron selective resin is used. Can be

【0016】上記した発明において重要な点は、二次処
理工程の出口水のpHを10以上に維持することにあ
り、このためにはホウ素選択樹脂のアルカリ処理が重要
である。ホウ素を略吸着限界まで吸着したホウ素選択樹
脂からホウ素を脱離させる場合、硫酸,塩酸等の鉱酸が
用いられる。そして、ホウ素選択樹脂によるホウ素吸着
量を最大とするためには、通常鉱酸でホウ素を脱離した
後、苛性ナトリウム等の苛性アルカリでホウ素選択樹脂
を処理する。ところがアルカリ処理したホウ素選択樹脂
を用いてホウ素含有水を通水処理すると、得られる処理
水はアルカリ性となり、処理水を飲料水とする場合は中
和する必要がある。従って、従来はホウ素選択樹脂の処
理水がアルカリ性にならないように、鉱酸に続いて苛性
アルカリで処理した後、塩化ナトリウム溶液を通薬した
り(特公平4−70948号公報)、あるいは鉱酸でホ
ウ素を脱離した後、塩化ナトリウムと苛性ナトリウムの
混合液で処理したり(特公平4−60700号公報)、
あるいは鉱酸でホウ素を脱離させた後、イオン交換樹脂
を流動状態でアルカリ処理することにより、不完全な形
でアルカリ処理を行う方法(特公平4−19904号公
報)などが提案がされている。
An important point in the above invention is to maintain the pH of the outlet water in the secondary treatment step at 10 or more, and for this purpose, the alkali treatment of the boron selective resin is important. When boron is desorbed from the boron selective resin that has adsorbed boron to the adsorption limit, a mineral acid such as sulfuric acid or hydrochloric acid is used. In order to maximize the amount of boron adsorbed by the boron selective resin, the boron selective resin is usually desorbed with a mineral acid and then treated with a caustic alkali such as sodium hydroxide. However, when the boron-containing water is passed through using an alkali-treated boron-selective resin, the resulting treated water becomes alkaline and must be neutralized when the treated water is used as drinking water. Therefore, conventionally, in order to prevent the treated water of the boron selective resin from becoming alkaline, the treated water is treated with a caustic alkali followed by a mineral acid, and then a sodium chloride solution is passed (Japanese Patent Publication No. 4-70948) or a mineral acid is used. After desorbing boron by using a mixed solution of sodium chloride and caustic sodium (Japanese Patent Publication No. 4-60700),
Alternatively, a method has been proposed in which an alkali treatment is performed in an incomplete form by desorbing boron with a mineral acid and then subjecting the ion exchange resin to an alkali treatment in a fluidized state (Japanese Patent Publication No. 4-199004). I have.

【0017】しかしながら、上述の再生処理方法による
と、通常の運用状態に復帰した後のホウ素選択樹脂の処
理水のpH調整をする必要がないという効果を有するも
のの、上述したクミン変法等のサンプリングによるホウ
素イオン濃度測定という間欠的な方法以外には、ホウ素
選択樹脂の通水終点を連続的にかつ簡易に検出する適当
な方法は従来知られていないので、連続的なホウ素濃度
の検出は実現できない。
However, according to the above-mentioned regeneration treatment method, although it is not necessary to adjust the pH of the treatment water of the boron-selective resin after returning to the normal operation state, the sampling method of the above-mentioned modified cumin method or the like is used. No suitable method for continuously and easily detecting the end point of water passage of the boron selective resin has been known so far except for the intermittent method of boron ion concentration measurement by Can not.

【0018】一方、本発明者はホウ素選択樹脂によるホ
ウ素の分離・除去の能力がpH10付近で急激に変化す
るという事実を種々の実験の結果として初めて見いだ
し、ホウ素を鉱酸で脱離した後、十分な量の苛性アルカ
リを通薬するだけで、再生後のホウ素選択樹脂の処理水
のpHを計測し、pH10付近の急変点を目安にホウ素
選択樹脂の通水終点を検出できるという本発明をなすに
至ったのである。
On the other hand, the present inventors have found, for the first time as a result of various experiments, the fact that the ability of boron separation / removal by a boron selective resin changes rapidly around pH 10, and after desorbing boron with a mineral acid, According to the present invention, it is possible to measure the pH of the treated water of the regenerated boron-selective resin by simply passing a sufficient amount of caustic alkali, and to detect the end point of the passage of the boron-selective resin based on a sudden change point around pH 10. It was done.

【0019】つまり、本発明の方法によれば、ホウ素選
択樹脂の処理水はアルカリ性になって飲料水とする場合
は中和処理が必要になるが、ホウ素選択樹脂の使用終期
(再生時期)を連続的にかつ簡易に、確実に検出できる
という優れた利点が得られ、本発明以外の従来の方法で
は、オンラインでホウ素選択樹脂の終期を連続的に検出
することはできないという問題が解消される。
That is, according to the method of the present invention, when the treated water of the boron-selective resin becomes alkaline and becomes drinking water, a neutralization treatment is required. An excellent advantage that the detection can be performed continuously and easily and reliably is obtained, and the problem that the conventional method other than the present invention cannot continuously detect the end of the boron selective resin online is solved. .

【0020】[0020]

【発明の実施の形態】以下本発明を更に詳細に説明す
る。 実施形態1 図1は本発明の方法を海水から飲料水を製造する際に実
施するための代表的な装置のフロー概要を示した図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Embodiment 1 FIG. 1 is a diagram showing an outline of a flow of a typical apparatus for carrying out the method of the present invention when producing drinking water from seawater.

【0021】この図において、1は原水を示し、この原
水は、前処理装置(ろ過装置:例えば凝集2層ろ過+砂
ろ過、逆洗可能なUF膜装置)2を透過させた後、一次
処理装置であるRO装置3に通水される。なお、前処理
水はpH調整をしていないので通常はpH中性の水であ
る。
In this figure, reference numeral 1 denotes raw water, which is passed through a pretreatment device (filtration device: for example, coagulation two-layer filtration + sand filtration, a backwashable UF membrane device) 2 and then subjected to primary treatment. Water is passed through the RO device 3 which is a device. In addition, since the pH of the pre-treated water is not adjusted, it is usually water having a neutral pH.

【0022】上記RO装置3は逆浸透膜(RO)を内蔵
し、膜透過水を一次処理水として二次処理装置であるホ
ウ素吸着塔4側に送り、非透過水は排水される。RO膜
は炭酸イオンを除去できないので処理水は弱酸性を示
す。
The RO device 3 has a built-in reverse osmosis membrane (RO) and sends the permeated water as the primary treatment water to the boron adsorption tower 4 side as the secondary treatment device, and the non-permeated water is drained. Since the RO membrane cannot remove carbonate ions, the treated water shows weak acidity.

【0023】二次処理装置は、ホウ素選択樹脂(例えば
アンバーライト(登録商標:以下において同じ)IRA
743)を固定床401として充填したホウ素吸着塔4
を主装置として構成されており、このホウ素吸着塔4の
上流の被処理水供給管402の途中には、ホウ素吸着塔
入口水のpHを検出する一次処理水pH検出計403が
接続されている。
The secondary treatment device is a boron selective resin (for example, Amberlite (registered trademark: the same applies hereinafter)) IRA
743) as a fixed bed 401
A primary treatment water pH detector 403 for detecting the pH of the water at the inlet of the boron adsorption tower is connected in the middle of the treated water supply pipe 402 upstream of the boron adsorption tower 4. .

【0024】図2はこの二次処理装置の構造を更に詳細
に示したものであり、ホウ素吸着塔4の処理水出口側の
排出管411には、同塔出口水(二次処理水)のpHを
検出するために、通常は開路しているが樹脂再生時には
閉路される開閉弁406を途中に介設した二次処理水p
H検出管405が分岐接続されている。開閉弁406の
下流には二次処理水pH検出計407が設けられ、ここ
で検出された情報は制御装置の記録部408に伝達され
て演算部/制御部409でホウ素選択樹脂の再生操作に
必要な時期を検出する情報(通水の中断、再生薬剤の通
薬)として利用され、また、モニター等の外部表示装置
410で目視的に確認できるように利用される。なお、
ホウ素吸着塔4の出口水(流出水)を排出する処理水出
口側の排出管411には、通水を開閉する開閉弁412
が設けられ、一系統のホウ素分離。除去のための通水、
中断を制御できるように設けており、ホウ素吸着塔4を
メインとして構成された二次処理装置を複数系統設け
て、各系統ごとに入口側,出口側を通水あるいは遮断す
ることで、装置全体として連続的な飲料水の製造を連続
して可能とする運用を実現できるようにしている。鉱酸
による再生後、アルカリ処理として苛性ナトリウム等を
通薬することで、ホウ素選択樹脂は再生され、再生後の
通水被処理水をpH10以上とされる。なおこのpH1
0以上とするために苛性アルカリの通薬量は1eq/L
−R以上とすることがよい。このようにすることで二次
処理水のpHは確実に10以上となるからである。図2
における配管4021,4022、4023と配管41
11,4112,4113の各符号は、これら複数の系
統の二次処理装置への接続管を示している。
FIG. 2 shows the structure of the secondary treatment apparatus in more detail. A discharge pipe 411 on the treated water outlet side of the boron adsorption tower 4 is provided with outlet water (secondary treated water) of the same. In order to detect pH, the secondary treatment water p which is normally open but is closed during resin regeneration is provided with an on-off valve 406 in the middle.
The H detection tube 405 is branched and connected. Downstream of the on-off valve 406, a secondary treatment water pH detector 407 is provided, and the information detected here is transmitted to the recording unit 408 of the control device, and the calculation unit / control unit 409 performs the operation of regenerating the boron-selective resin. It is used as information for detecting a necessary time (interruption of water supply, passage of regenerated medicine), and is used so that it can be visually confirmed on an external display device 410 such as a monitor. In addition,
A discharge pipe 411 on the treated water outlet side for discharging the outlet water (outflow water) of the boron adsorption tower 4 has an on-off valve 412 for opening and closing water flow.
Is provided and one system of boron separation. Water flow for removal,
The system is provided so that the interruption can be controlled, and a plurality of secondary treatment devices mainly composed of the boron adsorption tower 4 are provided, and water is supplied to or blocked from the inlet side and the outlet side for each system. As a result, it is possible to realize an operation that enables continuous production of drinking water. After the regeneration with the mineral acid, by passing caustic sodium or the like as an alkali treatment, the boron selective resin is regenerated, and the water to be treated after the regeneration is adjusted to pH 10 or more. This pH 1
In order to make it 0 or more, the amount of passing caustic alkali is 1 eq / L
-R or more is preferable. By doing so, the pH of the secondary treatment water will surely be 10 or more. FIG.
Pipes 4021, 4022, 4023 and pipe 41 in
Reference numerals 11, 4112, and 4113 indicate connection pipes to the secondary processing devices of the plurality of systems.

【0025】なお、図示していないが、例えばホウ素選
択樹脂の再生のための再生装置が付設され、代表的には
樹脂吸着のホウ素を分離するための再生剤である鉱酸
(例えば5%濃度の硫酸)の通薬装置、純水等による押
出し装置、再生剤であるpH調整のためのアルカリ通薬
装置、純水等による押出し装置を用いて、鉱酸次いで苛
性アルカリによる再生,洗浄工程により再生処理が行わ
れるようになっている。
Although not shown, for example, a regenerating device for regenerating the boron selective resin is provided, and typically, a mineral acid (for example, 5% concentration) which is a regenerating agent for separating boron adsorbed on the resin. Of sulfuric acid), an extruder using pure water, etc., an alkali ionizer for adjusting pH as a regenerant, an extruder using pure water, etc., by a regeneration and washing process using mineral acid and then caustic. Playback processing is performed.

【0026】二次処理装置であるホウ素吸着塔4で処理
された二次処理水は、次に中和装置5に供給され、飲料
水として適したpH(中性)に調整される。この二次処
理装置5は例えば炭酸ガス注入装置を用いて構成するこ
とができる。中和装置5としては、酸溶液を注入する装
置も用いることができるが、炭酸ガス注入装置を用いる
ことにより、たとえ炭酸ガスの注入量が多量となっても
飲料適内のpHに保つことができるので、炭酸ガス注入
装置を用いることが好ましい。
The secondary treatment water treated in the boron adsorption tower 4 as a secondary treatment device is then supplied to a neutralization device 5 and adjusted to a pH (neutral) suitable for drinking water. The secondary processing device 5 can be configured using, for example, a carbon dioxide gas injection device. As the neutralizing device 5, a device for injecting an acid solution can also be used, but by using a carbon dioxide gas injecting device, even if the amount of carbon dioxide gas injected becomes large, it is possible to maintain the pH within a suitable beverage. Therefore, it is preferable to use a carbon dioxide gas injection device.

【0027】6は中和装置5を通水した水のpHを検出
するためのpH検出計であり、最終的な製品(製造品で
ある飲料水7)の適性を確認・監視するために用いられ
る。
Reference numeral 6 denotes a pH detector for detecting the pH of the water passed through the neutralizing device 5, which is used to confirm and monitor the suitability of the final product (manufactured drinking water 7). Can be

【0028】[0028]

【実施例】実施例1 上記図1,2の装置を用い、実験的規模で以下の条件で
海水から飲料水の製造を行った。原水(海水)の条件は
下記表1の通りである。
EXAMPLE 1 Drinking water was produced from seawater under the following conditions on an experimental scale using the apparatus shown in FIGS. The conditions of raw water (seawater) are as shown in Table 1 below.

【0029】[0029]

【表1】 [Table 1]

【0030】前処理装置2は、逆洗可能なUF膜(精密
ろ過膜:分画分子量150,000)を用い、通水流量
は5m3/日とした。
The pretreatment device 2 used a backwashable UF membrane (microfiltration membrane: molecular weight cut off 150,000), and the flow rate of water was 5 m 3 / day.

【0031】一次処理装置であるRO装置3としてRO
膜は東洋紡製中空形HR5355を用いて構成し、この
RO装置の供給水(前処理水)、一段目のRO透過水
(一次処理水)の各水質は下記表2の通りであった。な
お参考のたRO透過水を同じRO膜で処理した二段目R
O透過水の水質も併記した。
The RO device 3 as a primary processing device is an RO device.
The membrane was formed using Toyobo's hollow HR5355, and the water quality of feed water (pre-treatment water) and first-stage RO permeate water (primary treatment water) of this RO apparatus was as shown in Table 2 below. The second stage R obtained by treating the RO permeated water for reference with the same RO membrane
The water quality of O permeated water is also shown.

【0032】[0032]

【表2】 [Table 2]

【0033】この表2の結果から分かるように、一段目
透過水の水質はホウ素を除くイオンは飲料適となってい
ることが分かる。
As can be seen from the results in Table 2, the water quality of the first-stage permeated water is such that ions other than boron are suitable for drinking.

【0034】上記RO装置3による処理が行われた一次
処理水(一段目RO透過水)は、原水の遊離炭酸がその
ままリークすることによりpH4.5〜5.3となり、
これを二次処理装置を構成するホウ素選択樹脂塔4に給
水してホウ素の分離・除去を行った。なおこの二次処理
装置は、下記の構成及び通水条件で用いると共に、下記
表5の条件で再生処理を行ったものを用いた。
The primary treated water (first-stage RO permeated water) that has been treated by the RO device 3 has a pH of 4.5 to 5.3 because the free carbonic acid of the raw water leaks as it is,
This was supplied to the boron selective resin tower 4 constituting the secondary treatment apparatus to separate and remove boron. In addition, this secondary treatment apparatus was used under the following configuration and water-passing conditions, and also subjected to a regeneration treatment under the conditions shown in Table 5 below.

【0035】 ホウ素吸着塔の構成 ・樹脂塔の構成 塔カラム : φ22 mm×L1500 mm 使用樹脂 : アンバーライト(登録商標)IRA743 樹脂層高さ: 900mm 樹脂量 : 342ml ・供給水の水質 pH : 4.5〜5.3 ホウ素濃度: 1.8(mgB/L) ・通水条件 通水流速 : 3.42L/hr,SV10 通水温度 : 22℃ 再生条件 溶離:5%H2SO4 850ml SV4 押出:純水 342ml SV4 アルカリ処理:4%NaOH 880ml SV4(2.6eq/L−R) 押出:純水 342ml SV4 洗浄:純水 2052ml SV12 通常の運用期間における二次処理装置に対する供給水及
び被処理水(二次処理水)の水質は下記表3に示した通
りである。
Configuration of Boron Adsorption Tower • Configuration of Resin Tower Tower column: φ22 mm × L1500 mm Resin used: Amberlite (registered trademark) IRA743 Resin layer height: 900 mm Resin amount: 342 ml • Water quality of feed water pH: 4. 5 to 5.3 Boron concentration: 1.8 (mgB / L) Water flow conditions Water flow rate: 3.42 L / hr, SV10 Water flow temperature: 22 ° C. Regeneration conditions Elution: 5% H 2 SO 4 850 ml SV4 extrusion : Pure water 342 ml SV4 Alkaline treatment: 4% NaOH 880 ml SV4 (2.6 eq / LR) Extrusion: pure water 342 ml SV4 Washing: pure water 2052 ml SV12 Water supplied to the secondary treatment apparatus and water to be treated during a normal operation period The water quality of (secondarily treated water) is as shown in Table 3 below.

【0036】[0036]

【表3】 [Table 3]

【0037】上記により二次処理を行った被処理水を、
中和装置6で炭酸ガス注入により中和状態を管理して製
造水(飲料水)7とした。この中和装置6の供給水と出
口水のpHの関係を下記表4に示した。
The treated water subjected to the secondary treatment as described above is
The neutralized state was controlled by injecting carbon dioxide gas in the neutralizing device 6 to obtain the production water (drinking water) 7. Table 4 below shows the relationship between the pH of the supply water and the outlet water of the neutralization device 6.

【0038】[0038]

【表4】 [Table 4]

【0039】以上の条件の下で試験した結果を表5に示
した。
Table 5 shows the test results under the above conditions.

【0040】[0040]

【表5】 [Table 5]

【0041】また二次処理装置出口水のpH,ホウ素漏
出濃度を測定した経時的な変化の状態を図3に示した。
FIG. 3 shows the time-dependent changes in the pH and the concentration of boron leaked from the outlet water of the secondary treatment apparatus.

【0042】この図3の結果から分かるように、二次処
理装置出口水のpHが10を下回ることになる付近でホ
ウ素の漏出が急激に増大することが分かり、したがっ
て、本発明の構成を用いて二次処理装置出口水のpHを
連続的に監視するという簡易な方法によりホウ素選択樹
脂のホウ素除去の終期を検出できることが確認された。
As can be seen from the results shown in FIG. 3, the leakage of boron rapidly increases near the pH of the water at the outlet of the secondary treatment device falling below 10, and therefore, the structure of the present invention is used. Thus, it was confirmed that the end of boron removal of the boron selective resin can be detected by a simple method of continuously monitoring the pH of the secondary treatment device outlet water.

【0043】比較例1再生処理後のホウ素吸着塔4の構
成を以下の通りとした以外は上記実施例1と同様にして
処理を行い、結果を上記表5に及び図4に示した。
Comparative Example 1 The treatment was carried out in the same manner as in Example 1 except that the configuration of the boron adsorption tower 4 after the regeneration treatment was as follows, and the results are shown in Table 5 and FIG.

【0044】 再生条件 溶離:5%H2SO4 850ml SV4 押出:純水 342ml SV4 アルカリ処理:1% NaOH 880ml SV4(0.64eq/L−R) 押出:純水 342ml SV4 洗浄:純水 2052ml SV12 この図4の結果から分かるように、アルカリ処理の苛性
ソーダの使用量が十分でない場合はホウ素選択樹脂の再
生処理後の二次処理装置4の出口水pHが中性ないし酸
性側となり、同出口水pHの変化を監視しても、pHの
微妙な変化によるホウ素選択樹脂の使用終期を検出する
ことは難しいことが分かる。
Regeneration conditions Elution: 850 ml of 5% H 2 SO 4 SV4 Extrusion: 342 ml of pure water SV4 Alkaline treatment: 880 ml of 1% NaOH SV4 (0.64 eq / L-R) Extrusion: 342 ml of pure water SV4 Washing: 2052 ml of pure water SV12 As can be seen from the results in FIG. 4, when the amount of the caustic soda used in the alkali treatment is not sufficient, the pH of the outlet water of the secondary treatment device 4 after the regeneration treatment of the boron selective resin becomes neutral or acidic, and It can be seen that it is difficult to detect the end of use of the boron selective resin due to a subtle change in pH even when monitoring the change in pH.

【0045】実施例2再生処理後のホウ素吸着塔4の構
成を以下の通りとした以外は上記実施例1と同様にして
処理を行い、結果を上記表5に及び図5に示した。
Example 2 The treatment was carried out in the same manner as in Example 1 except that the configuration of the boron adsorption tower 4 after the regeneration treatment was as follows, and the results are shown in Table 5 and FIG.

【0046】 再生条件 溶離:5%H2SO4 850ml SV4 押出:純水 342ml SV4 アルカリ処理:1.5%NaOH 880ml SV4(1.0eq/L−R) 押出:純水 342ml SV4 洗浄:純水 2052ml SV12 この図5の結果から分かるように、アルカリ処理水に用
いる苛性ソーダ 量として1.0eq/L−Rとしても
ホウ素選択樹脂の処理水のpHは10以上となり、かつ
出口pHの低下によりホウ素イオンの貫流点を検出する
ことが可能であった。
Regeneration conditions Elution: 5% H 2 SO 4 850 ml SV4 Extrusion: pure water 342 ml SV4 Alkaline treatment: 1.5% NaOH 880 ml SV4 (1.0 eq / LR) Extrusion: pure water 342 ml SV4 Washing: pure water 2052 ml SV12 As can be seen from the results shown in FIG. 5, even if the amount of caustic soda used for the alkali-treated water is 1.0 eq / LR, the pH of the treated water of the boron-selective resin becomes 10 or more, and the decrease in the outlet pH decreases the boron ion. Could be detected.

【0047】[0047]

【発明の効果】以上述べたように本発明は、ホウ素含有
原水から飲料水を製造するに際して、ホウ素含有水から
のホウ素除去法として知られている従来の方法であるR
O処理法、及びホウ素選択樹脂を用いる方法を巧みに組
み合わせることにより、従来は全く知られていなかった
工業的な規模での長期に渡る水質の安定した飲料水の大
量製造を可能とした方法を提供できるものであり、代表
的には海水の淡水化(飲料用の水の製造)に極めて有用
な方法、装置を提供できるものである。
As described above, the present invention relates to a conventional method known as a method for removing boron from boron-containing water when producing drinking water from boron-containing raw water.
By skillfully combining the O treatment method and the method using a boron-selective resin, a method that enables a large-scale production of drinking water with stable water quality over a long period of time on an industrial scale, which has not been known at all, has been proposed. The present invention can provide a method and an apparatus which are extremely useful for desalination of seawater (production of drinking water).

【0048】本発明の各請求項記載の発明は上記の効果
を奏する他、更に以下の効果を奏する利点がある。
The invention described in each claim of the present invention has the following effects in addition to the above effects.

【0049】飲料水製造装置を簡易な構造のものとして
提供しながら、装置の運転状況に則した飲料水の製造、
停止、再生の制御を容易に行える。
While providing a drinking water production device with a simple structure, the production of drinking water in accordance with the operation status of the device,
Stop and playback control can be easily performed.

【0050】オンラインの飲料水の水質監視の精度を向
上することができ、適切な水質維持を図ることができ
る。
The accuracy of monitoring the quality of drinking water online can be improved, and appropriate water quality can be maintained.

【0051】オンラインの水質監視を実現することで、
従来の処理水サンプリング作業をなくすことができ、作
業の簡易化を実現可能として、工業的に実施する方法、
装置として極めて有効である。
By realizing online water quality monitoring,
It is possible to eliminate the conventional treatment water sampling work, and to realize the simplification of the work, and to implement the method industrially,
It is extremely effective as a device.

【0052】従来のサンプリング測定方式による測定者
の熟練度の違いによる測定値のバラツキがなく、客観的
に差のない測定結果を確実に得ることができる。
There is no variation in measured values due to differences in the skill of the measurer in the conventional sampling measurement method, and a measurement result having no objective difference can be reliably obtained.

【0053】連続的な水質測定を実現できるので、飲料
水製造途中での工程異常や原水水質の変化に迅速に対応
できる飲料水の製造が行える。
Since continuous water quality measurement can be realized, it is possible to produce drinking water that can quickly respond to process abnormalities and changes in raw water quality during the production of drinking water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例である実施形態1の装置構成の概
要を示したフロー図。
FIG. 1 is a flowchart showing an outline of a device configuration of a first embodiment which is an example of the present invention.

【図2】図1の二次処理装置の構成詳細を示した概要
図。
FIG. 2 is a schematic diagram showing details of a configuration of a secondary processing device of FIG. 1;

【図3】本発明の実施例1の処理を行った際の水質変化
を示した図。
FIG. 3 is a diagram showing a change in water quality when the processing according to the first embodiment of the present invention is performed.

【図4】本発明に対する比較例1の処理を行った際の水
質変化を示した図。
FIG. 4 is a diagram showing a change in water quality when a process of Comparative Example 1 for the present invention is performed.

【図5】本発明の実施例2の処理を行った際の水質変化
を示した図。
FIG. 5 is a diagram illustrating a change in water quality when the processing according to the second embodiment of the present invention is performed.

【符号の説明】[Explanation of symbols]

1:原水 2:前処理装置 3:RO装置 4:ホウ素吸着塔 401:固定床 402:被処理水供給管 403:pH検出計 404:排出管 405:二次処理水pH検出管 406:開閉弁 407:二次処理水pH検出計 418:記録部 419:演算部/制御部 410:外部表示装置 411:排出管 412:開閉弁 5:中和装置 6:pH検出計 7:飲料水 1: Raw water 2: Pretreatment device 3: RO device 4: Boron adsorption tower 401: Fixed bed 402: Supply water supply pipe 403: pH detector 404: Discharge pipe 405: Secondary treatment water pH detection pipe 406: Open / close valve 407: pH meter for secondary treated water 418: Recording unit 419: Operation unit / control unit 410: External display device 411: Discharge pipe 412: Open / close valve 5: Neutralizer 6: pH detector 7: Drinking water

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 必要に応じて原水中の懸濁物質を除去す
る前処理を行った前処理水を逆浸透膜に通水する一次処
理工程と、一次処理工程の膜透過水をホウ素選択樹脂に
通水してホウ素を除去する二次処理工程と、二次処理工
程の出口水を中和する中和工程とを備え、ホウ素イオン
含有の原水を前記一次処理工程→二次処理工程→中和工
程の順に通して飲料水を製造する方法であって、二次処
理工程の出口水の水素イオン濃度(pH)を連続的に監
視し、該二次処理工程出口水のpHが10未満となった
時点で通水を中断して鉱酸の通薬でホウ素を脱離した
後、苛性アルカリの通薬でホウ素選択樹脂を処理する再
生を用い、二次処理工程出口水のpHが10以上となる
ように維持しながら飲料水を製造することを特徴とする
飲料水の製造方法。
A first treatment step of passing pretreatment water, which has been subjected to a pretreatment for removing suspended substances in raw water as necessary, through a reverse osmosis membrane; A secondary treatment step of removing boron by passing water through, and a neutralization step of neutralizing outlet water of the secondary treatment step, wherein the boron ion-containing raw water is subjected to the primary treatment step-> secondary treatment step-> A method for producing drinking water through the order of the summation process, wherein the hydrogen ion concentration (pH) of the outlet water of the secondary treatment process is continuously monitored, and the pH of the secondary treatment process outlet water is less than 10. When the water flow is interrupted, boron is desorbed by passing a mineral acid, and then regeneration of the boron selective resin is processed by passing a caustic alkali. A method for producing drinking water, characterized in that drinking water is produced while maintaining it as follows.
【請求項2】 請求項1において、原水は海水又はかん
水であることを特徴とする飲料水の製造方法。
2. The method according to claim 1, wherein the raw water is seawater or brackish water.
【請求項3】 請求項1又は2において、鉱酸の通薬に
よるホウ素の脱離後に、通薬する薬剤が苛性ナトリウム
又は苛性カリウムであり、通薬量が1eq/L−R以上
であることを特徴とする飲料水の製造方法。
3. The method according to claim 1 or 2, wherein after the boron is eliminated by passing a mineral acid, the passing drug is caustic sodium or caustic potassium, and the passing amount is 1 eq / LR or more. A method for producing drinking water, comprising:
【請求項4】 ホウ素を含有した原水を通水することで
この原水中に含まれる懸濁物質を除去する前処理装置
と、前処理装置から流出する前処理水を逆浸透膜に通水
することで膜透過水である一次処理水を得る一次処理装
置と、一次処理水をホウ素選択樹脂に通水することでホ
ウ素を除去した二次処理水を得る二次処理装置と、二次
処理装置から流出する二次処理水を通水して中和する中
和装置と、二次処理水のpHを監視する監視装置と、二
次処理水のpHが10以上となったきに通水を中断しか
つホウ素選択樹脂に鉱酸次いで苛性アルカリを通薬して
再生する再生処理装置とを備えたことを特徴とするホウ
素含有原水から飲料水を製造する装置。
4. A pretreatment device for removing suspended substances contained in raw water by passing raw water containing boron, and passing pretreatment water flowing out of the pretreatment device through a reverse osmosis membrane. A primary treatment device that obtains primary treated water that is a membrane permeated water, a secondary treatment device that obtains secondary treated water from which boron has been removed by passing the primary treated water through a boron selective resin, and a secondary treatment device Neutralization device that neutralizes by passing secondary treatment water flowing out of the reactor, monitoring device that monitors the pH of secondary treatment water, and interrupts water supply when the pH of secondary treatment water becomes 10 or more An apparatus for producing drinking water from boron-containing raw water, the apparatus comprising: a regenerating treatment apparatus for regenerating a boron-selective resin by passing a mineral acid and then a caustic alkali.
JP2001173049A 2001-06-07 2001-06-07 Method and device for manufacturing drinking water Pending JP2002361246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001173049A JP2002361246A (en) 2001-06-07 2001-06-07 Method and device for manufacturing drinking water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001173049A JP2002361246A (en) 2001-06-07 2001-06-07 Method and device for manufacturing drinking water

Publications (2)

Publication Number Publication Date
JP2002361246A true JP2002361246A (en) 2002-12-17
JP2002361246A5 JP2002361246A5 (en) 2008-02-28

Family

ID=19014573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001173049A Pending JP2002361246A (en) 2001-06-07 2001-06-07 Method and device for manufacturing drinking water

Country Status (1)

Country Link
JP (1) JP2002361246A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003062151A1 (en) * 2002-01-22 2005-05-19 東レ株式会社 Fresh water generation method and fresh water generator
JP2006192422A (en) * 2004-12-17 2006-07-27 Miura Dsw Kk Method for producing water suitable for drinking by reducing boron content in water
JP2008149241A (en) * 2006-12-15 2008-07-03 Kurita Water Ind Ltd Purifying method of ground water
JP2016527077A (en) * 2013-07-05 2016-09-08 ステラルマー エスアールエル Method for industrial production of seawater basically suitable for food
KR20160120406A (en) 2015-04-07 2016-10-18 부경대학교 산학협력단 A membrane for selective boron removal comprising a polymer containing hydroxyl groups, and a preparation method and use thereof
CN110054337A (en) * 2019-04-30 2019-07-26 内蒙古智牧溯源技术开发有限公司 A kind of automatic re-mineralization system of drinking-water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066298A (en) * 1999-08-27 2001-03-16 Osaka Gas Co Ltd Measuring apparatus for water quality

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066298A (en) * 1999-08-27 2001-03-16 Osaka Gas Co Ltd Measuring apparatus for water quality

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003062151A1 (en) * 2002-01-22 2005-05-19 東レ株式会社 Fresh water generation method and fresh water generator
JP2006192422A (en) * 2004-12-17 2006-07-27 Miura Dsw Kk Method for producing water suitable for drinking by reducing boron content in water
JP2008149241A (en) * 2006-12-15 2008-07-03 Kurita Water Ind Ltd Purifying method of ground water
JP2016527077A (en) * 2013-07-05 2016-09-08 ステラルマー エスアールエル Method for industrial production of seawater basically suitable for food
KR20160120406A (en) 2015-04-07 2016-10-18 부경대학교 산학협력단 A membrane for selective boron removal comprising a polymer containing hydroxyl groups, and a preparation method and use thereof
CN110054337A (en) * 2019-04-30 2019-07-26 内蒙古智牧溯源技术开发有限公司 A kind of automatic re-mineralization system of drinking-water

Similar Documents

Publication Publication Date Title
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
JP4648307B2 (en) Continuous electrodeionization apparatus and method
US6858145B2 (en) Method of removing organic impurities from water
US9833743B2 (en) Reverse osmosis treatment device and method for cleaning reverse osmosis treatment device
JP4765843B2 (en) Seawater desalination method
JPH06233B2 (en) Reverse osmosis water purification method
Byun et al. Performance of polymeric membranes treating ozonated surface water: Effect of ozone dosage
JPH11510432A (en) Production of high-purity water using reverse osmosis
EP1070020A1 (en) Water treatment system and process comprising ph-adjustment
JP6189205B2 (en) Concentrator scale detection device and method, water regeneration treatment system
Nguyen et al. Chemical cleaning of ultrafiltration membrane fouled by an activated sludge effluent
Freger et al. Boron removal using membranes
JP6185924B2 (en) Desalination method for boron-containing solution
JP2002361246A (en) Method and device for manufacturing drinking water
JPH1085743A (en) Method and apparatus for treating water containing boron
JPS62294484A (en) Reverse osmosis treatment of water containing silica at high concentration
JP5398695B2 (en) Desalination apparatus, method for monitoring membrane and operation method of desalination apparatus
JPS62110795A (en) Device for producing high-purity water
JP2002361246A5 (en)
JP2013193004A (en) Pure water production method
JPH1080684A (en) Device and method for treating boron-containing water
JP3278918B2 (en) Desalting method
KR20180037586A (en) Method for Recycling Reverse Osmosis Membrane, Process for Producing Ultra Pure Water, and System for Manufacturing Ultra Pure Water
JPH07962A (en) Production of pure water
JP2005118712A (en) Pure water manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420