JP2005279384A - Method for producing ideal drinking water from sea water - Google Patents

Method for producing ideal drinking water from sea water Download PDF

Info

Publication number
JP2005279384A
JP2005279384A JP2004094965A JP2004094965A JP2005279384A JP 2005279384 A JP2005279384 A JP 2005279384A JP 2004094965 A JP2004094965 A JP 2004094965A JP 2004094965 A JP2004094965 A JP 2004094965A JP 2005279384 A JP2005279384 A JP 2005279384A
Authority
JP
Japan
Prior art keywords
water
seawater
concentrated
drinking water
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004094965A
Other languages
Japanese (ja)
Inventor
Munetaka Honda
宗高 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AROMA KAGAKU KIKAI KOGYO KK
Original Assignee
AROMA KAGAKU KIKAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AROMA KAGAKU KIKAI KOGYO KK filed Critical AROMA KAGAKU KIKAI KOGYO KK
Priority to JP2004094965A priority Critical patent/JP2005279384A/en
Publication of JP2005279384A publication Critical patent/JP2005279384A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing ideal drinking water from sea water by which mineral components and desalination ratio can be selectively adjusted by performing a process of separating concentrated sea water into concentrated salt water and desalinated water according to electrodialysis. <P>SOLUTION: The method for producing drinking water is provided for producing drinking water containing a mineral component by extracting the mineral component included in sea water and adding the extracted mineral component to fresh water which is obtained by removing salt content from sea water, wherein the method for producing drinking water comprises: a filtration step of eliminating contaminants etc. from raw sea water with a filter; a first separation step of separating filtrated sea water into the fresh water and the concentrated sea water according to reverse osmosis method; a second separation step of separating the separated concentrated sea water into the concentrated salt water and desalinated water according to electrodialysis method; and a mixing step of adding a proper quantity of the separated desalinated water to the fresh water, mixing the fresh water to which the separated water is added and obtaining the drinking water which properly contains the mineral content included in sea water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、海水からその保有しているミネラル成分を含んだ飲料水を製造する方法に関する。   The present invention relates to a method for producing drinking water containing mineral components from seawater.

従来、海水から飲料水を製造する方法は、海水から取水する工程と、取水した海水をろ
過する工程と、ろ過した海水を逆浸透膜により淡水と濃縮海水とに分離する逆浸透分離工
程と、分離した濃縮海水をナノろ過膜により含有有効成分に対して塩化ナトリウムが多い
天然塩含有液とミネラル成分とに分離するナノろ過工程とを有することにより、海水が保
有するミネラル成分を含有した飲料水を得るようにしている。(例えば特許文献1参照)
特開2002−172392号(第3頁)
Conventionally, a method of producing drinking water from seawater includes a step of taking water from seawater, a step of filtering the taken seawater, a reverse osmosis separation step of separating the filtered seawater into fresh water and concentrated seawater by a reverse osmosis membrane, Drinking water containing mineral components retained by seawater by having a nanofiltration step for separating the separated concentrated seawater into a natural salt-containing liquid and mineral components that are rich in sodium chloride with respect to the active ingredients contained in the nanofiltration membrane Like to get. (For example, see Patent Document 1)
JP 2002-172392 (page 3)

しかしながら、この方法は、濃縮海水をナノろ過膜で天然塩含有液とミネラル成分とに分離するため、ろ過膜の段数調整によってミネラル成分と脱塩率を比例的に増減させることはできるが、ミネラル成分と脱塩率を選択的に調整することはできない問題点がある。   However, this method separates concentrated seawater into a natural salt-containing liquid and a mineral component using a nanofiltration membrane, so the mineral component and the desalination rate can be proportionally increased or decreased by adjusting the number of stages of the filtration membrane. There is a problem that the components and the desalting rate cannot be adjusted selectively.

本発明は前記課題を解決し、濃縮海水を濃縮塩水と脱塩水とに分離する工程を電気透析法で行うことにより、ミネラル成分と脱塩率の調整を選択的に行うことができる海水から理想的な飲料水を製造する方法を提供することをその課題とする。   The present invention solves the above-mentioned problems and is ideal from seawater that can selectively adjust mineral components and desalination rate by performing a step of separating concentrated seawater into concentrated salt water and desalted water by electrodialysis. It is an object of the present invention to provide a method for producing typical drinking water.

前記課題を解決するため、本発明に係る海水から理想的飲料水を製造する方法は、以下
の方法を採用する事を特徴とする。
海水から塩分を除いた淡水に、海水が保有するミネラル成分を抽出して加えることによりミネラル成分を含む飲料水を製造する飲料水の製造方法において、原料海水から混入物等をろ過器により除くろ過工程と、ろ過した海水を淡水と濃縮海水とに逆浸透法で分離する第1の分離工程と、分離した濃縮海水を濃縮塩水と脱塩水とに電気透析法で分離する第2の分離工程と、分離した脱塩水の適量を上記淡水に加えて混合することにより、海水の保有するミネラル成分を適度に含有した飲料水を得る混合工程とを有すること。
In order to solve the above problems, the method for producing ideal drinking water from seawater according to the present invention employs the following method.
In a method for producing drinking water that produces mineral water containing mineral components by extracting and adding mineral components held in seawater to fresh water from which salt has been removed from seawater, filtration is performed by removing contaminants from raw seawater using a filter. A first separation step of separating the filtered seawater into fresh water and concentrated seawater by a reverse osmosis method, and a second separation step of separating the separated concentrated seawater into concentrated brine and demineralized water by electrodialysis. And a mixing step of obtaining drinking water appropriately containing the mineral components of seawater by adding an appropriate amount of the separated desalted water to the fresh water and mixing.

濃縮海水から濃縮塩水を分離した脱塩水に無機質の分子篩による篩処理を施して、脱塩水に含まれる重金属イオンを除去したこと。   Demineralized water separated from concentrated seawater was subjected to sieving with an inorganic molecular sieve to remove heavy metal ions contained in the demineralized water.

重金属イオンを除去した脱塩水に精密ろ過器によるろ過処理を施して、脱塩水中のミネラル成分量を精密に調整したこと。   The demineralized water from which heavy metal ions have been removed was filtered with a microfilter to precisely adjust the mineral content in the demineralized water.

濃縮海水から脱塩水を分離した濃縮塩水を蒸発法で処理して、濃縮塩水に含まれる成分の結晶品を得ること。   Treating concentrated salt water obtained by separating desalted water from concentrated seawater by an evaporation method to obtain a crystal product of the components contained in the concentrated salt water

請求項1の効果 海水を逆浸透法の第1の分離工程で淡水と濃縮海水とに分離して、分離した濃縮海水を電気透析法の第2の分離工程で濃縮塩水と脱塩水とに分離すれば、脱塩水の塩分濃度とミネラル成分とを選択的に調整できるため、このように調整されたミネラル成分を淡水へ混合すれば、海水が保有するミネラル成分の適切な量を取り込んだ健康上に優れた効果の理想的な飲料水が得られて、飲用や飲料、食品、その他の製造原料として広く利用することができる。   Effect of Claim 1 Seawater is separated into fresh water and concentrated seawater in the first separation step of the reverse osmosis method, and the separated concentrated seawater is separated into concentrated saltwater and desalted water in the second separation step of the electrodialysis method. If this is done, the salt concentration and mineral components in the desalted water can be selectively adjusted, so if the mineral components adjusted in this way are mixed with fresh water, the appropriate amount of mineral components in the seawater is taken into health. It is possible to obtain an ideal drinking water having an excellent effect and can be widely used as a raw material for drinking, beverages, foods, and the like.

靖求項2の効果 濃縮塩水を分離した脱塩水は、無機質の分子節による処理を行なうと脱塩水中に溶存している多価の金属イオン等の健康上好ましくないものを除去することができる。   Effect of Claim 2 The desalted water from which the concentrated salt water has been separated can remove unfavorable health-related substances such as polyvalent metal ions dissolved in the desalted water when treated with an inorganic molecular node. .

請求項3の効果 脱塩水を超微細孔を有する精密ろ過膜でろ過すると、ミネラル成分の数・量を適切に調整することができる。   Effect of Claim 3 When demineralized water is filtered through a microfiltration membrane having ultrafine pores, the number and amount of mineral components can be appropriately adjusted.

請求項4の効果 濃縮塩水を蒸発法で処理すれば、濃縮塩水に含まれる塩化ナトリウム及び塩化カリウムの混合結晶物を得ることができて、この混合物よりフローテーションにより塩化カリウムを分離することもでき、更に、ウルトラフローテーション、イオンフローテーションを採用すれば、濃縮海水中の有用溶存物質も回収することができる。 Effect of Claim 4 If concentrated salt water is processed by the evaporation method, a mixed crystal of sodium chloride and potassium chloride contained in the concentrated salt water can be obtained, and potassium chloride can also be separated from this mixture by flotation. Furthermore, if ultra flotation or ion flotation is employed, useful dissolved substances in the concentrated seawater can also be recovered.

以下に本発明に係る海水から理想的な飲料水を製造する方法の実施形態を説明する。   Hereinafter, an embodiment of a method for producing ideal drinking water from seawater according to the present invention will be described.

この方法に用いる原料海水は、水深200mm以上から取水する海洋深層水であること
が好ましい。しかし、深層水に限定されるものではなく、塩分とミネラル成分を含む海水
は総て利用できる。そして、この海水は図1に示す貯水タンク1へ海洋より取水して貯留
し、ポンプ2により以下の工程へ供給して各工程を順次に経るようにする。
The raw seawater used in this method is preferably deep ocean water taken from a depth of 200 mm or more. However, it is not limited to deep water, and all seawater containing salt and mineral components can be used. Then, the seawater is taken from the ocean and stored in the water storage tank 1 shown in FIG. 1, and is supplied to the following processes by the pump 2 so that each process is sequentially performed.

タンク2に貯蔵した海水は、濁質分、浮遊物等の混入物があるので、図1に示す前段のろ過器3と後段のろ過器4によるろ過工程を行なって、濁質分、浮遊物等を除くものであり、後段のろ過器4は、公知のナノ膜等を用いた精密ろ過ができるものを用いて混入物がミクロン単位まで除去されるようにする。   Since the seawater stored in the tank 2 contains contaminants such as turbidity and suspended matter, the filtration process using the former filter 3 and the latter filter 4 shown in FIG. The filter 4 in the subsequent stage uses a filter capable of performing microfiltration using a known nanomembrane or the like so that contaminants can be removed to the micron level.

混入物を除いた原料海水は、淡水に塩分とミネラル成分が含まれるので、図1に示す逆浸透法の第1の分離装置5によって、淡水と塩分及びミネラル成分を含む水、以下濃縮海水と呼ぶに分離する分離工程を行なうものであり、この分離装置5は水分子以外を殆ど通さない公知の浸透膜を用いて、原料海水を淡水と濃縮海水とに分離し、淡水は淡水タンク6へ送って理想的な飲料水を得るための主原料とし、濃縮海水は濃縮海水タンク7へ送って、次の工程で濃縮塩水と脱塩水に分離し、脱塩水中のミネラル成分を淡水へ加える原料に利用し、濃食塩水は製塩、その他に利用する。   The raw seawater excluding the contaminants contains salt and mineral components in the fresh water. Therefore, the first separation device 5 of the reverse osmosis method shown in FIG. This separation device 5 separates raw seawater into fresh water and concentrated seawater using a known osmosis membrane that hardly allows other than water molecules, and the fresh water is fed to a fresh water tank 6. The raw material that is sent to obtain the ideal drinking water, the concentrated seawater is sent to the concentrated seawater tank 7 and separated into concentrated salt water and desalted water in the next step, and the mineral components in the desalted water are added to the fresh water. Concentrated saline is used for salt production and others.

逆浸透法の分離装置5で淡水を分離された濃縮海水は、塩分を除去してミネラル成分を保有する脱塩水を得るため、図1に示す電気透析法の第2の分離装置8で硫酸ソーダを極液として電気透析を行うことにより、濃縮海水を濃縮塩水と脱塩水に分離する分離工程を行うものであって、分離された濃縮塩水は濃縮塩水タンク9へ送り、脱塩水は脱塩水タンク10へ送る。   Concentrated seawater from which fresh water has been separated by the reverse osmosis separation device 5 removes salt and obtains demineralized water having mineral components, so that the second separation device 8 of electrodialysis shown in FIG. Is subjected to a separation step in which concentrated seawater is separated into concentrated salt water and demineralized water by performing electrodialysis using as a polar solution, and the separated concentrated salt water is sent to the concentrated salt water tank 9, and the demineralized water is demineralized water tank. Send to 10.

上記第2の分離装置8は、図2に示す通り、陽イオンのみを透過させて、陰イオンは透過させない陽イオン交換膜12と、逆に、陰イオンのみを透過させて、陽イオンは透過させない陰イオン交換膜13を極液の硫酸ソーダ水の中に交互に配置し、陽イオン交換膜11を+電極14に、陰イオン交換膜13を−電極15に接続する。そして、電極14、15に直流電流を流すと、電気透析が行なわれて、解離したNaは−電極14へ向って移動し、陽イオン交換膜12を通過して燐室へ至り、次の陰イオン交換膜13によって透過を阻止される。一方解離したClは反対に+電極14へ向かって移動し、陰イオン交換膜13を通過して燐室へ至り、次の陽イオン交換膜12で透過が阻止される。従って、1室おきにNa、Clが蓄積される部屋ができることになり、結果としてNaClの濃縮が行なわれることになる。 As shown in FIG. 2, the second separation device 8 transmits only cations and does not transmit anions, and conversely, transmits only anions and transmits cations. The anion exchange membranes 13 that are not allowed to be placed are alternately disposed in the polar sodium sulfate water solution, and the cation exchange membrane 11 is connected to the + electrode 14 and the anion exchange membrane 13 is connected to the − electrode 15. When a direct current is applied to the electrodes 14 and 15, electrodialysis is performed, and the dissociated Na + moves toward the negative electrode 14, passes through the cation exchange membrane 12, and reaches the phosphorus chamber. Permeation is blocked by the anion exchange membrane 13. On the other hand, the dissociated Cl moves toward the positive electrode 14, passes through the anion exchange membrane 13, reaches the phosphorus chamber, and is blocked by the next cation exchange membrane 12. Therefore, every other room has a room in which Na + and Cl are accumulated, and as a result, NaCl concentration is performed.

この分離器8のイオン交換膜の特徴は、脱塩水中に溶存するイオンのうち2価のイオンと1価のイオン(Na、K、Li、Clなど)を選択的に分離濃縮できるものであり、上記1価の荷電イオンのうち多くは塩化ナトリウムで、その成分(NaCl)を効率よく選択的に除去して脱塩する。そのときの脱塩率を98%程度と高い数値にすることも可能である。しかし、Mg++(マグネシウム)やCa++(カルシウム)など2価荷電以上の重要なミネラル成分は、脱塩水側に濃縮されることになって、これ等が飲料水の主要なミネラル成分となる。 The ion exchange membrane of the separator 8 is characterized by selectively separating and concentrating divalent ions and monovalent ions (Na + , K + , Li + , Cl −, etc.) among the ions dissolved in the demineralized water. Most of the monovalent charged ions are sodium chloride, and the component (NaCl) is efficiently and selectively removed for desalting. It is also possible to make the desalting rate at that time as high as about 98%. However, important mineral components having a bivalent charge or higher such as Mg ++ (magnesium) and Ca ++ (calcium) are concentrated on the desalted water side, and these become the main mineral components of drinking water.

又、脱塩率を意のままにコントロールすることもできるもので、その場合、自動センサ指数値を電圧と電流でセットすることが可能である。研究データによれば電圧値を1.5V・電流値を0.6A以内に設定することにより、塩水の電気分解を起さない最良の状態
が得られることが確認された。そして、脱塩率をNaClの濃度に着目した場合のパーセントは、原水3.5%の含有量から0.5%、0.1%以下という低いものにすることができる。このように脱塩水やミネラル成分の含有量の調整がある範囲内で自由にできるものであって、これが電気透析法の利点であり、電気化学法の特徴である。
Further, the desalination rate can be controlled at will, and in that case, the automatic sensor index value can be set by voltage and current. According to the research data, it was confirmed that the best condition that does not cause electrolysis of salt water can be obtained by setting the voltage value to 1.5 V and the current value to within 0.6 A. The percentage when the desalination rate is focused on the NaCl concentration can be as low as 0.5% or 0.1% or less from the content of 3.5% of the raw water. As described above, the content of the desalted water and the mineral component can be freely adjusted within a certain range. This is an advantage of the electrodialysis method and a feature of the electrochemical method.

上記のように原料海水から淡水と、ミネラル成分を含有する脱塩水とが得られたら、淡
水タンク6の淡水を図1に示す飲料水調製タンク15へ所定量を送り、この淡水に対して適当なミネラル濃度となる量の脱塩水を加えて混合する混合工程を行なうものであり、混合によって海水より得た淡水は、海水が保有したミネラル成分の適当な量を含む理想的な飲料水、ミネラルウォーターとなるものである。
When fresh water and desalted water containing mineral components are obtained from the raw seawater as described above, a predetermined amount of fresh water in the fresh water tank 6 is sent to the drinking water preparation tank 15 shown in FIG. This is a mixing process that adds and mixes demineralized water in an amount that provides a mineral concentration. Fresh water obtained from seawater by mixing is an ideal drinking water and mineral containing an appropriate amount of mineral components held by seawater. It will be water.

しかしながら、上記の通り海水より得た脱塩水は、多価の金属イオンなども溶存して含
まれており、これらの成分には健康上好ましくないものがある。そこで、これ等の分子量
の多い重金属イオンなどを除去するため、脱塩水タンク10から送られる脱塩水を、図1に示すろ過器16でろ過する。このろ過器16は、無機質である公知の天然ゼオライト等の分子飾的機能を持つ粒子の充填層を形成する構造として、充填層に脱塩水を通過させると分子量の多い重金属イオンが除かれて健康上の問題がないようになるものであり、このろ過は全く物理的な作用効果に期待するものであって、その作用効果は必要に応じて分子篩の目のサイズを加減する加工によって調整することが可能であり、これがこの処理の非常に特徴的な技術である。
However, demineralized water obtained from seawater as described above contains dissolved polyvalent metal ions and the like, and some of these components are unfavorable for health. Therefore, in order to remove such heavy metal ions having a high molecular weight, the desalted water sent from the desalted water tank 10 is filtered by the filter 16 shown in FIG. This filter 16 has a structure that forms a packed bed of particles having a molecular decoration function, such as known natural zeolite, which is an inorganic substance. When demineralized water is passed through the packed bed, heavy metal ions having a high molecular weight are removed and healthy. The above problem is eliminated, and this filtration is totally expected to have a physical effect, and the effect should be adjusted by adjusting the size of the molecular sieve as necessary. This is a very characteristic technique of this process.

上記のように多価の金属イオンなどを除去した後の脱塩水中のミネラル成分の数・量を
用途等に応じて精密に調整したいときは、前記ろ過器16から出た脱塩水を、図1に示す精密ろ過器17を通過させて精密にろ過する。この精密ろ過器17はろ過膜として、公知の不織布を用いて、その積層枚数の加減等により繊維間の空隙(気孔)のサイズを超微細孔化するとともに、接着等で強度を増すことにより、目的に合うようにしたろ過膜を用いてろ過を行なうことにより、ミネラル成分の数・量の精密な調整ができるようにする。
When it is desired to precisely adjust the number and amount of mineral components in the demineralized water after removing the polyvalent metal ions and the like as described above, the demineralized water discharged from the filter 16 is 1 is passed through a microfilter 17 shown in FIG. This microfilter 17 uses a publicly known non-woven fabric as a filtration membrane, makes the pores (pores) between fibers ultra fine by increasing or decreasing the number of laminated layers, and increasing the strength by bonding or the like. By performing filtration using a filtration membrane that meets the purpose, the number and amount of mineral components can be precisely adjusted.

脱塩水中のミネラル成分の数・量が精密に調整されたら、図1に示す飲料水調製タンク
15へ淡水タンク6の淡水の所定量と、精密ろ過器17でミネラル成分の数・量を精密に
調整された脱塩水の必要なミネラル濃度が得られる量を送って混合する。そして、調製さ
れた飲料水は、図1に示す加熱殺菌機18による80℃以上の間接加熱による殺菌と、紫
外線殺菌機19による紫外線殺菌とを行い、貯留タンク20へ送ると、このタンク20に
は健康上好ましくない物質や細菌も除かれて、ミネラル成分を表1の成分表に示す通り適
切な数・量に精密に調製されている更に理想度の高い飲料水が貯留される。
When the number and amount of mineral components in the desalted water are precisely adjusted, the predetermined amount of fresh water in the fresh water tank 6 and the number and amount of mineral components in the drinking water preparation tank 15 shown in FIG. Send the amount of mineral water adjusted to the required mineral concentration and mix. The prepared drinking water is sterilized by indirect heating at 80 ° C. or higher by the heat sterilizer 18 shown in FIG. 1 and ultraviolet sterilized by the ultraviolet sterilizer 19 and sent to the storage tank 20. Substances and bacteria unfavorable to health are also removed, and drinking water with a higher degree of ideality is stored in which the mineral components are precisely prepared in an appropriate number and amount as shown in the component table of Table 1.

上記のように製造した飲料水は飲用、調理用、飲料や食品等の製造などの用水として最
適なものであって、ミネラル成分の含有値は表1の通りであった。

Figure 2005279384
The drinking water produced as described above was most suitable as drinking water for cooking, cooking, production of beverages, foods, etc., and the content of mineral components was as shown in Table 1.
Figure 2005279384

また、上記飲料水の製造において生じた濃縮塩水は、食塩の製造原料として利用する。この濃縮塩水で食塩を製造するには、図1に示す蒸発装置21として、多重(3重〜4重)の効用蒸発缶を用い、濃縮塩水を煮詰めることによって塩化ナトリウム等の結晶析出物を得るものであって、蒸発の際のエネルギー熱効率を考慮して、圧力が760mmHg以下に減圧し、沸点が50℃程度となるような減圧法を採用する。こうすると結晶化した塩化ナトリウムを遠心分離機で脱水して製品食塩とすることができるものであって、濃縮塩水にミネラル成分を含む脱塩水の適量を加えて蒸発法を実施すれば、般用の食塩に欠如するミネラル成分を保有した食塩を製造することができる。更に、濃縮塩水の煮詰め(せんごう)を進行すると、塩化ナトリウムと塩化カリウムの両成分の結晶化が進むものであって、両結晶の分離にはフローテーション(浮選)法による分離技術を採用する。   Moreover, the concentrated salt water produced in the production of the drinking water is used as a raw material for producing salt. In order to produce sodium chloride with this concentrated salt water, a multiple (triple to quadruple) effect evaporator is used as the evaporator 21 shown in FIG. 1, and crystal salt such as sodium chloride is obtained by boiling the concentrated salt water. In consideration of energy thermal efficiency at the time of evaporation, a pressure reduction method is adopted in which the pressure is reduced to 760 mmHg or less and the boiling point is about 50 ° C. In this way, the crystallized sodium chloride can be dehydrated into a product salt by a centrifuge, and if an appropriate amount of demineralized water containing mineral components is added to the concentrated brine and the evaporation method is carried out, It is possible to produce a salt containing a mineral component lacking in the salt. Furthermore, when the concentrated salt water is boiled, the crystallization of both sodium chloride and potassium chloride components progresses. The separation of both crystals adopts the flotation method. To do.

上記の浮選分離をする条件として、結晶の粒度分布・パルプ濃度・PHなどが決め手となる。このような条件下で塩化カリウムを浮上分離するための界面活性剤としては、陽イオン性捕集材のドデシルアンモニウムアセート(アミン系)を、塩化ナトリウムを浮上させる場合は、アルキルベンゼンスルフォン酸、オレイン酸、オレイン酸ソーダ等の陰イオン性捕集材を用いることを特徴とするもので、活性剤として塩化鉛を微量(数ppm)添加することがより効果的であることが実証された。   As conditions for the above flotation separation, crystal particle size distribution, pulp concentration, PH, and the like are decisive factors. As a surfactant for flotation separation of potassium chloride under these conditions, a cationic collector dodecyl ammonium acetate (amine-based) is used, and when sodium chloride is levitated, alkylbenzene sulfonic acid, olein It is characterized by using an anionic collection material such as acid and sodium oleate, and it has been proved that adding a trace amount (several ppm) of lead chloride as an activator is more effective.

又、TiO2<Zro2<CaCo3<Ba2<TiOなどの微粒子を溶存するイオン
成分の吸着特性が示すキャリアとして使用することにより、担体フローテーション技術の
適用が可能となる。
Moreover, the carrier flotation technique can be applied by using fine particles such as TiO2 <Zro2 <CaCo3 <Ba2 <TiO as carriers exhibiting the adsorption characteristics of dissolved ionic components.

更に、ケラチンタンパクなどの活性剤による金属錯化合物の形成により、それをウルトラフローテーションするか、さらにアミン系界面剤による金属石鹸スカムを形成させてのイオンフローテーションを行う等の多彩な技術手段を活用して有用溶存物質の回収を効率よく行う。   Furthermore, a variety of technical means such as ultra-floating by forming metal complex compounds with active agents such as keratin protein or ion flotation by forming metal soap scum with amine-based interfacial agents. Useful to recover useful dissolved substances efficiently.

本発明の方法は、海水を処理するだけでその保有するミネラル分を溶存して飲用、調理
用、飲料、食品製造用などに適した理想水を市場提供するのに寄与する。
The method of the present invention contributes to the market provision of ideal water suitable for drinking, cooking, beverages, food production, etc. by dissolving the mineral content held by simply treating seawater.

本発明に係る海水から理想水を製造する方法のフロー図である。It is a flowchart of the method of manufacturing ideal water from the seawater concerning the present invention. 上記方法に用いた電気透析法による分離器の構造図である。It is a block diagram of the separator by the electrodialysis method used for the said method.

符号の説明Explanation of symbols

1 原料海水タンク
3、4 ろ過器
5 逆浸透法分離装置
7 濃縮海水タンク
8 電気透析膜法分離装置
16飲料水調製タンク
1 Raw material seawater tank 3, 4 Filter 5 Reverse osmosis method separation device 7 Concentrated seawater tank 8 Electrodialysis membrane method separation device 16 Drinking water preparation tank

Claims (4)

海水から塩分を除いた淡水に、海水が保有するミネラル成分を抽出して加えることによりミネラル成分を含有する飲料水を製造する飲料水の製造方法において、
原料海水から混入物等をろ過器により除くろ過工程と、
ろ過した海水を淡水と濃縮海水とに逆浸透法で分離する第1の分離工程と、
分離した濃縮海水を濃縮塩水と脱塩水とに電気透析法で分離する第2の分離工程と、
分離した脱塩水の適量を上記淡水に加えて混合し、海水の保有するミネラル成分を適度に含有した飲料水を得る混合工程とを有する
ことを特徴とする海水から理想的な飲料水を製造する方法。
In the method for producing drinking water for producing drinking water containing mineral components by extracting and adding mineral components held by seawater to fresh water obtained by removing salt from seawater,
A filtration step of removing contaminants from raw seawater with a filter;
A first separation step of separating filtered seawater into fresh water and concentrated seawater by a reverse osmosis method;
A second separation step of separating the separated concentrated seawater into concentrated salt water and demineralized water by electrodialysis;
A suitable amount of separated desalted water is added to the above-mentioned fresh water and mixed to produce ideal drinking water from seawater, characterized by having a mixing step of obtaining drinking water appropriately containing mineral components possessed by seawater Method.
濃縮海水から濃縮塩水を分離した脱塩水に無機質の分子篩による篩処理を施して、脱塩水に含まれる重金属イオンを除去した
ことを特徴とする請求項1に記載の海水から理想的な飲料水を製造する方法。
The ideal drinking water from the seawater according to claim 1, wherein the desalted water obtained by separating the concentrated saltwater from the concentrated seawater is subjected to a sieving treatment with an inorganic molecular sieve to remove heavy metal ions contained in the desalted water. How to manufacture.
篩処理で重金属イオンを除去した脱塩水に精密ろ過器によるろ過処理を施して、脱塩水中のミネラル成分量を精密に調整した
ことを特徴とする請求項2に記載の海水から理想的な飲料水を製造する方法。
The ideal beverage from seawater according to claim 2, wherein the demineralized water from which heavy metal ions have been removed by sieving is subjected to a filtration process with a microfilter to precisely adjust the amount of mineral components in the demineralized water. A method of producing water.
濃縮海水から脱塩水を分離した濃縮塩水を蒸発で処理して、濃縮塩水が含有する成分の結晶品等を得る
ことを特徴とする請求項1に記載の海水から理想的な飲料水を製造する方法。
The concentrated salt water obtained by separating the desalted water from the concentrated sea water is treated by evaporation to obtain a crystal product or the like of the component contained in the concentrated salt water, thereby producing ideal drinking water from the sea water according to claim 1. Method.
JP2004094965A 2004-03-29 2004-03-29 Method for producing ideal drinking water from sea water Pending JP2005279384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004094965A JP2005279384A (en) 2004-03-29 2004-03-29 Method for producing ideal drinking water from sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094965A JP2005279384A (en) 2004-03-29 2004-03-29 Method for producing ideal drinking water from sea water

Publications (1)

Publication Number Publication Date
JP2005279384A true JP2005279384A (en) 2005-10-13

Family

ID=35178342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094965A Pending JP2005279384A (en) 2004-03-29 2004-03-29 Method for producing ideal drinking water from sea water

Country Status (1)

Country Link
JP (1) JP2005279384A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697563B1 (en) 2005-11-25 2007-03-23 서희동 Manufacturing method of high-purity table salt, coarse salt, mineral salt and bittern from the deep sea water
KR100751581B1 (en) 2006-06-19 2007-08-22 (주)블루오션월드 Method for producing mineral water from deep ocean water with active control of mineral balances
KR100759983B1 (en) 2007-06-08 2007-10-04 주식회사 워터비스 Method for producing mineral water from deep ocean water with active control of mineral balances
JP2009297685A (en) * 2008-06-17 2009-12-24 Nyk Kk Method and apparatus for producing fresh water
KR100983382B1 (en) 2007-11-06 2010-09-28 서희동 A method to produce drinking water from deep sea water
WO2010137185A1 (en) * 2009-05-28 2010-12-02 三菱重工業株式会社 Apparatus and process for producing both salt and fresh water
KR101007332B1 (en) * 2008-11-21 2011-01-13 김충래 Preparation Method of High Concentrated Mineral Water Using Deep-Sea Water
CN102190349A (en) * 2011-01-09 2011-09-21 张英华 Seawater desalting plant
WO2012008013A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Concentration plant, plant for producing fresh water by concentration and for generating electric power, concentration method, and method for operating plant for producing fresh water by concentration and for generating electric power
CN102774924A (en) * 2012-07-12 2012-11-14 清华大学 Method for removing radiocesium 137 with titanium potassium ferrocyanide spherical particles
RU2616658C1 (en) * 2016-03-28 2017-04-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method for mineralizing distilled water
CN112823050A (en) * 2018-10-09 2021-05-18 懿华水处理技术有限责任公司 High recovery electrodialysis process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134451A (en) * 1992-10-29 1994-05-17 Shunichi Terada Method for purifying drinking water
JPH09290260A (en) * 1996-04-24 1997-11-11 Sachiko Hayashi Production of drinking water and salt, and device therefor
JP2001087762A (en) * 1999-09-27 2001-04-03 Nkk Corp Water based on sea deep water, its production and production device therefor
JP2002172392A (en) * 2000-09-12 2002-06-18 Toray Ind Inc Method and apparatus for manufacturing mineral- containing solution from seawater
JP2002335923A (en) * 2001-05-16 2002-11-26 Rausu Kaiyo Shinsosui:Kk Drinking water given by using ocean deep water as raw material and method for producing the same
JP2004065196A (en) * 2002-08-09 2004-03-04 Suntory Ltd Mineral composition produced by using seawater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134451A (en) * 1992-10-29 1994-05-17 Shunichi Terada Method for purifying drinking water
JPH09290260A (en) * 1996-04-24 1997-11-11 Sachiko Hayashi Production of drinking water and salt, and device therefor
JP2001087762A (en) * 1999-09-27 2001-04-03 Nkk Corp Water based on sea deep water, its production and production device therefor
JP2002172392A (en) * 2000-09-12 2002-06-18 Toray Ind Inc Method and apparatus for manufacturing mineral- containing solution from seawater
JP2002335923A (en) * 2001-05-16 2002-11-26 Rausu Kaiyo Shinsosui:Kk Drinking water given by using ocean deep water as raw material and method for producing the same
JP2004065196A (en) * 2002-08-09 2004-03-04 Suntory Ltd Mineral composition produced by using seawater

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697563B1 (en) 2005-11-25 2007-03-23 서희동 Manufacturing method of high-purity table salt, coarse salt, mineral salt and bittern from the deep sea water
KR100751581B1 (en) 2006-06-19 2007-08-22 (주)블루오션월드 Method for producing mineral water from deep ocean water with active control of mineral balances
KR100759983B1 (en) 2007-06-08 2007-10-04 주식회사 워터비스 Method for producing mineral water from deep ocean water with active control of mineral balances
KR100983382B1 (en) 2007-11-06 2010-09-28 서희동 A method to produce drinking water from deep sea water
JP2009297685A (en) * 2008-06-17 2009-12-24 Nyk Kk Method and apparatus for producing fresh water
KR101007332B1 (en) * 2008-11-21 2011-01-13 김충래 Preparation Method of High Concentrated Mineral Water Using Deep-Sea Water
US8795531B2 (en) 2009-05-28 2014-08-05 Mitsubishi Heavy Industries, Ltd. Co-producing apparatus for salt and fresh water and co-producing method of the same
JP2010274202A (en) * 2009-05-28 2010-12-09 Mitsubishi Heavy Ind Ltd Apparatus and method for manufacturing salt and fresh water at the same time
WO2010137185A1 (en) * 2009-05-28 2010-12-02 三菱重工業株式会社 Apparatus and process for producing both salt and fresh water
WO2012008013A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Concentration plant, plant for producing fresh water by concentration and for generating electric power, concentration method, and method for operating plant for producing fresh water by concentration and for generating electric power
CN102190349A (en) * 2011-01-09 2011-09-21 张英华 Seawater desalting plant
CN102190349B (en) * 2011-01-09 2012-10-03 张英华 Seawater desalting plant
CN102774924A (en) * 2012-07-12 2012-11-14 清华大学 Method for removing radiocesium 137 with titanium potassium ferrocyanide spherical particles
RU2616658C1 (en) * 2016-03-28 2017-04-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method for mineralizing distilled water
CN112823050A (en) * 2018-10-09 2021-05-18 懿华水处理技术有限责任公司 High recovery electrodialysis process
CN112823050B (en) * 2018-10-09 2024-03-26 懿华水处理技术有限责任公司 Electrodialysis method with high recovery rate

Similar Documents

Publication Publication Date Title
CA2663906C (en) Method and apparatus for desalination
KR100944538B1 (en) Method for producing high hardness mineral water containing mineral using sea water
JP2008031037A (en) Method for efficiently extracting mineral with high purity from deep ocean water by using low temperature vacuum crystal method
JP2015029931A (en) Desalination apparatus and desalination method, method for producing fresh water, and method for co-producing fresh water, salt and valuable-material
JP2005279384A (en) Method for producing ideal drinking water from sea water
KR20150080194A (en) The manufacturing process of high hardness drinking water using NF/RO/ED membrane connection system
JP2002306118A (en) Method for producing health salt from ocean deep water and device therefor
WO2009075430A1 (en) Method for producing mineral water from deep sea water
WO2003106348A1 (en) Methods for reducing boron concentration in high salinity liquid
JP3587102B2 (en) Method for producing water using deep ocean water, method for treating deep ocean water, and apparatus therefor
KR20160004063A (en) Removal system of sulfate in seawater using ion exchange resin
KR100751581B1 (en) Method for producing mineral water from deep ocean water with active control of mineral balances
KR101896227B1 (en) Method for preparing mineral water with high hardness using deep sea water or saline groundwater
KR101689059B1 (en) Removal of anions and conversion technology of carbonate ions from seawater
KR20140145309A (en) The manufacturing process development of Processed deep seawater using NF/RO/ED membrane connection system
JP2005342664A (en) Method for producing mineral water
KR101643146B1 (en) Manufacturing Apparatus for Mineral Water with Forward Osmosis Hybrid
KR101927741B1 (en) Removal of dissolved organic matters and maunfacturing method of mineral water for deep sea water
JP4031789B2 (en) Manufacturing method and manufacturing apparatus for high-concentration mineral liquid
KR100992427B1 (en) Method for producing mineral water through anion removal by nf membrane and electrodialysis
JPH06339A (en) Production of domestic water
KR100992428B1 (en) Method of mineral water manufacture through efficient mineral control and removal of anion by nf membrane
KR20060029945A (en) A manufacturing method of low-salinity mineral salt by using nanofiltration
JP2002338242A (en) Method for manufacturing high-mineral oxide
KR20140073609A (en) The method for producing drinking water using deep sea water

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824